1
|
Tripathi A, Dubey KD. The mechanistic insights into different aspects of promiscuity in metalloenzymes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:23-66. [PMID: 38960476 DOI: 10.1016/bs.apcsb.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Enzymes are nature's ultimate machinery to catalyze complex reactions. Though enzymes are evolved to catalyze specific reactions, they also show significant promiscuity in reactions and substrate selection. Metalloenzymes contain a metal ion or metal cofactor in their active site, which is crucial in their catalytic activity. Depending on the metal and its coordination environment, the metal ion or cofactor may function as a Lewis acid or base and a redox center and thus can catalyze a plethora of natural reactions. In fact, the versatility in the oxidation state of the metal ions provides metalloenzymes with a high level of catalytic adaptability and promiscuity. In this chapter, we discuss different aspects of promiscuity in metalloenzymes by using several recent experimental and theoretical works as case studies. We start our discussion by introducing the concept of promiscuity and then we delve into the mechanistic insight into promiscuity at the molecular level.
Collapse
Affiliation(s)
- Ankita Tripathi
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
2
|
Kazan IC, Mills JH, Ozkan SB. Allosteric regulatory control in dihydrofolate reductase is revealed by dynamic asymmetry. Protein Sci 2023; 32:e4700. [PMID: 37313628 PMCID: PMC10357497 DOI: 10.1002/pro.4700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
We investigated the relationship between mutations and dynamics in Escherichia coli dihydrofolate reductase (DHFR) using computational methods. Our study focused on the M20 and FG loops, which are known to be functionally important and affected by mutations distal to the loops. We used molecular dynamics simulations and developed position-specific metrics, including the dynamic flexibility index (DFI) and dynamic coupling index (DCI), to analyze the dynamics of wild-type DHFR and compared our results with existing deep mutational scanning data. Our analysis showed a statistically significant association between DFI and mutational tolerance of the DHFR positions, indicating that DFI can predict functionally beneficial or detrimental substitutions. We also applied an asymmetric version of our DCI metric (DCIasym ) to DHFR and found that certain distal residues control the dynamics of the M20 and FG loops, whereas others are controlled by them. Residues that are suggested to control the M20 and FG loops by our DCIasym metric are evolutionarily nonconserved; mutations at these sites can enhance enzyme activity. On the other hand, residues controlled by the loops are mostly deleterious to function when mutated and are also evolutionary conserved. Our results suggest that dynamics-based metrics can identify residues that explain the relationship between mutation and protein function or can be targeted to rationally engineer enzymes with enhanced activity.
Collapse
Affiliation(s)
- I. Can Kazan
- Center for Biological Physics and Department of PhysicsArizona State UniversityTempeArizonaUSA
| | - Jeremy H. Mills
- School of Molecular Sciences and The Biodesign Center for Molecular Design and BiomimeticsArizona State UniversityTempeArizonaUSA
| | - S. Banu Ozkan
- Center for Biological Physics and Department of PhysicsArizona State UniversityTempeArizonaUSA
| |
Collapse
|
3
|
Cetin E, Atilgan AR, Atilgan C. DHFR Mutants Modulate Their Synchronized Dynamics with the Substrate by Shifting Hydrogen Bond Occupancies. J Chem Inf Model 2022; 62:6715-6726. [PMID: 35984987 PMCID: PMC9795552 DOI: 10.1021/acs.jcim.2c00507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Antibiotic resistance is a global health problem in which mutations occurring in functional proteins render drugs ineffective. The working mechanisms of the arising mutants are seldom apparent; a methodology to decipher these mechanisms systematically would render devising therapies to control the arising mutational pathways possible. Here we utilize Cα-Cβ bond vector relaxations obtained from moderate length MD trajectories to determine conduits for functionality of the resistance conferring mutants of Escherichia coli dihydrofolate reductase. We find that the whole enzyme is synchronized to the motions of the substrate, irrespective of the mutation introducing gain-of-function or loss-of function. The total coordination of the motions suggests changes in the hydrogen bond dynamics with respect to the wild type as a possible route to determine and classify the mode-of-action of individual mutants. As a result, nine trimethoprim-resistant point mutations arising frequently in evolution experiments are categorized. One group of mutants that display the largest occurrence (L28R, W30G) work directly by modifying the dihydrofolate binding region. Conversely, W30R works indirectly by the formation of the E139-R30 salt bridge which releases energy resulting from tight binding by distorting the binding cavity. A third group (D27E, F153S, I94L) arising as single, resistance invoking mutants in evolution experiment trajectories allosterically and dynamically affects a hydrogen bonding motif formed at residues 59-69-71 which in turn modifies the binding site dynamics. The final group (I5F, A26T, R98P) consists of those mutants that have properties most similar to the wild type; these only appear after one of the other mutants is fixed on the protein structure and therefore display clear epistasis. Thus, we show that the binding event is governed by the entire enzyme dynamics while the binding site residues play gating roles. The adjustments made in the total enzyme in response to point mutations are what make quantifying and pinpointing their effect a hard problem. Here, we show that hydrogen bond dynamics recorded on sub-μs time scales provide the necessary fingerprints to decipher the various mechanisms at play.
Collapse
|
4
|
Krucinska J, Lombardo MN, Erlandsen H, Estrada A, Si D, Viswanathan K, Wright DL. Structure-guided functional studies of plasmid-encoded dihydrofolate reductases reveal a common mechanism of trimethoprim resistance in Gram-negative pathogens. Commun Biol 2022; 5:459. [PMID: 35562546 PMCID: PMC9106665 DOI: 10.1038/s42003-022-03384-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Two plasmid-encoded dihydrofolate reductase (DHFR) isoforms, DfrA1 and DfrA5, that give rise to high levels of resistance in Gram-negative bacteria were structurally and biochemically characterized to reveal the mechanism of TMP resistance and to support phylogenic groupings for drug development against antibiotic resistant pathogens. Preliminary screening of novel antifolates revealed related chemotypes that showed high levels of inhibitory potency against Escherichia coli chromosomal DHFR (EcDHFR), DfrA1, and DfrA5. Kinetics and biophysical analysis, coupled with crystal structures of trimethoprim bound to EcDHFR, DfrA1 and DfrA5, and two propargyl-linked antifolates (PLA) complexed with EcDHFR, DfrA1 and DfrA5, were determined to define structural features of the substrate binding pocket and guide synthesis of pan-DHFR inhibitors. Critical residue variations in two of the most clinically prevalent DHFR isoforms are identified as a common structural element in trimethoprim-resistant DHFR which impose changes on enzyme catalysis and ligand-cofactor cooperativity.
Collapse
Affiliation(s)
- Jolanta Krucinska
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Michael N Lombardo
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Heidi Erlandsen
- Center for Open Research Resources & Equipment (COR2E), University of Connecticut, 91N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Alexavier Estrada
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Debjani Si
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Kishore Viswanathan
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA
| | - Dennis L Wright
- Department of Pharmaceutical Sciences, University of Connecticut, 69N. Eagleville Rd., Storrs, CT, 06269, USA.
| |
Collapse
|
5
|
Guðmundsdóttir JS, Fredheim EGA, Koumans CIM, Hegstad J, Tang PC, Andersson DI, Samuelsen Ø, Johnsen PJ. The chemotherapeutic drug methotrexate selects for antibiotic resistance. EBioMedicine 2021; 74:103742. [PMID: 34902789 PMCID: PMC8671861 DOI: 10.1016/j.ebiom.2021.103742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/27/2021] [Accepted: 11/25/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Understanding drivers of antibiotic resistance evolution is fundamental for designing optimal treatment strategies and interventions to reduce the spread of antibiotic resistance. Various cytotoxic drugs used in cancer chemotherapy have antibacterial properties, but how bacterial populations are affected by these selective pressures is unknown. Here we test the hypothesis that the widely used cytotoxic drug methotrexate affects the evolution and selection of antibiotic resistance. METHODS First, we determined methotrexate susceptibility (IC90) and selective abilities in a collection of Escherichia coli and Klebsiella pneumoniae strains with and without pre-existing trimethoprim resistance determinants. We constructed fluorescently labelled pairs of E. coli MG1655 differing only in trimethoprim resistance determinants and determined the minimum selective concentrations of methotrexate using flow-cytometry. We further used an experimental evolution approach to investigate the effects of methotrexate on de novo trimethoprim resistance evolution. FINDINGS We show that methotrexate can select for acquired trimethoprim resistance determinants located on the chromosome or a plasmid. Additionally, methotrexate co-selects for genetically linked resistance determinants when present together with trimethoprim resistance on a multi-drug resistance plasmid. These selective effects occur at concentrations 40- to >320-fold below the methotrexate minimal inhibitory concentration. INTERPRETATION Our results strongly suggest a selective role of methotrexate for virtually any antibiotic resistance determinant when present together with trimethoprim resistance on a multi-drug resistance plasmid. The presented results may have significant implications for patient groups strongly depending on effective antibiotic treatment. FUNDING PJJ was supported by UiT The Arctic University of Norway and the Northern Norway Regional Health Authority (SFP1292-16/HNF1586-21) and JPI-EC-AMR (Project 271,176/H10). DIA was supported by the Swedish Research Council (grant 2017-01,527). The publication charges for this article have been funded by a grant from the publication fund of UiT The Arctic University of Norway.
