1
|
Samui S, Biswas S, Basak S, Ghosh S, Muniyappa K, Naskar J. De novo designed aliphatic and aromatic peptides assemble into amyloid-like cytotoxic supramolecular nanofibrils. RSC Adv 2024; 14:4382-4388. [PMID: 38304566 PMCID: PMC10831423 DOI: 10.1039/d3ra07869h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Peptides are very interesting biomolecules that upon self-association form a variety of thermodynamically stable supramolecular structures of nanometric dimension e.g. nanotubes, nanorods, nanovesicles, nanofibrils, nanowires and many others. Herein, we report six peptide molecules having a general chemical structure, H-Gaba-X-X-OH (Gaba: γ-aminobutyric acid, X: amino acid). Out of these six peptides, three are aromatic and the others are aliphatic. Atomic force microscopic (AFM) studies reveal that except peptide 6 (H-Gaba-Trp-Trp-OH), all the reported peptides adopt nanofibrillar morphology upon aggregation in aqueous medium. These supramolecular assemblies can recognize amyloid-specific molecular probe congo red (CR) and thioflavine t (ThT) and exhibit all the characteristic properties of amyloids. The MTT cell viability assay reveals that the toxicity of both aliphatic and aromatic peptides increases with increasing concentration of the peptides to both cancer (HeLa) and non-cancer (HEK 293) cells. Of note, the aromatic peptides show a slightly higher cytotoxic effect compared to the aliphatic peptides. Overall, the studies highlight the self-assembling nature of the de novo designed aliphatic and aromatic peptides and pave the way towards elucidating the intricacies of pathogenic amyloid assemblies.
Collapse
Affiliation(s)
- Satyabrata Samui
- Department of Biochemistry and Biophysics, University of Kalyani Nadia WB 741235 India
| | - Soumi Biswas
- Department of Biochemistry and Biophysics, University of Kalyani Nadia WB 741235 India
| | - Shubhanwita Basak
- Department of Biochemistry and Biophysics, University of Kalyani Nadia WB 741235 India
| | - Shreya Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani Nadia WB 741235 India
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science Bangalore Karnataka 560 012 India
| | - Jishu Naskar
- Department of Biochemistry and Biophysics, University of Kalyani Nadia WB 741235 India
| |
Collapse
|
2
|
Unnikrishnan AC, Shanmugam G. Isotope-edited vibrational circular dichroism study reveals a flexible N-terminal structure of islet amyloid peptide (NFGAIL) in amyloid fibril form: A site-specific local structural analysis. J Struct Biol 2022; 214:107910. [PMID: 36273786 DOI: 10.1016/j.jsb.2022.107910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
The short peptide fragment NFGAIL (IAPf) is a well-known amyloidogenic peptide (22-27), derived from human islet amyloid polypeptide(hIAPP), whose fibrillar structure is often used to better understand the wild-type hIAPP amyloid fibrils, associated with type II diabetes. Despite an extensive study, the fibrillar structure of IAPf at the amino acid residue level is still unclear. Herein, the vibrational circular dichroism(VCD) spectroscopic technique coupled with isotope labelling strategy has been used to study the site-specific local structure of IAPf amyloid fibrils. Two 13C labeled IAPfs were designed and used along with unlabelled IAPf to achieve this. The 13C labelled (on -C=O) glycine(IAPf-G) and phenylalanine (IAPf-F) residues were introduced into the IAPf sequence separately by replacing natural glycine (residue 24) and phenylalanine (residue 23), respectively. VCD spectral analysis on IAPf-G suggests that IAPf fibrils adopt parallel β-sheet conformation with glycine residues are part of β-sheet and in-register. Unlike IAPf-G, VCD analysis on IAPf-F reveals that phenylalanine residues exist in the turn/hairpin conformation rather than β-sheet region. Both VCD results thus suggest that IAPf amyloid fibril consists of a mixture of β-sheet as a major conformation involving GAIL and turn/hairpin as a minor conformation involving NF rather than an idealized β-sheet involving all the amino acids. While previous studies speculated that the full NFGAIL sequence could participate in the β-sheet formation, the present site-specific structural analysis of IAPf amyloid fibrils at residue level using isotope-edited VCD has gained significant attention. Such residue level information has important implications for understanding the role of NFGAIL sequence in the amyloid fibrillation of hIAPP.
Collapse
Affiliation(s)
- Anagha C Unnikrishnan
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India.
| |
Collapse
|
3
|
Bloch DN, Ben Zichri S, Kolusheva S, Jelinek R. Tyrosine carbon dots inhibit fibrillation and toxicity of the human islet amyloid polypeptide. NANOSCALE ADVANCES 2020; 2:5866-5873. [PMID: 36133854 PMCID: PMC9419576 DOI: 10.1039/d0na00870b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
Misfolding and aggregation of the human islet amyloid polypeptide (hIAPP) are believed to play key roles in the pathophysiology of type-II diabetes. Here, we demonstrate that carbon dots (C-dots) prepared from the amino acid tyrosine inhibit fibrillation of hIAPP, reduce hIAPP-induced cell toxicity and block membrane disruption by the peptide. The pronounced inhibitory effect is traced to the display of ubiquitous aromatic residues upon the C-dots' surface, mimicking the anti-fibril and anti-toxic activity of natural polyphenolic compounds. Notably, spectroscopy and thermodynamics analysis demonstrated different hIAPP interactions and fibril inhibition effects induced by tyrosine-C-dots displaying phenolic residues and C-dots prepared from phenylalanine which exhibited phenyl units on their surface, underscoring the significance of hydrogen bonding mediated by the phenolic hydroxide moieties for the fibril modulation activity. The presented experiments attest to the potential of tyrosine-C-dots as a therapeutic vehicle for protein misfolding diseases, interfering in both π-π interactions as well as hydrogen bonding involving aromatic residues of amyloidogenic peptides.
Collapse
Affiliation(s)
- Daniel Nir Bloch
- Department of Chemistry, Ben Gurion University of the Negev Beer Sheva 84105 Israel
| | - Shani Ben Zichri
- Department of Chemistry, Ben Gurion University of the Negev Beer Sheva 84105 Israel
| | - Sofiya Kolusheva
- Ilse Katz Institute for Nano-Science and Technology (IKI), Ben Gurion University of the Negev Beer Sheva 84105 Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev Beer Sheva 84105 Israel
- Ilse Katz Institute for Nano-Science and Technology (IKI), Ben Gurion University of the Negev Beer Sheva 84105 Israel
| |
Collapse
|
4
|
Stanković IM, Niu S, Hall MB, Zarić SD. Role of aromatic amino acids in amyloid self-assembly. Int J Biol Macromol 2020; 156:949-959. [PMID: 32199918 DOI: 10.1016/j.ijbiomac.2020.03.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
Amyloids are proteins of a cross-β structure found as deposits in several diseases and also in normal tissues (nails, spider net, silk). Aromatic amino acids are frequently found in amyloid deposits. Although they are not indispensable, aromatic amino acids, phenylalanine, tyrosine and tryptophan, enhance significantly the kinetics of formation and thermodynamic stability, while tape or ribbon-like morphology is represented in systems with experimentally detected π-π interactions between aromatic rings. Analysis of geometries and energies of the amyloid PDB structures indicate the prevalence of aromatic-nonaromatic interactions and confirm that aromatic-aromatic interactions are not crucial for the amyloid formation.
