1
|
Azzaz F, Yahi N, Di Scala C, Chahinian H, Fantini J. Ganglioside binding domains in proteins: Physiological and pathological mechanisms. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:289-324. [PMID: 35034721 DOI: 10.1016/bs.apcsb.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gangliosides are anionic lipids that form condensed membrane clusters (lipid rafts) and exert major regulatory functions on a wide range of proteins. In this review, we propose a new view of the structural features of gangliosides with special emphasis on emerging properties associated with protein binding modes. We analyze the different possibilities of molecular associations of gangliosides in lipid rafts and the role of cholesterol in this organization. We are particularly interested in amide groups of N-acetylated sugars which make it possible to neutralize the negative charge of the carboxylate group of sialic acids. We refer to this effect as "NH trick" and we demonstrate that it is operative in GM1, GD1a, GD1b and GT1b gangliosides. The NH trick is key to understand the different topologies adopted by gangliosides (chalice-like at the edge of lipid rafts, condensed clusters in central areas) and their impact on protein binding. We define three major types of ganglioside-binding domains (GBDs): α-helical, loop shaped, and large flat surface. We describe the mode of interaction of each GBD with typical reference proteins: synaptotagmin, 5HT1A receptor, cholera and botulinum toxins, HIV-1 surface envelope glycoprotein gp120, SARS-CoV-2 spike protein, cellular prion protein, Alzheimer's β-amyloid peptide and Parkinson's disease associated α-synuclein. We discuss the common mechanisms and peculiarities of protein binding to gangliosides in the light of physiological and pathological conditions. We anticipate that innovative ganglioside-based therapies will soon show an exponential growth for the treatment of cancer, microbial infections, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fodil Azzaz
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Nouara Yahi
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Coralie Di Scala
- Neuroscience Center-HiLIFE, University of Helsinki, Helsinki, Finland
| | - Henri Chahinian
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Marseille, France; Aix-Marseille Université, Marseille, France.
| |
Collapse
|
2
|
Lombardo D, Silvy F, Crenon I, Martinez E, Collignon A, Beraud E, Mas E. Pancreatic adenocarcinoma, chronic pancreatitis, and MODY-8 diabetes: is bile salt-dependent lipase (or carboxyl ester lipase) at the crossroads of pancreatic pathologies? Oncotarget 2018; 9:12513-12533. [PMID: 29552330 PMCID: PMC5844766 DOI: 10.18632/oncotarget.23619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Pancreatic adenocarcinomas and diabetes mellitus are responsible for the deaths of around two million people each year worldwide. Patients with chronic pancreatitis do not die directly of this disease, except where the pathology is hereditary. Much current literature supports the involvement of bile salt-dependent lipase (BSDL), also known as carboxyl ester lipase (CEL), in the pathophysiology of these pancreatic diseases. The purpose of this review is to shed light on connections between chronic pancreatitis, diabetes, and pancreatic adenocarcinomas by gaining an insight into BSDL and its variants. This enzyme is normally secreted by the exocrine pancreas, and is diverted within the intestinal lumen to participate in the hydrolysis of dietary lipids. However, BSDL is also expressed by other cells and tissues, where it participates in lipid homeostasis. Variants of BSDL resulting from germline and/or somatic mutations (nucleotide insertion/deletion or nonallelic homologous recombination) are expressed in the pancreas of patients with pancreatic pathologies such as chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We discuss the possible link between the expression of BSDL variants and these dramatic pancreatic pathologies, putting forward the suggestion that BSDL and its variants are implicated in the cell lipid metabolism/reprogramming that leads to the dyslipidemia observed in chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We also propose potential strategies for translation to therapeutic applications.
