1
|
Park H, Gilbert J, Frey SL, Nylander T, Jackman JA. Adsorption and Spreading of Sponge-Phase Lipid Nanoparticles on SiO 2 and TiO 2 Surfaces: Ion-Specific Effects and Particle Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4113-4125. [PMID: 39924891 DOI: 10.1021/acs.langmuir.4c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Among different lipid nanoparticle systems, sponge-phase nanoparticles (SPNPs) have recently attracted interest due to their ability to encapsulate large macromolecules along with demonstrated high interfacial activity. The potential application of SPNPs calls for investigations into how buffer conditions affect SPNP structure and interfacial activity. Herein, we systematically investigated how different buffer conditions affect SPNP preparation by characterizing solution-phase colloidal properties and interfacial adsorption behavior on oxide surfaces. Dynamic light scattering, electrophoretic mobility, and small-angle X-ray scattering (SAXS) measurements showed that SPNPs prepared by the same dispersion method had similar size, charge, and internal structure largely independent of the buffer condition. Interestingly, however, the interfacial activity of the different SPNP samples depended strongly on the buffer condition used for nanoparticle preparation. Quartz crystal microbalance-dissipation (QCM-D) experiments revealed that certain buffer preparation conditions increased attractive SPNP-SiO2 surface interactions, which resulted in more favorable adsorption and structural rearrangements to form thin lipid layers. Some SPNP samples adsorbed and underwent structural rearrangements to form thin lipid layers on less energetically favorable TiO2 surfaces as well. These findings support that SPNPs have high interfacial activity and dynamic responsiveness that are affected by ion-specific buffer conditions and the physicochemical nature of the surface. The study also provides insight into how to formulate SPNPs to control their affinity to interfaces of relevance for biomedical applications.
Collapse
Affiliation(s)
- Hyeonjin Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jennifer Gilbert
- Division of Chemical Biology, Department of Life Science, Chalmers University of Technology, Gothenburg 41296, Sweden
- Department of Chemistry, Physical Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
- NanoLund, Lund University, Box 118, Lund SE-221 00, Sweden
| | - Shelli L Frey
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, Gettysburg College, Gettysburg, Pennsylvania 17325, United States
| | - Tommy Nylander
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, Physical Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
- NanoLund, Lund University, Box 118, Lund SE-221 00, Sweden
- LINXS Institute of Advanced Neutron and X-Ray Science, Scheelevägen 19, Lund SE-223 70, Sweden
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Brasnett C, Squires AM, Smith AJ, Seddon AM. Lipid doping of the sponge (L 3) mesophase. SOFT MATTER 2023; 19:6569-6577. [PMID: 37603381 DOI: 10.1039/d3sm00578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The polymorphism of lipid aggregates has long attracted detailed study due to the myriad factors that determine the final mesophase observed. This study is driven by the need to understand mesophase behaviour for a number of applications, such as drug delivery and membrane protein crystallography. In the case of the latter, the role of the so-called 'sponge' (L3) mesophase has been often noted, but not extensively studied by itself. The L3 mesophase can be formed in monoolein/water systems on the addition of butanediol to water, which partitions the headgroup region of the membrane, and decreases its elastic moduli. Like cubic mesophases, it is bicontinuous, but unlike them, has no long-range translational symmetry. In our present study, we show that the formation of the L3 phase can delicately depend on the addition of dopant lipids to the mesophase. While electrostatically neutral molecules similar in shape to monoolein (DOPE, cholesterol) have little effect on the general mesophase behaviour, others (DOPC, DDM) significantly reduce the composition at which it can form. Additionally, we show that by combining cholesterol with the anionic lipid DOPG, it is possible to form the largest stable L3 mesophases observed to date, with characteristic lengths over 220 Å.
Collapse
Affiliation(s)
| | - Adam M Squires
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Andrew J Smith
- Diamond House, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Fermi Ave., Didcot, OX11 0DE, UK
| | - Annela M Seddon
- School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK.
- Bristol Centre for Functional Nanomaterials, School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK
| |
Collapse
|
3
|
Martynowycz MW, Shiriaeva A, Ge X, Hattne J, Nannenga BL, Cherezov V, Gonen T. MicroED structure of the human adenosine receptor determined from a single nanocrystal in LCP. Proc Natl Acad Sci U S A 2021; 118:e2106041118. [PMID: 34462357 PMCID: PMC8433539 DOI: 10.1073/pnas.2106041118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs), or seven-transmembrane receptors, are a superfamily of membrane proteins that are critically important to physiological processes in the human body. Determining high-resolution structures of GPCRs without bound cognate signaling partners, such as a G protein, requires crystallization in lipidic cubic phase (LCP). GPCR crystals grown in LCP are often too small for traditional X-ray crystallography. These microcrystals are ideal for investigation by microcrystal electron diffraction (MicroED), but the gel-like nature of LCP makes traditional approaches to MicroED sample preparation insurmountable. Here, we show that the structure of a human A2A adenosine receptor can be determined by MicroED after converting the LCP into the sponge phase followed by focused ion-beam milling. We determined the structure of the A2A adenosine receptor to 2.8-Å resolution and resolved an antagonist in its orthosteric ligand-binding site, as well as four cholesterol molecules bound around the receptor. This study lays the groundwork for future structural studies of lipid-embedded membrane proteins by MicroED using single microcrystals that would be impossible with other crystallographic methods.
Collapse
Affiliation(s)
- Michael W Martynowycz
- HHMI, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
| | - Anna Shiriaeva
- Bridge Institute, University of Southern California Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90007
- Department of Chemistry, University of Southern California, Los Angeles, CA 90007
| | - Xuanrui Ge
- Bridge Institute, University of Southern California Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90007
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90007
| | - Johan Hattne
- HHMI, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
| | - Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Vadim Cherezov
- Bridge Institute, University of Southern California Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90007;
- Department of Chemistry, University of Southern California, Los Angeles, CA 90007
| | - Tamir Gonen
- HHMI, University of California, Los Angeles, CA 90095;
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
- Department of Physiology, University of California, Los Angeles, CA 90095
| |
Collapse
|
4
|
Caaveiro JMM, Tsumoto K. Molecular basis for the activation of actinoporins by lipids. Methods Enzymol 2021; 649:277-306. [PMID: 33712190 DOI: 10.1016/bs.mie.2021.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actinoporins are a family of homologous pore forming proteins from sea anemones. They are one of the few families of eukaryotic toxins that have been characterized in depth. Actinoporins are activated by lipids in the context of bilayers, especially in cell and in model membranes containing the lipid sphingomyelin. These proteins must undergo conformational changes induced upon interaction with lipids in the membrane, where they form cytotoxic pores causing cell death and lethality. Herein we review a list of procedures and techniques to study this family of toxins, with the goal of elucidating the physicochemical, thermodynamic and structural basis for their activation by lipids. The emerging picture indicates that actinoporins undergo a stepwise process that includes binding to the membrane, oligomerization, and pore formation, in this order. The key transformation from the inactive oligomer to the active pore is catalyzed by sphingomyelin, explaining the key role of this lipid in the function of actinoporins.
Collapse
Affiliation(s)
- Jose M M Caaveiro
- Department of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka-shi, Fukuoka, Japan.
