1
|
Rivero-Hernández AL, Hervis YP, Valdés-Tresanco ME, Escalona-Rodríguez FA, Cancelliere R, Relova-Hernández E, Romero-Hernández G, Pérez-Rivera E, Torres-Palacios Y, Cartaya-Quintero P, Ros U, Porchetta A, Micheli L, Fernández LE, Laborde R, Álvarez C, Sagan S, Lanio ME, Pazos Santos IF. Decoupling immunomodulatory properties from lipid binding in the α-pore-forming toxin Sticholysin II. Int J Biol Macromol 2024; 280:136244. [PMID: 39368578 DOI: 10.1016/j.ijbiomac.2024.136244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Sticholysin II (StII), a pore-forming toxin from the marine anemone Stichodactyla helianthus, enhances an antigen-specific cytotoxic T lymphocyte (CTL) response when co-encapsulated in liposomes with a model antigen. This capacity does not depend exclusively on its pore-forming activity and is partially supported by its ability to activate Toll-like receptor 4 (TLR4) in dendritic cells, presumably by interacting with this receptor or by triggering signaling cascades upon binding to lipid membrane. In order to investigate whether the lipid binding capacity of StII is required for immunomodulation, we designed a mutant in which the aromatic amino acids from the interfacial binding site Trp110, Tyr111 and Trp114 were substituted by Ala. In the present work, we demonstrated that StII3A keeps the secondary structure composition and global folding of StII, while it loses its lipid binding and permeabilization abilities. Despite this, StII3A upregulates dendritic cells maturation markers, enhances an antigen-specific effector CD8+ T cells response and confers antitumor protection in a preventive scenario in C57BL/6 mice. Our results indicate that a mechanism independent of its lipid binding ability is involved in the immunomodulatory capacity of StII, pointing to StII3A as a promising candidate to improve the reliability of the Sts-based vaccine platform.
Collapse
Affiliation(s)
- Ada L Rivero-Hernández
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Yadira P Hervis
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Mario E Valdés-Tresanco
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; Center for Molecular Simulations and Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada.
| | - Felipe A Escalona-Rodríguez
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Rocco Cancelliere
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | | | - Glenda Romero-Hernández
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Eric Pérez-Rivera
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba
| | - Yusniel Torres-Palacios
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Patricia Cartaya-Quintero
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba
| | - Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany.
| | - Alessandro Porchetta
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | - Laura Micheli
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | | | - Rady Laborde
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Carlos Álvarez
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Sandrine Sagan
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France.
| | - Maria Eliana Lanio
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Isabel F Pazos Santos
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| |
Collapse
|
2
|
Gorbushin A, Ruparčič M, Anderluh G. Littoporins: Novel actinoporin-like proteins in caenogastropod genus Littorina. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109698. [PMID: 38871141 DOI: 10.1016/j.fsi.2024.109698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
In the course of searching for genes controlling the immune system in caenogastropod mollusks, we characterized and phylogenetically placed five new actinoporin-like cytolysins expressed in periwinkles of the genus Littorina. These newly discovered proteins, named littoporins (LitP), contain a central cytolysin/lectin domain and exhibit a predicted protein fold that is almost identical to the three-dimensional structures of actinoporins. Two of these proteins, LitP-1 and LitP-2, were found to be upregulated in L. littorea kidney tissues and immune cells in response to natural and experimental infection with the trematode Himasthla elongata, suggesting their potential role as perforins in the systemic anti-trematode immune response. The primary sequence divergence of littoporins is hypothesized to be attributed to the taxonomic range of cell membranes they can recognize and permeabilize.
Collapse
Affiliation(s)
- Alexander Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), St Petersburg, Russia.
| | - Matija Ruparčič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| |
Collapse
|
3
|
Gupta LK, Molla J, Prabhu AA. Story of Pore-Forming Proteins from Deadly Disease-Causing Agents to Modern Applications with Evolutionary Significance. Mol Biotechnol 2024; 66:1327-1356. [PMID: 37294530 DOI: 10.1007/s12033-023-00776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023]
Abstract
Animal venoms are a complex mixture of highly specialized toxic molecules. Among them, pore-forming proteins (PFPs) or toxins (PFTs) are one of the major disease-causing toxic elements. The ability of the PFPs in defense and toxicity through pore formation on the host cell surface makes them unique among the toxin proteins. These features made them attractive for academic and research purposes for years in the areas of microbiology as well as structural biology. All the PFPs share a common mechanism of action for the attack of host cells and pore formation in which the selected pore-forming motifs of the host cell membrane-bound protein molecules drive to the lipid bilayer of the cell membrane and eventually produces water-filled pores. But surprisingly their sequence similarity is very poor. Their existence can be seen both in a soluble state and also in transmembrane complexes in the cell membrane. PFPs are prevalent toxic factors that are predominately produced by all kingdoms of life such as virulence bacteria, nematodes, fungi, protozoan parasites, frogs, plants, and also from higher organisms. Nowadays, multiple approaches to applications of PFPs have been conducted by researchers both in basic as well as applied biological research. Although PFPs are very devastating for human health nowadays researchers have been successful in making these toxic proteins into therapeutics through the preparation of immunotoxins. We have discussed the structural, and functional mechanism of action, evolutionary significance through dendrogram, domain organization, and practical applications for various approaches. This review aims to emphasize the PFTs to summarize toxic proteins together for basic knowledge as well as to highlight the current challenges, and literature gap along with the perspective of promising biotechnological applications for their future research.
Collapse
Affiliation(s)
- Laxmi Kumari Gupta
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Johiruddin Molla
- Ghatal Rabindra Satabarsiki Mahavidyalaya Ghatal, Paschim Medinipur, Ghatal, West Bengal, 721212, India
| | - Ashish A Prabhu
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
4
|
Rohou A, Morris EP, Makarova J, Tonevitsky AG, Ushkaryov YA. α-Latrotoxin Tetramers Spontaneously Form Two-Dimensional Crystals in Solution and Coordinated Multi-Pore Assemblies in Biological Membranes. Toxins (Basel) 2024; 16:248. [PMID: 38922143 PMCID: PMC11209280 DOI: 10.3390/toxins16060248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024] Open
Abstract
α-Latrotoxin (α-LTX) was found to form two-dimensional (2D) monolayer arrays in solution at relatively low concentrations (0.1 mg/mL), with the toxin tetramer constituting a unit cell. The crystals were imaged using cryogenic electron microscopy (cryoEM), and image analysis yielded a ~12 Å projection map. At this resolution, no major conformational changes between the crystalline and solution states of α-LTX tetramers were observed. Electrophysiological studies showed that, under the conditions of crystallization, α-LTX simultaneously formed multiple channels in biological membranes that displayed coordinated gating. Two types of channels with conductance levels of 120 and 208 pS were identified. Furthermore, we observed two distinct tetramer conformations of tetramers both when observed as monodisperse single particles and within the 2D crystals, with pore diameters of 11 and 13.5 Å, suggestive of a flickering pore in the middle of the tetramer, which may correspond to the two states of toxin channels with different conductance levels. We discuss the structural changes that occur in α-LTX tetramers in solution and propose a mechanism of α-LTX insertion into the membrane. The propensity of α-LTX tetramers to form 2D crystals may explain many features of α-LTX toxicology and suggest that other pore-forming toxins may also form arrays of channels to exert maximal toxic effect.
Collapse
Affiliation(s)
- Alexis Rohou
- Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, UK;
| | - Edward P. Morris
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK;
| | - Julia Makarova
- Faculty of Biology and Biotechnology, HSE University, 117997 Moscow, Russia;
| | | | - Yuri A. Ushkaryov
- Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, UK;
- Medway School of Pharmacy, University of Kent, Chatham ME4 4TB, UK
| |
Collapse
|
5
|
Escalona-Rodriguez FA, Cruz-Leal Y, La O-Bonet J, Pérez-Erviti JA, Valdés-Tresanco ME, Rivero-Hernández AL, Sifontes-Niebla M, Manso-Vargas A, Sánchez B, Alvarez C, Barbosa LRS, Itri R, Lanio ME. Unveiling Sticholysin II and plasmid DNA interaction: Implications for developing non-viral vectors. Toxicon 2024; 238:107571. [PMID: 38141971 DOI: 10.1016/j.toxicon.2023.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Non-viral gene delivery systems offer significant potential for gene therapy due to their versatility, safety, and cost advantages over viral vectors. However, their effectiveness can be hindered by the challenge of efficiently releasing the genetic cargo from endosomes to prevent degradation in lysosomes. To overcome this obstacle, functional components can be incorporated into these systems. Sticholysin II (StII) is one of the pore-forming proteins derived from the sea anemone Stichodactyla helianthus, known for its high ability to permeabilize cellular and model membranes. In this study, we aimed to investigate the interaction between StII, and a model plasmid (pDNA) as an initial step towards designing an improved vector with enhanced endosomal escape capability. The electrophoretic mobility shift assay (EMSA) confirmed the formation of complexes between StII and pDNA. Computational predictions identified specific residues involved in the StII-DNA interaction interface, highlighting the importance of electrostatic interactions and hydrogen bonds in mediating the binding. Atomic force microscopy (AFM) of StII-pDNA complexes revealed the presence of nodular fiber and toroid shapes. These complexes were found to have a predominantly micrometer size, as confirmed by dynamic light scattering (DLS) measurements. Despite increase in the overall charge, the complexes formed at the evaluated nitrogen-to-phosphorus (N/P) ratios still maintained a negative charge. Moreover, StII retained its pore-forming capacity regardless of its binding to the complexes. These findings suggest that the potential ability of StII to permeabilize endosomal membranes could be largely maintained when combined with nucleic acid delivery systems. Additionally, the still remaining negative charge of the complexes would enable the association of another positively charged component to compact pDNA. However, to minimize non-specific cytotoxic effects, it is advisable to explore methods to regulate the protein's activity in response to the microenvironment.
Collapse
Affiliation(s)
- Felipe A Escalona-Rodriguez
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Yoelys Cruz-Leal
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba.
| | - Javier La O-Bonet
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Julio A Pérez-Erviti
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba.
| | - Mario Ernesto Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba.
| | - Ada L Rivero-Hernández
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Maricary Sifontes-Niebla
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Alexis Manso-Vargas
- Immunology and Immunotherapy Direction, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Belinda Sánchez
- Immunology and Immunotherapy Direction, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Carlos Alvarez
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Leandro R S Barbosa
- Institute of Physics, University of São Paulo, São Paulo, 05508-090, Brazil; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-100, SP, Brazil.