Collapse
Affiliation(s)
- Dominique Lombardo
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Françoise Silvy
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Isabelle Crenon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Emmanuelle Martinez
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Aurélie Collignon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Evelyne Beraud
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Eric Mas
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| |
Collapse
|
3
|
Malinina L, Simanshu DK, Zhai X, Samygina VR, Kamlekar R, Kenoth R, Ochoa-Lizarralde B, Malakhova ML, Molotkovsky JG, Patel DJ, Brown RE. Sphingolipid transfer proteins defined by the GLTP-fold. Q Rev Biophys 2015; 48:281-322. [PMID: 25797198 PMCID: PMC4691851 DOI: 10.1017/s003358351400016x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glycolipid transfer proteins (GLTPs) originally were identified as small (~24 kDa), soluble, amphitropic proteins that specifically accelerate the intermembrane transfer of glycolipids. GLTPs and related homologs now are known to adopt a unique, helically dominated, two-layer 'sandwich' architecture defined as the GLTP-fold that provides the structural underpinning for the eukaryotic GLTP superfamily. Recent advances now provide exquisite insights into structural features responsible for lipid headgroup selectivity as well as the adaptability of the hydrophobic compartment for accommodating hydrocarbon chains of differing length and unsaturation. A new understanding of the structural versatility and evolutionary premium placed on the GLTP motif has emerged. Human GLTP-motifs have evolved to function not only as glucosylceramide binding/transferring domains for phosphoinositol 4-phosphate adaptor protein-2 during glycosphingolipid biosynthesis but also as selective binding/transfer proteins for ceramide-1-phosphate. The latter, known as ceramide-1-phosphate transfer protein, recently has been shown to form GLTP-fold while critically regulating Group-IV cytoplasmic phospholipase A2 activity and pro-inflammatory eicosanoid production.
Collapse
Affiliation(s)
- Lucy Malinina
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Structural Biology Unit, CICbioGUNE, Technology Park of Bizkaia, 48160 Derio-Bilbao, Spain
| | - Dhirendra K. Simanshu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xiuhong Zhai
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Valeria R. Samygina
- Structural Biology Unit, CICbioGUNE, Technology Park of Bizkaia, 48160 Derio-Bilbao, Spain
| | | | - Roopa Kenoth
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Borja Ochoa-Lizarralde
- Structural Biology Unit, CICbioGUNE, Technology Park of Bizkaia, 48160 Derio-Bilbao, Spain
| | | | - Julian G. Molotkovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
4
|
Deciphering the glycolipid code of Alzheimer's and Parkinson's amyloid proteins allowed the creation of a universal ganglioside-binding peptide. PLoS One 2014; 9:e104751. [PMID: 25140899 PMCID: PMC4139322 DOI: 10.1371/journal.pone.0104751] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/15/2014] [Indexed: 11/19/2022] Open
Abstract
A broad range of microbial and amyloid proteins interact with cell surface glycolipids which behave as infectivity and/or toxicity cofactors in human pathologies. Here we have deciphered the biochemical code that determines the glycolipid-binding specificity of two major amyloid proteins, Alzheimer's β-amyloid peptide (Aβ) and Parkinson's disease associated protein α-synuclein. We showed that both proteins interact with selected glycolipids through a common loop-shaped motif exhibiting little sequence homology. This 12-residue domain corresponded to fragments 34-45 of α-synuclein and 5-16 of Aβ. By modulating the amino acid sequence of α-synuclein at only two positions in which we introduced a pair of histidine residues found in Aβ, we created a chimeric α-synuclein/Aβ peptide with extended ganglioside-binding properties. This chimeric peptide retained the property of α-synuclein to recognize GM3, and acquired the capacity to recognize GM1 (an Aβ-inherited characteristic). Free histidine (but not tryptophan or asparagine) and Zn2+ (but not Na+) prevented this interaction, confirming the key role of His-13 and His-14 in ganglioside binding. Molecular dynamics studies suggested that the chimeric peptide recognized cholesterol-constrained conformers of GM1, including typical chalice-shaped dimers, that are representative of the condensed cholesterol-ganglioside complexes found in lipid raft domains of the plasma membrane of neural cells. Correspondingly, the peptide had a particular affinity for raft-like membranes containing both GM1 and cholesterol. The chimeric peptide also interacted with several other gangliosides, including major brain gangliosides (GM4, GD1a, GD1b, and GT1b) but not with neutral glycolipids such as GlcCer, LacCer or asialo-GM1. It could inhibit the binding of Aβ1-42 onto neural SH-SY5Y cells and did not induce toxicity in these cells. In conclusion, deciphering the glycolipid code of amyloid proteins allowed us to create a universal ganglioside-binding peptide of only 12-residues with potential therapeutic applications in infectious and neurodegenerative diseases that involve cell surface gangliosides as receptors.