Collapse
Affiliation(s)
- Jónína S Guðmundsdóttir
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Elizabeth G A Fredheim
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Joachim Hegstad
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; Research and Development Division, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Po-Cheng Tang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ørjan Samuelsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Pål J Johnsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
6
|
Goldstein M, Goodey NM. Distal Regions Regulate Dihydrofolate Reductase-Ligand Interactions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2253:185-219. [PMID: 33315225 DOI: 10.1007/978-1-0716-1154-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein motions play a fundamental role in enzyme catalysis and ligand binding. The relationship between protein motion and function has been extensively investigated in the model enzyme dihydrofolate reductase (DHFR). DHFR is an essential enzyme that catalyzes the reduction of dihydrofolate to tetrahydrofolate. Numerous experimental and computational methods have been used to probe the motions of DHFR through the catalytic cycle and to investigate the effect of distal mutations on DHFR motions and ligand binding. These experimental investigations have pushed forward the study of protein motions and their role in protein-ligand interactions. The introduction of mutations distal to the active site has been shown to have profound effects on ligand binding, hydride transfer rates and catalytic efficacy and these changes are captured by enzyme kinetics measurements. Distal mutations have been shown to exert their effects through a network of correlated amino acids and these effects have been investigated by NMR, protein dynamics, and analysis of coupled amino acids. The experimental methods and the findings that are reviewed here have broad implications for our understanding of enzyme mechanisms, ligand binding and for the future design and discovery of enzyme inhibitors.
Collapse
Affiliation(s)
- Melanie Goldstein
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, USA
| | - Nina M Goodey
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, USA.
| |
Collapse
|
7
|
Monoclonal antibody stability can be usefully monitored using the excitation-energy-dependent fluorescence edge-shift. Biochem J 2021; 477:3599-3612. [PMID: 32869839 PMCID: PMC7527260 DOI: 10.1042/bcj20200580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022]
Abstract
Among the major challenges in the development of biopharmaceuticals are structural heterogeneity and aggregation. The development of a successful therapeutic monoclonal antibody (mAb) requires both a highly active and also stable molecule. Whilst a range of experimental (biophysical) approaches exist to track changes in stability of proteins, routine prediction of stability remains challenging. The fluorescence red edge excitation shift (REES) phenomenon is sensitive to a range of changes in protein structure. Based on recent work, we have found that quantifying the REES effect is extremely sensitive to changes in protein conformational state and dynamics. Given the extreme sensitivity, potentially this tool could provide a ‘fingerprint’ of the structure and stability of a protein. Such a tool would be useful in the discovery and development of biopharamceuticals and so we have explored our hypothesis with a panel of therapeutic mAbs. We demonstrate that the quantified REES data show remarkable sensitivity, being able to discern between structurally identical antibodies and showing sensitivity to unfolding and aggregation. The approach works across a broad concentration range (µg–mg/ml) and is highly consistent. We show that the approach can be applied alongside traditional characterisation testing within the context of a forced degradation study (FDS). Most importantly, we demonstrate the approach is able to predict the stability of mAbs both in the short (hours), medium (days) and long-term (months). The quantified REES data will find immediate use in the biopharmaceutical industry in quality assurance, formulation and development. The approach benefits from low technical complexity, is rapid and uses instrumentation which exists in most biochemistry laboratories without modification.
Collapse
|
8
|
Dubey A, Takeuchi K, Reibarkh M, Arthanari H. The role of NMR in leveraging dynamics and entropy in drug design. JOURNAL OF BIOMOLECULAR NMR 2020; 74:479-498. [PMID: 32720098 PMCID: PMC7686249 DOI: 10.1007/s10858-020-00335-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/11/2020] [Indexed: 05/03/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy has contributed to structure-based drug development (SBDD) in a unique way compared to the other biophysical methods. The potency of a ligand binding to a protein is dictated by the binding free energy, which is an intricate interplay between entropy and enthalpy. In addition to providing the atomic resolution structural information, NMR can help to identify protein-ligand interactions that potentially contribute to the enthalpic component of the free energy. NMR can also illuminate dynamic aspects of the interaction, which correspond to the entropic term of the free energy. The ability of NMR to access both terms in the free energy equation stems from the suite of experiments developed to shed light on various aspects that contribute to both entropy and enthalpy, deepening our understanding of the biological function of macromolecules and assisting to target them in physiological conditions. Here we provide a brief account of the contribution of NMR to SBDD, highlighting hallmark examples and discussing the challenges that demand further method development. In the era of integrated biology, the unique ability of NMR to directly ascertain structural and dynamical aspects of macromolecule and monitor changes in these properties upon engaging a ligand can be combined with computational and other structural and biophysical methods to provide a more complete picture of the energetics of drug engagement with the target. Such efforts can be used to engineer better drugs.
Collapse
Affiliation(s)
- Abhinav Dubey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute & Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
DeRose EF, Kirby TW, Mueller GA, Beard WA, Wilson SH, London RE. Transitions in DNA polymerase β μs-ms dynamics related to substrate binding and catalysis. Nucleic Acids Res 2019; 46:7309-7322. [PMID: 29917149 PMCID: PMC6101544 DOI: 10.1093/nar/gky503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/24/2018] [Indexed: 11/12/2022] Open
Abstract
DNA polymerase β (pol β) plays a central role in the DNA base excision repair pathway and also serves as an important model polymerase. Dynamic characterization of pol β from methyl-TROSY 13C-1H multiple quantum CPMG relaxation dispersion experiments of Ile and Met sidechains and previous backbone relaxation dispersion measurements, reveals transitions in μs-ms dynamics in response to highly variable substrates. Recognition of a 1-nt-gapped DNA substrate is accompanied by significant backbone and sidechain motion in the lyase domain and the DNA binding subdomain of the polymerase domain, that may help to facilitate binding of the apoenzyme to the segments of the DNA upstream and downstream from the gap. Backbone μs-ms motion largely disappears after formation of the pol β-DNA complex, giving rise to an increase in uncoupled μs-ms sidechain motion throughout the enzyme. Formation of an abortive ternary complex using a non-hydrolyzable dNTP results in sidechain motions that fit to a single exchange process localized to the catalytic subdomain, suggesting that this motion may play a role in catalysis.
