1
|
Zubova E, Pokluda A, Dvořáková H, Krupička M, Cibulka R. Exploring the Reactivity of Flavins with Nucleophiles Using a Theoretical and Experimental Approach. Chempluschem 2024; 89:e202300547. [PMID: 38064649 DOI: 10.1002/cplu.202300547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Covalent adducts of flavin cofactors with nucleophiles play an important role in non-canonical function of flavoenzymes as well as in flavin-based catalysis. Herein, the interaction of flavin derivatives including substituted flavins (isoalloxazines), 1,10-ethylene-bridged flavinium salts, and non-substituted alloxazine and deazaflavin with selected nucleophiles was investigated using an experimental and computational approach. Triphenylphosphine or trimethylphosphine, 1-nitroethan-1-ide, and methoxide were selected as representatives of neutral soft, anionic soft, and hard nucleophiles, respectively. The interactions were investigated using UV/Vis and 1H NMR spectroscopy as well as by DFT calculations. The position of nucleophilic attack estimated using the calculated Gibbs free energy values was found to correspond with the experimental data, favouring the addition of phosphine and 1-nitroethan-1-ide into position N(5) and methoxide into position C(10a) of 1,10-ethylene-bridged flavinium salts. The calculated Gibbs free energy values were found to correlate with the experimental redox potentials of the flavin derivatives tested. These findings can be utilized as valuable tools for the design of artificial flavin-based catalytic systems or investigating the mechanism of flavoenzymes.
Collapse
Affiliation(s)
- Ekaterina Zubova
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Adam Pokluda
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Hana Dvořáková
- Central Laboratories, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Martin Krupička
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| |
Collapse
|
2
|
Kimura T, Kimura AK, Epand RM. Systematic crosstalk in plasmalogen and diacyl lipid biosynthesis for their differential yet concerted molecular functions in the cell. Prog Lipid Res 2023; 91:101234. [PMID: 37169310 DOI: 10.1016/j.plipres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Plasmalogen is a major phospholipid of mammalian cell membranes. Recently it is becoming evident that the sn-1 vinyl-ether linkage in plasmalogen, contrasting to the ester linkage in the counterpart diacyl glycerophospholipid, yields differential molecular characteristics for these lipids especially related to hydrocarbon-chain order, so as to concertedly regulate biological membrane processes. A role played by NMR in gaining information in this respect, ranging from molecular to tissue levels, draws particular attention. We note here that a broad range of enzymes in de novo synthesis pathway of plasmalogen commonly constitute that of diacyl glycerophospholipid. This fact forms the basis for systematic crosstalk that not only controls a quantitative balance between these lipids, but also senses a defect causing loss of lipid in either pathway for compensation by increase of the counterpart lipid. However, this inherent counterbalancing mechanism paradoxically amplifies imbalance in differential effects of these lipids in a diseased state on membrane processes. While sharing of enzymes has been recognized, it is now possible to overview the crosstalk with growing information for specific enzymes involved. The overview provides a fundamental clue to consider cell and tissue type-dependent schemes in regulating membrane processes by plasmalogen and diacyl glycerophospholipid in health and disease.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Department of Chemistry & Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA.
| | - Atsuko K Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
3
|
Zhou Z, Zhu L, Dong Y, You L, Zheng S, Wang G, Xia X. Identification of a Novel Chromate and Selenite Reductase FesR in Alishewanella sp. WH16-1. Front Microbiol 2022; 13:834293. [PMID: 35350625 PMCID: PMC8957926 DOI: 10.3389/fmicb.2022.834293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/10/2022] [Indexed: 12/04/2022] Open
Abstract
A ferredoxin protein (AAY72_06850, named FesR) was identified to associate with chromate [Cr(VI)] resistance in Alishewanella sp. WH16-1. FesR and its similar proteins were phylogenetically separated from other reductase families. Unlike the reported Cr(VI) and selenite [Se(IV)] reductases, two 4Fe-4S clusters and one flavin adenine dinucleotide (FAD) -binding domain were found in the FesR sequence. The experiment in vivo showed that the mutant strain ΔfesR had lost partial Cr(VI) and Se(IV) reduction capacities compared to the wild-type and complemented strains. Furthermore, overexpression in Escherichia coli and enzymatic tests in vitro showed FesR were involved in Cr(VI) and Se(IV) reduction. 4Fe-4S cluster in purified FesR was detected by ultraviolet-visible spectrum (UV-VIS) and Electron Paramagnetic Resonance (EPR). The Km values of FesR for Cr(VI) and Se(IV) reduction were 1682.0 ± 126.2 and 1164.0 ± 89.4 μmol/L, and the Vmax values for Cr(VI) and Se(IV) reduction were 4.1 ± 0.1 and 9.4 ± 0.3 μmol min–1 mg–1, respectively. Additionally, site-directed mutagenesis and redox potential analyses showed that 4Fe-4S clusters were essential to FesR, and FAD could enhance the enzyme efficiencies of FesR as intracellular electron transporters. To the best of our knowledge, FesR is a novel Cr(VI) and Se(IV) reductase.
Collapse
Affiliation(s)
- Zijie Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lin Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yixuan Dong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lexing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xian Xia
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, College of Life Sciences, Hubei Normal University, Huangshi, China
| |
Collapse
|
4
|
Sobrado P. Role of reduced flavin in dehalogenation reactions. Arch Biochem Biophys 2020; 697:108696. [PMID: 33245912 DOI: 10.1016/j.abb.2020.108696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Halogenated organic compounds are extensively used in the cosmetic, pharmaceutical, and chemical industries. Several naturally occurring halogen-containing natural products are also produced, mainly by marine organisms. These compounds accumulate in the environment due to their chemical stability and lack of biological pathways for their degradation. However, a few enzymes have been identified that perform dehalogenation reactions in specific biological pathways and others have been identified to have secondary activities toward halogenated compounds. Various mechanisms for dehalogenation of I, Cl, Br, and F containing compounds have been elucidated. These have been grouped into reductive, oxidative, and hydrolytic mechanisms. Flavin-dependent enzymes have been shown to catalyze oxidative dehalogenation reactions utilizing the C4a-hydroperoxyflavin intermediate. In addition, flavoenzymes perform reductive dehalogenation, forming transient flavin semiquinones. Recently, flavin-dependent enzymes have also been shown to perform dehalogenation reactions where the reduced form of the flavin produces a covalent intermediate. Here, recent studies on the reactions of flavoenzymes in dehalogenation reactions, with a focus on covalent catalytic dehalogenation mechanisms, are described.