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, 05508-090, Brazil.
| | - María E Lanio
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| |
Collapse
|
6
|
Mayse LA, Movileanu L. Gating of β-Barrel Protein Pores, Porins, and Channels: An Old Problem with New Facets. Int J Mol Sci 2023; 24:12095. [PMID: 37569469 PMCID: PMC10418385 DOI: 10.3390/ijms241512095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
β barrels are ubiquitous proteins in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. These transmembrane proteins (TMPs) execute a wide variety of tasks. For example, they can serve as transporters, receptors, membrane-bound enzymes, as well as adhesion, structural, and signaling elements. In addition, multimeric β barrels are common structural scaffolds among many pore-forming toxins. Significant progress has been made in understanding the functional, structural, biochemical, and biophysical features of these robust and versatile proteins. One frequently encountered fundamental trait of all β barrels is their voltage-dependent gating. This process consists of reversible or permanent conformational transitions between a large-conductance, highly permeable open state and a low-conductance, solute-restrictive closed state. Several intrinsic molecular mechanisms and environmental factors modulate this universal property of β barrels. This review article outlines the typical signatures of voltage-dependent gating. Moreover, we discuss recent developments leading to a better qualitative understanding of the closure dynamics of these TMPs.
Collapse
Affiliation(s)
- Lauren A. Mayse
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244, USA;
- Department of Biomedical and Chemical Engineering, Syracuse University, 223 Link Hall, Syracuse, NY 13244, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244, USA;
- Department of Biomedical and Chemical Engineering, Syracuse University, 223 Link Hall, Syracuse, NY 13244, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
7
|
García-Montoya C, Heras-Marquez D, Amigot-Sánchez R, García-Linares S, Martínez-Del-Pozo Á, Palacios-Ortega J. Sticholysin recognition of ceramide-phosphoethanolamine. Arch Biochem Biophys 2023; 742:109623. [PMID: 37207934 DOI: 10.1016/j.abb.2023.109623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
Actinoporins are pore-forming toxins produced by sea anemones. They exert their activity by binding to the membranes of target cells. There, they oligomerize, forming cation-selective pores, and inducing cell death by osmotic shock. In the early days of the field, it was shown that accessible sphingomyelin (SM) in the bilayer is required for the activity of actinoporins. While these toxins can also act on membranes composed solely of phosphatidylcholine (PC) with a high amount of cholesterol (Chol), consensus is that SM acts as a lipid receptor for actinoporins. It has been shown that the 2NH and 3OH moieties of SM are essential for actinoporin recognition. Hence, we wondered if ceramide-phosphoethanolamine (CPE) could also be recognized. Like SM, CPE has the 2NH and 3OH groups, and a positively charged headgroup. While actinoporins have been observed to affect membranes containing CPE, Chol was always also present, with the recognition of CPE remaining unclear. To test this possibility, we used sticholysins, produced by the Caribbean Sea anemone Stichodactyla helianthus. Our results show that sticholysins can induce calcein release on vesicles composed only of PC and CPE, in absence of Chol, in a way that is comparable to that induced on PC:SM membranes.
Collapse
Affiliation(s)
- Carmen García-Montoya
- Departamento de Bioquímica y Biología Molecular, Facultades de Ciencias Biológicas y Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Diego Heras-Marquez
- Departamento de Bioquímica y Biología Molecular, Facultades de Ciencias Biológicas y Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Rafael Amigot-Sánchez
- Departamento de Bioquímica y Biología Molecular, Facultades de Ciencias Biológicas y Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular, Facultades de Ciencias Biológicas y Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultades de Ciencias Biológicas y Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular, Facultades de Ciencias Biológicas y Ciencias Químicas, Universidad Complutense, Madrid, Spain; Biochemistry Department, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
8
|
Margheritis E, Kappelhoff S, Cosentino K. Pore-Forming Proteins: From Pore Assembly to Structure by Quantitative Single-Molecule Imaging. Int J Mol Sci 2023; 24:ijms24054528. [PMID: 36901959 PMCID: PMC10003378 DOI: 10.3390/ijms24054528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Pore-forming proteins (PFPs) play a central role in many biological processes related to infection, immunity, cancer, and neurodegeneration. A common feature of PFPs is their ability to form pores that disrupt the membrane permeability barrier and ion homeostasis and generally induce cell death. Some PFPs are part of the genetically encoded machinery of eukaryotic cells that are activated against infection by pathogens or in physiological programs to carry out regulated cell death. PFPs organize into supramolecular transmembrane complexes that perforate membranes through a multistep process involving membrane insertion, protein oligomerization, and finally pore formation. However, the exact mechanism of pore formation varies from PFP to PFP, resulting in different pore structures with different functionalities. Here, we review recent insights into the molecular mechanisms by which PFPs permeabilize membranes and recent methodological advances in their characterization in artificial and cellular membranes. In particular, we focus on single-molecule imaging techniques as powerful tools to unravel the molecular mechanistic details of pore assembly that are often obscured by ensemble measurements, and to determine pore structure and functionality. Uncovering the mechanistic elements of pore formation is critical for understanding the physiological role of PFPs and developing therapeutic approaches.
Collapse
|
9
|
Pedrera L, Ros U, Fanani ML, Lanio ME, Epand RM, García-Sáez AJ, Álvarez C. The Important Role of Membrane Fluidity on the Lytic Mechanism of the α-Pore-Forming Toxin Sticholysin I. Toxins (Basel) 2023; 15:80. [PMID: 36668899 PMCID: PMC9865829 DOI: 10.3390/toxins15010080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/19/2023] Open
Abstract
Actinoporins have emerged as archetypal α-pore-forming toxins (PFTs) that promote the formation of pores in membranes upon oligomerization and insertion of an α-helix pore-forming domain in the bilayer. These proteins have been used as active components of immunotoxins, therefore, understanding their lytic mechanism is crucial for developing this and other applications. However, the mechanism of how the biophysical properties of the membrane modulate the properties of pores generated by actinoporins remains unclear. Here we studied the effect of membrane fluidity on the permeabilizing activity of sticholysin I (St I), a toxin that belongs to the actinoporins family of α-PFTs. To modulate membrane fluidity we used vesicles made of an equimolar mixture of phosphatidylcholine (PC) and egg sphingomyelin (eggSM), in which PC contained fatty acids of different acyl chain lengths and degrees of unsaturation. Our detailed single-vesicle analysis revealed that when membrane fluidity is high, most of the vesicles are partially permeabilized in a graded manner. In contrast, more rigid membranes can be either completely permeabilized or not, indicating an all-or-none mechanism. Altogether, our results reveal that St I pores can be heterogeneous in size and stability, and that these properties depend on the fluid state of the lipid bilayer. We propose that membrane fluidity at different regions of cellular membranes is a key factor to modulate the activity of the actinoporins, which has implications for the design of different therapeutic strategies based on their lytic action.
Collapse
Affiliation(s)
- Lohans Pedrera
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana CP 10400, Cuba
- Institute for Genetics and CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Uris Ros
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana CP 10400, Cuba
- Institute for Genetics and CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Maria Laura Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas-CONICET, Córdoba X5000HUA, Argentina
| | - María E. Lanio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana CP 10400, Cuba
| | - Richard M. Epand
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ana J. García-Sáez
- Institute for Genetics and CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Carlos Álvarez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana CP 10400, Cuba
| |
Collapse
|
10
|
Hervis YP, Valle A, Canet L, Rodríguez A, Lanio ME, Alvarez C, Steinhoff HJ, Pazos IF. Cys mutants as tools to study the oligomerization of the pore-forming toxin sticholysin I. Toxicon 2023; 222:106994. [PMID: 36529153 DOI: 10.1016/j.toxicon.2022.106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Sticholysin I (StI) is a water-soluble protein with the ability to bind membranes where it oligomerizes and forms pores leading to cell death. Understanding the assembly property of this protein may be valuable for designing potential biotechnological tools, such as stable or structurally defined nanopores. In order to get insights into the stabilization of StI oligomers by disulfide bonds, we designed and characterized single and double cysteine mutants at the oligomerization interface. The oligomer formation was induced in the presence of lipid membranes and visualized by SDS-PAGE. The contribution of the oligomeric structures to the membrane binding and pore-forming capacities of StI was assessed. Single and double cysteine introduction at the protein-protein oligomerization interface does not considerably affect the conformation and function of the monomeric protein. In the presence of membranes, a cysteine double mutation at positions 15 and 59 favored formation of different size oligomers stabilized by disulfide bonds. The results of this work highlight the relevance of these positions (15 and 59) to be considered for developing biosensors based on nanopores from StI.
Collapse
Affiliation(s)
- Yadira P Hervis
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Aisel Valle
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Liem Canet
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | | | - Maria E Lanio
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Carlos Alvarez
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Heinz J Steinhoff
- Department of Physics, University of Osnabrueck, Osnabrueck, 49069, Germany.
| | - Isabel F Pazos
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| |
Collapse
|
11
|
Palacios-Ortega J, Amigot-Sánchez R, García-Montoya C, Gorše A, Heras-Márquez D, García-Linares S, Martínez-del-Pozo Á, Slotte JP. Determination of the boundary lipids of sticholysins using tryptophan quenching. Sci Rep 2022; 12:17328. [PMID: 36243747 PMCID: PMC9569322 DOI: 10.1038/s41598-022-21750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Sticholysins are α-pore-forming toxins produced by the sea-anemone Stichodactyla helianthus. These toxins exert their activity by forming pores on sphingomyelin-containing membranes. Recognition of sphingomyelin by sticholysins is required to start the process of pore formation. Sphingomyelin recognition is coupled with membrane binding and followed by membrane penetration and oligomerization. Many features of these processes are known. However, the extent of contact with each of the different kinds of lipids present in the membrane has received little attention. To delve into this question, we have used a phosphatidylcholine analogue labeled at one of its acyl chains with a doxyl moiety, a known quencher of tryptophan emission. Here we present evidence for the contact of sticholysins with phosphatidylcholine lipids in the sticholysin oligomer, and for how each sticholysin isotoxin is affected differently by the inclusion of cholesterol in the membrane. Furthermore, using phosphatidylcholine analogs that were labeled at different positions of their structure (acyl chains and headgroup) in combination with a variety of sticholysin mutants, we also investigated the depth of the tryptophan residues of sticholysins in the bilayer. Our results indicate that the position of the tryptophan residues relative to the membrane normal is deeper when cholesterol is absent from the membrane.