Collapse
Affiliation(s)
| | - Shuqiang Niu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States of America
| | - Michael B Hall
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States of America
| | - Snežana D Zarić
- Faculty of Chemistry, University of Belgrade, Studentski Trg, 12-16, Belgrade, Serbia; Department of Chemistry, Texas A&M University at Qatar, P. O. Box 23874, Doha, Qatar.
| |
Collapse
|
5
|
Lam YPY, Wootton CA, Hands-Portman I, Wei J, Chiu CKC, Romero-Canelon I, Lermyte F, Barrow MP, O'Connor PB. Determination of the Aggregate Binding Site of Amyloid Protofibrils Using Electron Capture Dissociation Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:267-276. [PMID: 31922736 DOI: 10.1021/jasms.9b00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amyloid fibril formation is a hallmark in a range of human diseases. Analysis of the molecular details of amyloid aggregation, however, is limited by the difficulties in solubilizing, separating, and identifying the aggregated biomolecules. Additional labeling or protein modification is required in many current analytical techniques in order to provide molecular details of amyloid protein aggregation, but these modifications may result in protein structure disruption. Herein, ultrahigh resolution mass spectrometry (MS) with electron capture dissociation tandem MS (ECD MS/MS) has been applied to monitor the formation of early oligomers of human islet amyloid polypeptide (hIAPP), which aggregate rapidly in the pancreas of type II diabetes (T2D) patients. ECD MS/MS results show the aggregation region of the early oligomers is at the Ser-28/Ser-29 residue of a hIAPP unit and at the Asn-35 residue of another hIAPP unit near the C-terminus in the gas phase. These data contribute to the understanding of the binding site between hIAPP units which may help for specific target region therapeutic development in the future. Furthermore, MS has also been applied to quantify the amount of soluble amyloid protein remaining in the incubated solutions, which can be used to estimate the aggregation rate of amyloid protein during incubation (28 days). These data are further correlated with the results obtained using fluorescence spectroscopy and transmission electron microscopy (TEM) to generate a general overview of amyloid protein aggregation. The methods demonstrated in this article not only explore the aggregation site of hIAPP down to an amino acid residue level, but are also applicable to many amyloid protein aggregation studies.
Collapse
Affiliation(s)
- Yuko P Y Lam
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Christopher A Wootton
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Ian Hands-Portman
- Department of Life Sciences, Gibbet Hill Campus , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Juan Wei
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Cookson K C Chiu
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - I Romero-Canelon
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
- School of Pharmacy , University of Birmingham , Edgbaston , Birmingham B15 2TT , United Kingdom
| | - Frederik Lermyte
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Mark P Barrow
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Peter B O'Connor
- Department of Chemistry, Gibbet Hill Road , University of Warwick , Coventry CV4 7AL , United Kingdom
| |
Collapse
|
6
|
Large-scale all-atom molecular dynamics alanine-scanning of IAPP octapeptides provides insights into the molecular determinants of amyloidogenicity. Sci Rep 2019; 9:2530. [PMID: 30792475 PMCID: PMC6384915 DOI: 10.1038/s41598-018-38401-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
In order to investigate the early phase of the amyloid formation by the short amyloidogenic octapeptide sequence (‘NFGAILSS’) derived from IAPP, we carried out a 100ns all-atom molecular dynamics (MD) simulations of systems that contain 27 peptides and over 30,000 water molecules. The large-scale calculations were performed for the wild type sequence and seven alanine-scanned sequences using AMBER 8.0 on RIKEN’s special purpose MD-GRAPE3 supercomputer, using the all-atom point charge force field ff99, which do not favor β-structures. Large peptide clusters (size 18–26 mers) were observed for all simulations, and our calculations indicated that isoleucine at position 5 played important role in the formation of β-rich clusters. In the oligomeric state, the wild type and the S7A sequences had the highest β-structure content (~14%), as calculated by DSSP, in line with experimental observations, whereas I5A and G3A had the highest helical content (~20%). Importantly, the β-structure preferences of wild type IAPP originate from its association into clusters and are not intrinsic to its sequence. Altogether, the results of this first large-scale, multi-peptide all-atom molecular dynamics simulation appear to provide insights into the mechanism of amyloidogenic and non-amyloidogenic oligomers that mainly corroborate previous experimental observations.
Collapse
|
7
|
Mushnoori S, Schmidt K, Nanda V, Dutt M. Designing phenylalanine-based hybrid biological materials: controlling morphology via molecular composition. Org Biomol Chem 2018; 16:2499-2507. [PMID: 29565077 DOI: 10.1039/c8ob00130h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Harnessing the self-assembly of peptide sequences has demonstrated great promise in the domain of creating high precision shape-tunable biomaterials. The unique properties of peptides allow for a building block approach to material design. In this study, self-assembly of mixed systems encompassing two peptide sequences with identical hydrophobic regions and distinct polar segments is investigated. The two peptide sequences are diphenylalanine and phenylalanine-asparagine-phenylalanine. The study examines the impact of molecular composition (namely, the total peptide concentration and the relative tripeptide concentration) on the morphology of the self-assembled hybrid biological material. We report a rich polymorphism in the assemblies of these peptides and explain the relationship between the peptide sequence, concentration and the morphology of the supramolecular assembly.
Collapse
Affiliation(s)
- Srinivas Mushnoori
- Department of Chemical and Biochemical Engineering, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA.
| | - Kassandra Schmidt
- Department of Biomedical Engineering, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA and Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| | - Meenakshi Dutt
- Department of Chemical and Biochemical Engineering, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
8
|
Haspel N, Zheng J, Aleman C, Zanuy D, Nussinov R. A Protocol for the Design of Protein and Peptide Nanostructure Self-Assemblies Exploiting Synthetic Amino Acids. Methods Mol Biol 2017; 1529:323-352. [PMID: 27914060 PMCID: PMC7900906 DOI: 10.1007/978-1-4939-6637-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
In recent years there has been increasing interest in nanostructure design based on the self-assembly properties of proteins and polymers. Nanodesign requires the ability to predictably manipulate the properties of the self-assembly of autonomous building blocks, which can fold or aggregate into preferred conformational states. The design includes functional synthetic materials and biological macromolecules. Autonomous biological building blocks with available 3D structures provide an extremely rich and useful resource. Structural databases contain large libraries of protein molecules and their building blocks with a range of sizes, shapes, surfaces, and chemical properties. The introduction of engineered synthetic residues or short peptides into these building blocks can greatly expand the available chemical space and enhance the desired properties. Herein, we summarize a protocol for designing nanostructures consisting of self-assembling building blocks, based on our recent works. We focus on the principles of nanostructure design with naturally occurring proteins and synthetic amino acids, as well as hybrid materials made of amyloids and synthetic polymers.
Collapse
Affiliation(s)
- Nurit Haspel
- Department of Computer Science, The University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, 02125, USA.