Collapse
|
5
|
Di Scala C, Chahinian H, Yahi N, Garmy N, Fantini J. Interaction of Alzheimer's β-amyloid peptides with cholesterol: mechanistic insights into amyloid pore formation. Biochemistry 2014; 53:4489-502. [PMID: 25000142 DOI: 10.1021/bi500373k] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain cholesterol plays a critical role in Alzheimer's disease and other neurodegenerative diseases. The molecular mechanisms linking cholesterol to neurotoxicity have remained elusive for a long time, but recent data have allowed the identification of functional cholesterol-binding domains in several amyloidogenic proteins involved in neurodegenerative diseases, including Alzheimer's disease. In this review, we analyze the cholesterol binding properties of β-amyloid (Aβ) peptides and the impact of these interactions on amyloid pore formation. We show that although the cholesterol-binding domains of Aβ peptides and of transmembrane precursor C99 are partially overlapping, they involve distinct amino acid residues, so that cholesterol has a greater affinity for Aβ than for C99. Synthetic 22-35 and 25-35 fragments of Aβ retained the ability of the full-length peptide 1-42 to bind cholesterol and to form zinc-sensitive, calcium-permeable amyloid pores in cultured neural cells. Studies with mutant peptides allowed the identification of key residues involved in cholesterol binding and channel formation. Cholesterol promoted the insertion of Aβ in the plasma membrane, induced α-helical structuration, and forced the peptide to adopt a tilted topology that favored the oligomerization process. Bexarotene, an amphipathic drug currently considered as a potential candidate medication for the treatment of neurodegenerative diseases, competed with cholesterol for binding to Aβ and prevented oligomeric channel formation. These studies indicate that it is possible to prevent the generation of neurotoxic oligomers by targeting the cholesterol-binding domain of Aβ peptides. This original strategy could be used for the treatment of Alzheimer's and other neurodegenerative diseases that involve cholesterol-dependent toxic oligomers.
Collapse
Affiliation(s)
- Coralie Di Scala
- EA-4674, Faculté des Sciences de Saint-Jérôme, Aix-Marseille Université , 13013 Marseille, France
| | | | | | | | | |
Collapse
|
6
|
Sphingolipids as modulators of membrane proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:665-70. [PMID: 24201378 DOI: 10.1016/j.bbalip.2013.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/22/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022]
Abstract
The diversity of the transmembranome of higher eukaryotes is matched by an enormous diversity of sphingolipid classes and molecular species. The intrinsic properties of sphingolipids are not only suited for orchestrating lateral architectures of biological membranes, but their molecular distinctions also allow for the evolution of protein motifs specifically recognising and interacting with individual lipids. Although various reports suggest a role of sphingolipids in membrane protein function, only a few cases have determined the specificity of these interactions. In this review we discuss examples of specific protein-sphingolipid interactions for which a modulator-like dependency on sphingolipids was assigned to specific proteins. These novel functions of sphingolipids in specific protein-lipid assemblies contribute to the complexity of the sphingolipid classes and other molecular species observed in animal cells. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
|
7
|
Crescence L, Beraud E, Sbarra V, Bernard JP, Lombardo D, Mas E. Targeting a novel onco-glycoprotein antigen at tumoral pancreatic cell surface by mAb16D10 induces cell death. THE JOURNAL OF IMMUNOLOGY 2012; 189:3386-96. [PMID: 22956586 DOI: 10.4049/jimmunol.1102647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The mAb16D10 was raised against a pathological onco-glycoform of bile salt-dependent lipase isolated from the pancreatic juice of a patient suffering from a pancreatic adenocarcinoma. We previously showed that mAb16D10 specifically discriminates human pancreatic tumor tissues from other cancer and nontumor tissues. In this study, we report that mAb16D10 inhibited the proliferation of only human pancreatic tumor cells expressing 16D10 plasma membrane Ag. Interaction of mAb16D10 with its cognate surface Ag on pancreatic cells promoted cell death by activation of the p53- and caspase-dependent apoptotic pathway, and silencing of p53 decreased cell death. The decreased proliferation was also partly due to cell cycle arrest in G1/S phase, mAb16D10 triggering of glycogen synthase kinase-3β (GSK-3β) activation, degradation of β-catenin, and decreased expression of cyclin D1. GSK-3β positively affected p53 expression in pancreatic tumor cells after mAb16D10 binding. Inhibition of GSK-3β activity reversed the effects induced by mAb16D10 in SOJ-6 cells, supporting the pivotal role of GSK-3β signaling in the mechanisms of action induced by mAb16D10. Also, mAb16D10 cell treatment led to membrane overexpression of E-cadherin. Both E-cadherin and tumor Ag were localized in membrane lipid cholesterol-rich microdomains and are thought to belong to signaling platforms involved in the induction of cell cycle arrest and cell death. Overall, this study reveals that mAb16D10 holds great potential to prevent pancreatic tumor proliferation by apoptotic cell death, thus promising therapeutic prospects for treatment of pancreatic adenocarcinoma, a highly lethal disease.