Collapse
Affiliation(s)
- Juan Palacios-Ortega
- grid.13797.3b0000 0001 2235 8415Biochemistry Department, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland ,grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Rafael Amigot-Sánchez
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Carmen García-Montoya
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Ana Gorše
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Diego Heras-Márquez
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Sara García-Linares
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Álvaro Martínez-del-Pozo
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - J. Peter Slotte
- grid.13797.3b0000 0001 2235 8415Biochemistry Department, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
12
|
Šolinc G, Švigelj T, Omersa N, Snoj T, Pirc K, Žnidaršič N, Yamaji-Hasegawa A, Kobayashi T, Anderluh G, Podobnik M. Pore-forming moss protein bryoporin is structurally and mechanistically related to actinoporins from evolutionarily distant cnidarians. J Biol Chem 2022; 298:102455. [PMID: 36063994 PMCID: PMC9526159 DOI: 10.1016/j.jbc.2022.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 10/26/2022] Open
Abstract
Pore-forming proteins perforate lipid membranes and consequently affect their integrity and cell fitness. Therefore, it is not surprising that many of these proteins from bacteria, fungi, or certain animals act as toxins. While pore-forming proteins have also been found in plants, there is little information on their molecular structure and mode of action. Bryoporin is a protein from the moss Physcomitrium patens, and its corresponding gene was found to be upregulated by various abiotic stresses, especially dehydration, as well as upon fungal infection. Based on the amino acid sequence, it was suggested that bryoporin was related to the actinoporin family of pore-forming proteins, originally discovered in sea anemones. Here, we provide the first detailed structural and functional analysis of this plant cytolysin. The crystal structure of the monomeric bryoporin is highly similar to those of actinoporins. Our cryo-EM analysis of its pores showed an actinoporin-like octameric structure, thereby revealing a close kinship of proteins from evolutionarily distant organisms. This was further confirmed by our observation of bryoporin's preferential binding to and formation of pores in membranes containing animal sphingolipids, such as sphingomyelin and ceramide phosphoethanolamine; however, its binding affinity was weaker than that of actinoporin equinatoxin II. We determined bryoporin did not bind to major sphingolipids found in fungi or plants, and its membrane-binding and pore-forming activity were enhanced by various sterols. Our results suggest that bryoporin could represent a part of the moss defense arsenal, acting as a pore-forming toxin against membranes of potential animal pathogens, parasites, or predators.
Collapse
Affiliation(s)
- Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tomaž Švigelj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Katja Pirc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | | | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Sea Anemones, Actinoporins, and Cholesterol. Int J Mol Sci 2022; 23:ijms23158771. [PMID: 35955905 PMCID: PMC9369217 DOI: 10.3390/ijms23158771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Spanish or Spanish-speaking scientists represent a remarkably populated group within the scientific community studying pore-forming proteins. Some of these scientists, ourselves included, focus on the study of actinoporins, a fascinating group of metamorphic pore-forming proteins produced within the venom of several sea anemones. These toxic proteins can spontaneously transit from a water-soluble fold to an integral membrane ensemble because they specifically recognize sphingomyelin in the membrane. Once they bind to the bilayer, they subsequently oligomerize into a pore that triggers cell-death by osmotic shock. In addition to sphingomyelin, some actinoporins are especially sensible to some other membrane components such as cholesterol. Our group from Universidad Complutense of Madrid has focused greatly on the role played by sterols in this water–membrane transition, a question which still remains only partially solved and constitutes the main core of the article below.
Collapse
|
14
|
Sandoval K, McCormack GP. Actinoporin-like Proteins Are Widely Distributed in the Phylum Porifera. Mar Drugs 2022; 20:md20010074. [PMID: 35049929 PMCID: PMC8778704 DOI: 10.3390/md20010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Actinoporins are proteinaceous toxins known for their ability to bind to and create pores in cellular membranes. This quality has generated interest in their potential use as new tools, such as therapeutic immunotoxins. Isolated historically from sea anemones, genes encoding for similar actinoporin-like proteins have since been found in a small number of other animal phyla. Sequencing and de novo assembly of Irish Haliclona transcriptomes indicated that sponges also possess similar genes. An exhaustive analysis of publicly available sequencing data from other sponges showed that this is a potentially widespread feature of the Porifera. While many sponge proteins possess a sequence similarity of 27.70–59.06% to actinoporins, they show consistency in predicted structure. One gene copy from H. indistincta has significant sequence similarity to sea anemone actinoporins and possesses conserved residues associated with the fundamental roles of sphingomyelin recognition, membrane attachment, oligomerization, and pore formation, indicating that it may be an actinoporin. Phylogenetic analyses indicate frequent gene duplication, no distinct clade for sponge-derived proteins, and a stronger signal towards actinoporins than similar proteins from other phyla. Overall, this study provides evidence that a diverse array of Porifera represents a novel source of actinoporin-like proteins which may have biotechnological and pharmaceutical applications.
Collapse
|
15
|
Donato M, Soto C, Lanio ME, Itri R, Álvarez C. The pore-forming activity of sticholysin I is enhanced by the presence of a phospholipid hydroperoxide in membrane. Toxicon 2021; 204:44-55. [PMID: 34736955 DOI: 10.1016/j.toxicon.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 11/19/2022]
Abstract
Sticholysin I (StI) is a pore-forming toxin (PFT) belonging to the actinoporin protein family characterized by high permeabilizing activity in membranes. StI readily associates with sphingomyelin (SM)-containing membranes originating pores that can lead to cell death. Binding and pore-formation are critically dependent on the physicochemical properties of membrane. 1-palmitoyl-2-oleoylphosphatidylcholine hydroperoxide (POPC-OOH) is an oxidized phospholipid (OxPL) containing an -OOH moiety in the unsaturated hydrocarbon chain which orientates towards the bilayer interface. This orientation causes an increase in the lipid molecular area, lateral expansion and decrease in bilayer thickness, elastic and bending modulus, as well as modification of lipid packing. Taking advantage of membrane structural changes promoted by POPC-OOH, we investigated its influence on the permeabilizing ability of StI. Here we report the action of StI on Giant Unilamellar Vesicles (GUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and SM containing increasing amount of POPC-OOH to assess vesicle permeability changes when compared to OxPL-lacking membranes. Inclusion of POPC-OOH in membranes did not promote spontaneous vesicle leaking but resulted in increased membrane permeability due to StI action. StI activity did not modify the fluid-gel phase coexistence boundaries neither in POPC:SM or POPC-OOH:SM membranes. However, the StI insertion mechanism in membrane seems to differ between POPC:SM and POPC-OOH:SM mixtures as suggested by changes in the time course of monolayer surface tension measurements, even though a preferable binding of the toxin to OxPL-containing systems could not be here demonstrated. In summary, modifications in the membrane imposed by lipid hydroperoxidation favor StI permeabilizing activity.
Collapse
Affiliation(s)
- Maressa Donato
- Instituto de Física, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Center for Laser and Applications, Nuclear and Energy Research Institute, São Paulo, Brazil
| | - Carmen Soto
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, CP, 10400, La Habana, Cuba
| | - María Eliana Lanio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, CP, 10400, La Habana, Cuba
| | - Rosangela Itri
- Instituto de Física, Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| | - Carlos Álvarez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, CP, 10400, La Habana, Cuba.
| |
Collapse
|
16
|
Chen JB, Bao SW, Fang YL, Wei LY, Zhu WS, Peng YL, Fan J. An LRR-only protein promotes NLP-triggered cell death and disease susceptibility by facilitating oligomerization of NLP in Arabidopsis. THE NEW PHYTOLOGIST 2021; 232:1808-1822. [PMID: 34403491 DOI: 10.1111/nph.17680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) constitute a superfamily of proteins toxic to dicot plants, but the molecular basis of this toxicity remains obscure. Using quantitative trait locus (QTL) analysis we investigated the genetic variation underlying ion leakage in Arabidopsis plants elicited with MoNLP1 derived from Magnaporthe oryzae. The QTL conditioning MoNLP1 toxicity was positionally cloned and further characterized to elucidate its mode of action. MoNLP1-triggered cell death varied significantly across > 250 Arabidopsis accessions and three QTLs were identified conferring the observed variation. The QTL on chromosome 4 was uncovered to encode a leucine-rich repeat (LRR)-only protein designated as NTCD4, which shares high sequence identity with a set of nucleotide-binding LRR proteins. NTCD4 was secreted into the apoplast and physically interacted with multiple NLPs. Apoplastic NTCD4 facilitated the oligomerization of NLP, which was closely associated with toxicity in planta. The natural genetic variation causing D3N change in NTCD4 reduced the secretion efficiency of NTCD4 and the infection of Botrytis cinerea on Arabidopsis plants. These observations demonstrate that the plant-derived NTCD4 is recruited by NLPs to promote toxicity via facilitating their oligomerization, which extends our understanding of a key step in the toxic mode of action of NLPs.