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Carlos Aleman
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', C/Pasqual i Vila s/n, E-08028, Barcelona, Spain
| | - David Zanuy
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
| | - Ruth Nussinov
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Inst. of Molecular Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
| |
Collapse
|
9
|
Flores BN, Dulchavsky ME, Krans A, Sawaya MR, Paulson HL, Todd PK, Barmada SJ, Ivanova MI. Distinct C9orf72-Associated Dipeptide Repeat Structures Correlate with Neuronal Toxicity. PLoS One 2016; 11:e0165084. [PMID: 27776165 PMCID: PMC5077081 DOI: 10.1371/journal.pone.0165084] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/05/2016] [Indexed: 12/14/2022] Open
Abstract
Hexanucleotide repeat expansions in C9orf72 are the most common inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The expansions elicit toxicity in part through repeat-associated non-AUG (RAN) translation of the intronic (GGGGCC)n sequence into dipeptide repeat-containing proteins (DPRs). Little is known, however, about the structural characteristics and aggregation propensities of the dipeptide units comprising DPRs. To address this question, we synthesized dipeptide units corresponding to the three sense-strand RAN translation products, analyzed their structures by circular dichroism, electron microscopy and dye binding assays, and assessed their relative toxicity when applied to primary cortical neurons. Short, glycine-arginine (GR)3 dipeptides formed spherical aggregates and selectively reduced neuronal survival compared to glycine-alanine (GA)3 and glycine-proline (GP)3 dipeptides. Doubling peptide length had little effect on the structure of GR or GP peptides, but (GA)6 peptides formed β-sheet rich aggregates that bound thioflavin T and Congo red yet lacked the typical fibrillar morphology of amyloids. Aging of (GA)6 dipeptides increased their β-sheet content and enhanced their toxicity when applied to neurons. We also observed that the relative toxicity of each tested dipeptide was proportional to peptide internalization. Our results demonstrate that different C9orf72-related dipeptides exhibit distinct structural properties that correlate with their relative toxicity.
Collapse
Affiliation(s)
- Brittany N. Flores
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mark E. Dulchavsky
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael R. Sawaya
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California, United States of America
| | - Henry L. Paulson
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter K. Todd
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Veterans Affairs Medical Center, Ann Arbor, Michigan, United States of America
| | - Sami J. Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (MII); (SJB)
| | - Magdalena I. Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (MII); (SJB)
| |
Collapse
|
10
|
Zhou P, Deng L, Wang Y, Lu JR, Xu H. Different nanostructures caused by competition of intra- and inter-β-sheet interactions in hierarchical self-assembly of short peptides. J Colloid Interface Sci 2015; 464:219-28. [PMID: 26619132 DOI: 10.1016/j.jcis.2015.11.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
To understand how molecular interactions lead to the self-assembly of twisted, helical and flat nanoribbons, we have compared the hierarchical self-assembly processes of three selected octapeptides with the same amino acid composition but different sequences by both experiments and molecular dynamics (MD) simulations. KE-F8 (NH2-KEFFFFKE-CONH2) and EK-F8 (NH2-KEFFFFEK-CONH2) have the same distribution of hydrophobic residues and only differ by swapping the positive and negative charged residues at their C-terminals, while KFE-8 (NH2-KFEFKFEF-CONH2) differs from KE-F8 and EK-F8 by having all hydrophobic and charged residues evenly distributed. MD simulations indicated that the competition between electrostatic and hydrophobic interactions at the molecular level results in different initial packing modes: KE-F8 monomers form completely matched anti-parallel β-sheets, EK-F8 monomers align with one residue shifting, and KFE-8 monomers pack β-sheets with two heterogeneous surfaces, consistent with previously suggested models. Driven by inter-strand and inter-sheet interactions, further growth of these molecular templates leads to larger oligomers with different twisting and stacking degrees, which are structurally consistent with the experimentally observed self-assembled morphologies. Further MD simulations showed that the competition between intra-β-sheet and inter-β-sheet interactions is responsible for the different twisting and stacking degrees of β-sheets and the subsequent formation of different nanostructures (twisted ribbons for KE-F8, helical ribbons/tubes for EK-F8 and flat ribbons for KFE-8). This study thus provided an important mechanistic insight into the fine tuning of molecular packing and interactions via peptide sequence variation leading to controllable self-assembly of twisted, helical and flat nanostructures.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Li Deng
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yanting Wang
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, P.O. Box 2735, Beijing 100190, China.
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| |
Collapse
|
11
|
Ghosh A, Ho JJ, Serrano AL, Skoff DR, Zhang T, Zanni MT. Two-dimensional sum-frequency generation (2D SFG) spectroscopy: summary of principles and its application to amyloid fiber monolayers. Faraday Discuss 2015; 177:493-505. [PMID: 25611039 DOI: 10.1039/c4fd00173g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
By adding a mid-infrared pulse shaper to a sum-frequency generation (SFG) spectrometer, we have built a 2D SFG spectrometer capable of measuring spectra analogous to 2D IR spectra but with monolayer sensitivity and SFG selection rules. In this paper, we describe the experimental apparatus and provide an introduction to 2D SFG spectroscopy to help the reader interpret 2D SFG spectra. The main aim of this manuscript is to report 2D SFG spectra of the amyloid forming peptide FGAIL. FGAIL is a critical segment of the human islet amyloid polypeptide (hIAPP or amylin) that aggregates in people with type 2 diabetes. FGAIL is catalyzed into amyloid fibers by many types of surfaces. Here, we study the structure of FGAIL upon deposition onto a gold surface covered with a self-assembled monolayer of methyl-4-mercaptobenzoate (MMB) that produces an ester coating. FGAIL deposited on bare gold does not form ordered layers. The measured 2D SFG spectrum is consistent with amyloid fiber formation, exhibiting both the parallel (a+) and perpendicular (a-) symmetry modes associated with amyloid β-sheets. Cross peaks are observed between the ester stretches of the coating and the FGAIL peptides. Simulations are presented for two possible structures of FGAIL amyloid β-sheets that illustrate the sensitivity of the 2D SFG spectra to structure and orientation. These results provide some of the first molecular insights into surface catalyzed amyloid fiber structure.
Collapse
Affiliation(s)
- Ayanjeet Ghosh
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Cuesta IG, Sánchez de Merás AMJ. Energy interactions in amyloid-like fibrils from NNQQNY. Phys Chem Chem Phys 2014; 16:4369-77. [PMID: 24458317 DOI: 10.1039/c3cp53551g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We use large-scale MP2 calculations to analyze the interactions appearing in amyloid fibers, which are difficult to determine experimentally. To this end, dimers and trimers of the hexapeptide NNQQNY from the yeast prion-like protein Sup35 were considered as model systems. We studied the energy interactions present in the three levels of organization in which the formation of amyloid fibrils is structured. The structural changes in the hydrogen bonds were studied too. It was found that the most energetic process is the formation of the β-sheet, which is equally due to both hydrogen bonds and van der Waals interactions. The aromatic rings help stabilize these aggregates through stacking of the aromatic rings of tyrosine, the stability produced by the aromatics residues increasing with their aromaticity. The formation of the basic unit of the assembled proto-fiber, the steric zipper, is less energetic and is associated to both dispersion forces and hydrogen bonds. The interactions between pair of β-sheets across the peptide-to-peptide contact through the tyrosine rings are cooperative and due to dispersion effects. Moreover, the strength of this interaction can rationalize the variation of mobility of the aromatic ring in the tyrosine units found in solid NMR experiments.