Collapse
Affiliation(s)
- Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Thomas W Kirby
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
10
|
Liu X, Golden LC, Lopez JA, Shepherd TR, Yu L, Fuentes EJ. Conformational Dynamics and Cooperativity Drive the Specificity of a Protein-Ligand Interaction. Biophys J 2019; 116:2314-2330. [PMID: 31146922 PMCID: PMC6588728 DOI: 10.1016/j.bpj.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
Molecular recognition is critical for the fidelity of signal transduction in biology. Conversely, the disruption of protein-protein interactions can lead to disease. Thus, comprehension of the molecular determinants of specificity is essential for understanding normal biological signaling processes and for the development of precise therapeutics. Although high-resolution structures have provided atomic details of molecular interactions, much less is known about the influence of cooperativity and conformational dynamics. Here, we used the Tiam2 PSD-95/Dlg/ZO-1 (PDZ) domain and a quadruple mutant (QM), engineered by swapping the identity of four residues important for specificity in the Tiam1 PDZ into the Tiam2 PDZ domain, as a model system to investigate the role of cooperativity and dynamics in PDZ ligand specificity. Surprisingly, equilibrium binding experiments found that the ligand specificity of the Tiam2 QM was switched to that of the Tiam1 PDZ. NMR-based studies indicated that Tiam2 QM PDZ, but not other mutants, had extensive microsecond to millisecond motions distributed throughout the entire domain suggesting structural cooperativity between the mutated residues. Thermodynamic analyses revealed energetic cooperativity between residues in distinct specificity subpockets that was dependent upon the identity of the ligand, indicating a context-dependent binding mechanism. Finally, isothermal titration calorimetry experiments showed distinct entropic signatures along the mutational trajectory from the Tiam2 wild-type to the QM PDZ domain. Collectively, our studies provide unique insights into how structure, conformational dynamics, and thermodynamics combine to modulate ligand-binding specificity and have implications for the evolution, regulation, and design of protein-ligand interactions.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, University of Iowa, Iowa City, Iowa
| | - Lisa C Golden
- Department of Biochemistry, University of Iowa, Iowa City, Iowa
| | - Josue A Lopez
- Department of Biochemistry, University of Iowa, Iowa City, Iowa
| | | | - Liping Yu
- Department of Biochemistry, University of Iowa, Iowa City, Iowa; Carver College of Medicine Medical Nuclear Magnetic Resonance Facility, University of Iowa, Iowa City, Iowa
| | - Ernesto J Fuentes
- Department of Biochemistry, University of Iowa, Iowa City, Iowa; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
11
|
The crystal structure of a tetrahydrofolate-bound dihydrofolate reductase reveals the origin of slow product release. Commun Biol 2018; 1:226. [PMID: 30564747 PMCID: PMC6290769 DOI: 10.1038/s42003-018-0236-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/15/2018] [Indexed: 12/02/2022] Open
Abstract
Dihydrofolate reductase (DHFR) catalyzes the stereospecific reduction of 7,8-dihydrofolate (FH2) to (6s)-5,6,7,8-tetrahydrofolate (FH4) via hydride transfer from NADPH. The consensus Escherichia coli DHFR mechanism involves conformational changes between closed and occluded states occurring during the rate-limiting product release step. Although the Protein Data Bank (PDB) contains over 250 DHFR structures, the FH4 complex structure responsible for rate-limiting product release is unknown. We report to our knowledge the first crystal structure of an E. coli. DHFR:FH4 complex at 1.03 Å resolution showing distinct stabilizing interactions absent in FH2 or related (6R)-5,10-dideaza-FH4 complexes. We discover the time course of decay of the co-purified endogenous FH4 during crystal growth, with conversion from FH4 to FH2 occurring in 2–3 days. We also determine another occluded complex structure of E. coli DHFR with a slow-onset nanomolar inhibitor that contrasts with the methotrexate complex, suggesting a plausible strategy for designing DHFR antibiotics by targeting FH4 product conformations. Hongnan Cao et al. present the X-ray crystal structure of E. coli dihydrofolate reductase (DHFR) in complex with its reduced substrate, (6s)-5,6,7,8-tetrahydrofolate (FH4). This structure provides the first glimpse of the rate-limiting product release step of the DHFR mechanism and suggests a strategy for designing DHFR-targeting antibiotics.
Collapse
|
12
|
Abdizadeh H, Tamer YT, Acar O, Toprak E, Atilgan AR, Atilgan C. Increased substrate affinity in the Escherichia coli L28R dihydrofolate reductase mutant causes trimethoprim resistance. Phys Chem Chem Phys 2018; 19:11416-11428. [PMID: 28422217 DOI: 10.1039/c7cp01458a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dihydrofolate reductase (DHFR) is a ubiquitous enzyme with an essential role in cell metabolism. DHFR catalyzes the reduction of dihydrofolate to tetrahydrofolate, which is a precursor for purine and thymidylate synthesis. Several DHFR targeting antifolate drugs including trimethoprim, a competitive antibacterial inhibitor, have therefore been developed and are clinically used. Evolution of resistance against antifolates is a common public health problem rendering these drugs ineffective. To combat the resistance problem, it is important to understand resistance-conferring changes in the DHFR structure and accordingly develop alternative strategies. Here, we structurally and dynamically characterize Escherichia coli DHFR in its wild type (WT) and trimethoprim resistant L28R mutant forms in the presence of the substrate and its inhibitor trimethoprim. We use molecular dynamics simulations to determine the conformational space, loop dynamics and hydrogen bond distributions at the active site of DHFR for the WT and the L28R mutant. We also report their experimental kcat, Km, and Ki values, accompanied by isothermal titration calorimetry measurements of DHFR that distinguish enthalpic and entropic contributions to trimethoprim binding. Although mutations that confer resistance to competitive inhibitors typically make enzymes more promiscuous and decrease affinity to both the substrate and the inhibitor, strikingly, we find that the L28R mutant has a unique resistance mechanism. While the binding affinity differences between the WT and the mutant for the inhibitor and the substrate are small, the newly formed extra hydrogen bonds with the aminobenzoyl glutamate tail of DHF in the L28R mutant leads to increased barriers for the dissociation of the substrate and the product. Therefore, the L28R mutant indirectly gains resistance by enjoying prolonged binding times in the enzyme-substrate complex. While this also leads to slower product release and decreases the catalytic rate of the L28R mutant, the overall effect is the maintenance of a sufficient product formation rate. Finally, the experimental and computational analyses together reveal the changes that occur in the energetic landscape of DHFR upon the resistance-conferring L28R mutation. We show that the negative entropy associated with the binding of trimethoprim in WT DHFR is due to water organization at the binding interface. Our study lays the framework to study structural changes in other trimethoprim resistant DHFR mutants.
Collapse
Affiliation(s)
- Haleh Abdizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
13
|
Liu X, Speckhard DC, Shepherd TR, Sun YJ, Hengel SR, Yu L, Fowler CA, Gakhar L, Fuentes EJ. Distinct Roles for Conformational Dynamics in Protein-Ligand Interactions. Structure 2016; 24:2053-2066. [PMID: 27998539 DOI: 10.1016/j.str.2016.08.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/27/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022]
Abstract
Conformational dynamics has an established role in enzyme catalysis, but its contribution to ligand binding and specificity is largely unexplored. Here we used the Tiam1 PDZ domain and an engineered variant (QM PDZ) with broadened specificity to investigate the role of structure and conformational dynamics in molecular recognition. Crystal structures of the QM PDZ domain both free and bound to ligands showed structural features central to binding (enthalpy), while nuclear-magnetic-resonance-based methyl relaxation experiments and isothermal titration calorimetry revealed that conformational entropy contributes to affinity. In addition to motions relevant to thermodynamics, slower microsecond to millisecond switching was prevalent in the QM PDZ ligand-binding site consistent with a role in ligand specificity. Our data indicate that conformational dynamics plays distinct and fundamental roles in tuning the affinity (conformational entropy) and specificity (excited-state conformations) of molecular interactions. More broadly, our results have important implications for the evolution, regulation, and design of protein-ligand interactions.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242-1109, USA; Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | | | - Tyson R Shepherd
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242-1109, USA; Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Young Joo Sun
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242-1109, USA; Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Sarah R Hengel
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242-1109, USA; Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Liping Yu
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242-1109, USA; Carver College of Medicine Medical Nuclear Magnetic Resonance Facility, University of Iowa, Iowa City, IA 52242-1109, USA; Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - C Andrew Fowler
- Carver College of Medicine Medical Nuclear Magnetic Resonance Facility, University of Iowa, Iowa City, IA 52242-1109, USA; Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Lokesh Gakhar
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242-1109, USA; Protein Crystallography Facility, University of Iowa, Iowa City, IA 52242-1109, USA; Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Ernesto J Fuentes
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242-1109, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242-1109, USA; Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA.