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
5
|
Hederstedt L. Molecular Biology of Bacillus subtilis Cytochromes anno 2020. BIOCHEMISTRY (MOSCOW) 2021; 86:8-21. [DOI: 10.1134/s0006297921010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Membrane protein crystallography in the era of modern structural biology. Biochem Soc Trans 2020; 48:2505-2524. [DOI: 10.1042/bst20200066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The aim of structural biology has been always the study of biological macromolecules structures and their mechanistic behaviour at molecular level. To achieve its goal, multiple biophysical methods and approaches have become part of the structural biology toolbox. Considered as one of the pillars of structural biology, X-ray crystallography has been the most successful method for solving three-dimensional protein structures at atomic level to date. It is however limited by the success in obtaining well-ordered protein crystals that diffract at high resolution. This is especially true for challenging targets such as membrane proteins (MPs). Understanding structure-function relationships of MPs at the biochemical level is vital for medicine and drug discovery as they play critical roles in many cellular processes. Though difficult, structure determination of MPs by X-ray crystallography has significantly improved in the last two decades, mainly due to many relevant technological and methodological developments. Today, numerous MP crystal structures have been solved, revealing many of their mechanisms of action. Yet the field of structural biology has also been through significant technological breakthroughs in recent years, particularly in the fields of single particle electron microscopy (cryo-EM) and X-ray free electron lasers (XFELs). Here we summarise the most important advancements in the field of MP crystallography and the significance of these developments in the present era of modern structural biology.
Collapse
|
7
|
Schönhöfer PWA, Marechal M, Cleaver DJ, Schröder-Turk GE. Self-assembly and entropic effects in pear-shaped colloid systems. I. Shape sensitivity of bilayer phases in colloidal pear-shaped particle systems. J Chem Phys 2020; 153:034903. [PMID: 32716179 DOI: 10.1063/5.0007286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of particle shape in self-assembly processes is a double-edged sword. On the one hand, particle shape and particle elongation are often considered the most fundamental determinants of soft matter structure formation. On the other hand, structure formation is often highly sensitive to details of shape. Here, we address the question of particle shape sensitivity for the self-assembly of hard pear-shaped particles by studying two models for this system: (a) the pear hard Gaussian overlap (PHGO) and (b) the hard pears of revolution (HPR) model. Hard pear-shaped particles, given by the PHGO model, are known to form a bicontinuous gyroid phase spontaneously. However, this model does not replicate an additive object perfectly and, hence, varies slightly in shape from a "true" pear-shape. Therefore, we investigate in the first part of this series the stability of the gyroid phase in pear-shaped particle systems. We show, based on the HPR phase diagram, that the gyroid phase does not form in pears with such a "true" hard pear-shaped potential. Moreover, we acquire first indications from the HPR and PHGO pair-correlation functions that the formation of the gyroid is probably attributed to the small non-additive properties of the PHGO potential.
Collapse
Affiliation(s)
- Philipp W A Schönhöfer
- College of Science, Health, Engineering and Education, Mathematics and Statistics, Murdoch University, 90 South Street, 6150 Murdoch, WA, Australia
| | - Matthieu Marechal
- Institut für Theoretische Physik I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany
| | - Douglas J Cleaver
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Gerd E Schröder-Turk
- College of Science, Health, Engineering and Education, Mathematics and Statistics, Murdoch University, 90 South Street, 6150 Murdoch, WA, Australia
| |
Collapse
|
8
|
Enzyme encapsulation in nanostructured self-assembled structures: Toward biofunctional supramolecular assemblies. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Valldeperas M, Talaikis M, Dhayal SK, Velička M, Barauskas J, Niaura G, Nylander T. Encapsulation of Aspartic Protease in Nonlamellar Lipid Liquid Crystalline Phases. Biophys J 2019; 117:829-843. [PMID: 31422820 DOI: 10.1016/j.bpj.2019.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/04/2023] Open
Abstract
Encapsulation of proteins within lipid inverse bicontinuous cubic phases (Q2) has been widely studied for many applications, such as protein crystallization or drug delivery of proteins for food and pharmaceutical purposes. However, the use of the lipid sponge (L3) phase for encapsulation of proteins has not yet been well explored. Here, we have employed a lipid system that forms highly swollen sponge phases to entrap aspartic protease (34 kDa), an enzyme used for food processing, e.g., to control the cheese-ripening process. Small-angle x-ray scattering showed that although the L3 phase was maintained at low enzyme concentrations (≤15 mg/mL), higher concentration induces a transition to more curved structures, i.e., transition from L3 to inverse bicontinuous cubic (Q2) phase. The Raman spectroscopy data showed minor conformational changes assigned to the lipid molecules that confirm the lipid-protein interactions. However, the peaks assigned to the protein showed that the structure was not significantly affected. This was consistent with the higher activity presented by the encapsulated aspartic protease compared to the free enzyme stored at the same temperature. Finally, the encapsulation efficiency of aspartic protease in lipid sponge-like nanoparticles was 81% as examined by size-exclusion chromatography. Based on these results, we discuss the large potential of lipid sponge phases as carriers for proteins.
Collapse
Affiliation(s)
- Maria Valldeperas
- Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden; NanoLund, Lund University, Lund, Sweden
| | - Martynas Talaikis
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Martynas Velička
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| | | | - Gediminas Niaura
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Tommy Nylander
- Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden; NanoLund, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Talaikis M, Valldeperas M, Matulaitienė I, Borzova JL, Barauskas J, Niaura G, Nylander T. On the Molecular Interactions in Lipid Bilayer-Water Assemblies of Different Curvatures. J Phys Chem B 2019; 123:2662-2672. [PMID: 30785750 DOI: 10.1021/acs.jpcb.8b11387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work concerns the importance of intermolecular interactions present in aqueous lipid assembly systems depending on the type of aggregates they form. We have studied aqueous mixtures of diglycerol monooleate, Capmul glycerol monoleate (GMO-50) and polyoxyethylene (20) sorbitan monooleate (Polysorbate 80, P80) using small-angle X-ray scattering (SAXS) measurements to reveal the structure of liquid crystalline phases. On the basis of the SAXS data, a phase diagram was constructed. We discuss the effect of curvature changes of the lipid-aqueous interface obtained by changing the water content and the temperature. The results are related to the intermolecular interactions, as revealed by Raman spectroscopy, with a focus on the bilayer type of system of different curvature and bilayer flexibility, namely, the lamellar phase, bicontinuous cubic phase, and sponge phase. All phases show large similarities in their chain conformation and head group interactions as revealed by the Raman spectra, arising from the fact that all three structures are formed by lipid bilayers. However, subtle differences in the molecular organization of the sponge phase were revealed by employing Raman difference spectroscopy and by analysis of key spectroscopic indicators, which show a less dense hydrocarbon chain packing compared to the inverse bicontinuous cubic or lamellar phase.
