1
|
Liu J, Zhao B, Zhang X, Guan D, Sun K, Zhang Y, Liu Q. Thiolation for Enhancing Photostability of Fluorophores at the Single-Molecule Level. Angew Chem Int Ed Engl 2024; 63:e202316192. [PMID: 37975636 DOI: 10.1002/anie.202316192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Fluorescent probes are essential for single-molecule imaging. However, their application in biological systems is often limited by the short photobleaching lifetime. To overcome this, we developed a novel thiolation strategy for squaraine dyes. By introducing thiolation of the central cyclobutene of squaraine (thio-squaraine), we observed a ≈5-fold increase in photobleaching lifetime. Our single-molecule data analysis attributes this improvement to improved photostability resulting from thiolation. Interestingly, bulk measurements show rapid oxidation of thio-squaraine to its oxo-analogue under irradiation, giving the perception of inferior photostability. This discrepancy between bulk and single-molecule environments can be ascribed to the factors in the latter, including larger intermolecular distances and restricted mobility, which reduce the interactions between a fluorophore and reactive oxygen species produced by other fluorophores, ultimately impacting photobleaching and photoconversion rate. We demonstrate the remarkable performance of thio-squaraine probes in various imaging buffers, such as glucose oxidase with catalase (GLOX) and GLOX+trolox. We successfully employed these photostable probes for single-molecule tracking of CD56 membrane protein and monitoring mitochondria movements in live neurons. CD56 tracking revealed distinct motion states and the corresponding protein fractions. This investigation is expected to propel the development of single-molecule imaging probes, particularly in scenarios where bulk measurements show suboptimal performance.
Collapse
Affiliation(s)
- Jinyang Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Bingjie Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Xuebo Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Daoming Guan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Kuangshi Sun
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
2
|
Xu DH, Du JK, Liu SY, Zhang H, Yang L, Zhu XY, Liu YJ. Upregulation of KLK8 contributes to CUMS-induced hippocampal neuronal apoptosis by cleaving NCAM1. Cell Death Dis 2023; 14:278. [PMID: 37076499 PMCID: PMC10115824 DOI: 10.1038/s41419-023-05800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Neuronal apoptosis has been well-recognized as a critical mediator in the pathogenesis of depressive disorders. Tissue kallikrein-related peptidase 8 (KLK8), a trypsin-like serine protease, has been implicated in the pathogenesis of several psychiatric disorders. The present study aimed to explore the potential function of KLK8 in hippocampal neuronal cell apoptosis associated with depressive disorders in rodent models of chronic unpredictable mild stress (CUMS)-induced depression. It was found that depression-like behavior in CUMS-induced mice was associated with hippocampal KLK8 upregulation. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency attenuated CUMS-induced depression-like behaviors and hippocampal neuronal apoptosis. In HT22 murine hippocampal neuronal cells and primary hippocampal neurons, adenovirus-mediated overexpression of KLK8 (Ad-KLK8) was sufficient to induce neuron apoptosis. Mechanistically, it was identified that the neural cell adhesion molecule 1 (NCAM1) may associate with KLK8 in hippocampal neurons as KLK8 proteolytically cleaved the NCAM1 extracellular domain. Immunofluorescent staining exhibited decreased NCAM1 in hippocampal sections obtained from mice or rats exposed to CUMS. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency largely prevented CUMS-induced loss of NCAM1 in the hippocampus. Both adenovirus-mediated overexpression of NCAM1 and NCAM1 mimetic peptide rescued KLK8-overexpressed neuron cells from apoptosis. Collectively, this study identified a new pro-apoptotic mechanism in the hippocampus during the pathogenesis of CUMS-induced depression via the upregulation of KLK8, and raised the possibility of KLK8 as a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Dan-Hong Xu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
- Department of Physiology, Navy Medical University, Shanghai, 200433, China
| | - Jian-Kui Du
- National Clinical Research Center for Geriatric Disorders and National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, 41008, China
| | - Shi-Yu Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
| | - Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Lu Yang
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai, 200433, China.
| | - Yu-Jian Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
3
|
Wang ZZ, Li XH, Wen XL, Wang N, Guo Y, Zhu X, Fu SH, Xiong FF, Bai J, Gao XL, Wang HJ. Integration of multi-omics data reveals a novel hybrid breast cancer subtype and its biomarkers. Front Oncol 2023; 13:1130092. [PMID: 37064087 PMCID: PMC10091394 DOI: 10.3389/fonc.2023.1130092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Tumor heterogeneity in breast cancer hinders proper diagnosis and treatment, and the identification of molecular subtypes may help enhance the understanding of its heterogeneity. Therefore, we proposed a novel integrated multi-omics approach for breast cancer typing, which led to the identification of a hybrid subtype (Mix_Sub subtype) with a poor survival prognosis. This subtype is characterized by lower levels of the inflammatory response, lower tumor malignancy, lower immune cell infiltration, and higher T-cell dysfunction. Moreover, we found that cell-cell communication mediated by NCAM1-FGFR1 ligand-receptor interaction and cellular functional states, such as cell cycle, DNA damage, and DNA repair, were significantly altered and upregulated in patients with this subtype, and that such patients displayed greater sensitivity to targeted therapies. Subsequently, using differential genes among subtypes as biomarkers, we constructed prognostic risk models and subtype classifiers for the Mix_Sub subtype and validated their generalization ability in external datasets obtained from the GEO database, indicating their potential therapeutic and prognostic significance. These biomarkers also showed significant spatially variable expression in malignant tumor cells. Collectively, the identification of the Mix_Sub breast cancer subtype and its biomarkers, based on the driving relationship between omics, has deepened our understanding of breast cancer heterogeneity and facilitated the development of breast cancer precision therapy.
Collapse
Affiliation(s)
- Zhen-zhen Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Xu-hua Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Xiao-ling Wen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Na Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Yu Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Xu Zhu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Shu-heng Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Fei-fan Xiong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Jing Bai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- *Correspondence: Hong-jiu Wang, ; Xiao-ling Gao, ; Jing Bai,
| | - Xiao-ling Gao
- The Medical Laboratory Center, Hainan General Hospital, Haikou, China
- *Correspondence: Hong-jiu Wang, ; Xiao-ling Gao, ; Jing Bai,
| | - Hong-jiu Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- *Correspondence: Hong-jiu Wang, ; Xiao-ling Gao, ; Jing Bai,
| |
Collapse
|
4
|
Boni N, Shapiro L, Honig B, Wu Y, Rubinstein R. On the formation of ordered protein assemblies in cell-cell interfaces. Proc Natl Acad Sci U S A 2022; 119:e2206175119. [PMID: 35969779 PMCID: PMC9407605 DOI: 10.1073/pnas.2206175119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Crystal structures of many cell-cell adhesion receptors reveal the formation of linear "molecular zippers" comprising an ordered one-dimensional array of proteins that form both intercellular (trans) and intracellular (cis) interactions. The clustered protocadherins (cPcdhs) provide an exemplar of this phenomenon and use it as a basis of barcoding of vertebrate neurons. Here, we report both Metropolis and kinetic Monte Carlo simulations of cPcdh zipper formation using simplified models of cPcdhs that nevertheless capture essential features of their three-dimensional structure. The simulations reveal that the formation of long zippers is an implicit feature of cPcdh structure and is driven by their cis and trans interactions that have been quantitatively characterized in previous work. Moreover, in agreement with cryo-electron tomography studies, the zippers are found to organize into two-dimensional arrays even in the absence of attractive interactions between individual zippers. Our results suggest that the formation of ordered two-dimensional arrays of linear zippers of adhesion proteins is a common feature of cell-cell interfaces. From the perspective of simulations, they demonstrate the importance of a realistic depiction of adhesion protein structure and interactions if important biological phenomena are to be properly captured.
Collapse
Affiliation(s)
- Nadir Boni
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Lawrence Shapiro
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Barry Honig
- Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
- Department of Systems Biology, Columbia University, New York, NY 10032
- Department of Medicine, Division of Nephrology, Columbia University, New York, NY 10032
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Rotem Rubinstein
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
5
|
Liu T, Xie Q, Dong Z, Peng Q. Nanoparticles-based delivery system and its potentials in treating central nervous system disorders. NANOTECHNOLOGY 2022; 33. [PMID: 35917704 DOI: 10.1088/1361-6528/ac85f3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/02/2022] [Indexed: 02/08/2023]
Abstract
Central nervous system (CNS) disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD), have become severe health concern worldwide. The treatment of the CNS diseases is of great challenges due largely to the presence of the blood-brain barrier (BBB). On the one hand, BBB protects brain from the harmful exogenous molecules via inhibiting their entry into the brain. On the other hand, it also hampers the transport of therapeutic drugs into the brain, resulting in the difficulties in treating the CNS diseases. In the past decades, nanoparticles-based drug delivery systems have shown great potentials in overcoming the BBB owing to their unique physicochemical properties, such as small size and specific morphology. In addition, functionalization of nanomaterials confers these nanocarriers controlled drug release features and targeting capacities. These properties make nanocarriers the potent delivery systems for treating the CNS disorders. Herein, we summarize the recent progress in nanoparticles-based systems for the CNS delivery, including the conventional and innovative systems. The prerequisites, drawbacks and challenges of nanocarriers (such as protein corona formation) in the CNS delivery are also discussed.