Collapse
Affiliation(s)
- Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
5
|
Abstract
Flavin-dependent enzymes catalyze a wide variety of biological reactions that are important for all types of living organisms. Knowledge gained from studying the chemistry and biological functions of flavins and flavin-dependent enzymes has continuously made significant contributions to the development of the fields of enzymology and metabolism from the 1970s until now. The enzymes have been applied in various applications such as use as biocatalysts in synthetic processes for the chemical and pharmaceutical industries or in the biodetoxification and bioremediation of toxic or unwanted compounds, and as biosensors or biodetection tools for quantifying various agents of interest. Many flavin-dependent enzymes are also prime targets for drug development. Based on their reaction mechanisms, they can be classified into five categories: oxidase, dehydrogenase, monooxygenase, reductase, and redox neutral flavin-dependent enzymes. In this chapter, the general properties of flavin-dependent enzymes and the nature of their chemical reactions are discussed, along with their practical applications.
Collapse
|
6
|
Kappelt F, Du Ma X, Abou Hasna B, Kornke JM, Maniak M. Phospholipids containing ether-bound hydrocarbon-chains are essential for efficient phagocytosis and neutral lipids of the ester-type perturb development in Dictyostelium. Biol Open 2020; 9:9/7/bio052126. [PMID: 32675052 PMCID: PMC7375469 DOI: 10.1242/bio.052126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lipids are the building blocks for cellular membranes; they provide signalling molecules for membrane dynamics and serve as energy stores. One path of their synthesis is initiated by glycerol-3-phosphate acyltransferase (GPAT), which in Dictyostelium resides on the endoplasmic reticulum. When an excess of fatty acids is present, it redistributes to storage organelles, the lipid droplets. Mutants, where the GPAT was eliminated by homologous recombination, produce fewer lipid droplets and are almost devoid of triacylglycerols (TAG), rendering them more resistant to cell death and cell loss in the developmental stages preceding fruiting body formation. The enzyme most closely related to GPAT is called FARAT, because it combines a fatty acyl-reductase (FAR) and an acyltransferase (AT) domain in its sequence. The protein is confined to the lumen of the peroxisome, where it transfers a fatty acid to dihydroxyacetone-phosphate initiating the synthesis of ether lipids, later completed at the endoplasmic reticulum. A mutant lacking FARAT produces lipid droplets that are devoid of the storage lipid monoalkyl-diacyl-glycerol (MDG), but the efficiency of spore formation in the developmental cycle is largely unaltered. Instead, these mutants are strongly impaired in phagocytosis of yeast particles, which is attributed to reduced synthesis of membrane phospholipids containing ether-linked chains.
Collapse
Affiliation(s)
| | - Xiaoli Du Ma
- Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| | | | | | - Markus Maniak
- Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| |
Collapse
|
7
|
Lyu SY, Lin KH, Yeh HW, Li YS, Huang CM, Wang YL, Shih HW, Hsu NS, Wu CJ, Li TL. The flavin mononucleotide cofactor in α-hydroxyacid oxidases exerts its electrophilic/nucleophilic duality in control of the substrate-oxidation level. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:918-929. [PMID: 31588923 PMCID: PMC6778850 DOI: 10.1107/s2059798319011938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022]
Abstract
Structural and enzymological explorations of p-hydroxy-mandelate oxidase and its mutants uncover an unprecedented electrophilic/nucleophilic duality for the flavin mononucleotide cofactor as well as an intramolecular disproportionation mechanism for an oxidative decarboxylation reaction. The Y128F single mutant of p-hydroxymandelate oxidase (Hmo) is capable of oxidizing mandelate to benzoate via a four-electron oxidative decarboxylation reaction. When benzoylformate (the product of the first two-electron oxidation) and hydrogen peroxide (an oxidant) were used as substrates the reaction did not proceed, suggesting that free hydrogen peroxide is not the committed oxidant in the second two-electron oxidation. How the flavin mononucleotide (FMN)-dependent four-electron oxidation reaction takes place remains elusive. Structural and biochemical explorations have shed new light on this issue. 15 high-resolution crystal structures of Hmo and its mutants liganded with or without a substrate reveal that oxidized FMN (FMNox) possesses a previously unknown electrophilic/nucleophilic duality. In the Y128F mutant the active-site perturbation ensemble facilitates the polarization of FMNox to a nucleophilic ylide, which is in a position to act on an α-ketoacid, forming an N5-acyl-FMNred dead-end adduct. In four-electron oxidation, an intramolecular disproportionation reaction via an N5-alkanol-FMNred C′α carbanion intermediate may account for the ThDP/PLP/NADPH-independent oxidative decarboxylation reaction. A synthetic 5-deaza-FMNox cofactor in combination with an α-hydroxyamide or α-ketoamide biochemically and structurally supports the proposed mechanism.
Collapse
Affiliation(s)
- Syue Yi Lyu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuan Hung Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsien Wei Yeh
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yi Shan Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chun Man Huang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yung Lin Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hao Wei Shih
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ning Shian Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chang Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Tsung Lin Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
8
|
März M, Babor M, Cibulka R. Flavin Catalysis Employing an N(5)-Adduct: an Application in the Aerobic Organocatalytic Mitsunobu Reaction. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Michal März
- Department of Organic Chemistry; University of Chemistry and Technology; 166 28 Prague 6 Prague, Technická 5 Czech Republic
| | - Martin Babor
- Department of Solid State Chemistry; University of Chemistry and Technology; Technická 5 166 28 Prague 6 Prague Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry; University of Chemistry and Technology; 166 28 Prague 6 Prague, Technická 5 Czech Republic
| |
Collapse
|
9
|
Development of alkyl glycerone phosphate synthase inhibitors: Structure-activity relationship and effects on ether lipids and epithelial-mesenchymal transition in cancer cells. Eur J Med Chem 2018; 163:722-735. [PMID: 30576903 DOI: 10.1016/j.ejmech.2018.11.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
In aggressive tumors, alkylglyceronephosphate synthase (AGPS) controls cellular ether phospholipid utilization and metabolism to promote cancer cell proliferation and motility. SAR studies on the first-in-class AGPS inhibitor 1, discovered by our group, led to the 2,6-difluoro analog 2i which showed higher binding affinity than 1in vitro. In 231MFP cancer cells, 2i reduced ether lipids levels and cell migration rate. When tested in PC-3 and MDA-MB-231 cancer cells, 2i specifically impaired epithelial to mesenchymal transition (EMT) by modulating E-cadherin, Snail and MMP2 expression levels. Moreover, the combination of siRNAs against AGPS and 2i provided no additive effect, confirming that the modulation of 2i on EMT specifically relies on AGPS inhibition. Finally, this compound also affected cancer cell proliferation especially in MDA-MB-231 cells expressing higher AGPS level, whereas it provided negligible effects on MeT5A, a non-tumorigenic cell line, thus showing cancer specificity.