Collapse
Affiliation(s)
- Martynas Talaikis
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center , Vilnius University , Sauletekio av. 7 , LT-10257 Vilnius , Lithuania
| | | | - Ieva Matulaitienė
- Department of Organic Chemistry , Center for Physical Sciences and Technology , Sauletekio av. 3 , LT-10257 Vilnius , Lithuania
| | - Jekaterina Latynis Borzova
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center , Vilnius University , Sauletekio av. 7 , LT-10257 Vilnius , Lithuania
| | - Justas Barauskas
- Camurus AB , Ideon Science Park, Gamma Building, Sölvegatan 41 , SE-22379 Lund , Sweden
| | - Gediminas Niaura
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center , Vilnius University , Sauletekio av. 7 , LT-10257 Vilnius , Lithuania
| | | |
Collapse
|
11
|
Zabara A, Meikle TG, Newman J, Peat TS, Conn CE, Drummond CJ. The nanoscience behind the art of in-meso crystallization of membrane proteins. NANOSCALE 2017; 9:754-763. [PMID: 27976759 DOI: 10.1039/c6nr07634c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The structural changes occurring at the nanoscale level within the lipid bilayer and driving the in-meso formation of large well-diffracting membrane protein crystals have been uniquely characterized for a model membrane protein, intimin. Importantly, the order to order transitions taking place within the bilayer and the lipidic nanostructures required for crystal growth have been shown to be general, occurring for both the cubic and the sponge mesophase crystallization pathways. For the first time, a transient fluid lamellar phase has been observed and unambiguously assigned for both crystallization pathways, present at the earliest stages of protein crystallogenesis but no longer observed once the crystals surpass the size of the average lyotropic liquid crystalline domain. The reported time-resolved structural investigation provides a significantly improved and general understanding of the nanostructural changes taking place within the mesophase during in-meso crystallization which is a fundamental advance in the enabling area of membrane protein structural biology.
Collapse
Affiliation(s)
- Alexandru Zabara
- RMIT University, School of Science, College of Science Engineering and Health 124 La Trobe Street, Melbourne, Victoria 3000, Australia. and Biomedical Manufacturing Program, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Thomas G Meikle
- School of Chemistry, Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Janet Newman
- Biomedical Manufacturing Program, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Thomas S Peat
- Biomedical Manufacturing Program, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Charlotte E Conn
- RMIT University, School of Science, College of Science Engineering and Health 124 La Trobe Street, Melbourne, Victoria 3000, Australia.
| | - Calum J Drummond
- RMIT University, School of Science, College of Science Engineering and Health 124 La Trobe Street, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
12
|
Absorption mechanism of DHP107, an oral paclitaxel formulation that forms a hydrated lipidic sponge phase. Acta Pharmacol Sin 2017; 38:133-145. [PMID: 27867185 DOI: 10.1038/aps.2016.105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/31/2016] [Indexed: 11/08/2022] Open
Abstract
Paclitaxel is a most widely used anticancer drug with low oral bioavailability, thus it is currently administered via intravenous infusion. DHP107 is a lipid-based paclitaxel formulation that can be administered as an oral solution. In this study, we investigated the mechanism of paclitaxel absorption after oral administration of DHP107 in mice and rats by changing the dosing interval, and evaluated the influence of bile excretion. DHP107 was orally administered to mice at various dosing intervals (2, 4, 8, 12, 24 h) to examine how residual DHP107 affected paclitaxel absorption during subsequent administration. Studies with small-angle X-ray diffraction (SAXS) and cryo-transmission electron microscopy (cryo-TEM) showed that DHP107 formed a lipidic sponge phase after hydration. The AUC values after the second dose were smaller than those after the first dose, which was correlated to the induction of expression of P-gp and CYP in the livers and small intestines from 2 h to 7 d after the first dose. The smaller AUC value observed after the second dose was also attributed to the intestinal adhesion of residual formulation. The adhered DHP107 may have been removed by ingested food, thus resulting in a higher AUC. In ex vivo and in vivo mucoadhesion studies, the formulation adhered to the villi for up to 24 h, and the amount of DHP107 that adhered was approximately half that of monoolein. The paclitaxel absorption after administration of DHP107 was not affected by bile in the cholecystectomy mice. The dosing interval and food intake affect the oral absorption of paclitaxel from DHP107, which forms a mucoadhesive sponge phase after hydration. Bile excretion does not affect the absorption of paclitaxel from DHP107 in vivo.
Collapse
|
13
|
Adrien V, Rayan G, Reffay M, Porcar L, Maldonado A, Ducruix A, Urbach W, Taulier N. Characterization of a Biomimetic Mesophase Composed of Nonionic Surfactants and an Aqueous Solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10268-10275. [PMID: 27618561 DOI: 10.1021/acs.langmuir.6b02744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have investigated the physical and biomimetic properties of a sponge (L3) phase composed of pentaethylene glycol monododecyl ether (C12E5), a nonionic surfactant, an aqueous solvent, and a cosurfactant. The following cosurfactants, commonly used for solubilizing membrane proteins, were incorporated: n-octyl-β-d-glucopyranoside (β-OG), n-dodecyl-β-d-maltopyranoside (DDM), 4-cyclohexyl-1-butyl-β-d-maltoside (CYMAL-4), and 5-cyclohexyl-1-pentyl-β-d-maltoside (CYMAL-5). Partial phase diagrams of these systems were created. The L3 phase was characterized using crossed polarizers, diffusion of a fluorescent probe by fluorescence recovery after pattern photobleaching (FRAPP), and freeze fracture electron microscopy (FFEM). By varying the hydration of the phase, we were able to tune the distance between adjacent bilayers. The characteristic distance (db) of the phase was obtained from small angle scattering (SAXS/SANS) as well as from FFEM, which yielded complementary db values. These db values were neither affected by the nature of the cosurfactant nor by the addition of membrane proteins. These findings illustrate that a biomimetic surfactant sponge phase can be created in the presence of several common membrane protein-solubilizing detergents, thus making it a versatile medium for membrane protein studies.
Collapse
Affiliation(s)
- V Adrien
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University; Université Paris Diderot Sorbonne Paris Cité; Sorbonne Universités UPMC Univ Paris 06, CNRS, 24 rue Lhomond, 75005 Paris, France
- Univ Paris Descartes, Sorbonne Paris Cité. Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR 8015, Paris, France
| | - G Rayan
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University; Université Paris Diderot Sorbonne Paris Cité; Sorbonne Universités UPMC Univ Paris 06, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - M Reffay
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University; Université Paris Diderot Sorbonne Paris Cité; Sorbonne Universités UPMC Univ Paris 06, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - L Porcar
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - A Maldonado
- Departamento de Física, Universidad de Sonora , Apdo Postal 1626, 83000 Hermosillo, Sonora Mexico
| | - A Ducruix
- Univ Paris Descartes, Sorbonne Paris Cité. Laboratoire de Cristallographie et RMN Biologiques, CNRS UMR 8015, Paris, France
| | - W Urbach
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University; Université Paris Diderot Sorbonne Paris Cité; Sorbonne Universités UPMC Univ Paris 06, CNRS, 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| | - N Taulier
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, F-75006, Paris, France
| |
Collapse
|
14
|
Valldeperas M, Wiśniewska M, Ram-On M, Kesselman E, Danino D, Nylander T, Barauskas J. Sponge Phases and Nanoparticle Dispersions in Aqueous Mixtures of Mono- and Diglycerides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8650-8659. [PMID: 27482838 DOI: 10.1021/acs.langmuir.6b01356] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The lipid liquid crystalline sponge phase (L3) has the advantages that it is a nanoscopically bicontinuous bilayer network able to accommodate large amounts of water and it is easy to manipulate due to its fluidity. This paper reports on the detailed characterization of L3 phases with water channels large enough to encapsulate bioactive macromolecules such as proteins. The aqueous phase behavior of a novel lipid mixture system, consisting of diglycerol monooleate (DGMO), and a mixture of mono-, di- and triglycerides (Capmul GMO-50) was studied. In addition, sponge-like nanoparticles (NPs) stabilized by Polysorbate 80 (P80) were prepared based on the DGMO/GMO-50 system, and their structure was correlated with the phase behavior of the corresponding bulk system. These NPs were characterized by dynamic light scattering (DLS), cryo-transmission electron microscopy (Cryo-TEM) and small angle X-ray scattering (SAXS) to determine their size, shape, and inner structure as a function of the DGMO/GMO-50 ratio. In addition, the effect of P80 as stabilizer was investigated. We found that the NPs have aqueous pores with diameters up to 13 nm, similar to the ones in the bulk phase.