Collapse
Affiliation(s)
- Jun-Bin Chen
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Shu-Wen Bao
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Ya-Li Fang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Lu-Yang Wei
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Wang-Sheng Zhu
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - You-Liang Peng
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 100193, Beijing, China
| | - Jun Fan
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
17
|
Ker DS, Sha HX, Jonet MA, Hwang JS, Ng CL. Structural and functional analysis of Hydra Actinoporin-Like Toxin 1 (HALT-1). Sci Rep 2021; 11:20649. [PMID: 34667248 PMCID: PMC8526580 DOI: 10.1038/s41598-021-99879-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Actinoporins are a family of α-pore-forming toxins (α-PFTs) that have been identified in sea anemones. Recently, a freshwater Hydra Actinoporin-Like Toxin (HALT) gene family was found in Hydra magnipapillata. Unlike sea anemone actinoporins that use sphingomyelin as their main recognition target, the HALTs proteins may recognise alternative lipid molecules as their target. To unveil the structural insights into lipid preference of HALTs protein as compared to sea anemone actinoporins, we have determined the first crystal structure of actinoporin-like toxin, HALT-1 at 1.43 Å resolution with an acetylated lysine residue K76. Despite the overall structure of HALT-1 sharing a high structural similarity to sea anemone actinoporins, the atomic resolution structure revealed several unique structural features of HALT-1 that may influence the lipid preference and oligomerisation interface. The HALT-1 contains a RAG motif in place of the highly conserved RGD motif found in sea anemone actinoporins. The RAG motif contributed to a sharper β9-β10 turn, which may sway its oligomerisation interface in comparison to sea anemone actinoporins. In the lipid-binding region, the HALT-1 contains a shorter α2 helix and a longer α2-β9 loop due to deletion and subsequently an insertion of five amino acid residues in comparison to the sea anemone actinoporins. Structure comparison and molecular docking analysis further revealed that the HALT-1 lipid-binding site may favour sphingolipids with sulfate or phosphate head group more than the sphingomyelin. The structure of HALT-1 reported here provides a new insight for a better understanding of the evolution and lipid recognition mechanism of actinoporin.
Collapse
Affiliation(s)
- De-Sheng Ker
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.,York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Hong Xi Sha
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
18
|
Cosentino K, Hermann E, von Kügelgen N, Unsay JD, Ros U, García-Sáez AJ. Force Mapping Study of Actinoporin Effect in Membranes Presenting Phase Domains. Toxins (Basel) 2021; 13:toxins13090669. [PMID: 34564674 PMCID: PMC8473010 DOI: 10.3390/toxins13090669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Equinatoxin II (EqtII) and Fragaceatoxin C (FraC) are pore-forming toxins (PFTs) from the actinoporin family that have enhanced membrane affinity in the presence of sphingomyelin (SM) and phase coexistence in the membrane. However, little is known about the effect of these proteins on the nanoscopic properties of membrane domains. Here, we used combined confocal microscopy and force mapping by atomic force microscopy to study the effect of EqtII and FraC on the organization of phase-separated phosphatidylcholine/SM/cholesterol membranes. To this aim, we developed a fast, high-throughput processing tool to correlate structural and nano-mechanical information from force mapping. We found that both proteins changed the lipid domain shape. Strikingly, they induced a reduction in the domain area and circularity, suggesting a decrease in the line tension due to a lipid phase height mismatch, which correlated with proteins binding to the domain interfaces. Moreover, force mapping suggested that the proteins affected the mechanical properties at the edge, but not in the bulk, of the domains. This effect could not be revealed by ensemble force spectroscopy measurements supporting the suitability of force mapping to study local membrane topographical and mechanical alterations by membranotropic proteins.
Collapse
|
19
|
Kulma M, Anderluh G. Beyond pore formation: reorganization of the plasma membrane induced by pore-forming proteins. Cell Mol Life Sci 2021; 78:6229-6249. [PMID: 34387717 PMCID: PMC11073440 DOI: 10.1007/s00018-021-03914-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
Pore-forming proteins (PFPs) are a heterogeneous group of proteins that are expressed and secreted by a wide range of organisms. PFPs are produced as soluble monomers that bind to a receptor molecule in the host cell membrane. They then assemble into oligomers that are incorporated into the lipid membrane to form transmembrane pores. Such pore formation alters the permeability of the plasma membrane and is one of the most common mechanisms used by PFPs to destroy target cells. Interestingly, PFPs can also indirectly manipulate diverse cellular functions. In recent years, increasing evidence indicates that the interaction of PFPs with lipid membranes is not only limited to pore-induced membrane permeabilization but is also strongly associated with extensive plasma membrane reorganization. This includes lateral rearrangement and deformation of the lipid membrane, which can lead to the disruption of target cell function and finally death. Conversely, these modifications also constitute an essential component of the membrane repair system that protects cells from the lethal consequences of pore formation. Here, we provide an overview of the current knowledge on the changes in lipid membrane organization caused by PFPs from different organisms.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| |
Collapse
|
20
|
Alvarez C, Soto C, Cabezas S, Alvarado-Mesén J, Laborde R, Pazos F, Ros U, Hernández AM, Lanio ME. Panorama of the Intracellular Molecular Concert Orchestrated by Actinoporins, Pore-Forming Toxins from Sea Anemones. Toxins (Basel) 2021; 13:toxins13080567. [PMID: 34437438 PMCID: PMC8402351 DOI: 10.3390/toxins13080567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/25/2022] Open
Abstract
Actinoporins (APs) are soluble pore-forming proteins secreted by sea anemones that experience conformational changes originating in pores in the membranes that can lead to cell death. The processes involved in the binding and pore-formation of members of this protein family have been deeply examined in recent years; however, the intracellular responses to APs are only beginning to be understood. Unlike pore formers of bacterial origin, whose intracellular impact has been studied in more detail, currently, we only have knowledge of a few poorly integrated elements of the APs’ intracellular action. In this review, we present and discuss an updated landscape of the studies aimed at understanding the intracellular pathways triggered in response to APs attack with particular reference to sticholysin II, the most active isoform produced by the Caribbean Sea anemone Stichodactyla helianthus. To achieve this, we first describe the major alterations these cytolysins elicit on simpler cells, such as non-nucleated mammalian erythrocytes, and then onto more complex eukaryotic cells, including tumor cells. This understanding has provided the basis for the development of novel applications of sticholysins such as the construction of immunotoxins directed against undesirable cells, such as tumor cells, and the design of a cancer vaccine platform. These are among the most interesting potential uses for the members of this toxin family that have been carried out in our laboratory.
Collapse
Affiliation(s)
- Carlos Alvarez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Correspondence:
| | - Carmen Soto
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Sheila Cabezas
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Javier Alvarado-Mesén
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Escuela de Ciencias Biológicas, Universidad Nacional, Heredia 40101, Costa Rica
| | - Rady Laborde
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Fabiola Pazos
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Uris Ros
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-strasse 26, 50931 Cologne, Germany
| | - Ana María Hernández
- Immunobiology Division, Molecular Immunology Institute, Center of Molecular Immunology (CIM), Playa, Havana CP 11600, Cuba;
| | - María Eliana Lanio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| |
Collapse
|
21
|
Mondal AK, Chattopadhyay K. Structures and functions of the membrane-damaging pore-forming proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:241-288. [PMID: 35034720 DOI: 10.1016/bs.apcsb.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pore-forming proteins (PFPs) of the diverse life forms have emerged as the potent cell-killing entities owing to their specialized membrane-damaging properties. PFPs have the unique ability to perforate the plasma membranes of their target cells, and they exert this functionality by creating oligomeric pores in the membrane lipid bilayer. Pathogenic bacteria employ PFPs as toxins to execute their virulence mechanisms, whereas in the higher vertebrates PFPs are deployed as the part of the immune system and to generate inflammatory responses. PFPs are the unique dimorphic proteins that are generally synthesized as water-soluble molecules, and transform into membrane-inserted oligomeric pore assemblies upon interacting with the target membranes. In spite of sharing very little sequence similarity, PFPs from diverse organisms display incredible structural similarity. Yet, at the same time, structure-function mechanisms of the PFPs document remarkable versatility. Such notions establish PFPs as the fascinating model system to explore variety of unsolved issues pertaining to the structure-function paradigm of the proteins that interact and act in the membrane environment. In this article, we discuss our current understanding regarding the structural basis of the pore-forming functions of the diverse class of PFPs. We attempt to highlight the similarities and differences in their structures, membrane pore-formation mechanisms, and their implications for the various biological processes, ranging from the bacterial virulence mechanisms to the inflammatory immune response generation in the higher animals.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
22
|
Palacios-Ortega J, García-Linares S, Rivera-de-Torre E, Heras-Márquez D, Gavilanes JG, Slotte JP, Martínez-Del-Pozo Á. Structural foundations of sticholysin functionality. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140696. [PMID: 34246789 DOI: 10.1016/j.bbapap.2021.140696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Actinoporins constitute a family of α pore-forming toxins produced by sea anemones. The soluble fold of these proteins consists of a β-sandwich flanked by two α-helices. Actinoporins exert their activity by specifically recognizing sphingomyelin at their target membranes. Once there, they penetrate the membrane with their N-terminal α-helices, a process that leads to the formation of cation-selective pores. These pores kill the target cells by provoking an osmotic shock on them. In this review, we examine the role and relevance of the structural features of actinoporins, down to the residue level. We look at the specific amino acids that play significant roles in the function of actinoporins and their fold. Particular emphasis is given to those residues that display a high degree of conservation across the actinoporin sequences known to date. In light of the latest findings in the field, the membrane requirements for pore formation, the effect of lipid composition, and the process of pore formation are also discussed.
Collapse
Affiliation(s)
- Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Esperanza Rivera-de-Torre
- Department of Biochemistry and Biotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Diego Heras-Márquez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| |
Collapse
|
23
|
What Can Mushroom Proteins Teach Us about Lipid Rafts? MEMBRANES 2021; 11:membranes11040264. [PMID: 33917311 PMCID: PMC8067419 DOI: 10.3390/membranes11040264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/25/2022]
Abstract
The lipid raft hypothesis emerged as a need to explain the lateral organization and behavior of lipids in the environment of biological membranes. The idea, that lipids segregate in biological membranes to form liquid-disordered and liquid-ordered states, was faced with a challenge: to show that lipid-ordered domains, enriched in sphingomyelin and cholesterol, actually exist in vivo. A great deal of indirect evidence and the use of lipid-binding probes supported this idea, but there was a lack of tools to demonstrate the existence of such domains in living cells. A whole new toolbox had to be invented to biochemically characterize lipid rafts and to define how they are involved in several cellular functions. A potential solution came from basic biochemical experiments in the late 1970s, showing that some mushroom extracts exert hemolytic activities. These activities were later assigned to aegerolysin-based sphingomyelin/cholesterol-specific cytolytic protein complexes. Recently, six sphingomyelin/cholesterol binding proteins from different mushrooms have been identified and have provided some insight into the nature of sphingomyelin/cholesterol-rich domains in living vertebrate cells. In this review, we dissect the accumulated knowledge and introduce the mushroom lipid raft binding proteins as molecules of choice to study the dynamics and origins of these liquid-ordered domains in mammalian cells.
