1
|
Caba C, Black M, Liu Y, DaDalt AA, Mallare J, Fan L, Harding RJ, Wang YX, Vacratsis PO, Huang R, Zhuang Z, Tong Y. Autoinhibition of ubiquitin-specific protease 8: Insights into domain interactions and mechanisms of regulation. J Biol Chem 2024; 300:107727. [PMID: 39214302 PMCID: PMC11467669 DOI: 10.1016/j.jbc.2024.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitin-specific proteases (USPs) are a family of multi-domain deubiquitinases (DUBs) with variable architectures, some containing regulatory auxiliary domains. Among the USP family, all occurrences of intramolecular regulation presently known are autoactivating. USP8 remains the sole exception as its putative WW-like domain, conserved only in vertebrate orthologs, is autoinhibitory. Here, we present a comprehensive structure-function analysis describing the autoinhibition of USP8 and provide evidence of the physical interaction between the WW-like and catalytic domains. The solution structure of full-length USP8 reveals an extended, monomeric conformation. Coupled with DUB assays, the WW-like domain is confirmed to be the minimal autoinhibitory unit. Strikingly, autoinhibition is only observed with the WW-like domain in cis and depends on the length of the linker tethering it to the catalytic domain. Modeling of the WW:CD complex structure and mutagenesis of interface residues suggests a novel binding site in the S1 pocket. To investigate the interplay between phosphorylation and USP8 autoinhibition, we identify AMP-activated protein kinase as a highly selective modifier of S718 in the 14-3-3 binding motif. We show that 14-3-3γ binding to phosphorylated USP8 potentiates autoinhibition in a WW-like domain-dependent manner by stabilizing an autoinhibited conformation. These findings provide mechanistic details on the autoregulation of USP8 and shed light on its evolutionary significance.
Collapse
Affiliation(s)
- Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Megan Black
- Department of Chemistry, University of Guelph, Guelph, Canada
| | - Yujue Liu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Ashley A DaDalt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada; Department of Biology, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Josh Mallare
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-ray Scattering Core Facility, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Yun-Xing Wang
- Center for Structural Biology, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, USA
| | | | - Rui Huang
- Department of Chemistry, University of Guelph, Guelph, Canada
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada.
| |
Collapse
|
2
|
Ferrari L, Bauer B, Qiu Y, Schuschnig M, Klotz S, Anrather D, Juretschke T, Beli P, Gelpi E, Martens S. Tau fibrils evade autophagy by excessive p62 coating and TAX1BP1 exclusion. SCIENCE ADVANCES 2024; 10:eadm8449. [PMID: 38865459 PMCID: PMC11168460 DOI: 10.1126/sciadv.adm8449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
The accumulation of protein aggregates is a hallmark of many diseases, including Alzheimer's disease. As a major pillar of the proteostasis network, autophagy mediates the degradation of protein aggregates. The autophagy cargo receptor p62 recognizes ubiquitin on proteins and cooperates with TAX1BP1 to recruit the autophagy machinery. Paradoxically, protein aggregates are not degraded in various diseases despite p62 association. Here, we reconstituted the recognition by the autophagy receptors of physiological and pathological Tau forms. Monomeric Tau recruits p62 and TAX1BP1 via the sequential actions of the chaperone and ubiquitylation machineries. In contrast, Tau fibrils from Alzheimer's disease brains are recognized by p62 but fail to recruit TAX1BP1. This failure is due to the masking of fibrils ubiquitin moieties by p62. Tau fibrils are resistant to deubiquitylation, and, thus, this nonproductive interaction of p62 with the fibrils is irreversible. Our results shed light on the mechanism underlying autophagy evasion by protein aggregates and their consequent accumulation in disease.