Collapse
Affiliation(s)
- Tianyou Liu
- Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, CHINA
| | - Qinglian Xie
- Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, CHINA
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, CHINA
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, CHINA
| |
Collapse
|
6
|
Yasodharababu M, Servoss SL, Nair AK. Interaction energy between neuronal cell receptors and peptoid ligands. J Biomech 2021; 121:110381. [PMID: 33845356 DOI: 10.1016/j.jbiomech.2021.110381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 01/04/2023]
Abstract
Peptoids as an extracellular matrix (ECM) material is gaining importance in in vitro neuronal cell culture studies due to their biocompatibility, self-assembling structure, and stability. Mechanotransduction between a neuronal cell and an ECM is mediated by neuronal cell receptors such as integrin and neural cellular adhesion molecule. In this study, using molecular dynamics, we investigate the interaction energies between peptoid and neuronal cell receptors, and also study the effect of peptoid bundle size. We investigate the interaction surface between peptoid bundles and neuronal cell receptors, integrin and neural cellular adhesion molecule, using the solvent accessible surface area method to find the influence of hydrophobic and hydrophilic residues of the peptoid chain. We find the free energy landscape using the umbrella sampling method and then evaluate the potential mean force (PMF) and unbinding force during the dissociation between peptoid bundles and neuronal cell receptors. We find that the peptoid bundles have a higher affinity for the neuronal cell receptors, however increasing the size of peptoid bundles increases the affinity for integrin and neural cell adhesion molecule. PMF data for peptoid and neuronal cell receptor dissociation indicates that binding force increases as the size of the peptoid bundle increases. The higher binding strength during peptoid and neuronal cell receptors are due to the hydrophobic residue cluster area in the binding region. These findings will provide a better insight into using peptoid as an ECM.
Collapse
Affiliation(s)
- Mohan Yasodharababu
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Shannon L Servoss
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas Fayetteville, AR, USA
| | - Arun K Nair
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA; Institute for Nanoscience and Engineering, 731 W. Dickson Street, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
7
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
8
|
Spatiotemporal processing of neural cell adhesion molecules 1 and 2 by BACE1 in vivo. J Biol Chem 2021; 296:100372. [PMID: 33548223 PMCID: PMC7949136 DOI: 10.1016/j.jbc.2021.100372] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Neural cell adhesion molecules 1 (NCAM1) and 2 (NCAM2) belong to the cell adhesion molecules of the immunoglobulin superfamily and have been shown to regulate formation, maturation, and maintenance of synapses. NCAM1 and NCAM2 undergo proteolysis, but the identity of all the proteases involved and how proteolysis is used to regulate their functions are not known. We report here that NCAM1 and NCAM2 are BACE1 substrates in vivo. NCAM1 and NCAM2 overexpressed in HEK cells were both cleaved by metalloproteinases or BACE1, and NCAM2 was also processed by γ-secretase. We identified the BACE1 cleavage site of NCAM1 (at Glu 671) and NCAM2 (at Glu 663) using mass spectrometry and site-directed mutagenesis. Next, we assessed BACE1-mediated processing of NCAM1 and NCAM2 in the mouse brain during aging. NCAM1 and NCAM2 were cleaved in the olfactory bulb of BACE1+/+ but not BACE1−/− mice at postnatal day 10 (P10), 4 and 12 months of age. In the hippocampus, a BACE1-specific soluble fragment of NCAM1 (sNCAM1β) was only detected at P10. However, we observed an accumulation of full-length NCAM1 in hippocampal synaptosomes in 4-month-old BACE1−/− mice. We also found that polysialylated NCAM1 (PSA-NCAM1) levels were increased in BACE1−/− mice at P10 and demonstrated that BACE1 cleaves both NCAM1 and PSA-NCAM1 in vitro. In contrast, we did not find evidence for BACE1-dependent NCAM2 processing in the hippocampus at any age analyzed. In summary, our data demonstrate that BACE1 differentially processes NCAM1 and NCAM2 depending on the region of brain, subcellular localization, and age in vivo.
Collapse
|
9
|
Honig B, Shapiro L. Adhesion Protein Structure, Molecular Affinities, and Principles of Cell-Cell Recognition. Cell 2021; 181:520-535. [PMID: 32359436 DOI: 10.1016/j.cell.2020.04.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
The ability of cells to organize into multicellular structures in precise patterns requires that they "recognize" one another with high specificity. We discuss recent progress in understanding the molecular basis of cell-cell recognition, including unique phenomena associated with neuronal interactions. We describe structures of select adhesion receptor complexes and their assembly into larger intercellular junction structures and discuss emerging principles that relate cell-cell organization to the binding specificities and energetics of adhesion receptors. Armed with these insights, advances in protein design and gene editing should pave the way for breakthroughs toward understanding the molecular basis of cell patterning in vivo.
Collapse
Affiliation(s)
- Barry Honig
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
10
|
Finegan TM, Bergstralh DT. Neuronal immunoglobulin superfamily cell adhesion molecules in epithelial morphogenesis: insights from Drosophila. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190553. [PMID: 32829687 PMCID: PMC7482216 DOI: 10.1098/rstb.2019.0553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
In this review, we address the function of immunoglobulin superfamily cell adhesion molecules (IgCAMs) in epithelia. Work in the Drosophila model system in particular has revealed novel roles for calcium-independent adhesion molecules in the morphogenesis of epithelial tissues. We review the molecular composition of lateral junctions with a focus on their IgCAM components and reconsider the functional roles of epithelial lateral junctions. The epithelial IgCAMs discussed in this review have well-defined roles in the nervous system, particularly in the process of axon guidance, suggesting functional overlap and conservation in mechanism between that process and epithelial remodelling. We expand on the hypothesis that epithelial occluding junctions and synaptic junctions are compositionally equivalent and present a novel hypothesis that the mechanism of epithelial cell (re)integration and synaptic junction formation are shared. We highlight the importance of considering non-cadherin-based adhesion in our understanding of the mechanics of epithelial tissues and raise questions to direct future work. This article is part of the discussion meeting issue 'Contemporary morphogenesis'.
Collapse
|
11
|
Gunesch JT, Dixon AL, Ebrahim TAM, Berrien-Elliott MM, Tatineni S, Kumar T, Hegewisch-Solloa E, Fehniger TA, Mace EM. CD56 regulates human NK cell cytotoxicity through Pyk2. eLife 2020; 9:e57346. [PMID: 32510326 PMCID: PMC7358009 DOI: 10.7554/elife.57346] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/07/2020] [Indexed: 12/12/2022] Open
Abstract
Human natural killer (NK) cells are defined as CD56+CD3-. Despite its ubiquitous expression on human NK cells the role of CD56 (NCAM) in human NK cell cytotoxic function has not been defined. In non-immune cells, NCAM can induce signaling, mediate adhesion, and promote exocytosis through interactions with focal adhesion kinase (FAK). Here we demonstrate that deletion of CD56 on the NK92 cell line leads to impaired cytotoxic function. CD56-knockout (KO) cells fail to polarize during immunological synapse (IS) formation and have severely impaired exocytosis of lytic granules. Phosphorylation of the FAK family member Pyk2 at tyrosine 402 is decreased in NK92 CD56-KO cells, demonstrating a functional link between CD56 and signaling in human NK cells. Cytotoxicity, lytic granule exocytosis, and the phosphorylation of Pyk2 are rescued by the reintroduction of CD56. These data highlight a novel functional role for CD56 in stimulating exocytosis and promoting cytotoxicity in human NK cells.
Collapse
Affiliation(s)
| | - Amera L Dixon
- Baylor College of MedicineHoustonUnited States
- Rice UniversityHoustonUnited States
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| | - Tasneem AM Ebrahim
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
- Barnard CollegeNew YorkUnited States
| | | | | | | | - Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| | - Todd A Fehniger
- Washington University School of MedicineSt. LouisUnited States
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|
12
|
Yasodharababu M, Nair AK. A Multiscale Model to Predict Neuronal Cell Deformation with Varying Extracellular Matrix Stiffness and Topography. Cell Mol Bioeng 2020; 13:229-245. [PMID: 32426060 PMCID: PMC7225237 DOI: 10.1007/s12195-020-00615-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/11/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Neuronal cells are sensitive to mechanical properties of extracellular matrix (ECM) such as stiffness and topography. Cells contract and exert a force on ECM to detect the microenvironment, which activates the signaling pathway to influence the cell functions such as differentiation, migration, and proliferation. There are numerous transmembrane proteins that transmit signals; however, integrin and neural cellular adhesion molecules (NCAM) play an important role in sensing the ECM mechanical properties. Mechanotransduction of cell-ECM is the key to understand the influence of ECM stiffness and topography; therefore, in this study, we develop a multiscale computational model to investigate these properties. METHODS This model couples the molecular behavior of integrin and NCAM to microscale interactions of neuronal cell and the ECM. We analyze the atomistic/molecular behavior of integrin and NCAM due to mechanical stimuli using steered molecular dynamics. The microscale properties of the neuronal cell and the ECM are simulated using non-linear finite element analysis by applying cell contractility. RESULTS We predict that by increasing the ECM stiffness, a neuronal cell exerts greater stress on the ECM. However, this stress reaches a saturation value for a threshold stiffness of ECM, and the saturation value is affected by the ECM thickness, topography, and clustering of integrin and NCAMs. Further, the ECM topography leads to asymmetric stress and deformation in the neuronal cell. Predicted stress distribution in neuronal cell and ECM are consistent with experimental results from the literature. CONCLUSION The multiscale computational model will guide in selecting the optimal ECM stiffness and topography range for in vitro studies.