Collapse
Affiliation(s)
- Lydie Crescence
- Aix-Marseille Université, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, F-13005, Marseille, France
| | | | | | | | | | | |
Collapse
|
8
|
Stax MJ, Kootstra NA, van 't Wout AB, Tanck MWT, Bakker M, Pollakis G, Paxton WA. HIV-1 disease progression is associated with bile-salt stimulated lipase (BSSL) gene polymorphism. PLoS One 2012; 7:e32534. [PMID: 22412885 PMCID: PMC3295759 DOI: 10.1371/journal.pone.0032534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/01/2012] [Indexed: 01/25/2023] Open
Abstract
Background DC-SIGN expressed by dendritic cells captures HIV-1 resulting in trans-infection of CD4+ T-lymphocytes. However, BSSL (bile-salt stimulated lipase) binding to DC-SIGN interferes with HIV-1 capture. DC-SIGN binding properties of BSSL associate with the polymorphic repeated motif of BSSL exon 11. Furthermore, BSSL binds to HIV-1 co-receptor CXCR4. We hypothesized that BSSL modulates HIV-1 disease progression and emergence of CXCR4 using HIV-1 (X4) variants. Results The relation between BSSL genotype and HIV-1 disease progression and emergence of X4 variants was studied using Kaplan Meier and multivariate Cox proportional hazard analysis in a cohort of HIV-1 infected men having sex with men (n = 334, with n = 130 seroconverters). We analyzed the association of BSSL genotype with set-point viral load and CD4 cell count, both pre-infection and post-infection at viral set-point. The number of repeats in BSSL exon 11 were highly variable ranging from 10 to 18 in seropositive individuals and from 5–17 in HRSN with 16 repeats being dominant (>80% carry at least one allele with 16 repeats). We defined 16 to 18 repeats as high (H) and less than 16 repeats as low (L) repeat numbers. Homozygosity for the high (H) repeat number BSSL genotype (HH) correlated with high CD4 cell numbers prior to infection (p = 0.007). In HIV-1 patients, delayed disease progression was linked to the HH BSSL genotype (RH = 0.462 CI = 0.282–0.757, p = 0.002) as was delayed emergence of X4 variants (RH = 0.525, 95% CI = 0.290–0.953, p = 0.034). The LH BSSL genotype, previously found to be associated with enhanced DC-SIGN binding of human milk, was identified to correlate with accelerated disease progression in our cohort of HIV-1 infected MSM (RH = 0.517, 95% CI = 0.328–0.818, p = 0.005). Conclusion We identify BSSL as a marker for HIV-1 disease progression and emergence of X4 variants. Additionally, we identified a relation between BSSL genotype and CD4 cell counts prior to infection.
Collapse
Affiliation(s)
- Martijn J. Stax
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and CINIMA at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Angélique B. van 't Wout
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and CINIMA at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Michael W. T. Tanck
- Department Clinical Epidemiology, Biostatistics and Bioinformatics (KEBB), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Georgios Pollakis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - William A. Paxton
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Molecular Basis for the Glycosphingolipid-Binding Specificity of α-Synuclein: Key Role of Tyrosine 39 in Membrane Insertion. J Mol Biol 2011; 408:654-69. [DOI: 10.1016/j.jmb.2011.03.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/24/2011] [Accepted: 03/03/2011] [Indexed: 11/23/2022]
|
10
|
Salido GM, Jardín I, Rosado JA. The TRPC ion channels: association with Orai1 and STIM1 proteins and participation in capacitative and non-capacitative calcium entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:413-33. [PMID: 21290309 DOI: 10.1007/978-94-007-0265-3_23] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Transient receptor potential (TRP) proteins are involved in a large number of non-selective cation channels that are permeable to both monovalent and divalent cations. Two general classes of receptor-mediated Ca(2+) entry has been proposed: one of then is conduced by receptor-operated Ca(2+) channels (ROC), the second is mediated by channels activated by the emptying of intracellular Ca(2+) stores (store-operated channels or SOC). TRP channels have been presented as subunits of both ROC and SOC, although the precise mechanism that regulates the participation of TRP proteins in these Ca(2+) entry mechanisms remains unclear. Recently, TRPC proteins have been shown to associate with Orai1 and STIM1 in a dynamic ternary complex regulated by the occupation of membrane receptors in several cell models, which might play an important role in the function of TRPC proteins. The present review summarizes the current knowledge concerning the association of TRP proteins with Orai and STIM proteins and how this affects the participation of TRP proteins in store-operated or receptor-operated Ca(2+) entry.