Collapse
Affiliation(s)
- Luca Ferrari
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Bernd Bauer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Yue Qiu
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Martina Schuschnig
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Sigrid Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dorothea Anrather
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | | | - Petra Beli
- Institute of Molecular Biology, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Max Perutz Labs, Department of Biochemistry and Cell Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|
3
|
Weyh M, Jokisch ML, Nguyen TA, Fottner M, Lang K. Deciphering functional roles of protein succinylation and glutarylation using genetic code expansion. Nat Chem 2024; 16:913-921. [PMID: 38531969 PMCID: PMC11164685 DOI: 10.1038/s41557-024-01500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Post-translational modifications (PTMs) dynamically regulate cellular processes. Lysine undergoes a range of acylations, including malonylation, succinylation (SucK) and glutarylation (GluK). These PTMs increase the size of the lysine side chain and reverse its charge from +1 to -1 under physiological conditions, probably impacting protein structure and function. To understand the functional roles of these PTMs, homogeneously modified proteins are required for biochemical studies. While the site-specific encoding of PTMs and their mimics via genetic code expansion has facilitated the characterization of the functional roles of many PTMs, negatively charged lysine acylations have defied this approach. Here we describe site-specific incorporation of SucK and GluK into proteins via temporarily masking their negative charge through thioester derivatives. We prepare succinylated and glutarylated bacterial and mammalian target proteins, including non-refoldable multidomain proteins. This allows us to study how succinylation and glutarylation impact enzymatic activity of metabolic enzymes and regulate protein-DNA and protein-protein interactions in biological processes from replication to ubiquitin signalling.
Collapse
Affiliation(s)
- Maria Weyh
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Marie-Lena Jokisch
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Tuan-Anh Nguyen
- Department of Chemistry, Laboratory for Synthetic Biochemistry, Technical University of Munich Institute for Advanced Study, Garching, Germany
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Maximilian Fottner
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Kathrin Lang
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
- Department of Chemistry, Laboratory for Synthetic Biochemistry, Technical University of Munich Institute for Advanced Study, Garching, Germany.
| |
Collapse
|
4
|
Williams C, Dong KC, Arkinson C, Martin A. Preparation of site-specifically fluorophore-labeled polyubiquitin chains for FRET studies of Cdc48 substrate processing. STAR Protoc 2023; 4:102659. [PMID: 37889757 PMCID: PMC10630674 DOI: 10.1016/j.xpro.2023.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
A critical step in the removal of polyubiquitinated proteins from macromolecular complexes and membranes for subsequent proteasomal degradation is the unfolding of an ubiquitin moiety by the cofactor Ufd1/Npl4 (UN) and its insertion into the Cdc48 ATPase for mechanical translocation. Here, we present a stepwise protocol for the assembly and purification of Lys48-linked ubiquitin chains that are fluorophore labeled at specific ubiquitin moieties and allow monitoring polyubiquitin engagement by the Cdc48-UN complex in a FRET-based assay. For complete details on the use and execution of this protocol, please refer to Williams et al. (2023).1.
Collapse
Affiliation(s)
- Cameron Williams
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ken C Dong
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley CA 94720
| | - Connor Arkinson
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley CA 94720
| | - Andreas Martin
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley CA 94720.
| |
Collapse
|
5
|
Shestoperova EI, Strieter ER. Uncovering DUB Selectivity through an Ion Mobility-Based Assessment of Ubiquitin Chain Isomers. Anal Chem 2023; 95:17416-17423. [PMID: 37962301 PMCID: PMC11103383 DOI: 10.1021/acs.analchem.3c04622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Ubiquitination is a reversible post-translational modification that maintains cellular homeostasis and regulates protein turnover. Deubiquitinases (DUBs) are a large family of proteases that catalyze the removal of ubiquitin (Ub) along with the dismantling and editing of Ub chains. Assessing the activity and selectivity of DUBs is critical for defining physiological functions. Despite numerous methods for evaluating DUB activity, none are capable of assessing activity and selectivity in the context of multicomponent mixtures of native unlabeled Ub conjugates. Here, we report an ion mobility (IM)-based approach for measuring DUB selectivity in the context of unlabeled mixtures of Ub chains. We show that IM-mass spectrometry (IM-MS) can be used to assess the selectivity of DUBs in a time-dependent manner. Moreover, using the branched Ub chain selective DUB UCH37/UCHL5 along with a mixture of Ub trimers, a strong preference for branched Ub trimers bearing K6 and K48 linkages is revealed. Our results demonstrate that IM-MS is a powerful method for evaluating DUB selectivity under conditions more physiologically relevant than single-component mixtures.