Collapse
|
24
|
Crystal structure of RahU, an aegerolysin protein from the human pathogen Pseudomonas aeruginosa, and its interaction with membrane ceramide phosphorylethanolamine. Sci Rep 2021; 11:6572. [PMID: 33753805 PMCID: PMC7985367 DOI: 10.1038/s41598-021-85956-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Aegerolysins are proteins produced by bacteria, fungi, plants and protozoa. The most studied fungal aegerolysins share a common property of interacting with membranes enriched with cholesterol in combination with either sphingomyelin or ceramide phosphorylethanolamine (CPE), major sphingolipids in the cell membranes of vertebrates and invertebrates, respectively. However, genome analyses show a particularly high frequency of aegerolysin genes in bacteria, including the pathogenic genera Pseudomonas and Vibrio; these are human pathogens of high clinical relevance and can thrive in a variety of other species. The knowledge on bacterial aegerolysin-lipid interactions is scarce. We show that Pseudomonas aeruginosa aegerolysin RahU interacts with CPE, but not with sphingomyelin-enriched artificial membranes, and that RahU interacts with the insect cell line producing CPE. We report crystal structures of RahU alone and in complex with tris(hydroxymethyl)aminomethane (Tris), which, like the phosphorylethanolamine head group of CPE, contains a primary amine. The RahU structures reveal that the two loops proximal to the amino terminus form a cavity that accommodates Tris, and that the flexibility of these two loops is important for this interaction. We show that Tris interferes with CPE-enriched membranes for binding to RahU, implying on the importance of the ligand cavity between the loops and its proximity in RahU membrane interaction. We further support this by studying the interaction of single amino acid substitution mutants of RahU with the CPE-enriched membranes. Our results thus represent a starting point for a better understanding of the role of P. aeruginosa RahU, and possibly other bacterial aegerolysins, in bacterial interactions with other organisms.
Collapse
|
25
|
Tomishige N, Murate M, Didier P, Richert L, Mély Y, Kobayashi T. The use of pore-forming toxins to image lipids and lipid domains. Methods Enzymol 2021; 649:503-542. [PMID: 33712198 DOI: 10.1016/bs.mie.2021.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Very few proteins are reported to bind specific lipids. Because of the high selectivity and strong binding to specific lipids, lipid-targeting pore forming toxins (PFTs) have been employed to study the distribution of lipids in cell- and model-membranes. Non-toxic and monomeric PFT-derivatives are especially useful to study living cells. In this chapter we highlight sphingomyelin (SM)-binding PFT, lysenin (Lys), its derivatives, and newly identified SM/cholesterol binding protein, nakanori. We describe the preparation of non-toxic mutant of Lys (NT-Lys) and its application in optical and super resolution microscopy. We also discuss the observation of nanometer scale lipid domains labeled with nakanori and maltose-binding protein (MBP)-Lys in electron microscopy.
Collapse
Affiliation(s)
| | | | - Pascal Didier
- UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | | | - Yves Mély
- UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
26
|
Lipid interactions of an actinoporin pore-forming oligomer. Biophys J 2021; 120:1357-1366. [PMID: 33617834 DOI: 10.1016/j.bpj.2021.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/16/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
The actinoporins are cytolytic toxins produced by sea anemones. Upon encountering a membrane, preferably containing sphingomyelin, they oligomerize and insert their N-terminal helix into the membrane, forming a pore. Whether sphingomyelin is specifically recognized by the protein or simply induces phase coexistence in the membrane has been debated. Here, we perform multi-microsecond molecular dynamics simulations of an octamer of fragaceatoxin C, a member of the actinoporin family, in lipid bilayers containing either pure 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or a 1:1 mixture of DOPC and palmitoyl sphingomyelin (PSM). The complex is highly stable in both environments, with only slight fraying of the inserted helices near their N-termini. Analyzing the structural parameters of the mixed membrane in the course of the simulation, we see signs of a phase transition for PSM in the inner leaflet of the bilayer. In both leaflets, cross-interactions between lipids of different type decrease over time. Surprisingly, the aromatic loop thought to be responsible for sphingomyelin recognition interacts more with DOPC than PSM by the end of the simulation. These results support the notion that the key membrane property that actinoporins recognize is lipid phase coexistence.
Collapse
|
27
|
Caaveiro JMM, Tsumoto K. Molecular basis for the activation of actinoporins by lipids. Methods Enzymol 2021; 649:277-306. [PMID: 33712190 DOI: 10.1016/bs.mie.2021.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actinoporins are a family of homologous pore forming proteins from sea anemones. They are one of the few families of eukaryotic toxins that have been characterized in depth. Actinoporins are activated by lipids in the context of bilayers, especially in cell and in model membranes containing the lipid sphingomyelin. These proteins must undergo conformational changes induced upon interaction with lipids in the membrane, where they form cytotoxic pores causing cell death and lethality. Herein we review a list of procedures and techniques to study this family of toxins, with the goal of elucidating the physicochemical, thermodynamic and structural basis for their activation by lipids. The emerging picture indicates that actinoporins undergo a stepwise process that includes binding to the membrane, oligomerization, and pore formation, in this order. The key transformation from the inactive oligomer to the active pore is catalyzed by sphingomyelin, explaining the key role of this lipid in the function of actinoporins.
Collapse
Affiliation(s)
- Jose M M Caaveiro
- Department of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan.
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
28
|
Johnstone BA, Christie MP, Morton CJ, Parker MW. X-ray crystallography shines a light on pore-forming toxins. Methods Enzymol 2021; 649:1-46. [PMID: 33712183 DOI: 10.1016/bs.mie.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A common form of cellular attack by pathogenic bacteria is to secrete pore-forming toxins (PFTs). Capable of forming transmembrane pores in various biological membranes, PFTs have also been identified in a diverse range of other organisms such as sea anemones, earthworms and even mushrooms and trees. The mechanism of pore formation by PFTs is associated with substantial conformational changes in going from the water-soluble to transmembrane states of the protein. The determination of the crystal structures for numerous PFTs has shed much light on our understanding of these proteins. Other than elucidating the atomic structural details of PFTs and the conformational changes that must occur for pore formation, crystal structures have revealed structural homology that has led to the discovery of new PFTs and new PFT families. Here we review some key crystallographic results together with complimentary approaches for studying PFTs. We discuss how these studies have impacted our understanding of PFT function and guided research into biotechnical applications.
Collapse
Affiliation(s)
- Bronte A Johnstone
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michelle P Christie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.
| |
Collapse
|
29
|
Li Y, Li Y, Mengist HM, Shi C, Zhang C, Wang B, Li T, Huang Y, Xu Y, Jin T. Structural Basis of the Pore-Forming Toxin/Membrane Interaction. Toxins (Basel) 2021; 13:toxins13020128. [PMID: 33572271 PMCID: PMC7914777 DOI: 10.3390/toxins13020128] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
With the rapid growth of antibiotic-resistant bacteria, it is urgent to develop alternative therapeutic strategies. Pore-forming toxins (PFTs) belong to the largest family of virulence factors of many pathogenic bacteria and constitute the most characterized classes of pore-forming proteins (PFPs). Recent studies revealed the structural basis of several PFTs, both as soluble monomers, and transmembrane oligomers. Upon interacting with host cells, the soluble monomer of bacterial PFTs assembles into transmembrane oligomeric complexes that insert into membranes and affect target cell-membrane permeability, leading to diverse cellular responses and outcomes. Herein we have reviewed the structural basis of pore formation and interaction of PFTs with the host cell membrane, which could add valuable contributions in comprehensive understanding of PFTs and searching for novel therapeutic strategies targeting PFTs and interaction with host receptors in the fight of bacterial antibiotic-resistance.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
| | - Yuelong Li
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China; (Y.L.); (H.M.M.); (C.Z.)
| | - Hylemariam Mihiretie Mengist
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China; (Y.L.); (H.M.M.); (C.Z.)
| | - Cuixiao Shi
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
| | - Caiying Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China; (Y.L.); (H.M.M.); (C.Z.)
| | - Bo Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
| | - Tingting Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
| | - Ying Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
| | - Yuanhong Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
- Correspondence: (Y.X.); (T.J.); Tel.: +86-13505694447 (Y.X.); +86-17605607323 (T.J.)
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China; (Y.L.); (H.M.M.); (C.Z.)
- Correspondence: (Y.X.); (T.J.); Tel.: +86-13505694447 (Y.X.); +86-17605607323 (T.J.)
| |
Collapse
|
30
|
Palacios-Ortega J, Rivera-de-Torre E, García-Linares S, Gavilanes JG, Martínez-Del-Pozo Á, Slotte JP. Oligomerization of Sticholysins from Förster Resonance Energy Transfer. Biochemistry 2021; 60:314-323. [PMID: 33445865 PMCID: PMC8023573 DOI: 10.1021/acs.biochem.0c00840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Sticholysins
are pore-forming toxins produced by sea anemones that
are members of the actinoporin family. They exert their activity by
forming pores on membranes, provided they have sphingomyelin. To assemble
into pores, specific recognition, binding, and oligomerization are
required. While recognition and binding have been extensively studied,
delving into the oligomerization process and the stoichiometry of
the pores has been more difficult. Here, we present evidence that
these toxins are capable of oligomerizing in solution and suggesting
that the interaction of sticholysin II (StnII) with its isoform sticholysin
I (StnI) is stronger than that of StnI with itself. We also show that
the stoichiometry of the final, thermodynamically stable StnI pores
is, at least, heptameric. Furthermore, our results indicate that this
association maintains its oligomerization number when StnII is included,
indicating that the stoichiometry of StnII is also of that order,
and not tetrameric, as previously thought. These results are compatible
with the stoichiometry observed for the crystallized pore of FraC,
another very similar actinoporin produced by a different sea anemone
species. Our results also indicate that the stoichiometry of actinoporin
pores in equilibrium is conserved regardless of the particular composition
of a given pore ensemble, which we have shown for mixed sticholysin
pores.