| |
Collapse
|
14
|
Sapienza PJ, Lee AL. Widespread Perturbation of Function, Structure, and Dynamics by a Conservative Single-Atom Substitution in Thymidylate Synthase. Biochemistry 2016; 55:5702-5713. [PMID: 27649373 DOI: 10.1021/acs.biochem.6b00838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thymidylate synthase (TSase) is responsible for synthesizing the sole de novo source of dTMP in all organisms. TSase is a drug target, and as such, it has been well studied in terms of both structure and reaction mechanism. Cysteine 146 in Escherichia coli TSase is universally conserved because it serves as the nucleophile in the enzyme mechanism. Here we use the C146S mutation to probe the role of the sulfur atom in early events in the catalytic cycle beyond serving as the nucleophile. Surprisingly, the single-atom substitution severely decreases substrate binding affinity, and the unfavorable ΔΔG°bind is comprised of roughly equal enthalpic and entropic components at 25 °C. Chemical shifts in the free and dUMP-bound states show the mutation causes perturbations throughout TSase, including regions important for complex stability, in agreement with a less favorable enthalpy change. We measured the nuclear magnetic resonance methyl symmetry axis order parameter (S2axis), a proxy for conformational entropy, for TSase at all vertices of the dUMP binding/C146S mutation thermodynamic cycle and found that the calculated TΔΔS°conf is similar in sign and magnitude to the calorimetric TΔΔS°. Further, we ascribed minor resonances in wild-type-dUMP spectra to a state with a covalent bond between Sγ of C146 and C6 of dUMP and find S2axis values are unaffected by covalent bond formation, indicating this reaction step is neutral with respect to ΔS°conf. Lastly, the C146S mutation allowed us to measure cofactor analog binding by isothermal titration calorimetry without the confounding heat signature of covalent bond formation. Raltitrexed binds free and singly bound TSase with similar affinities, yet the two binding events have different enthalpy changes, providing further evidence of communication between the two active sites.
Collapse
Affiliation(s)
- Paul J Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Andrew L Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
15
|
Luk LYP, Loveridge EJ, Allemann RK. Protein motions and dynamic effects in enzyme catalysis. Phys Chem Chem Phys 2016; 17:30817-27. [PMID: 25854702 DOI: 10.1039/c5cp00794a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The role of protein motions in promoting the chemical step of enzyme catalysed reactions remains a subject of considerable debate. Here, a unified view of the role of protein dynamics in dihydrofolate reductase catalysis is described. Recently the role of such motions has been investigated by characterising the biophysical properties of isotopically substituted enzymes through a combination of experimental and computational analyses. Together with previous work, these results suggest that dynamic coupling to the chemical coordinate is detrimental to catalysis and may have been selected against during DHFR evolution. The full catalytic power of Nature's catalysts appears to depend on finely tuning protein motions in each step of the catalytic cycle.
Collapse
Affiliation(s)
- Louis Y P Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - E Joel Loveridge
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
16
|
Sapienza PJ, Falk BT, Lee AL. Bacterial Thymidylate Synthase Binds Two Molecules of Substrate and Cofactor without Cooperativity. J Am Chem Soc 2015; 137:14260-3. [PMID: 26517288 DOI: 10.1021/jacs.5b10128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Thymidylate synthase (TSase) is a clinically important enzyme because it catalyzes synthesis of the sole de novo source of deoxy-thymidylate. Without this enzyme, cells die a "thymineless death" since they are starved of a crucial DNA synthesis precursor. As a drug target, TSase is well studied in terms of its structure and reaction mechanism. An interesting mechanistic feature of dimeric TSase is that it is "half-the-sites reactive", which is a form of negative cooperativity. Yet, the basis for this is not well-understood. Some experiments point to cooperativity at the binding steps of the reaction cycle as being responsible for the phenomenon, but the literature contains conflicting reports. Here we use ITC and NMR to resolve these inconsistencies. This first detailed thermodynamic dissection of multisite binding of dUMP to E. coli TSase shows the nucleotide binds to the free and singly bound forms of the enzyme with nearly equal affinity over a broad range of temperatures and in multiple buffers. While small but significant differences in ΔC°P for the two binding events show that the active sites are not formally equivalent, there is little-to-no allostery at the level of ΔG°bind. In addition NMR titration data reveal that there is minor intersubunit cooperativity in formation of a ternary complex with the mechanism based inhibitor, 5F-dUMP, and cofactor. Taken together, the data show that functional communication between subunits is minimal for both binding steps of the reaction coordinate.
Collapse
Affiliation(s)
- Paul J Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Bradley T Falk
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Andrew L Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy and ‡Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
17
|
Hira SK, Ramesh K, Gupta U, Mitra K, Misra N, Ray B, Manna PP. Methotrexate-Loaded Four-Arm Star Amphiphilic Block Copolymer Elicits CD8+ T Cell Response against a Highly Aggressive and Metastatic Experimental Lymphoma. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20021-20033. [PMID: 26323031 DOI: 10.1021/acsami.5b04905] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have synthesized a well-defined four-arm star amphiphilic block copolymer [poly(DLLA)-b-poly(NVP)]4 [star-(PDLLA-b-PNVP)4] that consists of D,L-lactide (DLLA) and N-vinylpyrrolidone (NVP) via the combination of ring-opening polymerization (ROP) and xanthate-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization. Synthesis of the polymer was verified by 1H NMR spectroscopy and gel permeation chromatography (GPC). The amphiphilic four-arm star block copolymer forms spherical micelles in water as demonstrated by transmission electron microscopy (TEM) and 1H NMR spectroscopy. Pyrene acts as a probe to ascertain the critical micellar concentration (cmc) by using fluorescence spectroscopy. Methotrexate (MTX)-loaded polymeric micelles of star-(PDLLA15-b-PNVP10)4 amphiphilic block copolymer were prepared and characterized by fluorescence and TEM studies. Star-(PDLLA15-b-PNVP10)4 copolymer was found to be significantly effective with respect to inhibition of proliferation and lysis of human and murine lymphoma cells. The amphiphilic block copolymer causes cell death in parental and MTX-resistant Dalton lymphoma (DL) and Raji cells. The formulation does not cause hemolysis in red blood cells and is tolerant to lymphocytes compared to free MTX. Therapy with MTX-loaded star-(PDLLA15-b-PNVP10)4 amphiphilic block copolymer micelles prolongs the life span of animals with neoplasia by reducing the tumor load, preventing metastasis and augmenting CD8+ T cell-mediated adaptive immune responses.
Collapse
Affiliation(s)
- Sumit Kumar Hira
- Immunobiology Laboratory, Department of Zoology, Faculty of Science, Banaras Hindu University , Varanasi 221005, India
- Department of Zoology, The University of Burdwan , Burdwan 713104, West Bengal, India
| | - Kalyan Ramesh
- Department of Chemistry, Faculty of Science, Banaras Hindu University , Varanasi 221005, India
- School of Biomedical Engineering, Indian Institute of Technology ( Banaras Hindu University ), Varanasi 221005, India
| | - Uttam Gupta
- Immunobiology Laboratory, Department of Zoology, Faculty of Science, Banaras Hindu University , Varanasi 221005, India
| | - Kheyanath Mitra
- Department of Chemistry, Faculty of Science, Banaras Hindu University , Varanasi 221005, India
| | - Nira Misra
- School of Biomedical Engineering, Indian Institute of Technology ( Banaras Hindu University ), Varanasi 221005, India
| | - Biswajit Ray
- Department of Chemistry, Faculty of Science, Banaras Hindu University , Varanasi 221005, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Faculty of Science, Banaras Hindu University , Varanasi 221005, India
| |
Collapse
|
18
|
Dysfunctional conformational dynamics of protein kinase A induced by a lethal mutant of phospholamban hinder phosphorylation. Proc Natl Acad Sci U S A 2015; 112:3716-21. [PMID: 25775607 DOI: 10.1073/pnas.1502299112] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamic interplay between kinases and substrates is crucial for the formation of catalytically committed complexes that enable phosphoryl transfer. However, a clear understanding on how substrates modulate kinase structural dynamics to control catalytic efficiency is still missing. Here, we used solution NMR spectroscopy to study the conformational dynamics of two complexes of the catalytic subunit of the cAMP-dependent protein kinase A with WT and R14 deletion phospholamban, a lethal human mutant linked to familial dilated cardiomyopathy. Phospholamban is a central regulator of heart muscle contractility, and its phosphorylation by protein kinase A constitutes a primary response to β-adrenergic stimulation. We found that the single deletion of arginine in phospholamban's recognition sequence for the kinase reduces its binding affinity and dramatically reduces phosphorylation kinetics. Structurally, the mutant prevents the enzyme from adopting conformations and motions committed for catalysis, with concomitant reduction in catalytic efficiency. Overall, these results underscore the importance of a well-tuned structural and dynamic interplay between the kinase and its substrates to achieve physiological phosphorylation levels for proper Ca(2+) signaling and normal cardiac function.