Collapse
|
10
|
Dai Y, Valentino H, Sobrado P. Evidence for the Formation of a Radical-Mediated Flavin-N5 Covalent Intermediate. Chembiochem 2018; 19:1609-1612. [PMID: 29776001 DOI: 10.1002/cbic.201800123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 01/07/2023]
Abstract
The redox-neutral reaction catalyzed by 2-haloacrylate hydratase (2-HAH) leads to the conversion of 2-chloroacrylate to pyruvate. Previous mechanistic studies demonstrated the formation of a flavin-iminium ion as an important intermediate in the 2-HAH catalytic cycle. Time-resolved flavin absorbance studies were performed in this study, and the data showed that the enzyme is capable of stabilizing both anionic and neutral flavin semiquinone species. The presence of a radical scavenger decreases the activity in a concentration-dependent manner. These data are consistent with the flavin iminium intermediate occurring by radical recombination.
Collapse
Affiliation(s)
- Yumin Dai
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Hannah Valentino
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA
| |
Collapse
|
11
|
Zhu Y, Han Y, Ma Y, Yang P. ADME/toxicity prediction and antitumor activity of novel nitrogenous heterocyclic compounds designed by computer targeting of alkylglycerone phosphate synthase. Oncol Lett 2018; 16:1431-1438. [PMID: 30008821 PMCID: PMC6036461 DOI: 10.3892/ol.2018.8873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/15/2018] [Indexed: 12/24/2022] Open
Abstract
Alkylglycerone phosphate synthase (AGPS) is an oncogene and can be considered as an antitumor drug target. The aim of the present study was to design novel nitrogenous heterocyclic compound improving targetability by computer-aided drug design technology targeting AGPS. A total of 12 nitrogenous heterocyclic compounds were designed and predicted the absorption, distribution, metabolism and excretion parameters/toxicity. Their activity in terms of proliferation inhibition, cell cycle arrest and apoptosis induction was then measured using an MTS assay and a high-content screening system in U251 cells. The results showed that anti-glioma activity was present in compounds N4, N5, N6, N7, N8 and N12, which was in accordance with the computer prediction. Therefore, these compounds may be suitable for the development of a novel glioma therapeutic drug.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Clinical Laboratory, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Yuan Han
- Department of Clinical Laboratory, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Ping Yang
- Department of Clinical Laboratory, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| |
Collapse
|
12
|
Lee S, Cheung-See-Kit M, Williams TA, Yamout N, Zufferey R. The glycosomal alkyl-dihydroxyacetonephosphate synthase TbADS is essential for the synthesis of ether glycerophospholipids in procyclic trypanosomes. Exp Parasitol 2018; 185:71-78. [PMID: 29355496 DOI: 10.1016/j.exppara.2018.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/30/2017] [Accepted: 01/14/2018] [Indexed: 01/15/2023]
Abstract
Glycerophospholipids are the main constituents of the biological membranes in Trypanosoma brucei, which causes sleeping sickness in humans. The present work reports the characterization of the alkyl-dihydroxyacetonephosphate synthase TbADS that catalyzes the committed step in ether glycerophospholipid biosynthesis. TbADS localizes to the glycosomal lumen. TbADS complemented a null mutant of Leishmania major lacking alkyl-dihydroxyacetonephosphate synthase activity and restored the formation of normal form of the ether lipid based virulence factor lipophosphoglycan. Despite lacking alkyl-dihydroxyacetonephosphate synthase activity, a null mutant of TbADS in procyclic trypanosomes remained viable and exhibited normal growth. Comprehensive analysis of cellular glycerophospholipids showed that TbADS was involved in the biosynthesis of all ether glycerophospholipid species, primarily found in the PE and PC classes.
Collapse
Affiliation(s)
- Sungsu Lee
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, NY 11439, USA
| | - Melanie Cheung-See-Kit
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, NY 11439, USA
| | - Tyler A Williams
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, NY 11439, USA
| | - Nader Yamout
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, NY 11439, USA
| | - Rachel Zufferey
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Jamaica, NY 11439, USA.
| |
Collapse
|
13
|
Dai Y, Kizjakina K, Campbell AC, Korasick DA, Tanner JJ, Sobrado P. Flavin-N5 Covalent Intermediate in a Nonredox Dehalogenation Reaction Catalyzed by an Atypical Flavoenzyme. Chembiochem 2017; 19:53-57. [PMID: 29116682 DOI: 10.1002/cbic.201700594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 11/05/2022]
Abstract
The flavin-dependent enzyme 2-haloacrylate hydratase (2-HAH) catalyzes the conversion of 2-chloroacrylate, a major component in the manufacture of acrylic polymers, to pyruvate. The enzyme was expressed in Escherichia coli, purified, and characterized. 2-HAH was shown to be monomeric in solution and contained a non-covalent, yet tightly bound, flavin adenine dinucleotide (FAD). Although the catalyzed reaction was redox-neutral, 2-HAH was active only in the reduced state. A covalent flavin-substrate intermediate, consistent with the flavin-acrylate iminium ion, was trapped with cyanoborohydride and characterized by mass spectrometry. Small-angle X-ray scattering was consistent with 2-HAH belonging to the succinate dehydrogenase/fumarate reductase family of flavoproteins. These studies establish 2-HAH as a novel noncanonical flavoenzyme.