Collapse
Affiliation(s)
- Inmaculada García Cuesta
- Instituto de Ciencia Molecular, Universidad de Valencia, P.O. Box 22085, E-46071 Valencia, Spain.
| | | |
Collapse
|
13
|
Berhanu WM, Masunov AE. Full length amylin oligomer aggregation: insights from molecular dynamics simulations and implications for design of aggregation inhibitors. J Biomol Struct Dyn 2013; 32:1651-69. [PMID: 24028418 DOI: 10.1080/07391102.2013.832635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amyloid oligomers are considered to play essential roles in the pathogenesis of amyloid-related degenerative diseases including type 2 diabetes. Using an explicit solvent all atomic MD simulation, we explored the stability, conformational dynamics and association force of different single-layer models of the full-length wild-type and glycine mutants of amylin (pentamer) obtained from a recent high resolution fibril model. The RMSF profile shows enhanced flexibility in the disorder (Lys1-Cys7) and turn region (Ser19-Gly23), along with smallest fluctuation at the residues (Asn14-Phe15-Leu16-Val17-His18) of β1 region and (Ala25-Ile26-Leu27-Ser28-Ser29) of the β2 region. We obtained a significant difference in backbone RMSD between the wild-type and the mutants, indicating that mutations affected the stability of the peptide. The RMSD and RMSF profiles indicate the edge and loop residues are the primary contributors to the overall conformational changes. The degree of structural similarity between the oligomers in the simulation and the fibril conformation is proposed as the possible explanation for experimentally observed shortening of the nucleation lag phase of amylin with oligomer seeding. On the basis of structure-stability findings, the β1 and β2 portions are optimal target for further anti-amyloid drug design. The MM-PBSA binding energy calculation reveals the binding of amylin: amylin strands in single layer is dominated by contributions from van der Waals interactions. The non-polar solvation term is also found to be favorable. While the electrostatic interactions and polar solvation energy was found to be favorable for the interaction for the larger aggregate and unfavorable for the smaller aggregates. A per-residue decomposition of the binding free energy has been performed to identify the residues contributing most to the self-association free energy. Residues found in the β-sheet regions were found to be key residue making the largest favorable contributions to the single-layer association. The result from our simulation could be used in rational design of new amylinomimetic agent, amylin aggregation inhibitors and amylin-specific biomarkers.
Collapse
Affiliation(s)
- Workalemahu Mikre Berhanu
- a NanoScience Technology Center and Department of Chemistry , University of Central Florida , Orlando , FL , 32826 , USA
| | | |
Collapse
|
14
|
Verma S, Singh A, Mishra A. The effect of fulvic acid on pre‐ and postaggregation state of Aβ17–42: Molecular dynamics simulation studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:24-33. [DOI: 10.1016/j.bbapap.2012.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/25/2012] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
|
15
|
Lapidus D, Duka V, Stonkus V, Czaplewski C, Liwo A, Ventura S, Liepina I. Multiple β-sheet molecular dynamics of amyloid formation from two ABl-SH3 domain peptides. Biopolymers 2012. [DOI: 10.1002/bip.22161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Chakraborty S, Chatterjee B, Basu S. A mechanistic insight into the amyloidogenic structure of hIAPP peptide revealed from sequence analysis and molecular dynamics simulation. Biophys Chem 2012; 168-169:1-9. [DOI: 10.1016/j.bpc.2012.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/10/2012] [Accepted: 05/25/2012] [Indexed: 10/28/2022]
|
17
|
Wang C, Yang A, Li X, Li D, Zhang M, Du H, Li C, Guo Y, Mao X, Dong M, Besenbacher F, Yang Y, Wang C. Observation of molecular inhibition and binding structures of amyloid peptides. NANOSCALE 2012; 4:1895-909. [PMID: 22334382 DOI: 10.1039/c2nr11508e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Unveiling interactions between labeling molecules and amyloid fibrils is essential to develop new detection methods for studying amyloid structures under various conditions. This review endeavours to reflect the progress in studying interactions between molecular inhibitors and amyloid peptides using a series of experimental approaches, such as X-ray diffraction, nuclear magnetic resonance, scanning probe microscopy, and electron microscopy. The revealed binding mechanisms of anti-amyloid drugs and target proteins could benefit the rational design of drugs for prevention or treatment of amyloidal diseases.
Collapse
Affiliation(s)
- Chenxuan Wang
- National Center for Nanoscience and Technology, Beijing, 100190, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Doran TM, Kamens AJ, Byrnes NK, Nilsson BL. Role of amino acid hydrophobicity, aromaticity, and molecular volume on IAPP(20-29) amyloid self-assembly. Proteins 2012; 80:1053-65. [DOI: 10.1002/prot.24007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 11/12/2011] [Accepted: 11/18/2011] [Indexed: 01/22/2023]
|
19
|
Unique example of amyloid aggregates stabilized by main chain H-bond instead of the steric zipper: molecular dynamics study of the amyloidogenic segment of amylin wild-type and mutants. J Mol Model 2011; 18:891-903. [PMID: 21625904 DOI: 10.1007/s00894-011-1030-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 03/06/2011] [Indexed: 12/19/2022]
Abstract
Most proteins do not aggregate while in their native functional states. However, they may be disturbed from their native conformation by certain change in the environment, and form unwanted oligomeric or polymeric aggregates. Recent experimental data demonstrate that soluble oligomers of amyloidogenic proteins are responsible for amyloidosis and its cytotoxicity. Human islet amyloid polypeptide (IAPP or amylin) is a 37-residue hormone found as fibrillar deposits in pancreatic extracts of nearly all type II diabetics. In this study we performed in silico mutation analysis to examine the stability of the double layer five strand aggregates formed by heptapeptide NNFGAIL segment from amyline peptide. This segment is one of the shortest fragments that can form amyloid fibrils similar to those formed by the full length peptide. The mutants obtained by single glycine replacement were also studied to investigate the specificity of the dry self-complementary interface between the neighboring β-sheet layers. The molecular dynamics simulations of the aggregates run for 20 ns at 330 K, the degree of the aggregate disassembly was investigated using several geometry analysis tools: the root mean square deviations of the C(α) atoms, root mean square fluctuations per residue, twist angles, interstrand distances, fraction of the secondary structure elements, and number of H-bonds. The analysis shows that most mutations make the aggregates unstable, and their stabilities were dependent to a large extent on the position of replaced residues. Our mutational simulations are in agreement with the pervious experimental observations. We also used free binding energy calculations to determine the role of different components: nonpolar effects, electrostatics and entropy in binding. Nonpolar effects remained consistently more favorable in wild type and mutants reinforcing the importance of hydrophobic effects in protein-protein binding. While entropy systematically opposed binding in all cases, there was no clear trend in the entropy difference between wildtype and glycine mutants. Free energy decomposition shows residues situated at the interface were found to make favorable contributions to the peptide-peptide association. The study of the wild type and mutants in an explicit solvent could provide valuable insight into the future computer guided design efforts for the amyloid aggregation inhibitor.
Collapse
|
20
|
Zhao J, Yu X, Liang G, Zheng J. Heterogeneous Triangular Structures of Human Islet Amyloid Polypeptide (Amylin) with Internal Hydrophobic Cavity and External Wrapping Morphology Reveal the Polymorphic Nature of Amyloid Fibrils. Biomacromolecules 2011; 12:1781-94. [DOI: 10.1021/bm2001507] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jun Zhao
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiang Yu
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Guizhao Liang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
- Key Laboratory of Biorheological Science and Technology Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
21
|
Berhanu WM, Masunov AE. Molecular dynamic simulation of wild type and mutants of the polymorphic amyloid NNQNTF segments of elk prion: structural stability and thermodynamic of association. Biopolymers 2011; 95:573-90. [PMID: 21384336 DOI: 10.1002/bip.21611] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/02/2011] [Accepted: 02/05/2011] [Indexed: 02/04/2023]
Abstract
A hexapeptide with amino acid sequence NNQNTF from the elk prion protein forms amyloid fibrils. Here we use molecular dynamic simulations of the oligomers and their single point glycine mutants to study their stability. In an effort to probe the structural stability and association thermodynamic in a realistic environment, all wildtype of NNQNTF polymorphic forms with different size and their corresponding double layer 5 strands single point glycine mutants were subjected to a total of 500 ns of explicit-solvent molecular dynamics (MD) simulation. Our results show that the structural stability of the NNQNTF oligomers increases with increasing the number of β-strands for double layers. Our results also demonstrated that hydrophobic interaction is the principle driving force to stabilize the adjacent β-strands while the steric zipper is responsible for holding the neighboring β-sheet layers together. We used MM-PBSA approach free energy calculations to determine the role of nonpolar effects, electrostatics and entropy in binding. Nonpolar effects remained consistently more favorable in wild type and mutants reinforcing the importance of hydrophobic effects in protein-protein binding. While entropy systematically opposed binding in all cases, there was no observed trend in the entropy difference between wildtype and glycine mutant. Free energy decomposition shows residues situated at the interface were found to make favorable contributions to the peptide-peptide association. The study of the wild type and mutants in an explicit solvent may provide valuable insight for amyloid aggregation inhibitor design efforts.