Collapse
|
19
|
Godwin RC, Melvin R, Salsbury FR. Molecular Dynamics Simulations and Computer-Aided Drug Discovery. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2015. [DOI: 10.1007/7653_2015_41] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Srivastava AK, McDonald LR, Cembran A, Kim J, Masterson LR, McClendon CL, Taylor SS, Veglia G. Synchronous opening and closing motions are essential for cAMP-dependent protein kinase A signaling. Structure 2014; 22:1735-1743. [PMID: 25458836 DOI: 10.1016/j.str.2014.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Conformational fluctuations play a central role in enzymatic catalysis. However, it is not clear how the rates and the coordination of the motions affect the different catalytic steps. Here, we used NMR spectroscopy to analyze the conformational fluctuations of the catalytic subunit of the cAMP-dependent protein kinase (PKA-C), a ubiquitous enzyme involved in a myriad of cell signaling events. We found that the wild-type enzyme undergoes synchronous motions involving several structural elements located in the small lobe of the kinase, which is responsible for nucleotide binding and release. In contrast, a mutation (Y204A) located far from the active site desynchronizes the opening and closing of the active cleft without changing the enzyme's structure, rendering it catalytically inefficient. Since the opening and closing motions govern the rate-determining product release, we conclude that optimal and coherent conformational fluctuations are necessary for efficient turnover of protein kinases.
Collapse
Affiliation(s)
- Atul K Srivastava
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Leanna R McDonald
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alessandro Cembran
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonggul Kim
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Larry R Masterson
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher L McClendon
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
21
|
Varma S, Botlani M, Leighty RE. Discerning intersecting fusion-activation pathways in the Nipah virus using machine learning. Proteins 2014; 82:3241-54. [DOI: 10.1002/prot.24541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Sameer Varma
- Department of Cell Biology; Microbiology and Molecular Biology, University of South Florida; Tampa Florida 33620
| | - Mohsen Botlani
- Department of Cell Biology; Microbiology and Molecular Biology, University of South Florida; Tampa Florida 33620
| | - Ralph E. Leighty
- Department of Cell Biology; Microbiology and Molecular Biology, University of South Florida; Tampa Florida 33620
| |
Collapse
|
22
|
Affiliation(s)
- Alan C. Gibbs
- Janssen Pharmaceutical Research and Development, LLC, Welsh and McKean Road, Spring House, Pennsylvania 19477-0776, United States
| |
Collapse
|
23
|
Michel J. Current and emerging opportunities for molecular simulations in structure-based drug design. Phys Chem Chem Phys 2014; 16:4465-77. [PMID: 24469595 PMCID: PMC4256725 DOI: 10.1039/c3cp54164a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/10/2014] [Indexed: 01/29/2023]
Abstract
An overview of the current capabilities and limitations of molecular simulation of biomolecular complexes in the context of computer-aided drug design is provided. Steady improvements in computer hardware coupled with more refined representations of energetics are leading to a new appreciation of the driving forces of molecular recognition. Molecular simulations are poised to more frequently guide the interpretation of biophysical measurements of biomolecular complexes. Ligand design strategies emerge from detailed analyses of computed structural ensembles. The feasibility of routine applications to ligand optimization problems hinges upon successful extensive large scale validation studies and the development of protocols to intelligently automate computations.
Collapse
Affiliation(s)
- Julien Michel
- EaStCHEM School of Chemistry, Joseph Black Building, The King's Buildings, Edinburgh, EH9 3JJ, UK.
| |
Collapse
|
24
|
LaPlante SR, Bös M, Brochu C, Chabot C, Coulombe R, Gillard JR, Jakalian A, Poirier M, Rancourt J, Stammers T, Thavonekham B, Beaulieu PL, Kukolj G, Tsantrizos YS. Conformation-based restrictions and scaffold replacements in the design of hepatitis C virus polymerase inhibitors: discovery of deleobuvir (BI 207127). J Med Chem 2013; 57:1845-54. [PMID: 24159919 DOI: 10.1021/jm4011862] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational restrictions of flexible torsion angles were used to guide the identification of new chemotypes of HCV NS5B inhibitors. Sites for rigidification were based on an acquired conformational understanding of compound binding requirements and the roles of substituents in the free and bound states. Chemical bioisosteres of amide bonds were explored to improve cell-based potency. Examples are shown, including the design concept that led to the discovery of the phase III clinical candidate deleobuvir (BI 207127). The structure-based strategies employed have general utility in drug design.
Collapse
Affiliation(s)
- Steven R LaPlante
- Departments of Chemistry and Biological Sciences, Boehringer Ingelheim (Canada) Ltd. , 2100 Cunard Street, Laval, Quebec, Canada H7S 2G5
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
LaPlante SR, Nar H, Lemke CT, Jakalian A, Aubry N, Kawai SH. Ligand bioactive conformation plays a critical role in the design of drugs that target the hepatitis C virus NS3 protease. J Med Chem 2013; 57:1777-89. [PMID: 24144444 DOI: 10.1021/jm401338c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A ligand-focused strategy employed NMR, X-ray, modeling, and medicinal chemistry to expose the critical role that bioactive conformation played in the design of a variety of drugs that target the HCV protease. The bioactive conformation (bound states) were determined for key inhibitors identified along our drug discovery pathway from the hit to clinical compounds. All adopt similar bioactive conformations for the common core derived from the hit peptide DDIVPC. A carefully designed SAR analysis, based on the advanced inhibitor 1 in which the P1 to P3 side chains and the N-terminal Boc were sequentially truncated, revealed a correlation between affinity and the relative predominance of the bioactive conformation in the free state. Interestingly, synergistic conformation effects on potency were also noted. Comparisons with clinical and recently marketed drugs from the pharmaceutical industry showed that all have the same core and similar bioactive conformations. This suggested that the variety of appendages discovered for these compounds also properly satisfy the bioactive conformation requirements and allowed for a large variety of HCV protease drug candidates to be designed.
Collapse
Affiliation(s)
- Steven R LaPlante
- Department of Chemistry, Boehringer-Ingelheim (Canada) Ltd., Research and Development , Laval, Québec H7S 2G5, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Whitney DS, Peterson FC, Kovrigin EL, Volkman BF. Allosteric activation of the Par-6 PDZ via a partial unfolding transition. J Am Chem Soc 2013; 135:9377-83. [PMID: 23705660 PMCID: PMC3736553 DOI: 10.1021/ja400092a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins exist in a delicate balance between the native and unfolded states, where thermodynamic stability may be sacrificed to attain the flexibility required for efficient catalysis, binding, or allosteric control. Partition-defective 6 (Par-6) regulates the Par polarity complex by transmitting a GTPase signal through the Cdc42/Rac interaction binding PSD-95/Dlg/ZO-1 (CRIB-PDZ) module that alters PDZ ligand binding. Allosteric activation of the PDZ is achieved by local rearrangement of the L164 and K165 side chains to stabilize the interdomain CRIB:PDZ interface and reposition a conserved element of the ligand binding pocket. However, microsecond to millisecond dynamics measurements revealed that L164/K165 exchange requires a larger rearrangement than expected. The margin of thermodynamic stability for the PDZ domain is modest (∼3 kcal/mol) and further reduced by transient interactions with the disordered CRIB domain. Measurements of local structural stability revealed that tertiary contacts within the PDZ are disrupted by a partial unfolding transition that enables interconversion of the L/K switch. The unexpected participation of partial PDZ unfolding in the allosteric mechanism of Par-6 suggests that native-state unfolding may be essential for the function of other marginally stable proteins.