Collapse
Affiliation(s)
- Yumin Dai
- Department of Biochemistry, Virginia Tech, 360 West Campus Drive, Blacksburg, Virginia, 24061, USA
| | - Karina Kizjakina
- Department of Biochemistry, Virginia Tech, 360 West Campus Drive, Blacksburg, Virginia, 24061, USA
| | - Ashley C Campbell
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA.,Department of Chemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, 360 West Campus Drive, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
14
|
Ewing TA, Fraaije MW, Mattevi A, van Berkel WJ. The VAO/PCMH flavoprotein family. Arch Biochem Biophys 2017; 632:104-117. [DOI: 10.1016/j.abb.2017.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 01/15/2023]
|
15
|
Karunaratne K, Luedtke N, Quinn DM, Kohen A. Flavin-dependent thymidylate synthase: N5 of flavin as a Methylene carrier. Arch Biochem Biophys 2017; 632:11-19. [PMID: 28821425 DOI: 10.1016/j.abb.2017.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/09/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
Abstract
Thymidylate is synthesized de novo in all living organisms for replication of genomes. The chemical transformation is reductive methylation of deoxyuridylate at C5 to form deoxythymidylate. All eukaryotes including humans complete this well-understood transformation with thymidylate synthase utilizing 6R-N5-N10-methylene-5,6,7,8-tetrahydrofolate as both a source of methylene and a reducing hydride. In 2002, flavin-dependent thymidylate synthase was discovered as a new pathway for de novo thymidylate synthesis. The flavin-dependent catalytic mechanism is different than thymidylate synthase because it requires flavin as a reducing agent and methylene transporter. This catalytic mechanism is not well-understood, but since it is known to be very different from thymidylate synthase, there is potential for mechanism-based inhibitors that can selectively inhibit the flavin-dependent enzyme to target many human pathogens with low host toxicity.
Collapse
Affiliation(s)
| | - Nicholas Luedtke
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel M Quinn
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
16
|
Piano V, Palfey BA, Mattevi A. Flavins as Covalent Catalysts: New Mechanisms Emerge. Trends Biochem Sci 2017; 42:457-469. [DOI: 10.1016/j.tibs.2017.02.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
|
17
|
Lin CI, McCarty RM, Liu HW. The Enzymology of Organic Transformations: A Survey of Name Reactions in Biological Systems. Angew Chem Int Ed Engl 2017; 56:3446-3489. [PMID: 27505692 PMCID: PMC5477795 DOI: 10.1002/anie.201603291] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 01/05/2023]
Abstract
Chemical reactions that are named in honor of their true, or at least perceived, discoverers are known as "name reactions". This Review is a collection of biological representatives of named chemical reactions. Emphasis is placed on reaction types and catalytic mechanisms that showcase both the chemical diversity in natural product biosynthesis as well as the parallels with synthetic organic chemistry. An attempt has been made, whenever possible, to describe the enzymatic mechanisms of catalysis within the context of their synthetic counterparts and to discuss the mechanistic hypotheses for those reactions that are currently active areas of investigation. This Review has been categorized by reaction type, for example condensation, nucleophilic addition, reduction and oxidation, substitution, carboxylation, radical-mediated, and rearrangements, which are subdivided by name reactions.
Collapse
Affiliation(s)
- Chia-I Lin
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Reid M McCarty
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| | - Hung-Wen Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and Department of Chemistry, University of Texas at Austin, Austin, TX, 78731, USA
| |
Collapse
|
18
|
Lin C, McCarty RM, Liu H. Die Enzymologie organischer Umwandlungen: Namensreaktionen in biologischen Systemen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201603291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chia‐I. Lin
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| | - Reid M. McCarty
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| | - Hung‐wen Liu
- Division of Chemical Biology and Medicinal Chemistry College of Pharmacy, and Department of Chemistry University of Texas at Austin Austin TX 78731 USA
| |
Collapse
|
19
|
Piano V, Nenci S, Magnani F, Aliverti A, Mattevi A. Recombinant human dihydroxyacetonephosphate acyl-transferase characterization as an integral monotopic membrane protein. Biochem Biophys Res Commun 2016; 481:51-58. [PMID: 27836547 PMCID: PMC5146282 DOI: 10.1016/j.bbrc.2016.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/05/2016] [Indexed: 11/26/2022]
Abstract
Although the precise functions of ether phospholipids are still poorly understood, significant alterations in their physiological levels are associated either to inherited disorders or to aggressive metastatic cancer. The essential precursor, alkyl-dihydroxyacetone phosphate (DHAP), for all ether phospholipids species is synthetized in two consecutive reactions performed by two enzymes sitting on the inner side of the peroxisomal membrane. Here, we report the characterization of the recombinant human DHAP acyl-transferase, which performs the first step in alkyl-DHAP synthesis. By exploring several expression systems and designing a number of constructs, we were able to purify the enzyme in its active form and we found that it is tightly bound to the membrane through the N-terminal residues. Human DHAPAT is associated to peroxisomal membrane through the N-terminal region. Recombinant human DHAPAT expressed and purified from P. pastoris cells is active. Evidence of the in vitro reconstitution of DHAPAT/ADPS enzymatic complex.
Collapse
Affiliation(s)
- Valentina Piano
- Department of Biology and Biotechnology, University of Pavia, V. Ferrata 9, 27100, Pavia, Italy
| | - Simone Nenci
- Department of Biology and Biotechnology, University of Pavia, V. Ferrata 9, 27100, Pavia, Italy
| | - Francesca Magnani
- Department of Biology and Biotechnology, University of Pavia, V. Ferrata 9, 27100, Pavia, Italy
| | - Alessandro Aliverti
- Department of Biosciences, University of Milan, V. Celoria 26, 20133, Milan, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, V. Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
20
|
Piano V, Benjamin DI, Valente S, Nenci S, Marrocco B, Mai A, Aliverti A, Nomura DK, Mattevi A. Discovery of Inhibitors for the Ether Lipid-Generating Enzyme AGPS as Anti-Cancer Agents. ACS Chem Biol 2015; 10:2589-97. [PMID: 26322624 DOI: 10.1021/acschembio.5b00466] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dysregulated ether lipid metabolism is an important hallmark of cancer cells. Previous studies have reported that lowering ether lipid levels by genetic ablation of the ether lipid-generating enzyme alkyl-glycerone phosphate synthase (AGPS) lowers key structural and oncogenic ether lipid levels and alters fatty acid, glycerophospholipid, and eicosanoid metabolism to impair cancer pathogenicity, indicating that AGPS may be a potential therapeutic target for cancer. In this study, we have performed a small-molecule screen to identify candidate AGPS inhibitors. We have identified several lead AGPS inhibitors and have structurally characterized their interactions with the enzyme and show that these inhibitors bind to distinct portions of the active site. We further show that the lead AGPS inhibitor 1a selectively lowers ether lipid levels in several types of human cancer cells and impairs their cellular survival and migration. We provide here the first report of in situ-active pharmacological tools for inhibiting AGPS, which may provide chemical scaffolds for future AGPS inhibitor development for cancer therapy.