Collapse
Affiliation(s)
- Mohan Yasodharababu
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR USA
| | - Arun K. Nair
- Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR USA
- Institute for Nanoscience and Engineering, University of Arkansas, 731 W. Dickson Street, Fayetteville, AR USA
| |
Collapse
|
13
|
Keable R, Leshchyns'ka I, Sytnyk V. Trafficking and Activity of Glutamate and GABA Receptors: Regulation by Cell Adhesion Molecules. Neuroscientist 2020; 26:415-437. [PMID: 32449484 DOI: 10.1177/1073858420921117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The efficient targeting of ionotropic receptors to postsynaptic sites is essential for the function of chemical excitatory and inhibitory synapses, constituting the majority of synapses in the brain. A growing body of evidence indicates that cell adhesion molecules (CAMs), which accumulate at synapses at the earliest stages of synaptogenesis, are critical for this process. A diverse variety of CAMs assemble into complexes with glutamate and GABA receptors and regulate the targeting of these receptors to the cell surface and synapses. Presynaptically localized CAMs provide an additional level of regulation, sending a trans-synaptic signal that can regulate synaptic strength at the level of receptor trafficking. Apart from controlling the numbers of receptors present at postsynaptic sites, CAMs can also influence synaptic strength by modulating the conductivity of single receptor channels. CAMs thus act to maintain basal synaptic transmission and are essential for many forms of activity dependent synaptic plasticity. These activities of CAMs may underlie the association between CAM gene mutations and synaptic pathology and represent fundamental mechanisms by which synaptic strength is dynamically tuned at both excitatory and inhibitory synapses.
Collapse
Affiliation(s)
- Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Rozbesky D, Monistrol J, Jain V, Hillier J, Padilla-Parra S, Jones EY. Drosophila OTK Is a Glycosaminoglycan-Binding Protein with High Conformational Flexibility. Structure 2020; 28:507-515.e5. [PMID: 32187531 PMCID: PMC7203548 DOI: 10.1016/j.str.2020.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/29/2020] [Accepted: 02/27/2020] [Indexed: 11/25/2022]
Abstract
The transmembrane protein OTK plays an essential role in plexin and Wnt signaling during Drosophila development. We have determined a crystal structure of the last three domains of the OTK ectodomain and found that OTK shows high conformational flexibility resulting from mobility at the interdomain interfaces. We failed to detect direct binding between Drosophila Plexin A (PlexA) and OTK, which was suggested previously. We found that, instead of PlexA, OTK directly binds semaphorin 1a. Our binding analyses further revealed that glycosaminoglycans, heparin and heparan sulfate, are ligands for OTK and thus may play a role in the Sema1a-PlexA axon guidance system.
Collapse
Affiliation(s)
- Daniel Rozbesky
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| | - Jim Monistrol
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Vitul Jain
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - James Hillier
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Sergi Padilla-Parra
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Cellular imaging, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London SE1 9RT, UK; Randall Centre for Cell and Molecular Biology, King's College London, London SE1 1UL, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
15
|
Whole-cell imaging of plasma membrane receptors by 3D lattice light-sheet dSTORM. Nat Commun 2020; 11:887. [PMID: 32060305 PMCID: PMC7021797 DOI: 10.1038/s41467-020-14731-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/30/2020] [Indexed: 11/08/2022] Open
Abstract
The molecular organization of receptors in the plasma membrane of cells is paramount for their functionality. We combined lattice light-sheet (LLS) microscopy with three-dimensional (3D) single-molecule localization microscopy (dSTORM) and single-particle tracking to quantify the expression and distribution, and mobility of CD56 receptors on whole fixed and living cells, finding that CD56 accumulated at cell-cell interfaces. For comparison, we investigated two other receptors, CD2 and CD45, which showed different expression levels and distributions in the plasma membrane. Overall, 3D-LLS-dSTORM enabled imaging and single-particle tracking of plasma membrane receptors with single-molecule sensitivity unperturbed by surface effects. Our results demonstrate that receptor distribution and mobility are largely unaffected by contact to the coverslip but the measured localization densities are in general lower at the basal plasma membrane due to partial limited accessibility for antibodies.
Collapse
|
16
|
Parcerisas A, Pujadas L, Ortega-Gascó A, Perelló-Amorós B, Viais R, Hino K, Figueiro-Silva J, La Torre A, Trullás R, Simó S, Lüders J, Soriano E. NCAM2 Regulates Dendritic and Axonal Differentiation through the Cytoskeletal Proteins MAP2 and 14-3-3. Cereb Cortex 2020; 30:3781-3799. [PMID: 32043120 DOI: 10.1093/cercor/bhz342] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/27/2019] [Accepted: 01/08/2020] [Indexed: 01/13/2023] Open
Abstract
Neural cell adhesion molecule 2 (NCAM2) is involved in the development and plasticity of the olfactory system. Genetic data have implicated the NCAM2 gene in neurodevelopmental disorders including Down syndrome and autism, although its role in cortical development is unknown. Here, we show that while overexpression of NCAM2 in hippocampal neurons leads to minor alterations, its downregulation severely compromises dendritic architecture, leading to an aberrant phenotype including shorter dendritic trees, retraction of dendrites, and emergence of numerous somatic neurites. Further, our data reveal alterations in the axonal tree and deficits in neuronal polarization. In vivo studies confirm the phenotype and reveal an unexpected role for NCAM2 in cortical migration. Proteomic and cell biology experiments show that NCAM2 molecules exert their functions through a protein complex with the cytoskeletal-associated proteins MAP2 and 14-3-3γ and ζ. We provide evidence that NCAM2 depletion results in destabilization of the microtubular network and reduced MAP2 signal. Our results demonstrate a role for NCAM2 in dendritic formation and maintenance, and in neural polarization and migration, through interaction of NCAM2 with microtubule-associated proteins.
Collapse
Affiliation(s)
- Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain
| | - Lluís Pujadas
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain
| | - Alba Ortega-Gascó
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain
| | - Bartomeu Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain
| | - Ricardo Viais
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA
| | - Joana Figueiro-Silva
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA
| | - Ramón Trullás
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616, USA
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.,Vall d'Hebron Institut de Recerca (VHIR), 08035, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA) Academia, 08010, Barcelona, Spain
| |
Collapse
|
17
|
Huang R, Yuan DJ, Li S, Liang XS, Gao Y, Lan XY, Qin HM, Ma YF, Xu GY, Schachner M, Sytnyk V, Boltze J, Ma QH, Li S. NCAM regulates temporal specification of neural progenitor cells via profilin2 during corticogenesis. J Cell Biol 2020; 219:132733. [PMID: 31816056 PMCID: PMC7039204 DOI: 10.1083/jcb.201902164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/31/2019] [Accepted: 10/21/2019] [Indexed: 02/05/2023] Open
Abstract
The development of cerebral cortex requires spatially and temporally orchestrated proliferation, migration, and differentiation of neural progenitor cells (NPCs). The molecular mechanisms underlying cortical development are, however, not fully understood. The neural cell adhesion molecule (NCAM) has been suggested to play a role in corticogenesis. Here we show that NCAM is dynamically expressed in the developing cortex. NCAM expression in NPCs is highest in the neurogenic period and declines during the gliogenic period. In mice bearing an NPC-specific NCAM deletion, proliferation of NPCs is reduced, and production of cortical neurons is delayed, while formation of cortical glia is advanced. Mechanistically, NCAM enhances actin polymerization in NPCs by interacting with actin-associated protein profilin2. NCAM-dependent regulation of NPCs is blocked by mutations in the profilin2 binding site. Thus, NCAM plays an essential role in NPC proliferation and fate decision during cortical development by regulating profilin2-dependent actin polymerization.
Collapse
Affiliation(s)
- Rui Huang
- Neurology Department, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, China
| | - De-Juan Yuan
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
- Physiology Department, Dalian Medical University, Dalian, China
| | - Shao Li
- Physiology Department, Dalian Medical University, Dalian, China
| | - Xue-Song Liang
- Neurology Department, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, China
| | - Yue Gao
- Neurology Department, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, China
| | - Xiao-Yan Lan
- Neurology Department, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, China
| | - Hua-Min Qin
- Pathology Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yu-Fang Ma
- Biochemistry and Molecular Biology Department, Dalian Medical University, Dalian, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- W.M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
- Correspondence to Shen Li:
| | - Shen Li
- Neurology Department, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, China
- Quanhong Ma:
| |
Collapse
|
18
|
Su Z, Wu Y. Computational simulations of TNF receptor oligomerization on plasma membrane. Proteins 2019; 88:698-709. [PMID: 31710744 DOI: 10.1002/prot.25854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022]
Abstract
The interactions between tumor necrosis factors (TNFs) and their corresponding receptors (TNFRs) play a pivotal role in inflammatory responses. Upon ligand binding, TNFR receptors were found to form oligomers on cell surfaces. However, the underlying mechanism of oligomerization is not fully understood. In order to tackle this problem, molecular dynamics (MD) simulations have been applied to the complex between TNF receptor-1 (TNFR1) and its ligand TNF-α as a specific test system. The simulations on both all-atom (AA) and coarse-grained (CG) levels achieved the similar results that the extracellular domains of TNFR1 can undergo large fluctuations on plasma membrane, while the dynamics of TNFα-TNFR1 complex is much more constrained. Using the CG model with the Martini force field, we are able to simulate the systems that contain multiple TNFα-TNFR1 complexes with the timescale of microseconds. We found that complexes can aggregate into oligomers on the plasma membrane through the lateral interactions between receptors at the end of the CG simulations. We suggest that this spatial organization is essential to the efficiency of signal transduction for ligands that belong to the TNF superfamily. We further show that the aggregation of two complexes is initiated by the association between the N-terminal domains of TNFR1 receptors. Interestingly, the cis-interfaces between N-terminal regions of two TNF receptors have been observed in the previous X-ray crystallographic experiment. Therefore, we provide supportive evidence that cis-interface is of functional importance in triggering the receptor oligomerization. Taken together, our study brings insights to understand the molecular mechanism of TNF signaling.