Collapse
Affiliation(s)
- Maria Valldeperas
- Department of Physical Chemistry, Lund University , P.O. Box 124, SE-22100 Lund, Sweden
| | - Małgorzata Wiśniewska
- Biomedical Science, Faculty of Health and Society, Malmö University , P.O. Box 124, SE-20506 Malmö, Sweden
- Department of Chemistry, University of Bergen , P.O. Box 7803, 5020 Bergen, Norway
| | | | | | | | - Tommy Nylander
- Department of Physical Chemistry, Lund University , P.O. Box 124, SE-22100 Lund, Sweden
- NanoLund, Lund University , P.O. Box 118, SE-22100 Lund, Sweden
| | - Justas Barauskas
- Biomedical Science, Faculty of Health and Society, Malmö University , P.O. Box 124, SE-20506 Malmö, Sweden
- Camurus AB, Ideon Science Park, Gamma Building, Sölvegatan 41, SE-22379 Lund, Sweden
| |
Collapse
|
15
|
Tu Y, Peng F, Adawy A, Men Y, Abdelmohsen LKEA, Wilson DA. Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chem Rev 2015; 116:2023-78. [DOI: 10.1021/acs.chemrev.5b00344] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yingfeng Tu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Fei Peng
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Alaa Adawy
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yongjun Men
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Loai K. E. A. Abdelmohsen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Rayan G, Adrien V, Reffay M, Picard M, Ducruix A, Schmutz M, Urbach W, Taulier N. Surfactant bilayers maintain transmembrane protein activity. Biophys J 2015; 107:1129-1135. [PMID: 25185548 DOI: 10.1016/j.bpj.2014.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 06/21/2014] [Accepted: 07/07/2014] [Indexed: 11/26/2022] Open
Abstract
In vitro studies of membrane proteins are of interest only if their structure and function are significantly preserved. One approach is to insert them into the lipid bilayers of highly viscous cubic phases rendering the insertion and manipulation of proteins difficult. Less viscous lipid sponge phases are sometimes used, but their relatively narrow domain of existence can be easily disrupted by protein insertion. We present here a sponge phase consisting of nonionic surfactant bilayers. Its extended domain of existence and its low viscosity allow easy insertion and manipulation of membrane proteins. We show for the first time, to our knowledge, that transmembrane proteins, such as bacteriorhodopsin, sarcoplasmic reticulum Ca(2+)ATPase (SERCA1a), and its associated enzymes, are fully active in a surfactant phase.
Collapse
Affiliation(s)
- Gamal Rayan
- Laboratoire de Physique Statistique de l'École Normale Supérieure, UPMC, Université Paris Diderot, CNRS, UMR 8550, Paris, France
| | - Vladimir Adrien
- Laboratoire de Physique Statistique de l'École Normale Supérieure, UPMC, Université Paris Diderot, CNRS, UMR 8550, Paris, France; Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, CNRS, UMR 8015, Paris, France
| | - Myriam Reffay
- Laboratoire de Physique Statistique de l'École Normale Supérieure, UPMC, Université Paris Diderot, CNRS, UMR 8550, Paris, France
| | - Martin Picard
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, CNRS, UMR 8015, Paris, France
| | - Arnaud Ducruix
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, CNRS, UMR 8015, Paris, France
| | - Marc Schmutz
- Institut Charles Sadron - UPR 022 - CNRS - Unistra, Strasbourg, France
| | - Wladimir Urbach
- Laboratoire de Physique Statistique de l'École Normale Supérieure, UPMC, Université Paris Diderot, CNRS, UMR 8550, Paris, France; Sorbonnes Université Univ Paris 6, UMR 7371, UMR_S 1146, Laboratoire d'Imagerie Biomédicale, Paris, France; CNRS, UMR 7371, Laboratoire d'Imagerie Biomédicale, Paris, France; INSERM, UMR_S 1146, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - Nicolas Taulier
- Sorbonnes Université Univ Paris 6, UMR 7371, UMR_S 1146, Laboratoire d'Imagerie Biomédicale, Paris, France; CNRS, UMR 7371, Laboratoire d'Imagerie Biomédicale, Paris, France; INSERM, UMR_S 1146, Laboratoire d'Imagerie Biomédicale, Paris, France.
| |
Collapse
|
17
|
Angelov B, Angelova A, Drechsler M, Garamus VM, Mutafchieva R, Lesieur S. Identification of large channels in cationic PEGylated cubosome nanoparticles by synchrotron radiation SAXS and Cryo-TEM imaging. SOFT MATTER 2015; 11:3686-92. [PMID: 25820228 DOI: 10.1039/c5sm00169b] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Extra-large nanochannel formation in the internal structure of cationic cubosome nanoparticles results from the interplay between charge repulsion and steric stabilization of the lipid membrane interfaces and is evidenced by cryogenic transmission electron microscopy (Cryo-TEM) and synchrotron radiation small-angle X-ray scattering (SAXS). The swollen cubic symmetry of the lipid nanoparticles emerges through a shaping transition of onion bilayer vesicle intermediates containing a fusogenic nonlamellar lipid. Cationic amphiphile cubosome particles, thanks to the advantages of their liquid crystalline soft porous nanoarchitecture and capability for multi-drug nanoencapsulation, appear to be of interest for the design of mitochondrial targeting devices in anti-cancer therapies and as siRNA nanocarriers for gene silencing.
Collapse
Affiliation(s)
- Borislav Angelov
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Nam. 2, 16206 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
18
|
Tanaka K, Caaveiro JMM, Morante K, González-Mañas JM, Tsumoto K. Structural basis for self-assembly of a cytolytic pore lined by protein and lipid. Nat Commun 2015; 6:6337. [PMID: 25716479 PMCID: PMC4351601 DOI: 10.1038/ncomms7337] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022] Open
Abstract
Pore-forming toxins (PFT) are water-soluble proteins that possess the remarkable ability to self-assemble on the membrane of target cells, where they form pores causing cell damage. Here, we elucidate the mechanism of action of the haemolytic protein fragaceatoxin C (FraC), a α-barrel PFT, by determining the crystal structures of FraC at four different stages of the lytic mechanism, namely the water-soluble state, the monomeric lipid-bound form, an assembly intermediate and the fully assembled transmembrane pore. The structure of the transmembrane pore exhibits a unique architecture composed of both protein and lipids, with some of the lipids lining the pore wall, acting as assembly cofactors. The pore also exhibits lateral fenestrations that expose the hydrophobic core of the membrane to the aqueous environment. The incorporation of lipids from the target membrane within the structure of the pore provides a membrane-specific trigger for the activation of a haemolytic toxin. Actinoporins are water-soluble pore-forming toxins that self-assemble in the membranes of target cells. Here, the authors provide insight into the mechanism of membrane pore formation by solving the structures of several states of the hemolytic protein fragaceatoxin C, including the fully assembled pore.