Collapse
Affiliation(s)
- Gines M Salido
- Cell Physiology Group, Department of Physiology, University of Extremadura, Cáceres, Spain.
| | | | | |
Collapse
|
11
|
Borta H, Aroso M, Rinn C, Gomez-Lazaro M, Vitorino R, Zeuschner D, Grabenbauer M, Amado F, Schrader M. Analysis of low abundance membrane-associated proteins from rat pancreatic zymogen granules. J Proteome Res 2010; 9:4927-39. [PMID: 20707389 DOI: 10.1021/pr100052q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Zymogen granules (ZG) are specialized storage organelles in the exocrine pancreas that allow the sorting, packaging, and regulated apical secretion of digestive enzymes. As there is a critical need for further understanding of the key processes in regulated secretion to develop new therapeutic options in medicine, we applied a suborganellar proteomics approach to identify peripheral membrane-associated ZG proteins. We focused on the analysis of a "basic" group (pH range 6.2-11) with about 46 spots among which 44 were identified by tandem mass spectrometry. These spots corresponded to 16 unique proteins, including rat mast cell chymase (RMCP-1) and peptidyl-prolyl cis-trans isomerase B (PpiB; cyclophilin B), an ER-resident protein. To confirm that these proteins were specific to zymogen granules and not contaminants of the preparation, we conducted a series of validation experiments. Immunoblotting of ZG subfractions revealed that chymase and PpiB behaved like bona fide peripheral membrane proteins. Their expression in rat pancreas was regulated by feeding behavior. Ultrastructural and immunofluorescence studies confirmed their ZG localization. Furthermore, a chymase-YFP fusion protein was properly targeted to ZG in pancreatic AR42J cells. Interestingly, for both proteins, proteoglycan-binding properties have been reported. The importance of our findings for sorting and packaging during ZG formation is discussed.
Collapse
Affiliation(s)
- Heike Borta
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Robert Koch Strasse 6, Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ernst AM, Contreras FX, Brügger B, Wieland F. Determinants of specificity at the protein-lipid interface in membranes. FEBS Lett 2010; 584:1713-20. [PMID: 20085759 DOI: 10.1016/j.febslet.2009.12.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 12/22/2009] [Accepted: 12/22/2009] [Indexed: 02/06/2023]
Abstract
The complexity of pro- and eukaryotic lipidomes is increasingly appreciated mainly owing to the advance of mass spectrometric methods. Biophysical approaches have revealed that the large number of lipid classes and molecular species detected have implications for the self-organizing potential of biological membranes, resulting in the formation of lateral heterogeneous phases. How membrane proteins are able to adapt specifically to their surrounding heterogeneous matrix, and whether this environment affects protein targeting and function, is therefore a matter of particular interest. Here, we review specific protein-lipid interactions, focusing on the molecular mechanisms that determine specificity at the protein-lipid interface, and on membrane proteins that require lipids as cofactors for their architecture and function.