Collapse
Affiliation(s)
- Dustin S Whitney
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | | | | | | |
Collapse
|
27
|
Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans. Proc Natl Acad Sci U S A 2013; 110:10159-64. [PMID: 23733948 DOI: 10.1073/pnas.1307130110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
With the rapidly growing wealth of genomic data, experimental inquiries on the functional significance of important divergence sites in protein evolution are becoming more accessible. Here we trace the evolution of dihydrofolate reductase (DHFR) and identify multiple key divergence sites among 233 species between humans and bacteria. We connect these sites, experimentally and computationally, to changes in the enzyme's binding properties and catalytic efficiency. One of the identified evolutionarily important sites is the N23PP modification (∼mid-Devonian, 415-385 Mya), which alters the conformational states of the active site loop in Escherichia coli dihydrofolate reductase and negatively impacts catalysis. This enzyme activity was restored with the inclusion of an evolutionarily significant lid domain (G51PEKN in E. coli enzyme; ∼2.4 Gya). Guided by this evolutionary genomic analysis, we generated a human-like E. coli dihydrofolate reductase variant through three simple mutations despite only 26% sequence identity between native human and E. coli DHFRs. Molecular dynamics simulations indicate that the overall conformational motions of the protein within a common scaffold are retained throughout evolution, although subtle changes to the equilibrium conformational sampling altered the free energy barrier of the enzymatic reaction in some cases. The data presented here provide a glimpse into the evolutionary trajectory of functional DHFR through its protein sequence space that lead to the diverged binding and catalytic properties of the E. coli and human enzymes.
Collapse
|
28
|
Abstract
Formation of high-affinity complexes is critical for the majority of enzymatic reactions involving proteins. The creation of the family of Michaelis and other intermediate complexes during catalysis clearly involves a complicated manifold of interactions that are diverse and complex. Indeed, computing the energetics of interactions between proteins and small molecule ligands using molecular structure alone remains a great challenge. One of the most difficult contributions to the free energy of protein-ligand complexes to access experimentally is that due to changes in protein conformational entropy. Fortunately, recent advances in solution nuclear magnetic resonance (NMR) relaxation methods have enabled the use of measures-of-motion between conformational states of a protein as a proxy for conformational entropy. This review briefly summarizes the experimental approaches currently employed to characterize fast internal motion in proteins, how this information is used to gain insight into conformational entropy, what has been learned, and what the future may hold for this emerging view of protein function.
Collapse
|
29
|
Wand AJ. The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation. Curr Opin Struct Biol 2012; 23:75-81. [PMID: 23246280 DOI: 10.1016/j.sbi.2012.11.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/19/2012] [Indexed: 11/12/2022]
Abstract
Historically it has been virtually impossible to experimentally determine the contribution of residual protein entropy to fundamental protein activities such as the binding of ligands. Recent progress has illuminated the possibility of employing NMR relaxation methods to quantitatively determine the role of changes in conformational entropy in molecular recognition by proteins. The method rests on using fast internal protein dynamics as a proxy. Initial results reveal a large and variable role for conformational entropy in the binding of ligands by proteins. Such a role for conformational entropy in molecular recognition has significant implications for enzymology, signal transduction, allosteric regulation and the development of protein-directed pharmaceuticals.
Collapse
Affiliation(s)
- A Joshua Wand
- The Johnson Research Foundation and Department of Biochemistry & Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
30
|
McDonald LR, Boyer JA, Lee AL. Segmental motions, not a two-state concerted switch, underlie allostery in CheY. Structure 2012; 20:1363-73. [PMID: 22727815 PMCID: PMC3552614 DOI: 10.1016/j.str.2012.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 05/11/2012] [Accepted: 05/12/2012] [Indexed: 11/30/2022]
Abstract
The switch between an inactive and active conformation is an important transition for signaling proteins, yet the mechanisms underlying such switches are not clearly understood. Escherichia coli CheY, a response regulator protein from the two-component signal transduction system that regulates bacterial chemotaxis, is an ideal protein for the study of allosteric mechanisms. By using 15N CPMG relaxation dispersion experiments, we monitored the inherent dynamic switching of unphosphorylated CheY. We show that CheY does not undergo a two-state concerted switch between the inactive and active conformations. Interestingly, partial saturation of Mg2+ enhances the intrinsic allosteric motions. Taken together with chemical shift perturbations, these data indicate that the μs-ms timescale motions underlying CheY allostery are segmental in nature. We propose an expanded allosteric network of residues, including W58, that undergo asynchronous, local switching between inactive and active-like conformations as the primary basis for the allosteric mechanism.
Collapse
Affiliation(s)
- Leanna R McDonald
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
31
|
Hughes TS, Chalmers MJ, Novick S, Kuruvilla DS, Chang MR, Kamenecka TM, Rance M, Johnson BA, Burris TP, Griffin PR, Kojetin DJ. Ligand and receptor dynamics contribute to the mechanism of graded PPARγ agonism. Structure 2012; 20:139-50. [PMID: 22244763 DOI: 10.1016/j.str.2011.10.018] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 12/31/2022]
Abstract
Ligand binding to proteins is not a static process, but rather involves a number of complex dynamic transitions. A flexible ligand can change conformation upon binding its target. The conformation and dynamics of a protein can change to facilitate ligand binding. The conformation of the ligand, however, is generally presumed to have one primary binding mode, shifting the protein conformational ensemble from one state to another. We report solution nuclear magnetic resonance (NMR) studies that reveal peroxisome proliferator-activated receptor γ (PPARγ) modulators can sample multiple binding modes manifesting in multiple receptor conformations in slow conformational exchange. Our NMR, hydrogen/deuterium exchange and docking studies reveal that ligand-induced receptor stabilization and binding mode occupancy correlate with the graded agonist response of the ligand. Our results suggest that ligand and receptor dynamics affect the graded transcriptional output of PPARγ modulators.
Collapse
Affiliation(s)
- Travis S Hughes
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pagano K, Torella R, Foglieni C, Bugatti A, Tomaselli S, Zetta L, Presta M, Rusnati M, Taraboletti G, Colombo G, Ragona L. Direct and allosteric inhibition of the FGF2/HSPGs/FGFR1 ternary complex formation by an antiangiogenic, thrombospondin-1-mimic small molecule. PLoS One 2012; 7:e36990. [PMID: 22606323 PMCID: PMC3351436 DOI: 10.1371/journal.pone.0036990] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/11/2012] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factors (FGFs) are recognized targets for the development of therapies against angiogenesis-driven diseases, including cancer. The formation of a ternary complex with the transmembrane tyrosine kinase receptors (FGFRs), and heparan sulphate proteoglycans (HSPGs) is required for FGF2 pro-angiogenic activity. Here by using a combination of techniques including Nuclear Magnetic Resonance, Molecular Dynamics, Surface Plasmon Resonance and cell-based binding assays we clarify the molecular mechanism of inhibition of an angiostatic small molecule, sm27, mimicking the endogenous inhibitor of angiogenesis, thrombospondin-1. NMR and MD data demonstrate that sm27 engages the heparin-binding site of FGF2 and induces long-range dynamics perturbations along FGF2/FGFR1 interface regions. The functional consequence of the inhibitor binding is an impaired FGF2 interaction with both its receptors, as demonstrated by SPR and cell-based binding assays. We propose that sm27 antiangiogenic activity is based on a twofold-direct and allosteric-mechanism, inhibiting FGF2 binding to both its receptors.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Rubben Torella
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Chiara Foglieni
- Department of Oncology, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Antonella Bugatti
- Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, Italy
| | - Simona Tomaselli
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Lucia Zetta
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Marco Presta
- Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, Italy
| | - Giulia Taraboletti
- Department of Oncology, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Milano, Italy
- * E-mail: (LR); (GC)
| | - Laura Ragona
- Laboratorio NMR, Istituto per lo Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Milano, Italy
- * E-mail: (LR); (GC)
| |
Collapse
|
33
|
Mauldin RV, Sapienza PJ, Petit CM, Lee AL. Structure and dynamics of the G121V dihydrofolate reductase mutant: lessons from a transition-state inhibitor complex. PLoS One 2012; 7:e33252. [PMID: 22428003 PMCID: PMC3302829 DOI: 10.1371/journal.pone.0033252] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/12/2012] [Indexed: 11/18/2022] Open
Abstract
It is well known that enzyme flexibility is critical for function. This is due to the observation that the rates of intramolecular enzyme motions are often matched to the rates of intermolecular events such as substrate binding and product release. Beyond this role in progression through the reaction cycle, it has been suggested that enzyme dynamics may also promote the chemical step itself. Dihydrofolate reductase (DHFR) is a model enzyme for which dynamics have been proposed to aid in both substrate flux and catalysis. The G121V mutant of DHFR is a well studied form that exhibits a severe reduction in the rate of hydride transfer yet there remains dispute as to whether this defect is caused by altered structure, dynamics, or both. Here we address this by presenting an NMR study of the G121V mutant bound to reduced cofactor and the transition state inhibitor, methotrexate. NMR chemical shift markers demonstrate that this form predominantly adopts the closed conformation thereby allowing us to provide the first glimpse into the dynamics of a catalytically relevant complex. Based on 15N and 2H NMR spin relaxation, we find that the mutant complex has modest changes in ps-ns flexibility with most affected residues residing in the distal adenosine binding domain rather than the active site. Thus, aberrant ps-ns dynamics are likely not the main contributor to the decreased catalytic rate. The most dramatic effect of the mutation involves changes in µs-ms dynamics of the F-G and Met20 loops. Whereas loop motion is quenched in the wild type transition state inhibitor complex, the F-G and Met20 loops undergo excursions from the closed conformation in the mutant complex. These excursions serve to decrease the population of conformers having the correct active site configuration, thus providing an explanation for the G121V catalytic defect.