Collapse
Affiliation(s)
- Koji Tanaka
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jose M M Caaveiro
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koldo Morante
- 1] Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan [2] Department of Biochemistry and Molecular Biology, University of the Basque Country, Lejona, Vizcaya 48940, Spain
| | - Juan Manuel González-Mañas
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Lejona, Vizcaya 48940, Spain
| | - Kouhei Tsumoto
- 1] Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan [2] Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan [3] Laboratory of Medical Proteomics, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
19
|
Caffrey M. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2015; 71:3-18. [PMID: 25615961 PMCID: PMC4304740 DOI: 10.1107/s2053230x14026843] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/05/2014] [Indexed: 01/12/2023]
Abstract
A comprehensive and up-to-date review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes is reported. Recent applications of the method for in situ serial crystallography at X-ray free-electron lasers and synchrotrons are described. The lipid cubic phase or in meso method is a robust approach for crystallizing membrane proteins for structure determination. The uptake of the method is such that it is experiencing what can only be described as explosive growth. This timely, comprehensive and up-to-date review introduces the reader to the practice of in meso crystallogenesis, to the associated challenges and to their solutions. A model of how crystallization comes about mechanistically is presented for a more rational approach to crystallization. The possible involvement of the lamellar and inverted hexagonal phases in crystallogenesis and the application of the method to water-soluble, monotopic and lipid-anchored proteins are addressed. How to set up trials manually and automatically with a robot is introduced with reference to open-access online videos that provide a practical guide to all aspects of the method. These range from protein reconstitution to crystal harvesting from the hosting mesophase, which is noted for its viscosity and stickiness. The sponge phase, as an alternative medium in which to perform crystallization, is described. The compatibility of the method with additive lipids, detergents, precipitant-screen components and materials carried along with the protein such as denaturants and reducing agents is considered. The powerful host and additive lipid-screening strategies are described along with how samples that have low protein concentration and cell-free expressed protein can be used. Assaying the protein reconstituted in the bilayer of the cubic phase for function is an important element of quality control and is detailed. Host lipid design for crystallization at low temperatures and for large proteins and complexes is outlined. Experimental phasing by heavy-atom derivatization, soaking or co-crystallization is routine and the approaches that have been implemented to date are described. An overview and a breakdown by family and function of the close to 200 published structures that have been obtained using in meso-grown crystals are given. Recommendations for conducting the screening process to give a more productive outcome are summarized. The fact that the in meso method also works with soluble proteins should not be overlooked. Recent applications of the method for in situ serial crystallography at X-ray free-electron lasers and synchrotrons are described. The review ends with a view to the future and to the bright prospects for the method, which continues to contribute to our understanding of the molecular mechanisms of some of nature’s most valued proteinaceous robots.
Collapse
Affiliation(s)
- Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Zheng X, Dong S, Zheng J, Li D, Li F, Luo Z. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants. Biotechnol Adv 2014; 32:564-74. [PMID: 24566241 DOI: 10.1016/j.biotechadv.2014.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/13/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022]
Abstract
G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration.
Collapse
Affiliation(s)
- Xuan Zheng
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Shuangshuang Dong
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Jie Zheng
- College of laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Duanhua Li
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Feng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
21
|
Evenbratt H, Nordstierna L, Ericson MB, Engström S. Cubic and sponge phases in ether lipid-solvent-water ternary systems: phase behavior and NMR characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13058-13065. [PMID: 24060205 DOI: 10.1021/la402732a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The phase behavior of 1-glyceryl monoleyl ether (GME) in mixtures of water and the solvents 1,5-pentanediol (POL) or N-methyl-2-pyrrolidone (NMP) was investigated by ocular inspection, polarization microscopy, and small-angle X-ray diffraction (SAXD). Phase diagrams were constructed based on analyses of more than 200 samples prepared using the two different solvents at 20 °C. The inverse hexagonal phase formed by GME in excess of water was transformed into the cubic and sponge phase with the increasing amount of each solvent. Particularly POL allowed for the formation of an extended sponge phase area in the phase diagram, comprising up to 70% POL-water mixture. The phase behavior using NMP was found to be similar to the earlier investigated solvent propylene glycol. The extended sponge phase for the POL system was attributed to POLs strong surface/interfacial activity with the potential to stabilize the polar/apolar interface of the sponge phase. The cubic and sponge phases formed using POL were further studied by NMR in order to measure the partitioning of POL between the lipid and aqueous domains of the phases. The domain partition coefficient K (lipid domain/aqueous domain) for POL in cubic and sponge phases was found to be 0.78 ± 0.14 and constant for the two phases.
Collapse
Affiliation(s)
- Hanne Evenbratt
- Department of Chemical and Biological Engineering, Pharmaceutical Technology, Chalmers University of Technology , SE-41296 Gothenburg, Sweden
| | | | | | | |
Collapse
|
22
|
Kulichikhin VG, Yampolskaya GP. Colloid-chemical aspects of protein crystallization. Russ Chem Bull 2013. [DOI: 10.1007/s11172-013-0045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
23
|
Recent Developments in the Production, Analysis, and Applications of Cubic Phases Formed by Lipids. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-411515-6.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Li D, Boland C, Aragao D, Walsh K, Caffrey M. Harvesting and cryo-cooling crystals of membrane proteins grown in lipidic mesophases for structure determination by macromolecular crystallography. J Vis Exp 2012:e4001. [PMID: 22971942 PMCID: PMC3485064 DOI: 10.3791/4001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
An important route to understanding how proteins function at a mechanistic level is to have the structure of the target protein available, ideally at atomic resolution. Presently, there is only one way to capture such information as applied to integral membrane proteins (Figure 1), and the complexes they form, and that method is macromolecular X-ray crystallography (MX). To do MX diffraction quality crystals are needed which, in the case of membrane proteins, do not form readily. A method for crystallizing membrane proteins that involves the use of lipidic mesophases, specifically the cubic and sponge phases1-5, has gained considerable attention of late due to the successes it has had in the G protein-coupled receptor field6-21 (www.mpdb.tcd.ie). However, the method, henceforth referred to as the in meso or lipidic cubic phase method, comes with its own technical challenges. These arise, in part, due to the generally viscous and sticky nature of the lipidic mesophase in which the crystals, which are often micro-crystals, grow. Manipulating crystals becomes difficult as a result and particularly so during harvesting22,23. Problems arise too at the step that precedes harvesting which requires that the glass sandwich plates in which the crystals grow (Figure 2)24,25 are opened to expose the mesophase bolus, and the crystals therein, for harvesting, cryo-cooling and eventual X-ray diffraction data collection. The cubic and sponge mesophase variants (Figure 3) from which crystals must be harvested have profoundly different rheologies4,26. The cubic phase is viscous and sticky akin to a thick toothpaste. By contrast, the sponge phase is more fluid with a distinct tendency to flow. Accordingly, different approaches for opening crystallization wells containing crystals growing in the cubic and the sponge phase are called for as indeed different methods are required for harvesting crystals from the two mesophase types. Protocols for doing just that have been refined and implemented in the Membrane Structural and Functional Biology (MS&FB) Group, and are described in detail in this JoVE article (Figure 4). Examples are given of situations where crystals are successfully harvested and cryo-cooled. We also provide examples of cases where problems arise that lead to the irretrievable loss of crystals and describe how these problems can be avoided. In this article the Viewer is provided with step-by-step instructions for opening glass sandwich crystallization wells, for harvesting and for cryo-cooling crystals of membrane proteins growing in cubic and in sponge phases.