Collapse
Affiliation(s)
- Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, 28040 Madrid, Spain.,Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | | | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, 28040 Madrid, Spain
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, 28040 Madrid, Spain
| | | | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
31
|
Palacios-Ortega J, Rivera-de-Torre E, Gavilanes JG, Slotte JP, Martínez-Del-Pozo Á, García-Linares S. Biophysical approaches to study actinoporin-lipid interactions. Methods Enzymol 2021; 649:307-339. [PMID: 33712191 DOI: 10.1016/bs.mie.2020.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-lipid interactions are crucial events from a biochemical point of view, like the interaction of proteins with the cell plasma membrane, and their study is of great importance. Actinoporins are a very powerful tool to study this kind of interactions, since they are soluble proteins in an aqueous environment, capable of inserting into membranes when they have the adequate composition. In fact, actinoporins have been used to study protein-lipid interactions for many years now. Sometimes it is not possible to use real biological membranes in the experiments, so model membranes need to be used. This article aims to give a thorough description of many of the techniques used to study actinoporin-lipid interactions, using both biological and model membranes: Hemolysis, release of vesicles content, surface plasmon resonance, isothermal titration calorimetry, fluorescence-based measurements, etc. Some of these techniques measure the actinoporins activity and some measure their binding properties. The combination of all the techniques described can offer valuable information about the thermodynamics and the kinetics of the actinoporin-lipid interaction.
Collapse
Affiliation(s)
- Juan Palacios-Ortega
- Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Esperanza Rivera-de-Torre
- Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - José G Gavilanes
- Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | | | - Sara García-Linares
- Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain.
| |
Collapse
|
32
|
Pore-forming proteins: From defense factors to endogenous executors of cell death. Chem Phys Lipids 2020; 234:105026. [PMID: 33309552 DOI: 10.1016/j.chemphyslip.2020.105026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Pore-forming proteins (PFPs) and small antimicrobial peptides (AMPs) represent a large family of molecules with the common ability to punch holes in cell membranes to alter their permeability. They play a fundamental role as infectious bacteria's defensive tools against host's immune system and as executors of endogenous machineries of regulated cell death in eukaryotic cells. Despite being highly divergent in primary sequence and 3D structure, specific folds of pore-forming domains have been conserved. In fact, pore formation is considered an ancient mechanism that takes place through a general multistep process involving: membrane partitioning and insertion, oligomerization and pore formation. However, different PFPs and AMPs assemble and form pores following different mechanisms that could end up either in the formation of protein-lined or protein-lipid pores. In this review, we analyze the current findings in the mechanism of action of different PFPs and AMPs that support a wide role of membrane pore formation in nature. We also provide the newest insights into the development of state-of-art techniques that have facilitated the characterization of membrane pores. To understand the physiological role of these peptides/proteins or develop clinical applications, it is essential to uncover the molecular mechanism of how they perforate membranes.
Collapse
|
33
|
Functional and Structural Variation among Sticholysins, Pore-Forming Proteins from the Sea Anemone Stichodactyla helianthus. Int J Mol Sci 2020; 21:ijms21238915. [PMID: 33255441 PMCID: PMC7727798 DOI: 10.3390/ijms21238915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Venoms constitute complex mixtures of many different molecules arising from evolution in processes driven by continuous prey-predator interactions. One of the most common compounds in these venomous cocktails are pore-forming proteins, a family of toxins whose activity relies on the disruption of the plasmatic membranes by forming pores. The venom of sea anemones, belonging to the oldest lineage of venomous animals, contains a large amount of a characteristic group of pore-forming proteins known as actinoporins. They bind specifically to sphingomyelin-containing membranes and suffer a conformational metamorphosis that drives them to make pores. This event usually leads cells to death by osmotic shock. Sticholysins are the actinoporins produced by Stichodactyla helianthus. Three different isotoxins are known: Sticholysins I, II, and III. They share very similar amino acid sequence and three-dimensional structure but display different behavior in terms of lytic activity and ability to interact with cholesterol, an important lipid component of vertebrate membranes. In addition, sticholysins can act in synergy when exerting their toxin action. The subtle, but important, molecular nuances that explain their different behavior are described and discussed throughout the text. Improving our knowledge about sticholysins behavior is important for eventually developing them into biotechnological tools.
Collapse
|
34
|
Mondal AK, Verma P, Lata K, Singh M, Chatterjee S, Chattopadhyay K. Sequence Diversity in the Pore-Forming Motifs of the Membrane-Damaging Protein Toxins. J Membr Biol 2020; 253:469-478. [PMID: 32955633 DOI: 10.1007/s00232-020-00141-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Pore-forming proteins/toxins (PFPs/PFTs) are the distinct class of membrane-damaging proteins. They act by forming oligomeric pores in the plasma membranes. PFTs and PFPs from diverse organisms share a common mechanism of action, in which the designated pore-forming motifs of the membrane-bound protein molecules insert into the membrane lipid bilayer to create the water-filled pores. One common characteristic of these pore-forming motifs is that they are amphipathic in nature. In general, the hydrophobic sidechains of the pore-forming motifs face toward the hydrophobic core of the membranes, while the hydrophilic residues create the lining of the water-filled pore lumen. Interestingly, pore-forming motifs of the distinct subclass of PFPs/PFTs share very little sequence similarity with each other. Therefore, the common guiding principle that governs the sequence-to-structure paradigm in the mechanism of action of these PFPs/PFTs still remains an enigma. In this article, we discuss this notion using the examples of diverse groups of membrane-damaging PFPs/PFTs.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Pratima Verma
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Kusum Lata
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Mahendra Singh
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Shamaita Chatterjee
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India.
| |
Collapse
|
35
|
Evaluation of different approaches used to study membrane permeabilization by actinoporins on model lipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183311. [DOI: 10.1016/j.bbamem.2020.183311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/12/2020] [Accepted: 04/13/2020] [Indexed: 02/01/2023]
|
36
|
Rivera-de-Torre E, Palacios-Ortega J, Garb JE, Slotte JP, Gavilanes JG, Martínez-Del-Pozo Á. Structural and functional characterization of sticholysin III: A newly discovered actinoporin within the venom of the sea anemone Stichodactyla helianthus. Arch Biochem Biophys 2020; 689:108435. [PMID: 32485153 DOI: 10.1016/j.abb.2020.108435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/19/2023]
Abstract
Actinoporins are a family of pore-forming toxins produced by sea anemones as part of their venomous cocktail. These proteins remain soluble and stably folded in aqueous solution, but when interacting with sphingomyelin-containing lipid membranes, they become integral oligomeric membrane structures that form a pore permeable to cations, which leads to cell death by osmotic shock. Actinoporins appear as multigenic families within the genome of sea anemones: several genes encoding very similar actinoporins are detected within the same species. The Caribbean Sea anemone Stichodactyla helianthus produces three actinoporins (sticholysins I, II and III; StnI, StnII and StnIII) that differ in their toxic potency. For example, StnII is about four-fold more effective than StnI against sheep erythrocytes in causing hemolysis, and both show synergy. However, StnIII, recently discovered in the S. helianthus transcriptome, has not been characterized so far. Here we describe StnIII's spectroscopic and functional properties and show its potential to interact with the other Stns. StnIII seems to maintain the well-preserved fold of all actinoporins, characterized by a high content of β-sheet, but it is significantly less thermostable. Its functional characterization shows that the critical concentration needed to form active pores is higher than for either StnI or StnII, suggesting differences in behavior when oligomerizing on membrane surfaces. Our results show that StnIII is an interesting and unexpected piece in the puzzle of how this Caribbean Sea anemone species modulates its venomous activity.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
37
|
Jana K, Mehra R, Dehury B, Blundell TL, Kepp KP. Common mechanism of thermostability in small α- and β-proteins studied by molecular dynamics. Proteins 2020; 88:1233-1250. [PMID: 32368818 DOI: 10.1002/prot.25897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/01/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Protein thermostability is important to evolution, diseases, and industrial applications. Proteins use diverse molecular strategies to achieve stability at high temperature, yet reducing the entropy of unfolding seems required. We investigated five small α-proteins and five β-proteins with known, distinct structures and thermostability (Tm ) using multi-seed molecular dynamics simulations at 300, 350, and 400 K. The proteins displayed diverse changes in hydrogen bonding, solvent exposure, and secondary structure with no simple relationship to Tm . Our dynamics were in good agreement with experimental B-factors at 300 K and insensitive to force-field choice. Despite the very distinct structures, the native-state (300 + 350 K) free-energy landscapes (FELs) were significantly broader for the two most thermostable proteins and smallest for the three least stable proteins in both the α- and β-group and with both force fields studied independently (tailed t-test, 95% confidence level). Our results suggest that entropic ensembles stabilize proteins at high temperature due to reduced entropy of unfolding, viz., ΔG = ΔH - TΔS. Supporting this mechanism, the most thermostable proteins were also the least kinetically stable, consistent with broader FELs, typified by villin headpiece and confirmed by specific comparison to a mesophilic ortholog of Thermus thermophilus apo-pyrophosphate phosphohydrolase. We propose that molecular strategies of protein thermostabilization, although diverse, tend to converge toward highest possible entropy in the native state consistent with the functional requirements. We speculate that this tendency may explain why many proteins are not optimally structured and why molten-globule states resemble native proteins so much.
Collapse
Affiliation(s)
| | | | - Budheswar Dehury
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
38
|
Ramírez-Carreto S, Miranda-Zaragoza B, Rodríguez-Almazán C. Actinoporins: From the Structure and Function to the Generation of Biotechnological and Therapeutic Tools. Biomolecules 2020; 10:E539. [PMID: 32252469 PMCID: PMC7226409 DOI: 10.3390/biom10040539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/22/2022] Open
Abstract
Actinoporins (APs) are a family of pore-forming toxins (PFTs) from sea anemones. These biomolecules exhibit the ability to exist as soluble monomers within an aqueous medium or as constitutively open oligomers in biological membranes. Through their conformational plasticity, actinoporins are considered good candidate molecules to be included for the rational design of molecular tools, such as immunotoxins directed against tumor cells and stochastic biosensors based on nanopores to analyze unique DNA or protein molecules. Additionally, the ability of these proteins to bind to sphingomyelin (SM) facilitates their use for the design of molecular probes to identify SM in the cells. The immunomodulatory activity of actinoporins in liposomal formulations for vaccine development has also been evaluated. In this review, we describe the potential of actinoporins for use in the development of molecular tools that could be used for possible medical and biotechnological applications.