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
19
|
Engineered triple inhibitory receptor resistance improves anti-tumor CAR-T cell performance via CD56. Nat Commun 2019; 10:4109. [PMID: 31511513 PMCID: PMC6739330 DOI: 10.1038/s41467-019-11893-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/25/2019] [Indexed: 12/25/2022] Open
Abstract
The inhibitory receptors PD-1, Tim-3, and Lag-3 are highly expressed on tumor-infiltrating lymphocytes and compromise their antitumor activity. For efficient cancer immunotherapy, it is important to prevent chimeric antigen receptor T (CAR-T)-cell exhaustion. Here we downregulate these three checkpoint receptors simultaneously on CAR-T cells and that show the resulting PTL-CAR-T cells undergo epigenetic modifications and better control tumor growth. Furthermore, we unexpectedly find increased tumor infiltration by PTL-CAR-T cells and their clustering between the living and necrotic tumor tissue. Mechanistically, PTL-CAR-T cells upregulate CD56 (NCAM), which is essential for their effector function. The homophilic interaction between intercellular CD56 molecules correlates with enhanced infiltration of CAR-T cells, increased secretion of interferon-γ, and the prolonged survival of CAR-T cells. Ectopically expressed CD56 promotes CAR-T cell survival and antitumor response. Our findings demonstrate that genetic blockade of three checkpoint inhibitory receptors and the resulting high expression of CD56 on CAR-T cells enhances the inhibition of tumor growth. The inhibitory receptors PD-1, Tim-3 and Lag-3 act as negative feedback regulators of T cell responses. Here the authors improve CAR T cell antitumor efficacy by triple knockdown of these receptors, show it requires CD56, and correlate CD56-mediated homophilic cell interactions with CAR T cell efficacy.
Collapse
|
20
|
Ilieva M, Nielsen J, Korshunova I, Gotfryd K, Bock E, Pankratova S, Michel TM. Artemin and an Artemin-Derived Peptide, Artefin, Induce Neuronal Survival, and Differentiation Through Ret and NCAM. Front Mol Neurosci 2019; 12:47. [PMID: 30853893 PMCID: PMC6396024 DOI: 10.3389/fnmol.2019.00047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
Artemin (ARTN) is a neurotrophic factor from the GDNF family ligands (GFLs) that is involved in development of the nervous system and neuronal differentiation and survival. ARTN signals through a complex receptor system consisting of the RET receptor tyrosine kinase and a glycosylphosphatidylinositol-anchored co-receptor GFL receptor α, GFRα3. We found that ARTN binds directly to neural cell adhesion molecule (NCAM) and that ARTN-induced neuritogenesis requires NCAM expression and activation of NCAM-associated signaling partners, thus corroborating that NCAM is an alternative receptor for ARTN. We designed a small peptide, artefin, that could interact with GFRα3 and demonstrated that this peptide agonist induces RET phosphorylation and mimics the biological functions of ARTN – neuroprotection and neurite outgrowth. Moreover, artefin mimicked the binding of ARTN to NCAM and required NCAM expression and activation for its neurite elongation effect, thereby suggesting that artefin represents a binding site for NCAM within ARTN. We showed that biological effects of ARTN and artefin can be inhibited by abrogation of both NCAM and RET, suggesting a more complex signaling mechanism that previously thought. As NCAM plays a significant role in neurodevelopment, regeneration, and synaptic plasticity we suggest that ARTN and its mimetics are promising candidates for treatment of neurological disorders and warrant further investigations.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark.,Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Janne Nielsen
- Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Irina Korshunova
- Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Kamil Gotfryd
- Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth Bock
- Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Stanislava Pankratova
- Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tanja Maria Michel
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark.,Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
21
|
NCAM Mimetic Peptides: Potential Therapeutic Target for Neurological Disorders. Neurochem Res 2018; 43:1714-1722. [DOI: 10.1007/s11064-018-2594-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/27/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
|
22
|
Sergaki MC, Ibáñez CF. GFRα1 Regulates Purkinje Cell Migration by Counteracting NCAM Function. Cell Rep 2017; 18:367-379. [PMID: 28076782 PMCID: PMC5263233 DOI: 10.1016/j.celrep.2016.12.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/17/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023] Open
Abstract
During embryonic development of the cerebellum, Purkinje cells (PCs) migrate away from the ventricular zone to form the PC plate. The mechanisms that regulate PC migration are incompletely understood. Here, we report that the neurotrophic receptor GFRα1 is transiently expressed in developing PCs and loss of GFRα1 delays PC migration. Neither GDNF nor RET, the canonical GFRα1 ligand and co-receptor, respectively, contribute to this process. Instead, we found that the neural cell adhesion molecule NCAM is co-expressed and directly interacts with GFRα1 in embryonic PCs. Genetic reduction of NCAM expression enhances wild-type PC migration and restores migration in Gfra1 mutants, indicating that NCAM restricts PC migration in the embryonic cerebellum. In vitro experiments indicated that GFRα1 can function both in cis and trans to counteract NCAM and promote PC migration. Collectively, our studies show that GFRα1 contributes to PC migration by limiting NCAM function.
Collapse
Affiliation(s)
| | - Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden; Department of Physiology, National University of Singapore, Singapore 117597, Singapore; Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
23
|
Tan RPA, Leshchyns'ka I, Sytnyk V. Glycosylphosphatidylinositol-Anchored Immunoglobulin Superfamily Cell Adhesion Molecules and Their Role in Neuronal Development and Synapse Regulation. Front Mol Neurosci 2017; 10:378. [PMID: 29249937 PMCID: PMC5715320 DOI: 10.3389/fnmol.2017.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023] Open
Abstract
Immunoglobulin superfamily (IgSF) cell adhesion molecules (CAMs) are cell surface glycoproteins that not only mediate interactions between neurons but also between neurons and other cells in the nervous system. While typical IgSF CAMs are transmembrane molecules, this superfamily also includes CAMs, which do not possess transmembrane and intracellular domains and are instead attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. In this review, we focus on the role GPI-anchored IgSF CAMs have as signal transducers and ligands in neurons, and discuss their functions in regulation of neuronal development, synapse formation, synaptic plasticity, learning, and behavior. We also review the links between GPI-anchored IgSF CAMs and brain disorders.
Collapse
Affiliation(s)
- Rui P A Tan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
24
|
Chen J, Wu Y. Understanding the Functional Roles of Multiple Extracellular Domains in Cell Adhesion Molecules with a Coarse-Grained Model. J Mol Biol 2017; 429:1081-1095. [PMID: 28237680 PMCID: PMC5989558 DOI: 10.1016/j.jmb.2017.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 01/15/2023]
Abstract
Intercellular contacts in multicellular organisms are maintained by membrane receptors called cell adhesion molecules (CAMs), which are expressed on cell surfaces. One interesting feature of CAMs is that almost all of their extracellular regions contain repeating copies of structural domains. It is not clear why so many extracellular domains need to be evolved through natural selection. We tackled this problem by computational modeling. A generic model of CAMs was constructed based on the domain organization of neuronal CAM, which is engaged in maintaining neuron-neuron adhesion in central nervous system. By placing these models on a cell-cell interface, we developed a Monte-Carlo simulation algorithm that incorporates both molecular factors including conformational changes of CAMs and cellular factor including fluctuations of plasma membranes to approach the physical process of CAM-mediated adhesion. We found that the presence of multiple domains at the extracellular region of a CAM plays a positive role in regulating its trans-interaction with other CAMs from the opposite side of cell surfaces. The trans-interaction can further be facilitated by the intramolecular contacts between different extracellular domains of a CAM. Finally, if more than one CAM is introduced on each side of cell surfaces, the lateral binding (cis-interactions) between these CAMs will positively correlate with their trans-interactions only within a small energetic range, suggesting that cell adhesion is an elaborately designed process in which both trans- and cis-interactions are fine-tuned collectively by natural selection. In short, this study deepens our general understanding of the molecular mechanisms of cell adhesion.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY10461, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY10461, USA.
| |
Collapse
|
25
|
Monzo HJ, Coppieters N, Park TIH, Dieriks BV, Faull RLM, Dragunow M, Curtis MA. Insulin promotes cell migration by regulating PSA-NCAM. Exp Cell Res 2017; 355:26-39. [PMID: 28341445 DOI: 10.1016/j.yexcr.2017.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 12/21/2022]
Abstract
Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration.
Collapse
Affiliation(s)
- Hector J Monzo
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Natacha Coppieters
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Thomas I H Park
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand; Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Birger V Dieriks
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Mike Dragunow
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand; Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| |
Collapse
|
26
|
Abstract
The cell-surface glycoprotein CD56 has three major isoforms that play important roles in cell adhesion and signaling, which may promote cell proliferation, differentiation, survival, or migration. It is an important molecule in normal kidney development and acts as a key marker in Wilms tumor stem and progenitor cells. Here, we review the structural and genetic features of the CD56 glycoprotein, and summarize its roles in the normal versus diseased metanephric blastema. We discuss areas of CD56-related research that may complement or improve existing Wilms tumor treatment strategies, including the antibody-drug conjugate lorvotuzumab mertansine that binds to CD56.