Collapse
Affiliation(s)
- Elizaveta I Shestoperova
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Molecular & Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Shestoperova EI, Strieter ER. Uncovering DUB Selectivity Through Ion-Mobility-Based Assessment of Ubiquitin Chain Isomers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561976. [PMID: 37873305 PMCID: PMC10592704 DOI: 10.1101/2023.10.11.561976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ubiquitination is a reversible posttranslational modification that maintains cellular homeostasis and regulates protein turnover. Deubiquitinases (DUBs) are a large family of proteases that catalyze the removal of ubiquitin (Ub) along with the dismantling and editing of Ub chains. Assessing the activity and selectivity of DUBs is critical for defining physiological function. Despite numerous methods for evaluating DUB activity, none are capable of assessing activity and selectivity in the context of multicomponent mixtures of native, unlabeled ubiquitin conjugates. Here we report on an ion mobility (IM)-based approach for measuring DUB selectivity in the context of unlabeled mixtures of Ub chains. We show that IM-MS can be used to assess the selectivity of DUBs in a time-dependent manner. Moreover, using the branched Ub chain selective DUB UCH37/UCHL5 along with a mixture of Ub trimers, a strong preference for branched Ub trimers bearing K6 and K48 linkages is revealed. Our results demonstrate that IM coupled with mass spectrometry (IM-MS) is a powerful method for evaluating DUB selectivity under conditions more physiologically relevant than single component mixtures.
Collapse
|
7
|
Blueggel M, Kroening A, Kracht M, van den Boom J, Dabisch M, Goehring A, Kaschani F, Kaiser M, Bayer P, Meyer H, Beuck C. The UBX domain in UBXD1 organizes ubiquitin binding at the C-terminus of the VCP/p97 AAA-ATPase. Nat Commun 2023; 14:3258. [PMID: 37277335 DOI: 10.1038/s41467-023-38604-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
The AAA+ ATPase p97/VCP together with different sets of substrate-delivery adapters and accessory cofactor proteins unfolds ubiquitinated substrates to facilitate degradation by the proteasome. The UBXD1 cofactor is connected to p97-associated multisystem proteinopathy but its biochemical function and structural organization on p97 has remained largely elusive. Using a combination of crosslinking mass spectrometry and biochemical assays, we identify an extended UBX (eUBX) module in UBXD1 related to a lariat in another cofactor, ASPL. Of note, the UBXD1-eUBX intramolecularly associates with the PUB domain in UBXD1 close to the substrate exit pore of p97. The UBXD1 PUB domain can also bind the proteasomal shuttling factor HR23b via its UBL domain. We further show that the eUBX domain has ubiquitin binding activity and that UBXD1 associates with an active p97-adapter complex during substrate unfolding. Our findings suggest that the UBXD1-eUBX module receives unfolded ubiquitinated substrates after they exit the p97 channel and before hand-over to the proteasome. The interplay of full-length UBXD1 and HR23b and their function in the context of an active p97:UBXD1 unfolding complex remains to be studied in future work.
Collapse
Affiliation(s)
- Mike Blueggel
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Alexander Kroening
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Kracht
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Matthias Dabisch
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Anna Goehring
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Hemmo Meyer
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
8
|
Zhou M, Fang R, Colson L, Donovan KA, Hunkeler M, Song Y, Zhang C, Chen S, Lee DH, Bradshaw GA, Eisert R, Ye Y, Kalocsay M, Goldberg A, Fischer ES, Lu Y. HUWE1 Amplifies Ubiquitin Modifications to Broadly Stimulate Clearance of Proteins and Aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542866. [PMID: 37398461 PMCID: PMC10312588 DOI: 10.1101/2023.05.30.542866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Selective breakdown of proteins and aggregates is crucial for maintaining normal cellular activities and is involved in the pathogenesis of diverse diseases. How the cell recognizes and tags these targets in different structural states for degradation by the proteasome and autophagy pathways has not been well understood. Here, we discovered that a HECT-family ubiquitin ligase HUWE1 is broadly required for the efficient degradation of soluble factors and for the clearance of protein aggregates/condensates. Underlying this capacity of HUWE1 is a novel Ubiquitin-Directed ubiquitin Ligase (UDL) activity which recognizes both soluble substrates and aggregates that carry a high density of ubiquitin chains and rapidly expand the ubiquitin modifications on these targets. Ubiquitin signal amplification by HUWE1 recruits the ubiquitin-dependent segregase p97/VCP to process these targets for subsequent degradation or clearance. HUWE1 controls the cytotoxicity of protein aggregates, mediates Targeted Protein Degradation and regulates cell-cycle transitions with its UDL activity.