Collapse
Affiliation(s)
| | | | - Claudia Rodríguez-Almazán
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico; (S.R.-C.); (B.M.-Z.)
| |
Collapse
|
39
|
Pore-forming toxins from sea anemones: from protein-membrane interaction to its implications for developing biomedical applications. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2020. [DOI: 10.1016/bs.abl.2020.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Kundu N, Verma P, Kumar A, Dhar V, Dutta S, Chattopadhyay K. N-Terminal Region of Vibrio parahemolyticus Thermostable Direct Hemolysin Regulates the Membrane-Damaging Action of the Toxin. Biochemistry 2019; 59:605-614. [DOI: 10.1021/acs.biochem.9b00937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nidhi Kundu
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Pratima Verma
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Anil Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Vinica Dhar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| |
Collapse
|
41
|
Yap WY, Tan KJSX, Hwang JS. Expansion of Hydra actinoporin-like toxin (HALT) gene family: Expression divergence and functional convergence evolved through gene duplication. Toxicon 2019; 170:10-20. [PMID: 31513812 DOI: 10.1016/j.toxicon.2019.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/15/2022]
Abstract
Hydra actinoporin-like toxin 1 (HALT-1) was previously shown to cause cytolysis and haemolysis in a number of human cells and has similar functional properties to the actinoporins equinatoxin and sticholysin. In addition to HALT-1, five other HALTs (HALTs 2, 3, 4, 6 and 7) were also isolated from Hydra magnipapillata and expressed as recombinant proteins in this study. We demonstrated that recombinant HALTs have cytolytic activity on HeLa cells but each exhibited a different range of toxicity. All six recombinant HALTs bound to sulfatide, while rHALT-1 and rHALT-3 bound to two additional sphingolipids, lysophosphatidic acid and sphingosine-1-phosphate as indicated by the protein-lipid overlay assay. When either tryptophan133 or tyrosine129 of HALT-1 was mutated, the mutant protein lost binding to sulfatide, lysophosphatidic acid and sphingosine-1-phosphate. As further verification of HALTs' binding to sulfatide, we performed ELISA for each HALT. To determine the cell-type specific gene expression of seven HALTs in Hydra, we searched for individual HALT expression in the single-cell RNA-seq data set of Single Cell Portal. The results showed that HALT-1, 4 and 7 were expressed in differentiating stenoteles. HALT-1 and HALT-6 were expressed in the female germline during oogenesis. HALT-2 was strongly expressed in the gland and mucous cells in the endoderm. Information on HALT-3 and HALT-5 could not be found in the single-cell data set. Our findings show that subfunctionalisation of gene expression following duplication enabled HALTs to become specialized in various cell types of the interstitial cell lineage.
Collapse
Affiliation(s)
- Wei Yuen Yap
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights Cheras, 56000, Kuala Lumpur, Malaysia
| | - Katrina Joan Shu Xian Tan
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights Cheras, 56000, Kuala Lumpur, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
42
|
Hervis YP, Valle A, Dunkel S, Klare JP, Canet L, Lanio ME, Alvarez C, Pazos IF, Steinhoff HJ. Architecture of the pore forming toxin sticholysin I in membranes. J Struct Biol 2019; 208:30-42. [PMID: 31330179 DOI: 10.1016/j.jsb.2019.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
Sticholysin I (StI) is a toxin produced by the sea anemone Stichodactyla helianthus and belonging to the actinoporins family. Upon binding to sphingomyelin-containing membranes StI forms oligomeric pores, thereby leading to cell death. According to recent controversial experimental evidences, the pore architecture of actinoporins is a debated topic. Here, we investigated the StI topology in membranes by site-directed spin labeling and electron paramagnetic resonance spectroscopy. The results reveal that StI in membrane exhibits an oligomeric architecture with heterogeneous stoichiometry of predominantly eight or nine protomers, according to the available structural models. The StI topology resembles the conic pore structure reported for the actinoporin fragaceatoxin C. Our data show that StI coexists in two membrane-associated conformations, with the N-terminal segment either attached to the protein core or inserted in the membrane forming the pore. This finding suggests a 'pre-pore' to 'pore' transition determined by a conformational change that detaches the N-terminal segment.
Collapse
Affiliation(s)
- Yadira P Hervis
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Aisel Valle
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Sabrina Dunkel
- Department of Physics, University of Osnabrueck, Barbarastr. 7, 49076 Osnabrueck, Germany.
| | - Johann P Klare
- Department of Physics, University of Osnabrueck, Barbarastr. 7, 49076 Osnabrueck, Germany.
| | - Liem Canet
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Maria E Lanio
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Carlos Alvarez
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Isabel F Pazos
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Heinz-J Steinhoff
- Department of Physics, University of Osnabrueck, Barbarastr. 7, 49076 Osnabrueck, Germany.
| |
Collapse
|
43
|
Pore-Forming Proteins from Cnidarians and Arachnids as Potential Biotechnological Tools. Toxins (Basel) 2019; 11:toxins11060370. [PMID: 31242582 PMCID: PMC6628452 DOI: 10.3390/toxins11060370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Animal venoms are complex mixtures of highly specialized toxic molecules. Cnidarians and arachnids produce pore-forming proteins (PFPs) directed against the plasma membrane of their target cells. Among PFPs from cnidarians, actinoporins stand out for their small size and molecular simplicity. While native actinoporins require only sphingomyelin for membrane binding, engineered chimeras containing a recognition antibody-derived domain fused to an actinoporin isoform can nonetheless serve as highly specific immunotoxins. Examples of such constructs targeted against malignant cells have been already reported. However, PFPs from arachnid venoms are less well-studied from a structural and functional point of view. Spiders from the Latrodectus genus are professional insect hunters that, as part of their toxic arsenal, produce large PFPs known as latrotoxins. Interestingly, some latrotoxins have been identified as potent and highly-specific insecticides. Given the proteinaceous nature of these toxins, their promising future use as efficient bioinsecticides is discussed throughout this Perspective. Protein engineering and large-scale recombinant production are critical steps for the use of these PFPs as tools to control agriculturally important insect pests. In summary, both families of PFPs, from Cnidaria and Arachnida, appear to be molecules with promising biotechnological applications.
Collapse
|
44
|
Madio B, King GF, Undheim EAB. Sea Anemone Toxins: A Structural Overview. Mar Drugs 2019; 17:E325. [PMID: 31159357 PMCID: PMC6627431 DOI: 10.3390/md17060325] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 02/06/2023] Open
Abstract
Sea anemones produce venoms of exceptional molecular diversity, with at least 17 different molecular scaffolds reported to date. These venom components have traditionally been classified according to pharmacological activity and amino acid sequence. However, this classification system suffers from vulnerabilities due to functional convergence and functional promiscuity. Furthermore, for most known sea anemone toxins, the exact receptors they target are either unknown, or at best incomplete. In this review, we first provide an overview of the sea anemone venom system and then focus on the venom components. We have organised the venom components by distinguishing firstly between proteins and non-proteinaceous compounds, secondly between enzymes and other proteins without enzymatic activity, then according to the structural scaffold, and finally according to molecular target.
Collapse
Affiliation(s)
- Bruno Madio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia.
- Centre for Ecology and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
45
|
Pang Y, Gou M, Yang K, Lu J, Han Y, Teng H, Li C, Wang H, Liu C, Zhang K, Yang Y, Li Q. Crystal structure of a cytocidal protein from lamprey and its mechanism of action in the selective killing of cancer cells. Cell Commun Signal 2019; 17:54. [PMID: 31133022 PMCID: PMC6537362 DOI: 10.1186/s12964-019-0358-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background In previous research, we found that lamprey immune protein (LIP) possessed cytocidal activity against tumor cells, but the mechanism of the selective recognition and killing of tumor cells by LIP was not identified. Methods Superresolution microscopy, crystallographic structural analysis, glycan chip assay, SPR experiments, FACS assays, computational studies and mass spectrometric analysis firmly establish the mode of action of LIP, which involves dual selective recognition and efficient binding. Results We determined the overall crystallographic structure of LIP at a resolution of 2.25 Å. LIP exhibits an elongated structure with dimensions of 105 Å × 30 Å × 30 Å containing an N-terminal lectin module and a C-terminal aerolysin module. Moreover, the Phe209-Gly232 region is predicted to insert into the lipid bilayer to form a transmembrane β-barrel, in which the hydrophobic residues face the lipid bilayer, and the polar residues constitute the hydrophilic lumen of the pore. We found that LIP is able to kill various human cancer cells with minimal effects on normal cells. Notably, by coupling biochemical and computational studies, we propose a hypothetical mechanism that involves dual selective recognition and efficient binding dependent on both N-linked glycans on GPI-anchored proteins (GPI-APs) and sphingomyelin (SM) in lipid rafts. Furthermore, specific binding of the lectin module with biantennary bisialylated nonfucosylated N-glycan or sialyl Lewis X-containing glycan structures on GPI-APs triggers substantial conformational changes in the aerolysin module, which interacts with SM, ultimately resulting in the formation of a membrane-bound oligomer in lipid rafts. Conclusions LIP holds great potential for the application of a marine protein towards targeted cancer therapy and early diagnosis in humans. Electronic supplementary material The online version of this article (10.1186/s12964-019-0358-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Kai Yang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jiali Lu
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Hongming Teng
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Changzhi Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Haina Wang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, China
| | - Caigang Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Kejia Zhang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, China.
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China. .,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
46
|
Palacios-Ortega J, García-Linares S, Rivera-de-Torre E, Gavilanes JG, Martínez-Del-Pozo Á, Slotte JP. Sticholysin, Sphingomyelin, and Cholesterol: A Closer Look at a Tripartite Interaction. Biophys J 2019; 116:2253-2265. [PMID: 31146924 DOI: 10.1016/j.bpj.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/05/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Actinoporins are a group of soluble toxic proteins that bind to membranes containing sphingomyelin (SM) and oligomerize to form pores. Sticholysin II (StnII) is a member of the actinoporin family produced by Stichodactyla helianthus. Cholesterol (Chol) is known to enhance the activity of StnII. However, the molecular mechanisms behind this activation have remained obscure, although the activation is not Chol specific but rather sterol specific. To further explore how bilayer lipids affect or are affected by StnII, we have used a multiprobe approach (fluorescent analogs of both Chol and SM) in combination with a series of StnII tryptophan (Trp) mutants to study StnII/bilayer interactions. First, we compared StnII bilayer permeabilization in the presence of Chol or oleoyl-ceramide (OCer). The comparison was done because both Chol and OCer have a 1-hydroxyl, which helps to orient the molecule in the bilayer (although OCer has additional polar functional groups). Both Chol and OCer also have increased affinity for SM, which StnII may recognize. However, our results show that only Chol was able to activate StnII-induced bilayer permeabilization; OCer failed to activate it. To further examine possible Chol/StnII interactions, we measured Förster resonance energy transfer between Trp in StnII and cholestatrienol, a fluorescent analog of Chol. We could show higher Förster resonance energy transfer efficiency between cholestatrienol and Trps in position 100 and 114 of StnII when compared to three other Trp positions further away from the bilayer binding region of StnII. Taken together, our results suggest that StnII was able to attract Chol to its vicinity, maybe by showing affinity for Chol. SM interactions are known to be important for StnII binding to bilayers, and Chol is known to facilitate subsequent permeabilization of the bilayers by StnII. Our results help to better understand the role of these important membrane lipids for the bilayer properties of StnII.