Collapse
Affiliation(s)
- Li-Wei Yap
- a Department of Life Sciences , Imperial College London , London , UK
| | - Jesper Brok
- b University College London Institute of Child Health, Cancer Section , London , UK
- c Rigshospitalet , Kobenhavn , Denmark
| | | |
Collapse
|
27
|
Multivalent Interactions of Human Primary Amine Oxidase with the V and C22 Domains of Sialic Acid-Binding Immunoglobulin-Like Lectin-9 Regulate Its Binding and Amine Oxidase Activity. PLoS One 2016; 11:e0166935. [PMID: 27893774 PMCID: PMC5125647 DOI: 10.1371/journal.pone.0166935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 11/07/2016] [Indexed: 11/20/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectin-9 (Siglec-9) on leukocyte surface is a counter-receptor for endothelial cell surface adhesin, human primary amine oxidase (hAOC3), a target protein for anti-inflammatory agents. This interaction can be used to detect inflammation and cancer in vivo, since the labeled peptides derived from the second C2 domain (C22) of Siglec-9 specifically bind to the inflammation-inducible hAOC3. As limited knowledge on the interaction between Siglec-9 and hAOC3 has hampered both hAOC3-targeted drug design and in vivo imaging applications, we have now produced and purified the extracellular region of Siglec-9 (Siglec-9-EC) consisting of the V, C21 and C22 domains, modeled its 3D structure and characterized the hAOC3–Siglec-9 interactions using biophysical methods and activity/inhibition assays. Our results assign individual, previously unknown roles for the V and C22 domains. The V domain is responsible for the unusually tight Siglec-9–hAOC3 interactions whereas the intact C22 domain of Siglec-9 is required for modulating the enzymatic activity of hAOC3, crucial for the hAOC3-mediated leukocyte trafficking. By characterizing the Siglec-9-EC mutants, we could conclude that R120 in the V domain likely interacts with the terminal sialic acids of hAOC3 attached glycans whereas residues R284 and R290 in C22 are involved in the interactions with the active site channel of hAOC3. Furthermore, the C22 domain binding enhances the enzymatic activity of hAOC3 although the sialic acid-binding capacity of the V domain of Siglec-9 is abolished by the R120S mutation. To conclude, our results prove that the V and C22 domains of Siglec-9-EC interact with hAOC3 in a multifaceted and unique way, forming both glycan-mediated and direct protein-protein interactions, respectively. The reported results on the mechanism of the Siglec-9–hAOC3 interaction are valuable for the development of hAOC3-targeted therapeutics and diagnostic tools.
Collapse
|
28
|
Aonurm-Helm A, Jaako K, Jürgenson M, Zharkovsky A. Pharmacological approach for targeting dysfunctional brain plasticity: Focus on neural cell adhesion molecule (NCAM). Pharmacol Res 2016; 113:731-738. [DOI: 10.1016/j.phrs.2016.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/29/2016] [Accepted: 04/08/2016] [Indexed: 11/26/2022]
|
29
|
Sullivan CS, Kümper M, Temple BS, Maness PF. The Neural Cell Adhesion Molecule (NCAM) Promotes Clustering and Activation of EphA3 Receptors in GABAergic Interneurons to Induce Ras Homolog Gene Family, Member A (RhoA)/Rho-associated protein kinase (ROCK)-mediated Growth Cone Collapse. J Biol Chem 2016; 291:26262-26272. [PMID: 27803162 DOI: 10.1074/jbc.m116.760017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/24/2016] [Indexed: 02/03/2023] Open
Abstract
Establishment of a proper balance of excitatory and inhibitory connectivity is achieved during development of cortical networks and adjusted through synaptic plasticity. The neural cell adhesion molecule (NCAM) and the receptor tyrosine kinase EphA3 regulate the perisomatic synapse density of inhibitory GABAergic interneurons in the mouse frontal cortex through ephrin-A5-induced growth cone collapse. In this study, it was demonstrated that binding of NCAM and EphA3 occurred between the NCAM Ig2 domain and EphA3 cysteine-rich domain (CRD). The binding interface was further refined through molecular modeling and mutagenesis and shown to be comprised of complementary charged residues in the NCAM Ig2 domain (Arg-156 and Lys-162) and the EphA3 CRD (Glu-248 and Glu-264). Ephrin-A5 induced co-clustering of surface-bound NCAM and EphA3 in GABAergic cortical interneurons in culture. Receptor clustering was impaired by a charge reversal mutation that disrupted NCAM/EphA3 association, emphasizing the importance of the NCAM/EphA3 binding interface for cluster formation. NCAM enhanced ephrin-A5-induced EphA3 autophosphorylation and activation of RhoA GTPase, indicating a role for NCAM in activating EphA3 signaling through clustering. NCAM-mediated clustering of EphA3 was essential for ephrin-A5-induced growth cone collapse in cortical GABAergic interneurons, and RhoA and a principal effector, Rho-associated protein kinase, mediated the collapse response. This study delineates a mechanism in which NCAM promotes ephrin-A5-dependent clustering of EphA3 through interaction of the NCAM Ig2 domain and the EphA3 CRD, stimulating EphA3 autophosphorylation and RhoA signaling necessary for growth cone repulsion in GABAergic interneurons in vitro, which may extend to remodeling of axonal terminals of interneurons in vivo.
Collapse
Affiliation(s)
- Chelsea S Sullivan
- From the Department of Biochemistry and Biophysics, R. L. Juliano Structural Bioinformatics Core, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7264
| | - Maike Kümper
- From the Department of Biochemistry and Biophysics, R. L. Juliano Structural Bioinformatics Core, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7264
| | - Brenda S Temple
- From the Department of Biochemistry and Biophysics, R. L. Juliano Structural Bioinformatics Core, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7264
| | - Patricia F Maness
- From the Department of Biochemistry and Biophysics, R. L. Juliano Structural Bioinformatics Core, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7264
| |
Collapse
|
30
|
Leshchyns'ka I, Sytnyk V. Intracellular transport and cell surface delivery of the neural cell adhesion molecule (NCAM). BIOARCHITECTURE 2016; 5:54-60. [PMID: 26605672 DOI: 10.1080/19490992.2015.1118194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The neural cell adhesion molecule (NCAM) regulates differentiation and functioning of neurons by accumulating at the cell surface where it mediates the interactions of neurons with the extracellular environment. NCAM also induces a number of intracellular signaling cascades, which coordinate interactions at the cell surface with intracellular processes including changes in gene expression, transport and cytoskeleton remodeling. Since NCAM functions at the cell surface, its transport and delivery to the cell surface play a critical role. Here, we review recent advances in our understanding of the molecular mechanisms of the intracellular transport and cell surface delivery of NCAM. We also discuss the data suggesting a possibility of cross talk between activation of NCAM at the cell surface and the intracellular transport and cell surface delivery of NCAM.
Collapse
Affiliation(s)
- Iryna Leshchyns'ka
- a School of Biotechnology and Biomolecular Sciences ; The University of New South Wales ; Sydney , NSW , Australia
| | - Vladimir Sytnyk
- a School of Biotechnology and Biomolecular Sciences ; The University of New South Wales ; Sydney , NSW , Australia
| |
Collapse
|
31
|
Slapšak U, Salzano G, Amin L, Abskharon RNN, Ilc G, Zupančič B, Biljan I, Plavec J, Giachin G, Legname G. The N Terminus of the Prion Protein Mediates Functional Interactions with the Neuronal Cell Adhesion Molecule (NCAM) Fibronectin Domain. J Biol Chem 2016; 291:21857-21868. [PMID: 27535221 DOI: 10.1074/jbc.m116.743435] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 12/22/2022] Open
Abstract
The cellular form of the prion protein (PrPC) is a highly conserved glycoprotein mostly expressed in the central and peripheral nervous systems by different cell types in mammals. A misfolded, pathogenic isoform, denoted as prion, is related to a class of neurodegenerative diseases known as transmissible spongiform encephalopathy. PrPC function has not been unequivocally clarified, and it is rather defined as a pleiotropic protein likely acting as a dynamic cell surface scaffolding protein for the assembly of different signaling modules. Among the variety of PrPC protein interactors, the neuronal cell adhesion molecule (NCAM) has been studied in vivo, but the structural basis of this functional interaction is still a matter of debate. Here we focused on the structural determinants responsible for human PrPC (HuPrP) and NCAM interaction using stimulated emission depletion (STED) nanoscopy, SPR, and NMR spectroscopy approaches. PrPC co-localizes with NCAM in mouse hippocampal neurons, and this interaction is mainly mediated by the intrinsically disordered PrPC N-terminal tail, which binds with high affinity to the NCAM fibronectin type-3 domain. NMR structural investigations revealed surface-interacting epitopes governing the interaction between HuPrP N terminus and the second module of the NCAM fibronectin type-3 domain. Our data provided molecular details about the interaction between HuPrP and the NCAM fibronectin domain, and revealed a new role of PrPC N terminus as a dynamic and functional element responsible for protein-protein interaction.