Collapse
Affiliation(s)
- Randall V. Mauldin
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Paul J. Sapienza
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Chad M. Petit
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Andrew L. Lee
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
34
|
Choi SK, Verma M, Silpe J, Moody RE, Tang K, Hanson JJ, Baker JR. A photochemical approach for controlled drug release in targeted drug delivery. Bioorg Med Chem 2012; 20:1281-90. [PMID: 22225916 PMCID: PMC3267001 DOI: 10.1016/j.bmc.2011.12.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/06/2011] [Accepted: 12/13/2011] [Indexed: 11/15/2022]
Abstract
Photochemistry provides a unique mechanism that enables the active control of drug release in cancer-targeting drug delivery. This study investigates the light-mediated release of methotrexate, an anticancer drug, using a photocleavable linker strategy based on o-nitrobenzyl protection. We evaluated two types of the o-nitrobenzyl-linked methotrexate for the drug release study and further extended the study to a fifth-generation poly(amidoamine) dendrimer carrier covalently conjugated with methotrexate via the o-nitrobenzyl linker. We performed the drug release studies by using a combination of three standard analytical methods that include UV/vis spectrometry, (1)H NMR spectroscopy, and anal. HPLC. This article reports that methotrexate is released by the photochemical mechanism in an actively controlled manner. The rate of the drug release varies in response to multiple control parameters, including linker design, light wavelength, exposure time, and the pH of the medium where the drug release occurs.
Collapse
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Manisha Verma
- College of Literature, Science and The Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin Silpe
- College of Literature, Science and The Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan E. Moody
- College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kenny Tang
- College of Literature, Science and The Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey J. Hanson
- College of Literature, Science and The Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Carroll MJ, Mauldin RV, Gromova AV, Singleton SF, Collins EJ, Lee AL. Evidence for dynamics in proteins as a mechanism for ligand dissociation. Nat Chem Biol 2012; 8:246-52. [PMID: 22246400 PMCID: PMC3288659 DOI: 10.1038/nchembio.769] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/23/2011] [Indexed: 01/16/2023]
Abstract
Signal transduction, regulatory processes, and pharmaceutical responses are highly dependent upon ligand residence times. Gaining insight into how physical factors influence residence times, or koff, should enhance our ability to manipulate biological interactions. We report experiments that yield structural insight into koff for a series of eight 2,4-diaminopyrimidine inhibitors of dihydrofolate reductase that vary by six orders of magnitude in binding affinity. NMR relaxation dispersion experiments revealed a common set of residues near the binding site that undergo a concerted, millisecond-timescale switching event to a previously unidentified conformation. The rate of switching from ground to excited conformations correlates exponentially with Ki and koff, suggesting that protein dynamics serves as a mechanical initiator of ligand dissociation within this series and potentially for other macromolecule-ligand systems. Although kconf,forward is faster than koff, use of the ligand series allowed for connections to be drawn between kinetic events on different timescales.
Collapse
Affiliation(s)
- Mary J Carroll
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
36
|
Choi SK, Thomas TP, Li MH, Desai A, Kotlyar A, Baker JR. Photochemical release of methotrexate from folate receptor-targeting PAMAM dendrimer nanoconjugate. Photochem Photobiol Sci 2012; 11:653-60. [PMID: 22234658 DOI: 10.1039/c2pp05355a] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticle (NP)-based targeted drug delivery involves cell-specific targeting followed by a subsequent therapeutic action from the therapeutic carried by the NP system. NPs conjugated with methotrexate (MTX), a potent inhibitor of dihydrofolate reductase (DHFR) localized in cytosol, have been under investigation as a delivery system to target cancer cells to enhance the therapeutic index of methotrexate, which is otherwise non-selectively cytotoxic. Despite improved therapeutic activity from MTX-conjugated NPs in vitro and in vivo, the therapeutic action of these conjugates following cellular entry is poorly understood; in particular it is unclear whether the therapeutic activity requires release of the MTX. This study investigates whether MTX must be released from a nanoparticle in order to achieve the therapeutic activity. We report herein light-controlled release of methotrexate from a dendrimer-based conjugate and provide evidence suggesting that MTX still attached to the nanoconjugate system is fully able to inhibit the activity of its enzyme target and the growth of cancer cells.
Collapse
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Bhabha G, Tuttle L, Martinez-Yamout MA, Wright PE. Identification of endogenous ligands bound to bacterially expressed human and E. coli dihydrofolate reductase by 2D NMR. FEBS Lett 2011; 585:3528-32. [PMID: 22024482 DOI: 10.1016/j.febslet.2011.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/13/2011] [Accepted: 10/09/2011] [Indexed: 11/25/2022]
Abstract
Dihydrofolate reductase (DHFR) is a well-studied drug target and a paradigm for understanding enzyme catalysis. Preparation of pure DHFR samples, in defined ligand-bound states, is a prerequisite for in vitro studies and drug discovery efforts. We use NMR spectroscopy to monitor ligand content of human and Escherichia coli DHFR (ecDHFR), which bind different co-purifying ligands during expression in bacteria. An alternate purification strategy yields highly pure DHFR complexes, containing only the desired ligands, in the quantities required for structural studies. Interestingly, ecDHFR is bound to endogenous THF while human DHFR is bound to NADP. Consistent with these findings, a designed "humanized" mutant of ecDHFR switches binding specificity in the cell.
Collapse
Affiliation(s)
- Gira Bhabha
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
38
|
Lee J, Goodey NM. Catalytic contributions from remote regions of enzyme structure. Chem Rev 2011; 111:7595-624. [PMID: 21923192 DOI: 10.1021/cr100042n] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jeeyeon Lee
- Department of Chemistry, 413 Wartik Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
39
|
Development of a fluorescently labeled thermostable DHFR for studying conformational changes associated with inhibitor binding. Biochem Biophys Res Commun 2011; 413:442-7. [DOI: 10.1016/j.bbrc.2011.08.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/24/2011] [Indexed: 11/19/2022]
|
40
|
Sajadi M, Furse KE, Zhang XX, Dehmel L, Kovalenko SA, Corcelli SA, Ernsting NP. Beobachtung einer DNA-Ligand-Schwingung über zeitaufgelöste Fluoreszenzmessung. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Sajadi M, Furse KE, Zhang XX, Dehmel L, Kovalenko SA, Corcelli SA, Ernsting NP. Detection of DNA-Ligand Binding Oscillations by Stokes-Shift Measurements. Angew Chem Int Ed Engl 2011; 50:9501-5. [DOI: 10.1002/anie.201102942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/24/2011] [Indexed: 11/10/2022]
|
42
|
Negri M, Recanatini M, Hartmann RW. Computational investigation of the binding mode of bis(hydroxylphenyl)arenes in 17β-HSD1: molecular dynamics simulations, MM-PBSA free energy calculations, and molecular electrostatic potential maps. J Comput Aided Mol Des 2011; 25:795-811. [DOI: 10.1007/s10822-011-9464-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 07/26/2011] [Indexed: 01/26/2023]
|
43
|
Nucci NV, Marques BS, Bédard S, Dogan J, Gledhill JM, Moorman VR, Peterson RW, Valentine KG, Wand AL, Wand AJ. Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids. JOURNAL OF BIOMOLECULAR NMR 2011; 50:421-30. [PMID: 21748265 PMCID: PMC4174299 DOI: 10.1007/s10858-011-9528-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/28/2011] [Indexed: 05/20/2023]
Abstract
Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ~23 to ~10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 43 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect.