Collapse
Affiliation(s)
- Valentina Piano
- Department
of Biology and Biotechnology, University of Pavia, via Ferrata
9, 27100 Pavia, Italy
| | - Daniel I. Benjamin
- Program
in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sergio Valente
- Department
of Drug Chemistry and Technologies, University “La Sapienza”, P. le A. Moro 5, Roma 00185, Italy
| | - Simone Nenci
- Department
of Biology and Biotechnology, University of Pavia, via Ferrata
9, 27100 Pavia, Italy
| | - Biagina Marrocco
- Department
of Drug Chemistry and Technologies, University “La Sapienza”, P. le A. Moro 5, Roma 00185, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, University “La Sapienza”, P. le A. Moro 5, Roma 00185, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, P.le A. Moro 5, Roma 00185, Italy
| | - Alessandro Aliverti
- Department
of Biosciences, University of Milano, Via Festa del Perdono, 7, 20122 Milano, Italy
| | - Daniel K. Nomura
- Program
in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Andrea Mattevi
- Department
of Biology and Biotechnology, University of Pavia, via Ferrata
9, 27100 Pavia, Italy
| |
Collapse
|
21
|
Schürmann M, Meijers R, Schneider TR, Steinbüchel A, Cianci M. 3-Sulfinopropionyl-coenzyme A (3SP-CoA) desulfinase from Advenella mimigardefordensis DPN7(T): crystal structure and function of a desulfinase with an acyl-CoA dehydrogenase fold. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1360-72. [PMID: 26057676 PMCID: PMC4461206 DOI: 10.1107/s1399004715006616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/01/2015] [Indexed: 01/19/2023]
Abstract
3-Sulfinopropionyl-coenzyme A (3SP-CoA) desulfinase (AcdDPN7; EC 3.13.1.4) was identified during investigation of the 3,3'-dithiodipropionic acid (DTDP) catabolic pathway in the betaproteobacterium Advenella mimigardefordensis strain DPN7(T). DTDP is an organic disulfide and a precursor for the synthesis of polythioesters (PTEs) in bacteria, and is of interest for biotechnological PTE production. AcdDPN7 catalyzes sulfur abstraction from 3SP-CoA, a key step during the catabolism of DTDP. Here, the crystal structures of apo AcdDPN7 at 1.89 Å resolution and of its complex with the CoA moiety from the substrate analogue succinyl-CoA at 2.30 Å resolution are presented. The apo structure shows that AcdDPN7 belongs to the acyl-CoA dehydrogenase superfamily fold and that it is a tetramer, with each subunit containing one flavin adenine dinucleotide (FAD) molecule. The enzyme does not show any dehydrogenase activity. Dehydrogenase activity would require a catalytic base (Glu or Asp residue) at either position 246 or position 366, where a glutamine and a glycine are instead found, respectively, in this desulfinase. The positioning of CoA in the crystal complex enabled the modelling of a substrate complex containing 3SP-CoA. This indicates that Arg84 is a key residue in the desulfination reaction. An Arg84Lys mutant showed a complete loss of enzymatic activity, suggesting that the guanidinium group of the arginine is essential for desulfination. AcdDPN7 is the first desulfinase with an acyl-CoA dehydrogenase fold to be reported, which underlines the versatility of this enzyme scaffold.
Collapse
Affiliation(s)
- Marc Schürmann
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Rob Meijers
- European Molecular Biology Laboratory Hamburg Unit, EMBL, Notkestrasse 85, 22603 Hamburg, Germany
| | - Thomas R. Schneider
- European Molecular Biology Laboratory Hamburg Unit, EMBL, Notkestrasse 85, 22603 Hamburg, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Michele Cianci
- European Molecular Biology Laboratory Hamburg Unit, EMBL, Notkestrasse 85, 22603 Hamburg, Germany
| |
Collapse
|
22
|
Hijikata A, Yura K, Ohara O, Go M. Structural and functional analyses of Barth syndrome-causing mutations and alternative splicing in the tafazzin acyltransferase domain. Meta Gene 2015; 4:92-106. [PMID: 25941633 PMCID: PMC4412953 DOI: 10.1016/j.mgene.2015.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/03/2015] [Indexed: 10/26/2022] Open
Abstract
Tafazzin is a mitochondrial phospholipid transacylase, and its mutations cause Barth syndrome (BTHS). Human tafazzin gene produces four distinct alternatively spliced transcripts. To understand the molecular mechanisms of tafazzin deficiency, we performed an atomic resolution analysis of the influence of the BTHS mutations and of alternative splicing on the structure and function of tafazzin. From the three-dimensional (3D) homology modeling of tafazzin, we identified candidate amino acid residues that contribute to cardiolipin binding and to mitochondrial membrane associations that facilitate acyl-transfer reactions. Primate specific exon 5, which is alternatively spliced, is predicted to correspond to an intrinsically unstructured region in the protein. We proposed that this region should change the substrate-binding affinity and/or contribute to primate-specific molecular interactions. Exon 7, another alternatively spliced exon, encodes a region forming a part of the putative substrate-binding cleft, suggesting that the gene products lacking exon 7 will lose their substrate-binding ability. We demonstrate a clear localization of the BTHS mutations at residues responsible for membrane association, substrate binding, and the conformational stability of tafazzin. These findings provide new insights into the function of defective tafazzin and the pathogenesis of BTHS at the level of protein 3D structure and the evolution of alternatively spliced exons in primates.