Collapse
Affiliation(s)
- Urška Slapšak
- From the Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Giulia Salzano
- the Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, Trieste I-34136, Italy
| | - Ladan Amin
- the Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, Trieste I-34136, Italy
| | - Romany N N Abskharon
- the Structural Biology Research Center, Vrije Universiteit Brussel, VIB, Pleinlaan 2, 1050, Brussels, Belgium, the National Institute of Oceanography and Fisheries (NIOF), 11516 Cairo, Egypt, and the Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Gregor Ilc
- From the Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia, the EN-FIST Centre of Excellence, Dunajska 156, SI-1000 Ljubljana, Slovenia
| | - Blaž Zupančič
- From the Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Ivana Biljan
- the Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, Zagreb HR-10000, Croatia
| | - Janez Plavec
- From the Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia, the EN-FIST Centre of Excellence, Dunajska 156, SI-1000 Ljubljana, Slovenia, the Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia,
| | - Gabriele Giachin
- the Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, Trieste I-34136, Italy, the Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000-Grenoble, France
| | - Giuseppe Legname
- the Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, Trieste I-34136, Italy,
| |
Collapse
|
32
|
Leshchyns'ka I, Sytnyk V. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons. Front Cell Dev Biol 2016; 4:9. [PMID: 26909348 PMCID: PMC4754453 DOI: 10.3389/fcell.2016.00009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/01/2016] [Indexed: 12/04/2022] Open
Abstract
Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail.
Collapse
Affiliation(s)
- Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
33
|
Morales Diaz H, Mejares E, Newman-Smith E, Smith WC. ACAM, a novel member of the neural IgCAM family, mediates anterior neural tube closure in a primitive chordate. Dev Biol 2016; 409:288-296. [PMID: 26542009 DOI: 10.1016/j.ydbio.2015.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 01/18/2023]
Abstract
The neural IgCAM family of cell adhesion molecules, which includes NCAM and related molecules, has evolved via gene duplication and alternative splicing to allow for a wide range of isoforms with distinct functions and homophilic binding properties. A search for neural IgCAMs in ascidians (Ciona intestinalis, Ciona savignyi, and Phallusia mammillata) has identified a novel set of truncated family members that, unlike the known members, lack fibronectin III domains and consist of only repeated Ig domains. Within the tunicates this form appears to be unique to the ascidians, and it was designated ACAM, for Ascidian Cell Adhesion Molecule. In C. intestinalis ACAM is expressed in the developing neural plate and neural tube, with strongest expression in the anterior sensory vesicle precursor. Unlike the two other conventional neural IgCAMs in C. intestinalis, which are expressed maternally and throughout the morula and blastula stages, ACAM expression initiates at the gastrula stage. Moreover, C. intestinalis ACAM is a target of the homeodomain transcription factor OTX, which plays an essential role in the development of the anterior central nervous system. Morpholino (MO) knockdown shows that ACAM is required for neural tube closure. In MO-injected embryos neural tube closure was normal caudally, but the anterior neuropore remained open. A similar phenotype was seen with overexpression of a secreted version of ACAM. The presence of ACAM in ascidians highlights the diversity of this gene family in morphogenesis and neurodevelopment.
Collapse
Affiliation(s)
- Heidi Morales Diaz
- Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, United States
| | - Emil Mejares
- Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, United States
| | - Erin Newman-Smith
- Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, United States
| | - William C Smith
- Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, United States.
| |
Collapse
|
34
|
Capdevila-Nortes X, Jeworutzki E, Elorza-Vidal X, Barrallo-Gimeno A, Pusch M, Estévez R. Structural determinants of interaction, trafficking and function in the ClC-2/MLC1 subunit GlialCAM involved in leukodystrophy. J Physiol 2015; 593:4165-80. [PMID: 26033718 DOI: 10.1113/jp270467] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/22/2015] [Indexed: 02/03/2023] Open
Abstract
KEY POINTS The extracellular domain of GlialCAM is necessary for its targeting to cell junctions, as well as for interactions with itself and MLC1 and ClC-2. The C-terminus of GlialCAM is not necessary for interaction but is required for targeting to cell junctions. The first three residues of the transmembrane segment of GlialCAM are required for GlialCAM-mediated ClC-2 activation. ABSTRACT Mutations in the genes encoding the astrocytic protein MLC1, the cell adhesion molecule GlialCAM or the Cl(-) channel ClC-2 underlie human leukodystrophies. GlialCAM binds to itself, to MLC1 and to ClC-2, and directs these proteins to cell-cell contacts. In addition, GlialCAM dramatically activates ClC-2 mediated currents. In the present study, we used mutagenesis studies combined with functional and biochemical analyses to determine which parts of GlialCAM are required to perform these cellular functions. We found that the extracellular domain of GlialCAM is necessary for cell junction targeting and for mediating interactions with itself or with MLC1 and ClC-2. The C-terminus is also necessary for proper targeting to cell-cell junctions but is not required for the biochemical interaction. Finally, we identified the first three amino acids of the transmembrane segment of GlialCAM as being essential for the activation of ClC-2 currents but not for targeting or biochemical interaction. Our results provide new mechanistic insights concerning the regulation of the cell biology and function of MLC1 and ClC-2 by GlialCAM.
Collapse
Affiliation(s)
- Xavier Capdevila-Nortes
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, Universidad de Barcelona, Barcelona, Spain
| | - Elena Jeworutzki
- Istituto di Biofisica, CNR, Genoa, Italy.,Present address IfGH-Myocellular Electrophysiology, Department of Cardiovascular Medicine, University Hospital of Münster, Münster, Germany
| | - Xabier Elorza-Vidal
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, Universidad de Barcelona, Barcelona, Spain.,U-750, Centro de investigación en red de enfermedades raras (CIBERER), ISCIII, Barcelona, Spain
| | - Alejandro Barrallo-Gimeno
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, Universidad de Barcelona, Barcelona, Spain
| | | | - Raúl Estévez
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, Universidad de Barcelona, Barcelona, Spain.,U-750, Centro de investigación en red de enfermedades raras (CIBERER), ISCIII, Barcelona, Spain
| |
Collapse
|
35
|
Colley KJ, Kitajima K, Sato C. Polysialic acid: biosynthesis, novel functions and applications. Crit Rev Biochem Mol Biol 2014; 49:498-532. [PMID: 25373518 DOI: 10.3109/10409238.2014.976606] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As an anti-adhesive, a reservoir for key biological molecules, and a modulator of signaling, polysialic acid (polySia) is critical for nervous system development and maintenance, promotes cancer metastasis, tissue regeneration and repair, and is implicated in psychiatric diseases. In this review, we focus on the biosynthesis and functions of mammalian polySia, and the use of polySia in therapeutic applications. PolySia modifies a small subset of mammalian glycoproteins, with the neural cell adhesion molecule, NCAM, serving as its major carrier. Studies show that mammalian polysialyltransferases employ a unique recognition mechanism to limit the addition of polySia to a select group of proteins. PolySia has long been considered an anti-adhesive molecule, and its impact on cell adhesion and signaling attributed directly to this property. However, recent studies have shown that polySia specifically binds neurotrophins, growth factors, and neurotransmitters and that this binding depends on chain length. This work highlights the importance of considering polySia quality and quantity, and not simply its presence or absence, as its various roles are explored. The capsular polySia of neuroinvasive bacteria allows these organisms to evade the host immune response. While this "stealth" characteristic has made meningitis vaccine development difficult, it has also made polySia a worthy replacement for polyetheylene glycol in the generation of therapeutic proteins with low immunogenicity and improved circulating half-lives. Bacterial polysialyltransferases are more promiscuous than the protein-specific mammalian enzymes, and new studies suggest that these enzymes have tremendous therapeutic potential, especially for strategies aimed at neural regeneration and tissue repair.
Collapse
Affiliation(s)
- Karen J Colley
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago , Chicago, IL , USA and
| | | | | |
Collapse
|
36
|
Receptor for advanced glycation end products (RAGE) and its ligands: focus on spinal cord injury. Int J Mol Sci 2014; 15:13172-91. [PMID: 25068700 PMCID: PMC4159787 DOI: 10.3390/ijms150813172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/07/2014] [Accepted: 07/21/2014] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) results in neuronal and glial death and the loss of axons at the injury site. Inflammation after SCI leads to the inhibition of tissue regeneration and reduced neuronal survival. In addition, the loss of axons after SCI results in functional loss below the site of injury accompanied by neuronal cell body’s damage. Consequently, reducing inflammation and promoting axonal regeneration after SCI is a worthy therapeutic goal. The receptor for advanced glycation end products (RAGE) is a transmembrane protein and receptor of the immunoglobulin superfamily. RAGE is implicated in inflammation and neurodegeneration. Several recent studies demonstrated an association between RAGE and central nervous system disorders through various mechanisms. However, the relationship between RAGE and SCI has not been shown. It is imperative to elucidate the association between RAGE and SCI, considering that RAGE relates to inflammation and axonal degeneration following SCI. Hence, the present review highlights recent research regarding RAGE as a compelling target for the treatment of SCI.
Collapse
|
37
|
Weledji EP, Assob JC. The ubiquitous neural cell adhesion molecule (N-CAM). Ann Med Surg (Lond) 2014; 3:77-81. [PMID: 25568792 PMCID: PMC4284440 DOI: 10.1016/j.amsu.2014.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/18/2014] [Accepted: 06/28/2014] [Indexed: 11/08/2022] Open
Abstract
Adhesive interactions are important for cell trafficking, differentiation, function and tissue differentiation. Neural cell adhesion molecule (NCAM) is involved in a diverse range of contact-mediated interactions among neurons, astrocytes, oligodendrocytes, and myotubes. It is widely but transiently expressed in many tissues early in embryogenesis. Four main isoforms exist but there are many other variants resulting from alternative splicing and post-translational modifications. This review discusses the actions and association of N-CAM and variants, PSA CAM. L1CAM and receptor tyrosine kinase. Their interactions with the interstitial cells of Cajal – the pacemaker cells of the gut in the manifestation of gut motility disorders, expression in carcinomas and mesenchymal tumours are discussed.