Collapse
Affiliation(s)
- Dianfan Li
- Membrane Structural and Functional Biology Group, Schools of Medicine and Biochemistry & Immunology, Trinity College Dublin, Ireland
| | | | | | | | | |
Collapse
|
25
|
Caffrey M, Li D, Dukkipati A. Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry 2012; 51:6266-88. [PMID: 22783824 DOI: 10.1021/bi300010w] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The crystal structure of the β(2)-adrenergic receptor in complex with an agonist and its cognate G protein has just recently been determined. It is now possible to explore in molecular detail the means by which this paradigmatic transmembrane receptor binds agonist, communicates the impulse or signaling event across the membrane, and sets in motion a series of G protein-directed intracellular responses. The structure was determined using crystals of the ternary complex grown in a rationally designed lipidic mesophase by the so-called in meso method. The method is proving to be particularly useful in the G protein-coupled receptor field where the structures of 13 distinct receptor types have been determined in the past 5 years. In addition to receptors, the method has proven to be useful with a wide variety of integral membrane protein classes that include bacterial and eukaryotic rhodopsins, light-harvesting complex II (LHII), photosynthetic reaction centers, cytochrome oxidases, β-barrels, an exchanger, and an integral membrane peptide. This attests to the versatility and range of the method and supports the view that the in meso method should be included in the arsenal of the serious membrane structural biologist. For this to happen, however, the reluctance to adopt it attributable, in part, to the anticipated difficulties associated with handling the sticky, viscous cubic mesophase in which crystals grow must be overcome. Harvesting and collecting diffraction data with the mesophase-grown crystals are also viewed with some trepidation. It is acknowledged that there are challenges associated with the method. Over the years, we have endeavored to establish how the method works at a molecular level and to make it user-friendly. To these ends, tools for handling the mesophase in the pico- to nanoliter volume range have been developed for highly efficient crystallization screening in manual and robotic modes. Methods have been implemented for evaluating the functional activity of membrane proteins reconstituted into the bilayer of the cubic phase as a prelude to crystallogenesis. Glass crystallization plates that provide unparalleled optical quality and sensitivity to nascent crystals have been built. Lipid and precipitant screens have been designed for a more rational approach to crystallogenesis such that the method can now be applied to an even wider variety of membrane protein types. In this work, these assorted advances are outlined along with a summary of the membrane proteins that have yielded to the method. The prospects for and the challenges that must be overcome to further develop the method are described.
Collapse
Affiliation(s)
- Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
26
|
Bolla JR, Su CC, Yu EW. Biomolecular membrane protein crystallization. PHILOSOPHICAL MAGAZINE (ABINGDON, ENGLAND) 2012; 92:2648-2661. [PMID: 23869195 PMCID: PMC3712538 DOI: 10.1080/14786435.2012.670734] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Integral membrane proteins comprise approximately 30% of the sequenced genomes, and there is an immediate need for their high-resolution structural information. Currently, the most reliable approach to obtain these structures is x-ray crystallography. However, obtaining crystals of membrane proteins that diffract to high resolution appears to be quite challenging, and remains a major obstacle in structural determination. This brief review summarizes a variety of methodologies for use in crystallizing these membrane proteins. Hopefully, by introducing the available methods, techniques, and providing a general understanding of membrane proteins, a rational decision can be made about now to crystallize these complex materials.
Collapse
Affiliation(s)
- Jani Reddy Bolla
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Chih-Chia Su
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Edward W. Yu
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
27
|
Kubicek J, Schlesinger R, Baeken C, Büldt G, Schäfer F, Labahn J. Controlled in meso phase crystallization--a method for the structural investigation of membrane proteins. PLoS One 2012; 7:e35458. [PMID: 22536388 PMCID: PMC3334905 DOI: 10.1371/journal.pone.0035458] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 03/18/2012] [Indexed: 11/19/2022] Open
Abstract
We investigated in meso crystallization of membrane proteins to develop a fast screening technology which combines features of the well established classical vapor diffusion experiment with the batch meso phase crystallization, but without premixing of protein and monoolein. It inherits the advantages of both methods, namely (i) the stabilization of membrane proteins in the meso phase, (ii) the control of hydration level and additive concentration by vapor diffusion. The new technology (iii) significantly simplifies in meso crystallization experiments and allows the use of standard liquid handling robots suitable for 96 well formats. CIMP crystallization furthermore allows (iv) direct monitoring of phase transformation and crystallization events. Bacteriorhodopsin (BR) crystals of high quality and diffraction up to 1.3 Å resolution have been obtained in this approach. CIMP and the developed consumables and protocols have been successfully applied to obtain crystals of sensory rhodopsin II (SRII) from Halobacterium salinarum for the first time.
Collapse
Affiliation(s)
| | - Ramona Schlesinger
- Molecular Biophysics, Institute of Structural Biology and Biophysics (ISB-2), Research Center Jülich, Jülich, Germany
| | - Christian Baeken
- Molecular Biophysics, Institute of Structural Biology and Biophysics (ISB-2), Research Center Jülich, Jülich, Germany
| | - Georg Büldt
- Molecular Biophysics, Institute of Structural Biology and Biophysics (ISB-2), Research Center Jülich, Jülich, Germany
| | | | - Jörg Labahn
- Molecular Biophysics, Institute of Structural Biology and Biophysics (ISB-2), Research Center Jülich, Jülich, Germany
| |
Collapse
|
28
|
HU YT, ZHANG CY, MA XL, YIN DC. Progresses on Crystallization Methodology of Membrane Proteins*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Abstract
G-protein-coupled receptors (GPCRs) are one of the most challenging targets in structural biology. To successfully solve a high-resolution GPCR structure, several experimental obstacles must be overcome, including expression, extraction, purification, and crystallization. As a result, there are only a handful of unique structures reported from this protein superfamily, which consists of over 800 members. In the past few years, however, there has been an increase in the amount of solved GPCR structures, and a few high-impact structures have been determined: the peptide receptor CXCR4, the agonist bound receptors, and the GPCR-G protein complex. The dramatic progress in GPCR structural studies is not due to the development of any single technique, but a combination of new techniques, new tools and new concepts. Here, we summarize the progress made for GPCR expression, purification, and crystallization, and we highlight the technical advances that will facilitate the future determination of GPCR structures.
Collapse
|
30
|
Lipidic phase membrane protein serial femtosecond crystallography. Nat Methods 2012; 9:263-5. [PMID: 22286383 DOI: 10.1038/nmeth.1867] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 12/16/2011] [Indexed: 11/08/2022]
Abstract
X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.
Collapse
|
31
|
Labahn J, Kubicek J, Schäfer F. Vapor diffusion-controlled meso crystallization of membrane proteins. Methods Mol Biol 2012; 914:17-24. [PMID: 22976020 DOI: 10.1007/978-1-62703-023-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The presented method to crystallize membrane proteins combines the advantages of the meso-phase crystallization method and the classical vapor diffusion crystallization. It allows fast screening of crystallization conditions employing automated liquid handlers suited for the 96-well crystallization format.
Collapse
Affiliation(s)
- J Labahn
- Institute for Structural Biology and Biophysics, Research Center Jülich, Jülich, Germany.
| | | | | |
Collapse
|
32
|
Wallace E, Dranow D, Laible PD, Christensen J, Nollert P. Monoolein lipid phases as incorporation and enrichment materials for membrane protein crystallization. PLoS One 2011; 6:e24488. [PMID: 21909395 PMCID: PMC3164205 DOI: 10.1371/journal.pone.0024488] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 08/11/2011] [Indexed: 11/19/2022] Open
Abstract
The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive crystallization parameters. Finally, we provide a model that explains the incorporation of the membrane protein from solution into the lipid phase via a portal lamellar phase.