Collapse
Affiliation(s)
- Atsushi Hijikata
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan ; Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mitiko Go
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan ; Research Organization of Information and Systems, 4-3-13, Toranomon, Minatoku, Tokyo 105-0001, Japan
| |
Collapse
|
23
|
Malheiro AR, da Silva TF, Brites P. Plasmalogens and fatty alcohols in rhizomelic chondrodysplasia punctata and Sjögren-Larsson syndrome. J Inherit Metab Dis 2015; 38:111-21. [PMID: 25432520 DOI: 10.1007/s10545-014-9795-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/29/2022]
Abstract
Plasmalogens are a special class of ether-phospholipids, best recognized by their vinyl-ether bond at the sn-1 position of the glycerobackbone and by the observation that their deficiency causes rhizomelic chondrodysplasia punctata (RCDP). The complex plasmalogen biosynthetic pathway involves multiple enzymatic steps carried-out in peroxisomes and in the endoplasmic reticulum. The rate limiting step in the biosynthesis of plasmalogens resides in the formation of the fatty alcohol responsible for the formation of an intermediate with an alkyl-linked moiety. The regulation in the biosynthesis of plasmalogens also takes place at this step using a feedback mechanism to stimulate or inhibit the biosynthesis. As such, fatty alcohols play a relevant role in the formation of ether-phospholipids. These advances in our understanding of complex lipid biosynthesis brought two seemingly distinct disorders into the spotlight. Sjögren-Larsson syndrome (SLS) is caused by defects in the microsomal fatty aldehyde dehydrogenase (FALDH) leading to the accumulation of fatty alcohols and fatty aldehydes. In RCDP cells, the defect in plasmalogens is thought to generate a feedback signal to increase their biosynthesis, through the activity of fatty acid reductases to produce fatty alcohols. However, the enzymatic defects in either glyceronephosphate O-acyltransferase (GNPAT) or alkylglycerone phosphate synthase (AGPS) disrupt the biosynthesis and result in the accumulation of the fatty alcohols. A detailed characterization on the processes and enzymes that govern these intricate biosynthetic pathways, as well as, the metabolic characterization of defects along the pathway should increase our understanding of the causes and mechanisms behind these disorders.
Collapse
Affiliation(s)
- Ana R Malheiro
- Lab Nerve Regeneration, Instituto de Biologia Molecular e Celular - IBMC, Porto, Portugal
| | | | | |
Collapse
|
24
|
Dittrich-Domergue F, Joubès J, Moreau P, Lessire R, Stymne S, Domergue F. The bifunctional protein TtFARAT from Tetrahymena thermophila catalyzes the formation of both precursors required to initiate ether lipid biosynthesis. J Biol Chem 2014; 289:21984-94. [PMID: 24917677 PMCID: PMC4139215 DOI: 10.1074/jbc.m114.579318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/03/2014] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of ether lipids and wax esters requires as precursors fatty alcohols, which are synthesized by fatty acyl reductases (FARs). The presence of ether glycerolipids as well as branched wax esters has been reported in several free-living ciliate protozoa. In the genome of Tetrahymena thermophila, the only ORF sharing similarities with FARs is fused to an acyltransferase-like domain, whereas, in most other organisms, FARs are monofunctional proteins of similar size and domain structure. Here, we used heterologous expression in plant and yeast to functionally characterize the activities catalyzed by this protozoan protein. Transient expression in tobacco epidermis of a truncated form fused to the green fluorescence protein followed by confocal microscopy analysis suggested peroxisomal localization. In vivo approaches conducted in yeast indicated that the N-terminal FAR-like domain produced both 16:0 and 18:0 fatty alcohols, whereas the C-terminal acyltransferase-like domain was able to rescue the lethal phenotype of the yeast double mutant gat1Δ gat2Δ. Using in vitro approaches, we further demonstrated that this domain is a dihydroxyacetone phosphate acyltransferase that uses preferentially 16:0-coenzyme A as an acyl donor. Finally, coexpression in yeast with the alkyl-dihydroxyacetone phosphate synthase from T. thermophila resulted the detection of various glycerolipids with an ether bond, indicating reconstitution of the ether lipid biosynthetic pathway. Together, these results demonstrate that this FAR-like protein is peroxisomal and bifunctional, providing both substrates required by alkyl-dihydroxyacetone phosphate synthase to initiate ether lipid biosynthesis.
Collapse
Affiliation(s)
- Franziska Dittrich-Domergue
- From the Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33000 Bordeaux, France, the Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR 5200, 33000 Bordeaux, France, and
| | - Jérôme Joubès
- From the Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33000 Bordeaux, France, the Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR 5200, 33000 Bordeaux, France, and
| | - Patrick Moreau
- From the Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33000 Bordeaux, France, the Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR 5200, 33000 Bordeaux, France, and
| | - René Lessire
- From the Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33000 Bordeaux, France, the Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR 5200, 33000 Bordeaux, France, and
| | - Sten Stymne
- the Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O.B. 101, 23053 Alnarp, Sweden
| | - Frédéric Domergue
- From the Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33000 Bordeaux, France, the Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, UMR 5200, 33000 Bordeaux, France, and
| |
Collapse
|
25
|
Mild reduction of plasmalogens causes rhizomelic chondrodysplasia punctata: functional characterization of a novel mutation. J Hum Genet 2014; 59:387-92. [PMID: 24849933 DOI: 10.1038/jhg.2014.39] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 04/11/2014] [Accepted: 04/22/2014] [Indexed: 11/08/2022]
Abstract
Rhizomelic chondrodysplasia punctata (RCDP) is an autosomal recessive disorder due to the deficiency in ether lipid synthesis. RCDP type 1, the most prominent type, is caused by the dysfunction of the receptor of peroxisome targeting signal type 2, Pex7 (peroxisomal biogenesis factor 7), and the rest of the patients, RCDP types 2 and 3, have defects in peroxisomal enzymes catalyzing the initial two steps of alkyl-phospholipid synthesis, glyceronephosphate O-acyltransferase and alkylglycerone phosphate synthase (Agps). We herein investigated defects of two patients with RCDP type 3. Patient 1 had a novel missense mutation, T1533G, resulting in the I511M substitution in Agps. The plasmalogen level was mildly reduced, whereas the protein level and peroxisomal localization of Agps-I511M in fibroblasts were normal as in the control fibroblasts. Structure prediction analysis suggested that the mutated residue was located in the helix α15 on the surface of V-shaped active site tunnel in Agps, likely accounting for the mild defects of plasmalogen synthesis. These results strongly suggest that an individual with mildly affected level of plasmalogen synthesis develops RCDP. In fibroblasts from patient 2, the expression of AGPS mRNA and Agps protein was severely affected, thereby giving rise to the strong reduction of plasmalogen synthesis.
Collapse
|
26
|
Abstract
Riboflavin-based coenzymes, tightly bound to enzymes catalyzing substrate oxidations and reductions, enable an enormous range of chemical transformations in biosynthetic pathways. Flavoenzymes catalyze substrate oxidations involving amine and alcohol oxidations and desaturations to olefins, the latter setting up Diels-Alder cyclizations in lovastatin and solanapyrone biosyntheses. Both C(4a) and N(5) of the flavin coenzymes are sites for covalent adduct formation. For example, the reactivity of dihydroflavins with molecular oxygen leads to flavin-4a-OOH adducts which then carry out a diverse range of oxygen transfers, including Baeyer-Villiger type ring expansions, olefin epoxidations, halogenations via transient HOCl generation, and an oxidative Favorskii rerrangement during enterocin assembly.