Collapse
Affiliation(s)
- Elroy P Weledji
- Department of Surgery, Faculty of Health Sciences, University of Buea, Cameroon
| | - Jules C Assob
- Biochemistry, Faculty of Health Sciences, University of Buea, Cameroon
| |
Collapse
|
38
|
Chondroitin sulfate proteoglycans: structure-function relationship with implication in neural development and brain disorders. BIOMED RESEARCH INTERNATIONAL 2014; 2014:642798. [PMID: 24955366 PMCID: PMC4052930 DOI: 10.1155/2014/642798] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are extracellular matrix components that contain two structural parts with distinct functions: a protein core and glycosaminoglycan (GAG) side chains. CSPGs are known to be involved in important cell processes like cell adhesion and growth, receptor binding, or cell migration. It is recognized that the presence of CSPGs is critical in neuronal growth mechanisms including axon guidance following injury of nervous system components such as spinal cord and brain. CSPGs are upregulated in the central nervous system after injury and participate in the inhibition of axon regeneration mainly through their GAG side chains. Recently, it was shown that some CSPGs members like aggrecan, versican, and neurocan were strongly involved in brain disorders like bipolar disorder (BD), schizophrenia, and ADHD. In this paper, we present the chemical structure-biological functions relationship of CSPGs, both in health state and in genetic disorders, addressing methods represented by genome-wide and crystallographic data as well as molecular modeling and quantitative structure-activity relationship.
Collapse
|
39
|
Special issue dedicated to Elisabeth Bock. Neurochem Res 2013; 38:1089-91. [PMID: 23636805 DOI: 10.1007/s11064-013-1056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Monzo HJ, Park TIH, Dieriks BV, Jansson D, Faull RLM, Dragunow M, Curtis MA. Insulin and IGF1 modulate turnover of polysialylated neural cell adhesion molecule (PSA-NCAM) in a process involving specific extracellular matrix components. J Neurochem 2013; 126:758-70. [PMID: 23844825 DOI: 10.1111/jnc.12363] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/20/2013] [Accepted: 07/09/2013] [Indexed: 12/19/2022]
Abstract
Cellular interactions mediated by the neural cell adhesion molecule (NCAM) are critical in cell migration, differentiation and plasticity. Switching of the NCAM-interaction mode, from adhesion to signalling, is determined by NCAM carrying a particular post-translational modification, polysialic acid (PSA). Regulation of cell-surface PSA-NCAM is traditionally viewed as a direct consequence of polysialyltransferase activity. Taking advantage of the polysialyltransferase Ca²⁺-dependent activity, we demonstrate in TE671 cells that downregulation of PSA-NCAM synthesis constitutes a necessary but not sufficient condition to reduce cell-surface PSA-NCAM; instead, PSA-NCAM turnover required internalization of the molecule into the cytosol. PSA-NCAM internalization was specifically triggered by collagen in the extracellular matrix (ECM) and prevented by insulin-like growth factor (IGF1) and insulin. Our results pose a novel role for IGF1 and insulin in controlling cell migration through modulation of PSA-NCAM turnover at the cell surface. Neural cell adhesion molecules (NCAMs) are critically involved in cell differentiation and migration. Polysialylation (PSA)/desialylation of NCAMs switches their functional interaction mode and, in turn, migration and differentiation. We have found that the desialylation process of PSA-NCAM occurs via endocytosis, induced by collagen-IV and blocked by insulin-like growth factor (IGF1) and insulin, suggesting a novel association between PSA-NCAM, IGF1/insulin and brain/tumour plasticity.
Collapse
Affiliation(s)
- Hector J Monzo
- Faculty of Medical and Health Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
41
|
NeuroD1 regulates survival and migration of neuroendocrine lung carcinomas via signaling molecules TrkB and NCAM. Proc Natl Acad Sci U S A 2013; 110:6524-9. [PMID: 23553831 DOI: 10.1073/pnas.1303932110] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Small-cell lung cancer and other aggressive neuroendocrine cancers are often associated with early dissemination and frequent metastases. We demonstrate that neurogenic differentiation 1 (NeuroD1) is a regulatory hub securing cross talk among survival and migratory-inducing signaling pathways in neuroendocrine lung carcinomas. We find that NeuroD1 promotes tumor cell survival and metastasis in aggressive neuroendocrine lung tumors through regulation of the receptor tyrosine kinase tropomyosin-related kinase B (TrkB). Like TrkB, the prometastatic signaling molecule neural cell adhesion molecule (NCAM) is a downstream target of NeuroD1, whose impaired expression mirrors loss of NeuroD1. TrkB and NCAM may be therapeutic targets for aggressive neuroendocrine cancers that express NeuroD1.
Collapse
|
42
|
NCAM function in the adult brain: lessons from mimetic peptides and therapeutic potential. Neurochem Res 2013; 38:1163-73. [PMID: 23494903 DOI: 10.1007/s11064-013-1007-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 01/22/2023]
Abstract
Neural cell adhesion molecules (NCAMs) are complexes of transmembranal proteins critical for cell-cell interactions. Initially recognized as key players in the orchestration of developmental processes involving cell migration, cell survival, axon guidance, and synaptic targeting, they have been shown to retain these functions in the mature adult brain, in relation to plastic processes and cognitive abilities. NCAMs are able to interact among themselves (homophilic binding) as well as with other molecules (heterophilic binding). Furthermore, they are the sole molecule of the central nervous system undergoing polysialylation. Most interestingly polysialylated and non-polysialylated NCAMs display opposite properties. The precise contributions each of these characteristics brings in the regulations of synaptic and cellular plasticity in relation to cognitive processes in the adult brain are not yet fully understood. With the aim of deciphering the specific involvement of each interaction, recent developments led to the generation of NCAM mimetic peptides that recapitulate identified binding properties of NCAM. The present review focuses on the information such advances have provided in the understanding of NCAM contribution to cognitive function.
Collapse
|
43
|
Kilinc D, Blasiak A, O'Mahony JJ, Suter DM, Lee GU. Magnetic tweezers-based force clamp reveals mechanically distinct apCAM domain interactions. Biophys J 2013; 103:1120-9. [PMID: 22995484 DOI: 10.1016/j.bpj.2012.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 08/03/2012] [Accepted: 08/08/2012] [Indexed: 11/25/2022] Open
Abstract
Cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) play a crucial role in cell-cell interactions during nervous system development and function. The Aplysia CAM (apCAM), an invertebrate IgCAM, shares structural and functional similarities with vertebrate NCAM and therefore has been considered as the Aplysia homolog of NCAM. Despite these similarities, the binding properties of apCAM have not been investigated thus far. Using magnetic tweezers, we applied physiologically relevant, constant forces to apCAM-coated magnetic particles interacting with apCAM-coated model surfaces and characterized the kinetics of bond rupture. The average bond lifetime decreased with increasing external force, as predicted by theoretical considerations. Mathematical simulations suggest that the apCAM homophilic interaction is mediated by two distinct bonds, one involving all five immunoglobulin (Ig)-like domains in an antiparallel alignment and the other involving only two Ig domains. In summary, this study provides biophysical evidence that apCAM undergoes homophilic interactions, and that magnetic tweezers-based, force-clamp measurements provide a rapid and reliable method for characterizing relatively weak CAM interactions.
Collapse
Affiliation(s)
- Devrim Kilinc
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | |
Collapse
|
44
|
Volkmer H, Schreiber J, Rathjen FG. Regulation of adhesion by flexible ectodomains of IgCAMs. Neurochem Res 2012; 38:1092-9. [PMID: 23054071 DOI: 10.1007/s11064-012-0888-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/10/2012] [Indexed: 01/06/2023]
Abstract
To perform their diverse biological functions the adhesion activities of the cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) might be regulated by local clustering, proteolytical shedding of their ectodomains or rapid recycling to and from the plasma membrane. Another form of regulation of adhesion might be obtained through flexible ectodomains of IgCAMs which adopt distinct conformations and which in turn modulate their adhesion activity. Here, we discuss variations in the conformation of the extracellular domains of CEACAM1 and CAR that might influence their binding and signaling activities. Furthermore, we concentrate on alternative splicing of single domains and short segments in the extracellular regions of L1 subfamily members that might affect the organization of the N-terminal located Ig-like domains. In particular, we discuss variations of the linker sequence between Ig-like domains 2 and 3 (D2 and D3) that is required for the horseshoe conformation.
Collapse
Affiliation(s)
- Hansjürgen Volkmer
- Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | | | | |
Collapse
|
45
|
Martines E, Zhong J, Muzard J, Lee A, Akhremitchev B, Suter D, Lee G. Single-molecule force spectroscopy of the Aplysia cell adhesion molecule reveals two homophilic bonds. Biophys J 2012; 103:649-57. [PMID: 22947926 PMCID: PMC3443774 DOI: 10.1016/j.bpj.2012.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022] Open
Abstract
Aplysia californica neurons comprise a powerful model system for quantitative analysis of cellular and biophysical properties that are essential for neuronal development and function. The Aplysia cell adhesion molecule (apCAM), a member of the immunoglobulin superfamily of cell adhesion molecules, is present in the growth cone plasma membrane and involved in neurite growth, synapse formation, and synaptic plasticity. apCAM has been considered to be the Aplysia homolog of the vertebrate neural cell adhesion molecule (NCAM); however, whether apCAM exhibits similar binding properties and neuronal functions has not been fully established because of the lack of detailed binding data for the extracellular portion of apCAM. In this work, we used the atomic force microscope to perform single-molecule force spectroscopy of the extracellular region of apCAM and show for the first time (to our knowledge) that apCAM, like NCAM, is indeed a homophilic cell adhesion molecule. Furthermore, like NCAM, apCAM exhibits two distinct bonds in the trans configuration, although the kinetic and structural parameters of the apCAM bonds are quite different from those of NCAM. In summary, these single-molecule analyses further indicate that apCAM and NCAM are species homologs likely performing similar functions.