Collapse
Affiliation(s)
- Workalemahu M Berhanu
- NanoScience Technology Center, Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| | | |
Collapse
|
22
|
Senguen FT, Doran TM, Anderson EA, Nilsson BL. Clarifying the influence of core amino acid hydrophobicity, secondary structure propensity, and molecular volume on amyloid-β 16–22 self-assembly. ACTA ACUST UNITED AC 2011; 7:497-510. [DOI: 10.1039/c0mb00210k] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Senguen FT, Lee NR, Gu X, Ryan DM, Doran TM, Anderson EA, Nilsson BL. Probing aromatic, hydrophobic, and steric effects on the self-assembly of an amyloid-β fragment peptide. ACTA ACUST UNITED AC 2011; 7:486-96. [DOI: 10.1039/c0mb00080a] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Zhao JH, Liu HL, Chuang CK, Liu KT, Tsai WB, Ho Y. Molecular dynamics simulations to investigate the stability and aggregation behaviour of the amyloid-forming peptide VQIVYK from tau protein. MOLECULAR SIMULATION 2010. [DOI: 10.1080/08927022.2010.499147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Scherzer-Attali R, Pellarin R, Convertino M, Frydman-Marom A, Egoz-Matia N, Peled S, Levy-Sakin M, Shalev DE, Caflisch A, Gazit E, Segal D. Complete phenotypic recovery of an Alzheimer's disease model by a quinone-tryptophan hybrid aggregation inhibitor. PLoS One 2010; 5:e11101. [PMID: 20559435 PMCID: PMC2885425 DOI: 10.1371/journal.pone.0011101] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/20/2010] [Indexed: 11/29/2022] Open
Abstract
The rational design of amyloid oligomer inhibitors is yet an unmet drug development need. Previous studies have identified the role of tryptophan in amyloid recognition, association and inhibition. Furthermore, tryptophan was ranked as the residue with highest amyloidogenic propensity. Other studies have demonstrated that quinones, specifically anthraquinones, can serve as aggregation inhibitors probably due to the dipole interaction of the quinonic ring with aromatic recognition sites within the amyloidogenic proteins. Here, using in vitro, in vivo and in silico tools we describe the synthesis and functional characterization of a rationally designed inhibitor of the Alzheimer's disease-associated β-amyloid. This compound, 1,4-naphthoquinon-2-yl-L-tryptophan (NQTrp), combines the recognition capacities of both quinone and tryptophan moieties and completely inhibited Aβ oligomerization and fibrillization, as well as the cytotoxic effect of Aβ oligomers towards cultured neuronal cell line. Furthermore, when fed to transgenic Alzheimer's disease Drosophila model it prolonged their life span and completely abolished their defective locomotion. Analysis of the brains of these flies showed a significant reduction in oligomeric species of Aβ while immuno-staining of the 3rd instar larval brains showed a significant reduction in Aβ accumulation. Computational studies, as well as NMR and CD spectroscopy provide mechanistic insight into the activity of the compound which is most likely mediated by clamping of the aromatic recognition interface in the central segment of Aβ. Our results demonstrate that interfering with the aromatic core of amyloidogenic peptides is a promising approach for inhibiting various pathogenic species associated with amyloidogenic diseases. The compound NQTrp can serve as a lead for developing a new class of disease modifying drugs for Alzheimer's disease.
Collapse
Affiliation(s)
- Roni Scherzer-Attali
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Riccardo Pellarin
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marino Convertino
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Anat Frydman-Marom
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Nirit Egoz-Matia
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Sivan Peled
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Levy-Sakin
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
| | - Deborah E. Shalev
- Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail: (EG); (DS)
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail: (EG); (DS)
| |
Collapse
|
26
|
Berhanu WM, Masunov AE. Natural polyphenols as inhibitors of amyloid aggregation. Molecular dynamics study of GNNQQNY heptapeptide decamer. Biophys Chem 2010; 149:12-21. [DOI: 10.1016/j.bpc.2010.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/25/2010] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
|
27
|
Nagarajan S, Rajadas J, Malar EP. Density functional theory analysis and spectral studies on amyloid peptide Aβ(28–35) and its mutants A30G and A30I. J Struct Biol 2010; 170:439-50. [DOI: 10.1016/j.jsb.2010.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 11/25/2022]
|
28
|
Vitagliano L, Stanzione F, De Simone A, Esposito L. Dynamics and stability of amyloid-like steric zipper assemblies with hydrophobic dry interfaces. Biopolymers 2010; 91:1161-71. [PMID: 19280623 DOI: 10.1002/bip.21182] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent seminal investigations have suggested that the basic structural motif of amyloid fibers may be constituted by a tight association of two facing beta-sheets (steric zipper). Although this model has been derived from crystal structures of small peptide models, several theoretical investigations, essentially focused on steric zipper interface containing large polar and/or aromatic side chains, have confirmed the stability of this motif in a crystal-free context. To analyze the general validity of these findings, we carried out molecular dynamics (MD) simulations on aggregates stabilized by steric zipper interfaces made also of small or hydrophobic residues. In particular, we here characterized assemblies formed by the peptides SSTSAA and VQIVYK, whose structures have been recently solved at high resolution. In contrast to previous results obtained for polar/aromatic aggregates of the same size and with similar interface area, steric zipper assemblies composed of a pair of 10-stranded beta-sheets show high fluctuations and significant distortions in the simulation timescales (40-60 ns). Taking into account the crystal packing, the effect of the addition of an extra sheet to the assemblies was also evaluated. The MD results indicate that this addition does not provide extra-stabilization to the pair of sheet models. Although present data do not preclude the possibility that the steric zipper association identified in the crystal structure is the basic motif of SSTSAA and VQIVYK fibers, our findings highlight the importance of the nature of residues directly involved in the motif. Indeed, polar and aromatic residues that may form intrasheet and intersheet interactions likely provide a strong contribution to the steric zipper motif stability. Along this line, assemblies endowed with hydrophobic residues presumably require larger interfaces. In line with this suggestion, MD analysis of the HET-s(218-289) prion models composed of a similar number of strands shows that the assembly is endowed with a remarkable stability.