Collapse
Affiliation(s)
- Nathaniel V. Nucci
- Graduate Group in Biochemistry & Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104-6059
| | - Bryan S. Marques
- Graduate Group in Biochemistry & Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104-6059
| | - Sabrina Bédard
- Graduate Group in Biochemistry & Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104-6059
| | - Jakob Dogan
- Graduate Group in Biochemistry & Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104-6059
| | - John M. Gledhill
- Graduate Group in Biochemistry & Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104-6059
| | - Veronica R. Moorman
- Graduate Group in Biochemistry & Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104-6059
| | - Ronald W. Peterson
- Graduate Group in Biochemistry & Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104-6059
| | - Kathleen G. Valentine
- Graduate Group in Biochemistry & Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104-6059
| | - Alison L. Wand
- Graduate Group in Biochemistry & Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104-6059
| | - A. Joshua Wand
- Graduate Group in Biochemistry & Molecular Biophysics and Department of Biochemistry & Biophysics, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA 19104-6059
| |
Collapse
|
44
|
Kalodimos CG. NMR reveals novel mechanisms of protein activity regulation. Protein Sci 2011; 20:773-82. [PMID: 21404360 DOI: 10.1002/pro.614] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/16/2011] [Accepted: 02/21/2011] [Indexed: 11/06/2022]
Abstract
NMR spectroscopy is one of the most powerful tools for the characterization of biomolecular systems. A unique aspect of NMR is its capacity to provide an integrated insight into both the structure and intrinsic dynamics of biomolecules. In addition, NMR can provide site-resolved information about the conformation entropy of binding, as well as about energetically excited conformational states. Recent advances have enabled the application of NMR for the characterization of supramolecular systems. A summary of mechanisms underpinning protein activity regulation revealed by the application of NMR spectroscopy in a number of biological systems studied in the lab is provided.
Collapse
Affiliation(s)
- Charalampos G Kalodimos
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
45
|
Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy. Proc Natl Acad Sci U S A 2011; 108:6969-74. [PMID: 21471451 DOI: 10.1073/pnas.1102701108] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein kinase A (PKA) is a ubiquitous phosphoryl transferase that mediates hundreds of cell signaling events. During turnover, its catalytic subunit (PKA-C) interconverts between three major conformational states (open, intermediate, and closed) that are dynamically and allosterically activated by nucleotide binding. We show that the structural transitions between these conformational states are minimal and allosteric dynamics encode the motions from one state to the next. NMR and molecular dynamics simulations define the energy landscape of PKA-C, with the substrate allowing the enzyme to adopt a broad distribution of conformations (dynamically committed state) and the inhibitors (high magnesium and pseudosubstrate) locking it into discrete minima (dynamically quenched state), thereby reducing the motions that allow turnover. These results unveil the role of internal dynamics in both kinase function and regulation.
Collapse
|
46
|
Carroll MJ, Gromova AV, Miller KR, Tang H, Wang XS, Tripathy A, Singleton SF, Collins EJ, Lee AL. Direct detection of structurally resolved dynamics in a multiconformation receptor-ligand complex. J Am Chem Soc 2011; 133:6422-8. [PMID: 21469679 DOI: 10.1021/ja2005253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structure-based drug design relies on static protein structures despite significant evidence for the need to include protein dynamics as a serious consideration. In practice, dynamic motions are neglected because they are not understood well enough to model, a situation resulting from a lack of explicit experimental examples of dynamic receptor-ligand complexes. Here, we report high-resolution details of pronounced ~1 ms time scale motions of a receptor-small molecule complex using a combination of NMR and X-ray crystallography. Large conformational dynamics in Escherichia coli dihydrofolate reductase are driven by internal switching motions of the drug-like, nanomolar-affinity inhibitor. Carr-Purcell-Meiboom-Gill relaxation dispersion experiments and NOEs revealed the crystal structure to contain critical elements of the high energy protein-ligand conformation. The availability of accurate, structurally resolved dynamics in a protein-ligand complex should serve as a valuable benchmark for modeling dynamics in other receptor-ligand complexes and prediction of binding affinities.
Collapse
Affiliation(s)
- Mary J Carroll
- Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
LaPlante SR, Gillard JR, Jakalian A, Aubry N, Coulombe R, Brochu C, Tsantrizos YS, Poirier M, Kukolj G, Beaulieu PL. Importance of ligand bioactive conformation in the discovery of potent indole-diamide inhibitors of the hepatitis C virus NS5B. J Am Chem Soc 2011; 132:15204-12. [PMID: 20942454 DOI: 10.1021/ja101358s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant advances have led to receptor induced-fit and conformational selection models for describing bimolecular recognition, but a more comprehensive view must evolve to also include ligand shape and conformational changes. Here, we describe an example where a ligand's "structural hinge" influences potency by inducing an "L-shape" bioactive conformation, and due to its solvent exposure in the complex, reasonable conformation-activity-relationships can be qualitatively attributed. From a ligand design perspective, this feature was exploited by successful linker hopping to an alternate "structural hinge" that led to a new and promising chemical series which matched the ligand bioactive conformation and the pocket bioactive space. Using a combination of X-ray crystallography, NMR and modeling with support from binding-site resistance mutant studies and photoaffinity labeling experiments, we were able to derive inhibitor-polymerase complexes for various chemical series.
Collapse
Affiliation(s)
- Steven R LaPlante
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard St., Laval, Quebec, Canada, H7S2G5.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bieri M, Kwan AH, Mobli M, King GF, Mackay JP, Gooley PR. Macromolecular NMR spectroscopy for the non-spectroscopist: beyond macromolecular solution structure determination. FEBS J 2011; 278:704-15. [PMID: 21214861 DOI: 10.1111/j.1742-4658.2011.08005.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A strength of NMR spectroscopy is its ability to monitor, on an atomic level, molecular changes and interactions. In this review, which is intended for non-spectroscopist, we describe major uses of NMR in protein science beyond solution structure determination. After first touching on how NMR can be used to quickly determine whether a mutation induces structural perturbations in a protein, we describe the unparalleled ability of NMR to monitor binding interactions over a wide range of affinities, molecular masses and solution conditions. We discuss the use of NMR to measure the dynamics of proteins at the atomic level and over a wide range of timescales. Finally, we outline new and expanding areas such as macromolecular structure determination in multicomponent systems, as well as in the solid state and in vivo.
Collapse
Affiliation(s)
- Michael Bieri
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Multi-Timescale Dynamics Study of FKBP12 Along the Rapamycin–mTOR Binding Coordinate. J Mol Biol 2011; 405:378-94. [DOI: 10.1016/j.jmb.2010.10.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/12/2010] [Accepted: 10/20/2010] [Indexed: 01/11/2023]
|
50
|
Mining electron density for functionally relevant protein polysterism in crystal structures. Cell Mol Life Sci 2010; 68:1829-41. [PMID: 21190057 PMCID: PMC3092063 DOI: 10.1007/s00018-010-0611-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/18/2010] [Accepted: 12/09/2010] [Indexed: 11/26/2022]
Abstract
This review focuses on conceptual and methodological advances in our understanding and characterization of the conformational heterogeneity of proteins. Focusing on X-ray crystallography, we describe how polysterism, the interconversion of pre-existing conformational substates, has traditionally been analyzed by comparing independent crystal structures or multiple chains within a single crystal asymmetric unit. In contrast, recent studies have focused on mining electron density maps to reveal previously ‘hidden’ minor conformational substates. Functional tests of the importance of minor states suggest that evolutionary selection shapes the entire conformational landscape, including uniquely configured conformational substates, the relative distribution of these substates, and the speed at which the protein can interconvert between them. An increased focus on polysterism may shape the way protein structure and function is studied in the coming years.
Collapse
|