Collapse
Affiliation(s)
- Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | | | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | | | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
47
|
Brito C, Cabanes D, Sarmento Mesquita F, Sousa S. Mechanisms protecting host cells against bacterial pore-forming toxins. Cell Mol Life Sci 2019; 76:1319-1339. [PMID: 30591958 PMCID: PMC6420883 DOI: 10.1007/s00018-018-2992-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Pore-forming toxins (PFTs) are key virulence determinants produced and secreted by a variety of human bacterial pathogens. They disrupt the plasma membrane (PM) by generating stable protein pores, which allow uncontrolled exchanges between the extracellular and intracellular milieus, dramatically disturbing cellular homeostasis. In recent years, many advances were made regarding the characterization of conserved repair mechanisms that allow eukaryotic cells to recover from mechanical disruption of the PM membrane. However, the specificities of the cell recovery pathways that protect host cells against PFT-induced damage remain remarkably elusive. During bacterial infections, the coordinated action of such cell recovery processes defines the outcome of infected cells and is, thus, critical for our understanding of bacterial pathogenesis. Here, we review the cellular pathways reported to be involved in the response to bacterial PFTs and discuss their impact in single-cell recovery and infection.
Collapse
Affiliation(s)
- Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Francisco Sarmento Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Global Health Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
48
|
Ramírez-Carreto S, Pérez-García EI, Salazar-García SI, Bernáldez-Sarabia J, Licea-Navarro A, Rudiño-Piñera E, Pérez-Martínez L, Pedraza-Alva G, Rodríguez-Almazán C. Identification of a pore-forming protein from sea anemone Anthopleura dowii Verrill (1869) venom by mass spectrometry. J Venom Anim Toxins Incl Trop Dis 2019; 25:e147418. [PMID: 31131002 PMCID: PMC6483413 DOI: 10.1590/1678-9199-jvatitd-1474-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Pore-forming proteins (PFP) are a class of toxins abundant in the venom of
sea anemones. Owing to their ability to recognize and permeabilize cell
membranes, pore-forming proteins have medical potential in cancer therapy or
as biosensors. In the present study, we showed the partial purification and
sequencing of a pore-forming protein from Anthopleura dowii
Verrill (1869). 17. Methods: Cytolytic activity of A. dowii Verrill (1869) venom was
determined via hemolysis assay in the erythrocytes of four mammals (sheep,
goat, human and rabbit). The cytotoxic activity was analyzed in the human
adherent lung carcinoma epithelial cells (A549) by the cytosolic lactate
dehydrogenase (LDH) assay, and trypan blue staining. The venom was
fractionated via ammonium sulfate precipitation gradient, dialysis, and ion
exchange chromatography. The presence of a pore-forming protein in purified
fractions was evaluated through hemolytic and cytotoxic assays, and the
activity fraction was analyzed using the percent of osmotic protections
after polyethylene glycol (PEG) treatment and mass spectrometry. 18. Results: The amount of protein at which the venom produced 50% hemolysis
(HU50) was determined in hemolysis assays using erythrocytes
from sheep (HU50 = 10.7 ± 0.2 μg), goat (HU50 = 13.2 ±
0.3 μg), rabbit (HU50 = 34.7 ± 0.5 μg), and human
(HU50 = 25.6 ± 0.6 μg). The venom presented a cytotoxic
effect in A549 cells and the protein amount present in the venom responsible
for producing 50% death (IC50) was determined using a trypan blue
cytotoxicity assay (1.84 ± 0.40 μg/mL). The loss of membrane integrity in
the A549 cells caused by the venom was detected by the release of LDH in
proportion to the amount of protein. The venom was fractionated; and the
fraction with hemolytic and cytotoxic activities was analyzed by mass
spectrometry. A pore-forming protein was identified. The cytotoxicity in the
A549 cells produced by the fraction containing the pore-forming protein was
osmotically protected by PEG-3350 Da molecular mass, which corroborated that
the loss of integrity in the plasma membrane was produced via pore
formation. 19. Conclusion: A. dowii Verrill (1869) venom
contains a pore-forming protein suitable for designing new drugs for cancer
therapy.
Collapse
Affiliation(s)
- Santos Ramírez-Carreto
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Medicina Molecular y Bioprocesos, Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Erick I Pérez-García
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Medicina Molecular y Bioprocesos, Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Sandra I Salazar-García
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Medicina Molecular y Bioprocesos, Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Johanna Bernáldez-Sarabia
- Centro de Investigación Científica y de Educación Superior de Ensenada, Departamento de Innovación Biomédica, Baja California, México
| | - Alexei Licea-Navarro
- Centro de Investigación Científica y de Educación Superior de Ensenada, Departamento de Innovación Biomédica, Baja California, México
| | - Enrique Rudiño-Piñera
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Medicina Molecular y Bioprocesos, Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Leonor Pérez-Martínez
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Medicina Molecular y Bioprocesos, Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Gustavo Pedraza-Alva
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Medicina Molecular y Bioprocesos, Av. Universidad 2001, Cuernavaca, Morelos, México
| | - Claudia Rodríguez-Almazán
- Universidad Nacional Autónoma de México, Instituto de Biotecnología, Departamento de Medicina Molecular y Bioprocesos, Av. Universidad 2001, Cuernavaca, Morelos, México
| |
Collapse
|
49
|
Endapally S, Frias D, Grzemska M, Gay A, Tomchick DR, Radhakrishnan A. Molecular Discrimination between Two Conformations of Sphingomyelin in Plasma Membranes. Cell 2019; 176:1040-1053.e17. [PMID: 30712872 DOI: 10.1016/j.cell.2018.12.042] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/19/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
Sphingomyelin and cholesterol are essential lipids that are enriched in plasma membranes of animal cells, where they interact to regulate membrane properties and many intracellular signaling processes. Despite intense study, the interaction between these lipids in membranes is not well understood. Here, structural and biochemical analyses of ostreolysin A (OlyA), a protein that binds to membranes only when they contain both sphingomyelin and cholesterol, reveal that sphingomyelin adopts two distinct conformations in membranes when cholesterol is present. One conformation, bound by OlyA, is induced by stoichiometric, exothermic interactions with cholesterol, properties that are consistent with sphingomyelin/cholesterol complexes. In its second conformation, sphingomyelin is free from cholesterol and does not bind OlyA. A point mutation abolishes OlyA's ability to discriminate between these two conformations. In cells, levels of sphingomyelin/cholesterol complexes are held constant over a wide range of plasma membrane cholesterol concentrations, enabling precise regulation of the chemical activity of cholesterol.
Collapse
Affiliation(s)
- Shreya Endapally
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Donna Frias
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Magdalena Grzemska
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Austin Gay
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
50
|
Ros U, Carretero GPB, Paulino J, Crusca E, Pazos F, Cilli EM, Lanio ME, Schreier S, Alvarez C. Self-association and folding in membrane determine the mode of action of peptides from the lytic segment of sticholysins. Biochimie 2018; 156:109-117. [PMID: 30326255 DOI: 10.1016/j.biochi.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/11/2018] [Indexed: 01/09/2023]
Abstract
Sticholysin I and II (Sts: St I and St II) are proteins of biomedical interest that form pores upon the insertion of their N-terminus in the plasma membrane. Peptides spanning the N-terminal residues of StI (StI1-31) or StII (StII1-30) can mimic the permeabilizing ability of these toxins, emerging as candidates to rationalize their potential biomedical applications. These peptides have different activities that correlate with their hydrophobicity. However, it is not clear how this property contributes to peptide folding in solution or upon binding to membranes. Here we compared the conformational properties of these peptides and shorter versions lacking the hydrophobic segment 1-11 of StI (StI12-31) or 1-10 of StII (StII11-30). Folding of peptides was assessed in solution and in membrane mimetic systems and related with their ability to bind to membranes and to permeabilize lipid vesicles. Our results suggest that the differences in activity among peptides could be ascribed to their different folding propensity and different membrane binding properties. In solution, StII1-30 tends to acquire α-helical conformation coexisting with self-associated structures, while StI1-31 remains structureless. Both peptides fold as α-helix in membrane; but StII1-30 also self-associates in the lipid environment, a process that is favored by its higher affinity for membrane. We stress the contribution of the non-polar/polar balance of the 1-10 amino acid sequence of the peptides as a determining factor for different self-association capabilities. Such difference in hydrophobicity seems to determine the molecular path of peptides folding upon binding to membranes, with an impact in their permeabilizing activity. This study contributes to a better understanding of the molecular mechanisms underlying the permeabilizing activity of Sts N-terminal derived peptides, with connotation for the exploitation of these small molecules as alternative of the full-length toxins in clinical settings.
Collapse
Affiliation(s)
- Uris Ros
- Center for Protein Studies, Biology Faculty, University of Havana, Havana, Cuba
| | - Gustavo P B Carretero
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Joana Paulino
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Edson Crusca
- Department of Biochemistry, Institute of Chemistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Fabiola Pazos
- Center for Protein Studies, Biology Faculty, University of Havana, Havana, Cuba
| | - Eduardo M Cilli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Maria E Lanio
- Center for Protein Studies, Biology Faculty, University of Havana, Havana, Cuba
| | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carlos Alvarez
- Center for Protein Studies, Biology Faculty, University of Havana, Havana, Cuba.
| |
Collapse
|