Collapse
Affiliation(s)
- Luigi Vitagliano
- Istituto di Biostrutture e Bioimmagini, CNR via Mezzocannone 16, I-80134 Napoli, Italy.
| | | | | | | |
Collapse
|
29
|
Tamamis P, Kasotakis E, Mitraki A, Archontis G. Amyloid-Like Self-Assembly of Peptide Sequences from the Adenovirus Fiber Shaft: Insights from Molecular Dynamics Simulations. J Phys Chem B 2009; 113:15639-47. [DOI: 10.1021/jp9066718] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Phanourios Tamamis
- Department of Physics, University of Cyprus, PO20537, CY1678 Nicosia, Cyprus, and Department of Materials Science and Technology, University of Crete, and Institute for Electronic Structure and Laser, FORTH, Heraklion, Crete, Greece
| | - Emmanouil Kasotakis
- Department of Physics, University of Cyprus, PO20537, CY1678 Nicosia, Cyprus, and Department of Materials Science and Technology, University of Crete, and Institute for Electronic Structure and Laser, FORTH, Heraklion, Crete, Greece
| | - Anna Mitraki
- Department of Physics, University of Cyprus, PO20537, CY1678 Nicosia, Cyprus, and Department of Materials Science and Technology, University of Crete, and Institute for Electronic Structure and Laser, FORTH, Heraklion, Crete, Greece
| | - Georgios Archontis
- Department of Physics, University of Cyprus, PO20537, CY1678 Nicosia, Cyprus, and Department of Materials Science and Technology, University of Crete, and Institute for Electronic Structure and Laser, FORTH, Heraklion, Crete, Greece
| |
Collapse
|
30
|
Zanuy D, Ballano G, Jiménez AI, Casanovas J, Haspel N, Cativiela C, Curcó D, Nussinov R, Alemán C. Protein segments with conformationally restricted amino acids can control supramolecular organization at the nanoscale. J Chem Inf Model 2009; 49:1623-9. [PMID: 19548653 DOI: 10.1021/ci9001487] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- David Zanuy
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tamamis P, Adler-Abramovich L, Reches M, Marshall K, Sikorski P, Serpell L, Gazit E, Archontis G. Self-assembly of phenylalanine oligopeptides: insights from experiments and simulations. Biophys J 2009; 96:5020-9. [PMID: 19527662 DOI: 10.1016/j.bpj.2009.03.026] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/25/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022] Open
Abstract
Studies of peptide-based nanostructures provide general insights into biomolecular self-assembly and can lead material engineering toward technological applications. The diphenylalanine peptide (FF) self-assembles into discrete, hollow, well ordered nanotubes, and its derivatives form nanoassemblies of various morphologies. Here we demonstrate for the first time, to our knowledge, the formation of planar nanostructures with beta-sheet content by the triphenylalanine peptide (FFF). We characterize these structures using various microscopy and spectroscopy techniques. We also obtain insights into the interactions and structural properties of the FF and FFF nanostructures by 0.4-micros, implicit-solvent, replica-exchange, molecular-dynamics simulations of aqueous FF and FFF solutions. In the simulations the peptides form aggregates, which often contain open or ring-like peptide networks, as well as elementary and network-containing structures with beta-sheet characteristics. The networks are stabilized by polar and nonpolar interactions, and by the surrounding aggregate. In particular, the charged termini of neighbor peptides are involved in hydrogen-bonding interactions and their aromatic side chains form "T-shaped" contacts, as in three-dimensional FF crystals. These interactions may assist the FF and FFF self-assembly at the early stage, and may also stabilize the mature nanostructures. The FFF peptides have higher network propensities and increased aggregate stabilities with respect to FF, which can be interpreted energetically.
Collapse
|
32
|
Nicolas P, El Amri C. The dermaseptin superfamily: A gene-based combinatorial library of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1537-50. [DOI: 10.1016/j.bbamem.2008.09.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/14/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
|
33
|
Chang LK, Zhao JH, Liu HL, Liu KT, Chen JT, Tsai WB, Ho Y. Molecular Dynamics Simulations to Investigate the Structural Stability and Aggregation Behavior of the GGVVIA Oligomers Derived from Amyloid β Peptide. J Biomol Struct Dyn 2009; 26:731-40. [DOI: 10.1080/07391102.2009.10507285] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Bowerman CJ, Ryan DM, Nissan DA, Nilsson BL. The effect of increasing hydrophobicity on the self-assembly of amphipathic β-sheet peptides. MOLECULAR BIOSYSTEMS 2009; 5:1058-69. [DOI: 10.1039/b904439f] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
A Molecular Dynamics Study of the Interaction of d-Peptide Amyloid Inhibitors with Their Target Sequence Reveals a Potential Inhibitory Pharmacophore Conformation. J Mol Biol 2008; 383:266-80. [DOI: 10.1016/j.jmb.2008.07.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 11/19/2022]
|
36
|
Auvynet C, El Amri C, Lacombe C, Bruston F, Bourdais J, Nicolas P, Rosenstein Y. Structural requirements for antimicrobial versus chemoattractant activities for dermaseptin S9. FEBS J 2008; 275:4134-51. [DOI: 10.1111/j.1742-4658.2008.06554.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Noy K, Kalisman N, Keasar C. Prediction of structural stability of short beta-hairpin peptides by molecular dynamics and knowledge-based potentials. BMC STRUCTURAL BIOLOGY 2008; 8:27. [PMID: 18510728 PMCID: PMC2427033 DOI: 10.1186/1472-6807-8-27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 05/29/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND The structural stability of peptides in solution strongly affects their binding affinities and specificities. Thus, in peptide biotechnology, an increase in the structural stability is often desirable. The present work combines two orthogonal computational techniques, Molecular Dynamics and a knowledge-based potential, for the prediction of structural stability of short peptides (< 20 residues) in solution. RESULTS We tested the new approach on four families of short beta-hairpin peptides: TrpZip, MBH, bhpW and EPO, whose structural stabilities have been experimentally measured in previous studies. For all four families, both computational techniques show considerable correlation (r > 0.65) with the experimentally measured stabilities. The consensus of the two techniques shows higher correlation (r > 0.82). CONCLUSION Our results suggest a prediction scheme that can be used to estimate the relative structural stability within a peptide family. We discuss the applicability of this predictive approach for in-silico screening of combinatorial peptide libraries.
Collapse
Affiliation(s)
- Karin Noy
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel.
| | | | | |
Collapse
|
38
|
Levy M, Porat Y, Bacharach E, Shalev DE, Gazit E. Phenolsulfonphthalein, but Not Phenolphthalein, Inhibits Amyloid Fibril Formation: Implications for the Modulation of Amyloid Self-Assembly. Biochemistry 2008; 47:5896-904. [DOI: 10.1021/bi800043d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michal Levy
- Department of Molecular Microbiology and Biotechnology and Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and The Wolfson Centre for Applied Structural Biology, Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Yair Porat
- Department of Molecular Microbiology and Biotechnology and Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and The Wolfson Centre for Applied Structural Biology, Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Eran Bacharach
- Department of Molecular Microbiology and Biotechnology and Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and The Wolfson Centre for Applied Structural Biology, Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Deborah E. Shalev
- Department of Molecular Microbiology and Biotechnology and Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and The Wolfson Centre for Applied Structural Biology, Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology and Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and The Wolfson Centre for Applied Structural Biology, Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
39
|
Song W, Wei G, Mousseau N, Derreumaux P. Self-Assembly of the β2-Microglobulin NHVTLSQ Peptide Using a Coarse-Grained Protein Model Reveals a β-Barrel Species. J Phys Chem B 2008; 112:4410-8. [DOI: 10.1021/jp710592v] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Song
- Department of Physics, Fudan University, Shanghai 200433, China
| | - Guanghong Wei
- Department of Physics, Fudan University, Shanghai 200433, China
| | - Normand Mousseau
- Département de Physique and Regroupement, Québecois sur les Matériaux de Pointe, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec, Canada
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie, Physico-Chimique et Université Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
40
|
Investigating the mechanism of peptide aggregation: insights from mixed monte carlo-molecular dynamics simulations. Biophys J 2008; 94:4414-26. [PMID: 18263661 DOI: 10.1529/biophysj.107.121061] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The early stages of peptide aggregation are currently not accessible by experimental techniques at atomic resolution. In this article, we address this problem through the application of a mixed simulation scheme in which a preliminary coarse-grained Monte Carlo analysis of the free-energy landscape is used to identify representative conformations of the aggregates and subsequent all-atom molecular dynamics simulations are used to analyze in detail possible pathways for the stabilization of oligomers. This protocol was applied to systems consisting of multiple copies of the model peptide GNNQQNY, whose detailed structures in the aggregated state have been recently solved in another study. The analysis of the various trajectories provides dynamical and structural insight into the details of aggregation. In particular, the simulations suggest a hierarchical mechanism characterized by the initial formation of stable parallel beta-sheet dimers and identify the formation of the polar zipper motif as a fundamental feature for the stabilization of initial oligomers. Simulation results are consistent with experimentally derived observations and provide an atomically detailed view of the putative initial stages of fibril formation.