Collapse
Affiliation(s)
- Andreas M Ernst
- Heidelberg University, Biochemistry Center, Heidelberg, Germany. \
| | | | | | | |
Collapse
|
13
|
Benkoël L, Bernard JP, Payan-Defais MJ, Crescence L, Franceschi C, Delmas M, Ouaissi M, Sastre B, Sahel J, Benoliel AM, Bongrand P, Silvy F, Gauthier L, Romagné F, Lombardo D, Mas E. Monoclonal antibody 16D10 to the COOH-terminal domain of the feto-acinar pancreatic protein targets pancreatic neoplastic tissues. Mol Cancer Ther 2009; 8:282-91. [DOI: 10.1158/1535-7163.mct-08-0471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Ristorcelli E, Beraud E, Verrando P, Villard C, Lafitte D, Sbarra V, Lombardo D, Verine A. Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. FASEB J 2008; 22:3358-69. [PMID: 18511551 DOI: 10.1096/fj.07-102855] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes are vesicles secreted by most hematopoietic cells on fusion of multivesicular endosomes with the plasma membrane. Many studies have reported that exosomes may also be released by tumor cells. Exosomes are believed to play an antitumor role through immune cells. We asked whether tumor exosomes have biological activities on tumor cells. We report that human pancreatic tumor nanoparticles, exosome-like as characterized by proteomic analyses and rich in lipid rafts, decreased tumor cell proliferation. Nanoparticles increased Bax and decreased Bcl-2 expressions. Caspase-3 and -9 but not caspase-8 inhibitors impaired apoptosis, which implicates the mitochondria apoptotic pathway. The ceramide-sphingomyelin apoptotic pathway was inoperative. Moreover, nanoparticles induced phosphatase and tensin homolog (PTEN) and glycogen synthase kinase (GSK) -3beta activation and decreased pyruvate dehydrogenase activity. In nanoparticle-treated cells, PTEN formed complexes with actin, beta-catenin, and GSK-3beta. Thus, beta-catenin may no longer be available to activate the survival pathway. Nanoparticles triggered the down-regulation of cyclin D1 and poly(ADP-ribose) polymerase. Hence, nanoparticles counteracted the constitutively activated phosphatidylinositol 3-kinase/Akt survival pathway to drive tumor cells toward apoptosis. Our study provides the first evidence of an apoptotic function of tumor-derived nanoparticles on tumor cells. We propose a new role for nanoparticles, i.e., as signal carriers for interaction between cells, which may have implications in physiopathological situations.
Collapse
|
15
|
Panicot-Dubois L, Thomas GM, Furie BC, Furie B, Lombardo D, Dubois C. Bile salt-dependent lipase interacts with platelet CXCR4 and modulates thrombus formation in mice and humans. J Clin Invest 2008; 117:3708-19. [PMID: 18037996 DOI: 10.1172/jci32655] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 09/19/2007] [Indexed: 01/19/2023] Open
Abstract
Bile salt-dependent lipase (BSDL) is an enzyme involved in the duodenal hydrolysis and absorption of cholesteryl esters. Although some BSDL is transported to blood, the role of circulating BSDL is unknown. Here, we demonstrate that BSDL is stored in platelets and released upon platelet activation. Because BSDL contains a region that is structurally homologous to the V3 loop of HIV-1, which binds to CXC chemokine receptor 4 (CXCR4), we hypothesized that BSDL might bind to CXCR4 present on platelets. In human platelets in vitro, both BSDL and a peptide corresponding to its V3-like loop induced calcium mobilization and enhanced thrombin-mediated platelet aggregation, spreading, and activated alpha(IIb)beta(3) levels. These effects were abolished by CXCR4 inhibition. BSDL also increased the production of prostacyclin by human endothelial cells. In a mouse thrombosis model, BSDL accumulated at sites of vessel wall injury. When CXCR4 was antagonized, the accumulation of BSDL was inhibited and thrombus size was reduced. In BSDL(-/-) mice, calcium mobilization in platelets and thrombus formation were attenuated and tail bleeding times were increased in comparison with those of wild-type mice. We conclude that BSDL plays a role in optimal platelet activation and thrombus formation by interacting with CXCR4 on platelets.
Collapse
Affiliation(s)
- Laurence Panicot-Dubois
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Berkane AA, Nguyen HTT, Tranchida F, Waheed AA, Deyris V, Tchiakpe L, Fasano C, Nicoletti C, Desseaux V, Ajandouz EH, Comeau D, Comeau L, Hiol A. Proteomic of lipid rafts in the exocrine pancreas from diet-induced obese rats. Biochem Biophys Res Commun 2007; 355:813-9. [PMID: 17320817 DOI: 10.1016/j.bbrc.2007.02.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 02/08/2007] [Indexed: 01/18/2023]
Abstract
In the present work, we induced obesity in rats with high-energy-starch diet and studied exocrine pancreas response. The zymogen granule (ZG) or purified plasma membrane (PM) from the exocrine pancreas was used for the isolation of the detergent-resistant membranes (DRMs). Based on high content of cholesterol, GM1, the bile salt dependent lipase (BSDL), and GP2 enrichment, the low-density fractions were defined as lipid rafts. Additionally, the rafts vesicles were determined by immunogold labeling with anti BSDL. By combining MALDI-TOF/MS and nano-LC ESI Q-TOF MS/MS proteomic identification we have selected 33 proteins from the lipid rafts which were classified into at least four functional families. Our data suggest that the acinar PM from the diet-induced obesity rats may be organized into lipid rafts, and characterization of rafts proteome can contribute to improve our understanding of food digestion under obesity.