Collapse
|
9
|
Furuhata T, Devadasan Racheal PA, Murayama I, Toyoda U, Okamoto A. One-Pot, Photocontrolled Enzymatic Assembly of the Structure-Defined Heterotypic Polyubiquitin Chain. J Am Chem Soc 2023; 145:11690-11700. [PMID: 37200097 DOI: 10.1021/jacs.3c01912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Heterotypic polyubiquitins are an emerging class of polyubiquitins that have attracted interest because of their potential diversity of structures and physiological functions. There is an increasing demand for structure-defined synthesis of heterotypic chains to investigate the topological factors underlying the intracellular signals that are characteristically mediated by the heterotypic chain. However, the applicability of chemical and enzymatic polyubiquitin synthesis developed to date has been limited by laborious rounds of ligation and purification or by a lack of modularity of the chain structure with respect to the length and the branch position. Here, we established a one-pot, photocontrolled synthesis of structurally defined heterotypic polyubiquitin chains. We designed ubiquitin derivatives with a photolabile protecting group at a lysine residue used for polymerization. Repetitive cycles of linkage-specific enzymatic elongation and photoinduced deprotection of the protected ubiquitin units enabled stepwise addition of ubiquitins with appropriate functionalities to control the length and branching positions. The positional control of branching was achieved without isolation of intermediates, allowing one-pot synthesis of K63 triubiqutin chains and a K63/K48 heterotypic tetraubiquitin chain with defined branching positions. The present study provides a chemical platform for the efficient construction of long polyubiquitin chains with defined branch structures that will facilitate the understanding of the essential relationships between functions and structures of the heterotypic chain that have hitherto been overlooked.
Collapse
Affiliation(s)
- Takafumi Furuhata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Phebee Angeline Devadasan Racheal
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Iori Murayama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Usano Toyoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
10
|
Kaushik Rangadurai A, Toyama Y, Kay LE. Practical considerations for the measurement of near-surface electrostatics based on solvent paramagnetic relaxation enhancements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107400. [PMID: 36796143 DOI: 10.1016/j.jmr.2023.107400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Electrostatic interactions can play important roles in regulating various biological processes. Quantifying surface electrostatics of biomolecules is, therefore, of significant interest. Recent advances in solution NMR spectroscopy have enabled site-specific measurements of de novo near-surface electrostatic potentials (ϕENS) based on a comparison of solvent paramagnetic relaxation enhancements generated from differently charged paramagnetic co-solutes with similar structures. Although the NMR-derived near-surface electrostatic potentials have been shown to agree with theoretical calculations in the context of folded proteins and nucleic acids, such benchmark comparisons may not always be possible, particularly in cases where high-resolution structural models are lacking, such as in the study of intrinsically disordered proteins. Cross-validation of ϕENS potentials can be achieved by comparing values obtained using three pairs of paramagnetic co-solutes, each with a different net charge. Notably we have found cases where agreement of ϕENS potentials between the three pairs is poor and herein we investigate the source of this discrepancy in some detail. We show that for the systems considered here ϕENS potentials obtained from cationic and anionic co-solutes are accurate and that the use of paramagnetic co-solutes with different structures can be a viable option for validation, although the optimal choice of paramagnetic compounds depends on the system of interest.
Collapse
Affiliation(s)
- Atul Kaushik Rangadurai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| | - Yuki Toyama
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
11
|
Williams C, Dong KC, Arkinson C, Martin A. The Ufd1 cofactor determines the linkage specificity of polyubiquitin chain engagement by the AAA+ ATPase Cdc48. Mol Cell 2023; 83:759-769.e7. [PMID: 36736315 PMCID: PMC9992269 DOI: 10.1016/j.molcel.2023.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/13/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
The AAA+ ATPase Cdc48 utilizes the cofactor Ufd1/Npl4 to bind and thread polyubiquitinated substrates for their extraction from complexes or membranes and often for subsequent proteasomal degradation. Previous studies indicated that Cdc48 engages polyubiquitin chains through the Npl4-mediated unfolding of an initiator ubiquitin; yet, the underlying principles remain largely unknown. Using FRET-based assays, we revealed the mechanisms and kinetics of ubiquitin unfolding, insertion into the ATPase, and unfolding of the ubiquitin-attached substrate. We found that Cdc48 uses Ufd1's UT3 domain to bind a K48-linked ubiquitin on the initiator's proximal side of the chain, thereby directing the initiator toward rapid unfolding by Npl4 and engagement by Cdc48. Ubiquitins on the initiator's distal side increase substrate affinity and facilitate unfolding but impede substrate release from Cdc48-Ufd1/Npl4 in the absence of additional cofactors. Our findings explain how Cdc48-UN efficiently processes substrates with K48-linked chains of 4-6 ubiquitins, which represent most cellular polyubiquitinated proteins.