Collapse
Affiliation(s)
- Christopher T Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| | | |
Collapse
|
27
|
Abstract
Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a "molecular scaffold" in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates.
Collapse
Affiliation(s)
- Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
28
|
Precursor of ether phospholipids is synthesized by a flavoenzyme through covalent catalysis. Proc Natl Acad Sci U S A 2012; 109:18791-6. [PMID: 23112191 DOI: 10.1073/pnas.1215128109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The precursor of the essential ether phospholipids is synthesized by a peroxisomal enzyme that uses a flavin cofactor to catalyze a reaction that does not alter the redox state of the substrates. The enzyme crystal structure reveals a V-shaped active site with a narrow constriction in front of the prosthetic group. Mutations causing inborn ether phospholipid deficiency, a very severe genetic disease, target residues that are part of the catalytic center. Biochemical analysis using substrate and flavin analogs, absorbance spectroscopy, mutagenesis, and mass spectrometry provide compelling evidence supporting an unusual mechanism of covalent catalysis. The flavin functions as a chemical trap that promotes exchange of an acyl with an alkyl group, generating the characteristic ether bond. Structural comparisons show that the covalent versus noncovalent mechanistic distinction in flavoenzyme catalysis and evolution relies on subtle factors rather than on gross modifications of the cofactor environment.
Collapse
|
29
|
Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1442-52. [PMID: 22627108 DOI: 10.1016/j.bbadis.2012.05.008] [Citation(s) in RCA: 688] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/21/2012] [Accepted: 05/09/2012] [Indexed: 12/17/2022]
Abstract
Plasmalogens are a unique class of membrane glycerophospholipids containing a fatty alcohol with a vinyl-ether bond at the sn-1 position, and enriched in polyunsaturated fatty acids at the sn-2 position of the glycerol backbone. These two features provide novel properties to these compounds. Although plasmalogens represent up to 20% of the total phospholipid mass in humans their physiological roles have been challenging to identify, and are likely to be particular to different tissues, metabolic processes and developmental stages. Their biosynthesis starts in peroxisomes, and defects at these steps cause the malformation syndrome, Rhizomelic Chondrodysplasia Punctata (RCDP). The RCDP phenotype predicts developmental roles for plasmalogens in bone, brain, lens, lung, kidney and heart. Recent studies have revealed secondary plasmalogen deficiencies associated with more common disorders and allow us to tease out additional pathways dependent on plasmalogen functions. In this review, we present current knowledge of plasmalogen biology in health and disease.
Collapse
Affiliation(s)
- Nancy E Braverman
- Department of Human Genetics and Pediatrics, McGill University-Montreal Childrens Hospital Research Institute, Montreal, Canada.
| | | |
Collapse
|
30
|
Itzkovitz B, Jiralerspong S, Nimmo G, Loscalzo M, Horovitz DDG, Snowden A, Moser A, Steinberg S, Braverman N. Functional characterization of novel mutations in GNPAT and AGPS, causing rhizomelic chondrodysplasia punctata (RCDP) types 2 and 3. Hum Mutat 2011; 33:189-97. [DOI: 10.1002/humu.21623] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/13/2011] [Indexed: 01/06/2023]
|
31
|
Domínguez de María P, van Gemert RW, Straathof AJJ, Hanefeld U. Biosynthesis of ethers: unusual or common natural events? Nat Prod Rep 2010; 27:370-92. [PMID: 20179877 DOI: 10.1039/b809416k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ether bonds are found in a wide variety of natural products--mainly secondary metabolites--including lipids, oxiranes, terpenoids, flavonoids, polyketides, and carbohydrate derivatives, to name some representative examples. To furnish such a biodiversity of structures, a large number of different enzymes are involved in several different biosynthetic pathways. Depending on the compound and on the (micro) environment in which the reaction is performed, ethers are produced by very different (enzymatic) reactions, thus providing an impressive display of how Nature has combined evolution and thermodynamics to be able to produce a vast number of compounds. In addition, many of these compounds possess different biological activities of pharmacological interest. Moreover, some of these ethers (i.e., epoxides) have high chemical reactivity, and can be useful starting materials for further synthetic processes. This review aims to provide an overview of the different strategies that are found in Nature for the formation of these "bioethers". Both fundamental and practical insights of the biosynthetic processes will be discussed.
Collapse
|
32
|
Wang F, Mei Z, Qi Y, Yan C, Xiang S, Zhou Z, Hu Q, Wang J, Shi Y. Crystal structure of the MecA degradation tag. J Biol Chem 2009; 284:34376-81. [PMID: 19801546 PMCID: PMC2797205 DOI: 10.1074/jbc.m109.053033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/15/2009] [Indexed: 11/06/2022] Open
Abstract
MecA is an adaptor protein that regulates the assembly and activity of the ATP-dependent ClpCP protease in Bacillus subtilis. MecA contains two domains. Although the amino-terminal domain of MecA recruits substrate proteins such as ComK and ComS, the carboxyl-terminal domain (residues 121-218) has dual roles in the regulation and function of ClpCP protease. MecA-(121-218) facilitates the assembly of ClpCP oligomer, which is required for the protease activity of ClpCP. This domain was identified to be a non-recycling degradation tag that targets heterologous fusion proteins to the ClpCP protease for degradation. To elucidate the mechanism of MecA, we determined the crystal structure of MecA-(121-218) at 2.2 A resolution, which reveals a previously uncharacterized alpha/beta fold. Structure-guided mutagenesis allows identification of surface residues that are essential for the function of MecA. We also solved the structure of a carboxyl-terminal domain of YpbH, a paralogue of MecA in B. subtilis, at 2.4 A resolution. Despite low sequence identity, the two structures share essentially the same fold. The presence of MecA homologues in other bacterial species suggests conservation of a large family of unique degradation tags.