Collapse
Affiliation(s)
- Amine Adda Berkane
- Université Paul Cézanne, FST-Institut Méditerranéen de Recherche en Nutrition IMRN, UMR INRA 1111/PNV UMR 6153 1147, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Brown RE, Mattjus P. Glycolipid transfer proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:746-60. [PMID: 17320476 PMCID: PMC1986823 DOI: 10.1016/j.bbalip.2007.01.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/08/2007] [Accepted: 01/13/2007] [Indexed: 10/23/2022]
Abstract
Glycolipid transfer proteins (GLTPs) are small (24 kDa), soluble, ubiquitous proteins characterized by their ability to accelerate the intermembrane transfer of glycolipids in vitro. GLTP specificity encompasses both sphingoid- and glycerol-based glycolipids, but with a strict requirement that the initial sugar residue be beta-linked to the hydrophobic lipid backbone. The 3D architecture of GLTP reveals liganded structures with unique lipid-binding modes. The biochemical properties of GLTP action at the membrane surface have been studied rather comprehensively, but the biological role of GLTP remains enigmatic. What is clear is that GLTP differs distinctly from other known glycolipid-binding proteins, such as nonspecific lipid transfer proteins, lysosomal sphingolipid activator proteins, lectins, lung surfactant proteins as well as other lipid-binding/transfer proteins. Based on the unique conformational architecture that targets GLTP to membranes and enables glycolipid binding, GLTP is now considered the prototypical and founding member of a new protein superfamily in eukaryotes.
Collapse
Affiliation(s)
- Rhoderick E Brown
- The Hormel Institute, University of Minnesota-Hormel Institute, 801 16th Ave NE, Austin, MN 55912, USA.
| | | |
Collapse
|
18
|
Aubert-Jousset E, Sbarra V, Lombardo D. Site-directed Mutagenesis of the Distal Basic Cluster of Pancreatic Bile Salt-dependent Lipase. J Biol Chem 2004; 279:39697-704. [PMID: 15265857 DOI: 10.1074/jbc.m407646200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have postulated the presence of two bile salt-binding sites regulating the activity of the pancreatic bile salt-dependent lipase. One of these sites, located in an N-terminal basic cluster, has been identified as the specific bile salt-binding site. Interaction of primary bile salts with this proximal site induces the formation of a micellar binding site from a pre-existing nonspecific or pre-micellar bile salt-binding site. Here we have investigated the functional significance of another basic cluster comprised of amino acid residues Arg(423), Lys(429), Arg(454), Arg(458), and Lys(462), distal from the catalytic site. For this purpose these residues were mutagenized in Ile or Ala residues. The mutagenized enzyme lost activity on both soluble and emulsified substrates in the presence of bile salts. However, in the absence of bile salts, the mutagenized enzyme displayed the same activity on soluble substrate as the wild-type recombinant enzyme. Consequently, the distal basic cluster may represent the nonspecific (or pre-micellar) bile salt-binding site susceptible to accommodate primary and secondary bile salts. According to the literature, tyrosine residue(s) should participate in this site. Therefore, two tyrosine residues, Tyr(427) and Tyr(453), associated with the distal basic cluster were also mutagenized. Each tyrosine substitution to serine did not inhibit the enzyme activity on soluble substrate, independently of the presence of primary or secondary bile salts. However, the enzyme activity on cholesteryl oleate solubilized in primary bile salt micelles was decreased by mutations substantiating that these residues are part of the nonspecific bile salt-binding site.
Collapse
Affiliation(s)
- Emeline Aubert-Jousset
- INSERM U-559, Unité de Recherche de Physiopathologie des Cellules Epitheliales, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | | | | |
Collapse
|