Collapse
Affiliation(s)
- Cameron Williams
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ken C Dong
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Connor Arkinson
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andreas Martin
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Li C, Song B, Shi W, Liu X, Song N, Zheng J. Biosynthesis of long polyubiquitin chains in high yield and purity. Anal Biochem 2023; 664:115044. [PMID: 36642192 DOI: 10.1016/j.ab.2023.115044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
As one of the most prevalent protein post-translational modifications, ubiquitin modification plays a momentous role in regulating varied cellular functions. Different polyubiquitin linkage types have diverse effects on cell signaling. However, compared with short ubiquitin chains, the preparation of long ubiquitin chains remains difficult and expensive to purchase commercially. In this study, we constructed an enzyme library of ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, and ubiquitin-ligase E3, which are specific for synthesizing K63, K48, and M1 linked polyubiquitin chains. We demonstrate that these distinctly linked polyubiquitin chains could be synthesized and purified with high yield and purity. More importantly, this method can synthesize longer ubiquitin chains, the longest can reach more than fifteen ubiquitin molecules, which provides great convenience for ubiquitin-related structural and functional studies.
Collapse
Affiliation(s)
- Chaoqiang Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Bin Song
- The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wenjia Shi
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Xin Liu
- The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ning Song
- The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jie Zheng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China; The Drug Research Center of Immunological Diseases, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
13
|
Targeted degradation via direct 26S proteasome recruitment. Nat Chem Biol 2023; 19:55-63. [PMID: 36577875 PMCID: PMC9797404 DOI: 10.1038/s41589-022-01218-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/25/2022] [Indexed: 12/29/2022]
Abstract
Engineered destruction of target proteins by recruitment to the cell's degradation machinery has emerged as a promising strategy in drug discovery. The majority of molecules that facilitate targeted degradation do so via a select number of ubiquitin ligases, restricting this therapeutic approach to tissue types that express the requisite ligase. Here, we describe a new strategy of targeted protein degradation through direct substrate recruitment to the 26S proteasome. The proteolytic complex is essential and abundantly expressed in all cells; however, proteasomal ligands remain scarce. We identify potent peptidic macrocycles that bind directly to the 26S proteasome subunit PSMD2, with a 2.5-Å-resolution cryo-electron microscopy complex structure revealing a binding site near the 26S pore. Conjugation of this macrocycle to a potent BRD4 ligand enabled generation of chimeric molecules that effectively degrade BRD4 in cells, thus demonstrating that degradation via direct proteasomal recruitment is a viable strategy for targeted protein degradation.
Collapse
|
14
|
Jonsson E, Htet ZM, Bard JA, Dong KC, Martin A. Ubiquitin modulates 26 S proteasome conformational dynamics and promotes substrate degradation. SCIENCE ADVANCES 2022; 8:eadd9520. [PMID: 36563145 PMCID: PMC9788759 DOI: 10.1126/sciadv.add9520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The 26S proteasome recognizes thousands of appropriate protein substrates in eukaryotic cells through attached ubiquitin chains and uses its adenosine triphosphatase (ATPase) motor for mechanical unfolding and translocation into a proteolytic chamber. Here, we used single-molecule Förster resonance energy transfer measurements to monitor the conformational dynamics of the proteasome, observe individual substrates during their progression toward degradation, and elucidate how these processes are regulated by ubiquitin chains. Rapid transitions between engagement- and processing-competent proteasome conformations control substrate access to the ATPase motor. Ubiquitin chain binding functions as an allosteric regulator to slow these transitions, stabilize the engagement-competent state, and aid substrate capture to accelerate degradation initiation. Upon substrate engagement, the proteasome remains in processing-competent states for translocation and unfolding, except for apparent motor slips when encountering stably folded domains. Our studies revealed how ubiquitin chains allosterically regulate degradation initiation, which ensures substrate selectivity in a crowded cellular environment.