Collapse
Affiliation(s)
- Ellen Wallace
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - David Dranow
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - Philip D. Laible
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Jeff Christensen
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| | - Peter Nollert
- Emerald BioStructures, Bainbridge Island, Washington, United States of America
| |
Collapse
|
33
|
Joseph JS, Liu W, Kunken J, Weiss TM, Tsuruta H, Cherezov V. Characterization of lipid matrices for membrane protein crystallization by high-throughput small angle X-ray scattering. Methods 2011; 55:342-9. [PMID: 21903166 DOI: 10.1016/j.ymeth.2011.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022] Open
Abstract
The lipidic cubic phase (LCP) has repeatedly proven to serve as a successful membrane-mimetic matrix for a variety of difficult-to-crystallize membrane proteins. While monoolein has been the predominant lipid of choice, there is a growing need for the characterization and use of other LCP host lipids, allowing exploration of a range of structural parameters such as bilayer thickness and curvature for optimal insertion, stability and crystallogenesis of membrane proteins. Here, we describe the development of a high-throughput (HT) pipeline to employ small angle X-ray scattering (SAXS) - the most direct technique to identify lipid mesophases and measure their structural parameters - to interrogate rapidly a large number of lipid samples under a variety of conditions, similar to those encountered during crystallization. Leveraging the identical setup format for LCP crystallization trials, this method allows the quickly assessment of lipid matrices for their utility in membrane protein crystallization, and could inform the tailoring of lipid and precipitant conditions to overcome specific crystallization challenges. As proof of concept, we present HT LCP-SAXS analysis of lipid samples made of monoolein with and without cholesterol, and of monovaccenin, equilibrated with solutions used for crystallization trials and LCP fluorescence recovery after photobleaching (FRAP) experiments.
Collapse
Affiliation(s)
- Jeremiah S Joseph
- Department of Molecular Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
34
|
Cherezov V. Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 2011; 21:559-66. [PMID: 21775127 DOI: 10.1016/j.sbi.2011.06.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/06/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
Lipidic cubic phase (LCP) is a membrane-mimetic matrix suitable for stabilization and crystallization of membrane proteins in lipidic environment. LCP technologies, however, have not been fully embraced by the membrane protein structural biology community, primarily because of the difficulties associated with handling viscous materials. Recent developments of pre-crystallization assays and improvements in crystal imaging, successes in obtaining high resolution structures of G protein-coupled receptors (GPCRs), and commercial availability of LCP tools and instruments are beginning to attract structural biologists to integrate LCP technologies in their research. This wider acceptance should translate to an increased number of otherwise difficult-to-crystallize membrane protein structures, shedding light on their functional mechanisms and on structural details of lipid-protein interactions.
Collapse
Affiliation(s)
- Vadim Cherezov
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
35
|
Caffrey M. Crystallizing membrane proteins for structure-function studies using lipidic mesophases. Biochem Soc Trans 2011; 39:725-32. [PMID: 21599641 PMCID: PMC3739445 DOI: 10.1042/bst0390725] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The lipidic cubic phase method for crystallizing membrane proteins has posted some high-profile successes recently. This is especially true in the area of G-protein-coupled receptors, with six new crystallographic structures emerging in the last 3½ years. Slowly, it is becoming an accepted method with a proven record and convincing generality. However, it is not a method that is used in every membrane structural biology laboratory and that is unfortunate. The reluctance in adopting it is attributable, in part, to the anticipated difficulties associated with handling the sticky viscous cubic mesophase in which crystals grow. Harvesting and collecting diffraction data with the mesophase-grown crystals is also viewed with some trepidation. It is acknowledged that there are challenges associated with the method. However, over the years, we have worked to make the method user-friendly. To this end, tools for handling the mesophase in the pico- to nano-litre volume range have been developed for efficient crystallization screening in manual and robotic modes. Glass crystallization plates have been built that provide unparalleled optical quality and sensitivity to nascent crystals. Lipid and precipitant screens have been implemented for a more rational approach to crystallogenesis, such that the method can now be applied to a wide variety of membrane protein types and sizes. In the present article, these assorted advances are outlined, along with a summary of the membrane proteins that have yielded to the method. The challenges that must be overcome to develop the method further are described.
Collapse
Affiliation(s)
- Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Biochemistry and Immunology, and School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
36
|
Abstract
The determination of membrane structures presents the structural biologist with many challenges; however, the last two years have seen major advances in our ability to resolve these structures at atomic resolution. My goal here is to summarize some of the most recent advances that have enhanced our prospects for understanding membrane proteins at the level of atomic structure.
Collapse
Affiliation(s)
- Robert Michael Stroud
- Department of Biochemistry & Biophysics, University of California San Francisco, S-412C Genentech Hall, 600 16th Street, San Francisco, CA 94158-2517 USA
| |
Collapse
|
37
|
Yaghmur A, Sartori B, Rappolt M. The role of calcium in membrane condensation and spontaneous curvature variations in model lipidic systems. Phys Chem Chem Phys 2011; 13:3115-25. [DOI: 10.1039/c0cp01036g] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Angelov B, Angelova A, Mutafchieva R, Lesieur S, Vainio U, Garamus VM, Jensen GV, Pedersen JS. SAXS investigation of a cubic to a sponge (L3) phase transition in self-assembled lipid nanocarriers. Phys Chem Chem Phys 2011; 13:3073-81. [DOI: 10.1039/c0cp01029d] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Kulkarni CV, Wachter W, Iglesias-Salto G, Engelskirchen S, Ahualli S. Monoolein: a magic lipid? Phys Chem Chem Phys 2011; 13:3004-21. [DOI: 10.1039/c0cp01539c] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Früh V, IJzerman AP, Siegal G. How to catch a membrane protein in action: a review of functional membrane protein immobilization strategies and their applications. Chem Rev 2010; 111:640-56. [PMID: 20831158 DOI: 10.1021/cr900088s] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Virginie Früh
- Division of Medicinal Chemistry, Leiden Amsterdam Center for Drug Research, Leiden University, The Netherlands
| | | | | |
Collapse
|
41
|
Lee JK, Stroud RM. Unlocking the eukaryotic membrane protein structural proteome. Curr Opin Struct Biol 2010; 20:464-70. [PMID: 20739007 PMCID: PMC3530418 DOI: 10.1016/j.sbi.2010.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/09/2010] [Indexed: 10/19/2022]
Abstract
Most of the 231 unique membrane protein structures (as of 3/2010) are of bacterial membrane proteins (MPs) expressed in bacteria, or eukaryotic MPs from natural sources. However eukaryotic membrane proteins, especially those with more than three membrane crossings rarely succumb to any suitable expression in bacterial cells. They typically require expression in eukaryotic cells that can provide appropriate endoplasmic reticulum, chaperones, targeting and post-translational processing. In evidence, only approximately 20 eukaryotic MP structures have resulted from heterologous expression. This is required for a general approach to target particular human or pathogen membrane proteins of importance to human health. The first of these appeared in 2005. Our review addresses the special issues that pertain to the expression of eukaryotic and human membrane proteins, and recent advances in the tool kit for crystallization and structure determination.