Collapse
Affiliation(s)
- Feng Wang
- From the
Ministry of Education Protein Science Laboratory and
| | - Ziqing Mei
- From the
Ministry of Education Protein Science Laboratory and
| | - Yutao Qi
- From the
Ministry of Education Protein Science Laboratory and
| | - Chuangye Yan
- State Key Laboratory of Biomembrane, Center for Structural Biology, School of Life Sciences, and
| | - Siheng Xiang
- From the
Ministry of Education Protein Science Laboratory and
| | - Zhiyuan Zhou
- From the
Ministry of Education Protein Science Laboratory and
| | - Qi Hu
- State Key Laboratory of Biomembrane, Center for Structural Biology, School of Life Sciences, and
| | - Jiawei Wang
- State Key Laboratory of Biomembrane, Center for Structural Biology, School of Life Sciences, and
| | - Yigong Shi
- From the
Ministry of Education Protein Science Laboratory and
- School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Liefhebber JMP, Brandt BW, Broer R, Spaan WJM, van Leeuwen HC. Hepatitis C virus NS4B carboxy terminal domain is a membrane binding domain. Virol J 2009; 6:62. [PMID: 19467155 PMCID: PMC2698844 DOI: 10.1186/1743-422x-6-62] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/25/2009] [Indexed: 12/14/2022] Open
Abstract
Background Hepatitis C virus (HCV) induces membrane rearrangements during replication. All HCV proteins are associated to membranes, pointing out the importance of membranes for HCV. Non structural protein 4B (NS4B) has been reported to induce cellular membrane alterations like the membranous web. Four transmembrane segments in the middle of the protein anchor NS4B to membranes. An amphipatic helix at the amino-terminus attaches to membranes as well. The carboxy-terminal domain (CTD) of NS4B is highly conserved in Hepaciviruses, though its function remains unknown. Results A cytosolic localization is predicted for the NS4B-CTD. However, using membrane floatation assays and immunofluorescence, we now show targeting of the NS4B-CTD to membranes. Furthermore, a profile-profile search, with an HCV NS4B-CTD multiple sequence alignment, indicates sequence similarity to the membrane binding domain of prokaryotic D-lactate dehydrogenase (d-LDH). The crystal structure of E. coli d-LDH suggests that the region similar to NS4B-CTD is located in the membrane binding domain (MBD) of d-LDH, implying analogy in membrane association. Targeting of d-LDH to membranes occurs via electrostatic interactions of positive residues on the outside of the protein with negative head groups of lipids. To verify that anchorage of d-LDH MBD and NS4B-CTD is analogous, NS4B-CTD mutants were designed to disrupt these electrostatic interactions. Membrane association was confirmed by swopping the membrane contacting helix of d-LDH with the corresponding domain of the 4B-CTD. Furthermore, the functionality of these residues was tested in the HCV replicon system. Conclusion Together these data show that NS4B-CTD is associated to membranes, similar to the prokaryotic d-LDH MBD, and is important for replication.
Collapse
Affiliation(s)
- Jolanda M P Liefhebber
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
34
|
Forneris F, Mattevi A. Enzymes without borders: mobilizing substrates, delivering products. Science 2008; 321:213-6. [PMID: 18621661 DOI: 10.1126/science.1151118] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many cellular reactions involve both hydrophobic and hydrophilic molecules that reside within the chemically distinct environments defined by the phospholipid-based membranes and the aqueous lumens of cytoplasm and organelles. Enzymes performing this type of reaction are required to access a lipophilic substrate located in the membranes and to catalyze its reaction with a polar, water-soluble compound. Here, we explore the different binding strategies and chemical tricks that enzymes have developed to overcome this problem. These reactions can be catalyzed by integral membrane proteins that channel a hydrophilic molecule into their active site, as well as by water-soluble enzymes that are able to capture a lipophilic substrate from the phospholipid bilayer. Many chemical and biological aspects of this type of enzymology remain to be investigated and will require the integration of protein chemistry with membrane biology.
Collapse
Affiliation(s)
- Federico Forneris
- Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | | |
Collapse
|
35
|
Leferink NGH, Heuts DPHM, Fraaije MW, van Berkel WJH. The growing VAO flavoprotein family. Arch Biochem Biophys 2008; 474:292-301. [PMID: 18280246 DOI: 10.1016/j.abb.2008.01.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/28/2008] [Accepted: 01/30/2008] [Indexed: 11/17/2022]
Abstract
The VAO flavoprotein family is a rapidly growing family of oxidoreductases that favor the covalent binding of the FAD cofactor. In this review we report on the catalytic properties of some newly discovered VAO family members and their mode of flavin binding. Covalent binding of the flavin is a self-catalytic post-translational modification primarily taking place in oxidases. Covalent flavinylation increases the redox potential of the cofactor and thus its oxidation power. Recent findings have revealed that some members of the VAO family anchor the flavin via a dual covalent linkage (6-S-cysteinyl-8alpha-N1-histidyl FAD). Some VAO-type aldonolactone oxidoreductases favor the non-covalent binding of the flavin cofactor. These enzymes act as dehydrogenases, using cytochrome c as electron acceptor.
Collapse
Affiliation(s)
- Nicole G H Leferink
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | |
Collapse
|
36
|
Abstract
The structural properties of alkyldihydroxyacetonephosphate synthase (ADPS) described by Razeto et al. (2007) in this issue of Structure provide new insights into how this peroxisomal flavoenzyme catalyzes a nonredox reaction in the conversion of an ester to an ether linkage in plasmologen biosynthesis.
Collapse
|
37
|
Razeto A, Mattiroli F, Bossi R, Coda A, Mattevi A. Identifying a recombinant alkyldihydroxyacetonephosphate synthase suited for crystallographic studies. Protein Expr Purif 2007; 55:343-51. [PMID: 17601746 DOI: 10.1016/j.pep.2007.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/04/2007] [Accepted: 05/08/2007] [Indexed: 11/20/2022]
Abstract
Alkyldihydroxyacetonephosphate is the building block for the biosynthesis of ether phospholipids, which are essential components of eukaryotic cell membranes and are involved in a variety of signaling processes. The metabolite is synthesized by alkyldihydroxyacetonephosphate synthase (ADPS), a peroxisomal flavoenzyme. Deficiency in ADPS activity causes rhizomelic chondrodysplasia punctata type 3, a very severe genetic disease. ADPS is unusual in that it uses a typical redox cofactor such as FAD to catalyze a non-redox reaction. With the goal of undertaking a structural investigation of the enzyme, we have characterized recombinant ADPS from different sources: Cavia porcellus, Drosophila melanogaster, Homo sapiens, Archaeoglobus fulgidus, and Dictyostelium discoideum. The protein from D. discoideum was found to be the best candidate for structural studies. We describe a protocol for expression and purification of large amounts of pure and stable enzyme in its holo (FAD-bound) form. A search of deletion mutants identified a protein variant that forms crystals diffracting up to 2A resolution.
Collapse
Affiliation(s)
- Adelia Razeto
- Dipartimento di Genetica e Microbiologia, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|