Collapse
|
41
|
Colombo G, Meli M, De Simone A. Computational studies of the structure, dynamics and native content of amyloid‐like fibrils of ribonuclease A. Proteins 2008; 70:863-72. [PMID: 17803210 DOI: 10.1002/prot.21648] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The characterization at atomic resolution of amyloid-like protein aggregates is one of the fundamental problems of modern biology. In particular, the question whether native-like domains are retained or completely refolded in the amyloid state and the identification of possible mechanisms for macromolecular ordered aggregation represent major unresolved puzzles. To address these issues, in this article we examine the stability, dynamics, and conservation of native-like properties of several models of a previously designed amyloid-like fibril of RNase A (Sambashivan et al., Nature 2005; 437:266-269). Through the use of molecular dynamics (MD) simulations, we have provided molecular-level insights into the role of different parts of the sequence on the stability of fibrils, the collective properties of supramolecular complexes, and the presence of native-like conformations and dynamics in supramolecular aggregates. We have been able to show that within the fibrils the three-dimensional globular domain-swapped units preserve the conformational, dynamical, and hydration properties typical of the monomeric state, providing a rationalization for the experimentally observed catalytic activity of fibrils. The nativeness of the globular domains is not affected by the amyloidogenic stretches, which determine the molecular recognition process underlying aggregation through the formation of a stable steric zipper motif. Moreover, through the study of the hydration features of a single sheet model, we have been able to show that polyglutamine stretches of the domain-swapped ribonuclease tend to minimize the interaction with water in favor of sidechain-sidechain interactions, shedding light on the factors leading to the supramolecular assembly of beta-sheet layers into dry steric zippers.
Collapse
Affiliation(s)
- Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco, 9, 20131 Milano, Italy.
| | | | | |
Collapse
|
42
|
Jahn TR, Radford SE. Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys 2007; 469:100-17. [PMID: 17588526 PMCID: PMC2706318 DOI: 10.1016/j.abb.2007.05.015] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/16/2007] [Accepted: 05/21/2007] [Indexed: 12/19/2022]
Abstract
Protein aggregation has now become recognised as an important and generic aspect of protein energy landscapes. Since the discovery that numerous human diseases are caused by protein aggregation, the biophysical characterisation of misfolded states and their aggregation mechanisms has received increased attention. Utilising experimental techniques and computational approaches established for the analysis of protein folding reactions has ensured rapid advances in the study of pathways leading to amyloid fibrils and amyloid-related aggregates. Here we describe recent experimental and theoretical advances in the elucidation of the conformational properties of dynamic, heterogeneous and/or insoluble protein ensembles populated on complex, multidimensional protein energy landscapes. We discuss current understanding of aggregation mechanisms in this context and describe how the synergy between biochemical, biophysical and cell-biological experiments are beginning to provide detailed insights into the partitioning of non-native species between protein folding and aggregation pathways.
Collapse
|
43
|
Li DW, Han L, Huo S. Structural and Pathway Complexity of β-Strand Reorganization within Aggregates of Human Transthyretin(105−115) Peptide. J Phys Chem B 2007; 111:5425-33. [PMID: 17432900 DOI: 10.1021/jp0703051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interstrand conformational rearrangements of human transthyretin peptide (TTR(105-115)) within dimeric aggregates were simulated by means of molecular dynamics (MD) with implicit solvation model for a total length of 48 micros. The conformations sampled in the MD simulations were clustered to identify free energy minima without any projections of free energy surface. A connected graph was constructed with nodes (=clusters) and edges corresponding to free energy minima and transitions between nodes, respectively. This connected graph which reflects the complexity of the free energy surface was used to extract the transition disconnectivity graph, which reflects the overall free energy barriers between pairs of free energy minima but does not contain information on transition paths. The routes of transitions between important free energy minima were obtained by further processing the original graph and the MD data. We have found that both parallel and antiparallel aggregates are populated. The parallel aggregates with different alignment patterns are separated by nonnegligible free energy barriers. Multiroutes exist in the interstrand conformational reorganization. Most visited routes do not dominant the kinetics, while less visited routes contribute a little each but they are numerous and their total contributions are actually dominant. There are various kinds of reptation motions, including those through a beta-bulge, side-chain aided reptation, and flipping or rotation of a hairpin formed by one strand.
Collapse
Affiliation(s)
- Da-Wei Li
- Gustaf H. Carlson School of Chemistry and Biochemistry and Department of Mathematics and Computer Science, Clark University, 950 Main Street, Worcester, Massachusetts 01610, USA
| | | | | |
Collapse
|
44
|
Haspel N, Zanuy D, Zheng J, Aleman C, Wolfson H, Nussinov R. Changing the charge distribution of beta-helical-based nanostructures can provide the conditions for charge transfer. Biophys J 2007; 93:245-53. [PMID: 17416628 PMCID: PMC1914416 DOI: 10.1529/biophysj.106.100644] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work we present a computational approach to the design of nanostructures made of structural motifs taken from left-handed beta-helical proteins. Previously, we suggested a structural model based on the self-assembly of motifs taken from Escherichia coli galactoside acetyltransferase (Protein Data Bank 1krr, chain A, residues 131-165, denoted krr1), which produced a very stable nanotube in molecular dynamics simulations. Here we modify this model by changing the charge distribution in the inner core of the system and testing the effect of this change on the structural arrangement of the construct. Our results demonstrate that it is possible to generate the proper conditions for charge transfer inside nanotubes based on assemblies of krr1 segment. The electronic transfer would be achieved by introducing different histidine ionization states in selected positions of the internal core of the construct, in addition to specific mutations with charged amino acids that altogether will allow the formation of coherent networks of aromatic ring stacking, salt-bridges, and hydrogen bonds.