Collapse
Affiliation(s)
- E. Martines
- Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - J. Zhong
- Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - J. Muzard
- Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - A.C. Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - B.B. Akhremitchev
- Chemistry Department, Florida Institute of Technology, Melbourne, Florida
| | - D.M. Suter
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - G.U. Lee
- Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Bénard CY, Blanchette C, Recio J, Hobert O. The secreted immunoglobulin domain proteins ZIG-5 and ZIG-8 cooperate with L1CAM/SAX-7 to maintain nervous system integrity. PLoS Genet 2012; 8:e1002819. [PMID: 22829780 PMCID: PMC3400552 DOI: 10.1371/journal.pgen.1002819] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/23/2012] [Indexed: 11/24/2022] Open
Abstract
During nervous system development, neuronal cell bodies and their axodendritic projections are precisely positioned through transiently expressed patterning cues. We show here that two neuronally expressed, secreted immunoglobulin (Ig) domain-containing proteins, ZIG-5 and ZIG-8, have no detectable role during embryonic nervous system development of the nematode Caenorhabditis elegans but are jointly required for neuronal soma and ventral cord axons to maintain their correct position throughout postembryonic life of the animal. The maintenance defects observed upon removal of zig-5 and zig-8 are similar to those observed upon complete loss of the SAX-7 protein, the C. elegans ortholog of the L1CAM family of adhesion proteins, which have been implicated in several neurological diseases. SAX-7 exists in two isoforms: a canonical, long isoform (SAX-7L) and a more adhesive shorter isoform lacking the first two Ig domains (SAX-7S). Unexpectedly, the normally essential function of ZIG-5 and ZIG-8 in maintaining neuronal soma and axon position is completely suppressed by genetic removal of the long SAX-7L isoform. Overexpression of the short isoform SAX-7S also abrogates the need for ZIG-5 and ZIG-8. Conversely, overexpression of the long isoform disrupts adhesion, irrespective of the presence of the ZIG proteins. These findings suggest an unexpected interdependency of distinct Ig domain proteins, with one isoform of SAX-7, SAX-7L, inhibiting the function of the most adhesive isoform, SAX-7S, and this inhibition being relieved by ZIG-5 and ZIG-8. Apart from extending our understanding of dedicated neuronal maintenance mechanisms, these findings provide novel insights into adhesive and anti-adhesive functions of IgCAM proteins. The structure of nervous systems is determined during embryonic development. After this developmental patterning phase, active maintenance mechanisms are required to uphold the structural integrity of the nervous system. This concept was revealed through the genetic elimination of factors in the nematode Caenorhabditis elegans, which left the initial establishment of the nervous system during embryogenesis unperturbed, but subsequently resulted in postembryonic defects in its structural integrity. The extent to which such maintenance mechanisms exist, the nature of the players involved, and the mechanisms through which they operate are subjects of active investigation. In this study, we reveal two novel, previously uncharacterized maintenance factors encoded by the zig-5 and zig-8 genes. Both genes are predicted to encode small secreted immunoglobulin domains. We show that the two proteins operate by counteracting the anti-adhesive effects of a specific isoform of the SAX-7 Ig domain protein, the C. elegans homolog of L1CAM, a human protein involved in various neurological diseases. This study therefore provides novel mechanistic insights into nervous system patterning and may help to better understand the function of an important human disease gene.
Collapse
Affiliation(s)
- Claire Y Bénard
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
47
|
Hale JS, Li M, Lathia JD. The malignant social network: cell-cell adhesion and communication in cancer stem cells. Cell Adh Migr 2012; 6:346-55. [PMID: 22796941 DOI: 10.4161/cam.21294] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tumors contain a vastly complicated cellular network that relies on local communication to execute malignant programs. The molecular cues that are involved in cell-cell adhesion orchestrate large-scale tumor behaviors such as proliferation and invasion. We have recently begun to appreciate that many tumors contain a high degree of cellular heterogeneity and are organized in a cellular hierarchy, with a cancer stem cell (CSC) population identified at the apex in multiple cancer types. CSCs reside in unique microenvironments or niches that are responsible for directing their behavior through cellular interactions between CSCs and stromal cells, generating a malignant social network. Identifying cell-cell adhesion mechanisms in this network has implications for the basic understanding of tumorigenesis and the development of more effective therapies. In this review, we will discuss our current understanding of cell-cell adhesion mechanisms used by CSCs and how these local interactions have global consequences for tumor biology.
Collapse
Affiliation(s)
- James S Hale
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | |
Collapse
|
48
|
Sarto-Jackson I, Milenkovic I, Smalla KH, Gundelfinger ED, Kaehne T, Herrera-Molina R, Thomas S, Kiebler MA, Sieghart W. The cell adhesion molecule neuroplastin-65 is a novel interaction partner of γ-aminobutyric acid type A receptors. J Biol Chem 2012; 287:14201-14. [PMID: 22389504 DOI: 10.1074/jbc.m111.293175] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
γ-Aminobutyric acid type A (GABA(A)) receptors are pentameric ligand-gated ion channels that mediate fast inhibition in the central nervous system. Depending on their subunit composition, these receptors exhibit distinct pharmacological properties and differ in their ability to interact with proteins involved in receptor anchoring at synaptic or extra-synaptic sites. Whereas GABA(A) receptors containing α1, α2, or α3 subunits are mainly located synaptically where they interact with the submembranous scaffolding protein gephyrin, receptors containing α5 subunits are predominantly found extra-synaptically and seem to interact with radixin for anchorage. Neuroplastin is a cell adhesion molecule of the immunoglobulin superfamily that is involved in hippocampal synaptic plasticity. Our results reveal that neuroplastin and GABA(A) receptors can be co-purified from rat brain and exhibit a direct physical interaction as demonstrated by co-precipitation and Förster resonance energy transfer (FRET) analysis in a heterologous expression system. The brain-specific isoform neuroplastin-65 co-localizes with GABA(A) receptors as shown in brain sections as well as in neuronal cultures, and such complexes can either contain gephyrin or be devoid of gephyrin. Neuroplastin-65 specifically co-localizes with α1 or α2 but not with α3 subunits at GABAergic synapses. In addition, neuroplastin-65 also co-localizes with GABA(A) receptor α5 subunits at extra-synaptic sites. Down-regulation of neuroplastin-65 by shRNA causes a loss of GABA(A) receptor α2 subunits at GABAergic synapses. These results suggest that neuroplastin-65 can co-localize with a subset of GABA(A) receptor subtypes and might contribute to anchoring and/or confining GABA(A) receptors to particular synaptic or extra-synaptic sites, thus affecting receptor mobility and synaptic strength.
Collapse
Affiliation(s)
- Isabella Sarto-Jackson
- Center for Brain Research, Department of Biochemistry and Molecular Biology of the Nervous System, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Winther M, Berezin V, Walmod PS. NCAM2/OCAM/RNCAM: Cell adhesion molecule with a role in neuronal compartmentalization. Int J Biochem Cell Biol 2012; 44:441-6. [DOI: 10.1016/j.biocel.2011.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
|
50
|
Zapater JL, Colley KJ. Sequences prior to conserved catalytic motifs of polysialyltransferase ST8Sia IV are required for substrate recognition. J Biol Chem 2011; 287:6441-53. [PMID: 22184126 DOI: 10.1074/jbc.m111.322024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polysialic acid on the neural cell adhesion molecule (NCAM) modulates cell-cell adhesion and signaling, is required for proper brain development, and plays roles in neuronal regeneration and the growth and invasiveness of tumor cells. Evidence indicates that NCAM polysialylation is highly protein-specific, requiring an initial polysialyltransferase-NCAM protein-protein interaction. Previous work suggested that a polybasic region located prior to the conserved polysialyltransferase catalytic motifs may be involved in NCAM recognition, but not overall enzyme activity (Foley, D. A., Swartzentruber, K. G., and Colley, K. J. (2009) J. Biol. Chem. 284, 15505-15516). Here, we employ a competition assay to evaluate the role of this region in substrate recognition. We find that truncated, catalytically inactive ST8SiaIV/PST proteins that include the polybasic region, but not those that lack this region, compete with endogenous ST8SiaIV/PST and reduce NCAM polysialylation in SW2 small cell lung carcinoma cells. Replacing two polybasic region residues, Arg(82) and Arg(93), eliminates the ability of a full-length, catalytically inactive enzyme (PST H331K) to compete with SW2 cell ST8SiaIV/PST and block NCAM polysialylation. Replacing these residues singly or together in ST8SiaIV/PST substantially reduces or eliminates NCAM polysialylation, respectively. In contrast, replacing Arg(82), but not Arg(93), substantially reduces the ability of ST8SiaIV/PST to polysialylate neuropilin-2 and SynCAM 1, suggesting that Arg(82) plays a general role in substrate recognition, whereas Arg(93) specifically functions in NCAM recognition. Taken together, our results indicate that the ST8SiaIV/PST polybasic region plays a critical role in substrate recognition and suggest that different combinations of basic residues may mediate the recognition of distinct substrates.
Collapse
Affiliation(s)
- Joseph L Zapater
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois 60607, USA
| | | |
Collapse
|