Collapse
Affiliation(s)
- John Kyongwon Lee
- Department of Biochemistry & Biophysics, University of California, San Francisco, S-412C Genentech Hall, 600 16th Street, San Francisco, CA 94158-2517. 415-476-4224, FAX: 415-476-1902, ,
| | - Robert Michael Stroud
- Department of Biochemistry & Biophysics, University of California, San Francisco, S-412C Genentech Hall, 600 16th Street, San Francisco, CA 94158-2517. 415-476-4224, FAX: 415-476-1902, ,
| |
Collapse
|
42
|
Crystallography of membrane proteins: from crystallization to structure. Methods Mol Biol 2010. [PMID: 20665262 DOI: 10.1007/978-1-60761-762-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Although crystallographic studies of membrane proteins have progressed in the last 5 years, the field still remains challenging with several severe bottlenecks. The chapter focuses on the crystallization and describes two approaches, the classical vapor diffusion method and the more recent use of lipidic phases. General aspects on the crystallization principles as well as more practical details are given. In a more synthetic way, the chapter also addresses how structures are solved by X-ray crystallography, and highlights aspects that are specific to membrane proteins.
Collapse
|
43
|
Li L, Fu Q, Kors CA, Stewart L, Nollert P, Laible PD, Ismagilov RF. A Plug-Based Microfluidic System for Dispensing Lipidic Cubic Phase (LCP) Material Validated by Crystallizing Membrane Proteins in Lipidic Mesophases. MICROFLUIDICS AND NANOFLUIDICS 2010; 8:789-798. [PMID: 20473353 PMCID: PMC2868346 DOI: 10.1007/s10404-009-0512-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This paper presents a plug-based microfluidic system to dispense nanoliter-volume plugs of Lipidic Cubic Phase (LCP) material and subsequently merge the LCP plugs with aqueous plugs. This system was validated by crystallizing membrane proteins in lipidic mesophases, including LCP. This system allows for accurate dispensing of LCP material in nanoliter volumes, prevents inadvertent phase transitions that may occur due to dehydration by enclosing LCP in plugs, and is compatible with the traditional method of forming LCP material using a membrane protein sample, as shown by the successful crystallization of bacteriorhodopsin from Halobacterium salinarum. Conditions for the formation of LCP plugs were characterized and presented in a phase diagram. This system was also implemented using two different methods of introducing the membrane protein: 1) the traditional method of generating the LCP material using a membrane protein sample and 2) Post LCP-formation Incorporation (PLI), which involves making LCP material without protein, adding the membrane protein sample externally to the LCP material, and allowing the protein to diffuse into the LCP material or into other lipidic mesophases that may result from phase transitions. Crystals of bacterial photosynthetic reaction centers from Rhodobacter sphaeroides and Blastochloris viridis were obtained using PLI. The plug-based, LCP-assisted microfluidic system, combined with the PLI method for introducing membrane protein into LCP, should be useful for minimizing consumption of samples and broadening the screening of parameter space in membrane protein crystallization.
Collapse
Affiliation(s)
- Liang Li
- Department of Chemistry and Institute for Biophysical Dynamics The University of Chicago, 929 East 57Street, Chicago, IL, 60637
| | - Qiang Fu
- Department of Chemistry and Institute for Biophysical Dynamics The University of Chicago, 929 East 57Street, Chicago, IL, 60637
| | - Christopher A. Kors
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439
| | | | - Peter Nollert
- Emerald BioSystems, Inc., 7869 NE Day Rd. W, Bainbridge Island, WA 98110
| | - Philip D. Laible
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439
| | - Rustem F. Ismagilov
- Department of Chemistry and Institute for Biophysical Dynamics The University of Chicago, 929 East 57Street, Chicago, IL, 60637
| |
Collapse
|
44
|
In Cubo Crystallization of Membrane Proteins. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-381266-7.00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
45
|
Wöhri AB, Wahlgren WY, Malmerberg E, Johansson LC, Neutze R, Katona G. Lipidic sponge phase crystal structure of a photosynthetic reaction center reveals lipids on the protein surface. Biochemistry 2009; 48:9831-8. [PMID: 19743880 DOI: 10.1021/bi900545e] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane proteins are embedded in a lipid bilayer and maintain strong interactions with lipid molecules. Tightly bound lipids are responsible for vertical positioning and integration of proteins in the membrane and for assembly of multisubunit complexes and occasionally act as substrates. In this work we present the lipidic sponge phase crystal structure of the reaction center from Blastochloris viridis to 1.86 A, which reveals lipid molecules interacting with the protein surface. A diacylglycerol molecule is bound, through a thioether bond, to the N-terminus of the tetraheme cytochrome c subunit. From the electron density recovered at the Q(B) site and the observed change in recombination kinetics in lipidic sponge phase-grown crystals, the mobile ubiquinone appears to be displaced by a monoolein molecule. A 36 A long electron density feature is observed at the interface of transmembrane helices belonging to the H- and M-subunits, probably arising from an unidentified lipid.
Collapse
Affiliation(s)
- Annemarie B Wöhri
- Department of Chemical and Biological Engineering, Molecular Biotechnology, Chalmers University of Technology, SE-405 30 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Caffrey M. Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu Rev Biophys 2009; 38:29-51. [PMID: 19086821 DOI: 10.1146/annurev.biophys.050708.133655] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The principal route to determine the structure and the function and interactions of membrane proteins is via macromolecular crystallography. For macromolecular crystallography to be successful, structure-quality crystals of the target protein must be forthcoming, and crystallogenesis represents a major challenge. Several techniques are employed to crystallize membrane proteins, and the bulk of these techniques make direct use of solubilized protein-surfactant complexes by the more traditional, so-called in surfo methods. An alternative in meso approach, which employs a bicontinuous lipidic mesophase, has emerged as a method with considerable promise in part because it involves reconstitution of the solubilized protein back into a stabilizing and organizing lipid bilayer reservoir as a prelude to crystallogenesis. A hypothesis for how the method works at the molecular level and experimental evidence in support of the proposal are reviewed here. The latest advances, successes, and challenges associated with the method are described.
Collapse
|
47
|
Chapter 6 Membrane Protein Crystallization: Approaching the Problem and Understanding the Solutions. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)63006-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Cherezov V, Liu J, Griffith M, Hanson MA, Stevens RC. LCP-FRAP Assay for Pre-Screening Membrane Proteins for in Meso Crystallization. CRYSTAL GROWTH & DESIGN 2008; 8:4307-4315. [PMID: 19234616 PMCID: PMC2645078 DOI: 10.1021/cg800778j] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Fluorescence recovery after photobleaching was used to study the diffusion of two integral membrane proteins, bacteriorhodopsin and beta2-adrenergic receptor, in lipidic cubic phase (LCP). We found that the diffusion properties within the LCP matrix strongly depend on the protein construct and applied screening conditions. Common precipitants often induce restriction on diffusion of proteins in LCP and thereby impede their chances for crystallization. A high protein mobile fraction and a fast diffusion rate correlate very well with known crystallization conditions. Using this knowledge, one can now pre-screen precipitant conditions with microgram quantities of material to rule out conditions that are not conducive to diffusion, nucleation, and crystal growth. The results of this assay will narrow membrane protein crystallization space by identifying suitable protein constructs, stabilizing compounds and precipitant conditions amenable to in meso crystallization. Crystallization pre-screening will significantly increase the chances of obtaining initial crystal hits, expediting efforts in generating high-resolution structures of challenging membrane protein targets.
Collapse
|