Collapse
Affiliation(s)
- Nurit Haspel
- School of Computer Science Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
45
|
Colombo G, Soto P, Gazit E. Peptide self-assembly at the nanoscale: a challenging target for computational and experimental biotechnology. Trends Biotechnol 2007; 25:211-8. [PMID: 17379339 DOI: 10.1016/j.tibtech.2007.03.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/09/2007] [Indexed: 12/26/2022]
Abstract
Self-assembly at the nanoscale is becoming increasingly important for the fabrication of novel supramolecular structures, with applications in the fields of nanobiotechnology and nanomedicine. Peptides represent the most favorable building blocks for the design and synthesis of nanostructures because they offer a great diversity of chemical and physical properties, they can be synthesized in large amounts, and can be modified and decorated with functional elements, which can be used in diverse applications. In this article, we review some of the most recent experimental advances in the use of nanoscale self-assembled peptide structures and the theoretical efforts aimed at understanding the microscopic determinants of their formation, stability and conformational properties. The combination of experimental observations and theoretical advances will be fundamental to fully realizing the biotechnological potential of peptide self-organization.
Collapse
Affiliation(s)
- Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, 20131 Milano, Italy.
| | | | | |
Collapse
|
46
|
Zanuy D, Jiménez AI, Cativiela C, Nussinov R, Alemán C. Use of constrained synthetic amino acids in beta-helix proteins for conformational control. J Phys Chem B 2007; 111:3236-42. [PMID: 17388467 DOI: 10.1021/jp065025k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly constrained amino acid has been introduced in the turn region of a beta-helix to increase the conformational stability of the native fold for nanotechnological purposes. The influence of this specific amino acid replacement in the final organization of beta-helix motifs has been evaluated by combining ab initio first-principles calculations on model systems and molecular dynamics simulations of entire peptide segments. The former methodology, which has been applied to a sequence containing three amino acids, has been used to develop adjusted templates. Calculations indicated that 1-amino-2,2-diphenylcyclopropanecarboxylic acid, a constrained cyclopropane analogue of phenylalanine, exhibits a strong tendency to form and promote folded conformations. On the other hand, molecular dynamics simulations are employed to probe the ability of such a synthetic amino acid to enhance the conformational stability of the beta-helix motif, which is the first requirement for further protein nanoengineering. A highly regular segment from a naturally occurring beta-helix protein was selected as a potential nanoconstruct module. Simulations of wild type and mutated segments revealed that the ability of the phenylalanine analogue to nucleate turn conformations enhances the conformational stability of the beta-helix motif in isolated peptide segments.
Collapse
Affiliation(s)
- David Zanuy
- Departament d'Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
47
|
Gazit E, della Bruna P, Pieraccini S, Colombo G. The molecular dynamics of assembly of the ubiquitous aortic medial amyloidal medin fragment. J Mol Graph Model 2007; 25:903-11. [PMID: 17035055 DOI: 10.1016/j.jmgm.2006.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 09/01/2006] [Accepted: 09/01/2006] [Indexed: 11/30/2022]
Abstract
In recent years there is an increased understanding of the molecular conformation of amyloid fibrils. However, much less is known about the early events that lead to the formation of these medically important assemblies. The clarification of these very important mechanistic details on the process may indicate directions towards the inhibition of the early stages of the assembly, where harmful species are most likely to form. Here, we study the dynamics of assembly of short amyloidogenic peptide fragments from the medin polypeptide. This polypeptide is of unique interest since amyloid deposits composed of medin are found almost in all the population above the age of 50. Twelve independent 50 ns long molecular dynamics simulations in explicit water have been run on peptide NH2-NFGSVQFV-COOH, the minimal recognition hexapeptide element, NH2-NFGSVQ-COOH, and several single-point mutants. In all cases a three-stranded polymeric beta-sheet was used as the basic unit from which fibrils can be formed. Our results clearly indicate the need of well-defined sequence and stereochemical constraints to allow the formation of stable well-ordered aggregates. One of the key findings is the need for the presence of a phenylalanine residue, but not other hydrophobic amino acids, in specific positions within the peptide. Taken together, the results are consistent with recent high-resolution structures of amyloid assemblies and provide unique insights into the dynamics of these structures.
Collapse
Affiliation(s)
- Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
48
|
Melquiond A, Gelly JC, Mousseau N, Derreumaux P. Probing amyloid fibril formation of the NFGAIL peptide by computer simulations. J Chem Phys 2007; 126:065101. [PMID: 17313247 DOI: 10.1063/1.2435358] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Amyloid fibril formation, as observed in Alzheimer's disease and type II diabetes, is currently described by a nucleation-condensation mechanism, but the details of the process preceding the formation of the nucleus are still lacking. In this study, using an activation-relaxation technique coupled to a generic energy model, we explore the aggregation pathways of 12 chains of the hexapeptide NFGAIL. The simulations show, starting from a preformed parallel dimer and ten disordered chains, that the peptides form essentially amorphous oligomers or more rarely ordered beta-sheet structures where the peptides adopt a parallel orientation within the sheets. Comparison between the simulations indicates that a dimer is not a sufficient seed for avoiding amorphous aggregates and that there is a critical threshold in the number of connections between the chains above which exploration of amorphous aggregates is preferred.
Collapse
Affiliation(s)
- Adrien Melquiond
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique et Université Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
49
|
Flöck D, Rossetti G, Daidone I, Amadei A, Di Nola A. Aggregation of small peptides studied by molecular dynamics simulations. Proteins 2006; 65:914-21. [PMID: 16981204 DOI: 10.1002/prot.21168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Peptides and proteins tend to aggregate under appropriate conditions. The amyloid fibrils that are ubiquitously found among these structures are associated with major human diseases like Alzheimer's disease, type II diabetes, and various prion diseases. Lately, it has been observed that even very short peptides like tetra and pentapeptides can form ordered amyloid structures. Here, we present aggregation studies of three such small polypeptide systems, namely, the two amyloidogenic peptides DFNKF and FF, and a control (nonamyloidogenic) one, the AGAIL. The respective aggregation process is studied by all-atom Molecular Dynamics simulations, which allow to shed light on the fine details of the association and aggregation process. Our analysis suggests that naturally aggregating systems exhibit significantly diverse overall cluster shape properties and specific intermolecular interactions. Additional analysis was also performed on the previously studied NFGAIL system.
Collapse
Affiliation(s)
- Dagmar Flöck
- Department of Chemistry, University of Rome La Sapienza, Rome 00185, Italy.
| | | | | | | | | |
Collapse
|
50
|
Röhrig UF, Laio A, Tantalo N, Parrinello M, Petronzio R. Stability and structure of oligomers of the Alzheimer peptide Abeta16-22: from the dimer to the 32-mer. Biophys J 2006; 91:3217-29. [PMID: 16920832 PMCID: PMC1614475 DOI: 10.1529/biophysj.106.088542] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases are associated with amyloid fibrils formed by different polypeptides. We probe the structure and stability of oligomers of different sizes of the fragment Abeta(16-22) of the Alzheimer beta-amyloid peptide using atomic-detail molecular dynamics simulations with explicit solvent. We find that only large oligomers form a stable beta-sheet aggregate, the minimum nucleus size being of the order of 8-16 peptides. This effect is attributed to better hydrophobic contacts and a better shielding of backbone-backbone hydrogen bonds from the solvent in bigger assemblies. Moreover, the observed stability of beta-sheet aggregates with a different number of layers can be explained on the basis of their solvent-accessible surface area. Depending on the stacking interface between the sheets, we observe straight or twisted structures, which could be linked to the experimentally observed polymorphism of amyloid fibrils. To compare our 32-mer structure to experimental data, we calculate its x-ray diffraction pattern. Good agreement is found between experimentally and theoretically determined reflections, suggesting that our model indeed closely resembles the structures found in vitro.
Collapse
Affiliation(s)
- Ute F Röhrig
- Centro Studi e Ricerche Enrico Fermi, Compendio Viminale, Rome, Italy.
| | | | | | | | | |
Collapse
|