Collapse
Affiliation(s)
- Erik Jonsson
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Zaw Min Htet
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | - Ken C. Dong
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
15
|
Tiwari S, Singh A, Gupta P, Singh S. UBA52 Is Crucial in HSP90 Ubiquitylation and Neurodegenerative Signaling during Early Phase of Parkinson's Disease. Cells 2022; 11:cells11233770. [PMID: 36497031 PMCID: PMC9738938 DOI: 10.3390/cells11233770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Protein aggregation is one of the major pathological events in age-related Parkinson's disease (PD) pathology, predominantly regulated by the ubiquitin-proteasome system (UPS). UPS essentially requires core component ubiquitin; however, its role in PD pathology is obscure. This study aimed to investigate the role of ubiquitin-encoding genes in sporadic PD pathology. Both cellular and rat models of PD as well as SNCA C57BL/6J-Tg (Th-SNCA*A30P*A53T)39 Eric/J transgenic mice showed a decreased abundance of UBA52 in conjunction with significant downregulation of tyrosine hydroxylase (TH) and neuronal death. In silico predictions, mass spectrometric analysis, and co-immunoprecipitation findings suggested the protein-protein interaction of UBA52 with α-synuclein, HSP90 and E3-ubiquitin ligase CHIP, and its co-localization with α-synuclein in the mitochondrion. Next, in vitro ubiquitylation assay indicated an imperative requirement of the lysine-63 residue of UBA52 in CHIP-mediated HSP90 ubiquitylation. Myc-UBA52 expressed neurons inhibited alteration in PD-specific markers such as α-synuclein and TH protein along with increased proteasome activity in diseased conditions. Furthermore, Myc-UBA52 expression inhibited the altered protein abundance of HSP90 and its various client proteins, HSP75 (homolog of HSP90 in mitochondrion) and ER stress-related markers during early PD. Taken together, the data highlights the critical role of UBA52 in HSP90 ubiquitylation in parallel to its potential contribution to the modulation of various disease-related neurodegenerative signaling targets during the early phase of PD pathology.
Collapse
Affiliation(s)
- Shubhangini Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Abhishek Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parul Gupta
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence:
| |
Collapse
|
16
|
Kelsall IR, McCrory EH, Xu Y, Scudamore CL, Nanda SK, Mancebo-Gamella P, Wood NT, Knebel A, Matthews SJ, Cohen P. HOIL-1 ubiquitin ligase activity targets unbranched glucosaccharides and is required to prevent polyglucosan accumulation. EMBO J 2022; 41:e109700. [PMID: 35274759 PMCID: PMC9016349 DOI: 10.15252/embj.2021109700] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
HOIL-1, a component of the linear ubiquitin chain assembly complex (LUBAC), ubiquitylates serine and threonine residues in proteins by esterification. Here, we report that mice expressing an E3 ligase-inactive HOIL-1[C458S] mutant accumulate polyglucosan in brain, heart and other organs, indicating that HOIL-1's E3 ligase activity is essential to prevent these toxic polysaccharide deposits from accumulating. We found that HOIL-1 monoubiquitylates glycogen and α1:4-linked maltoheptaose in vitro and identify the C6 hydroxyl moiety of glucose as the site of ester-linked ubiquitylation. The monoubiquitylation of maltoheptaose was accelerated > 100-fold by the interaction of Met1-linked or Lys63-linked ubiquitin oligomers with the RBR domain of HOIL-1. HOIL-1 also transferred pre-formed ubiquitin oligomers to maltoheptaose en bloc, producing polyubiquitylated maltoheptaose in one catalytic step. The Sharpin and HOIP components of LUBAC, but not HOIL-1, bound to unbranched and infrequently branched glucose polymers in vitro, but not to highly branched mammalian glycogen, suggesting a potential function in targeting HOIL-1 to unbranched glucosaccharides in cells. We suggest that monoubiquitylation of unbranched glucosaccharides may initiate their removal from cells, preventing precipitation as polyglucosan.
Collapse
Affiliation(s)
- Ian R Kelsall
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Elisha H McCrory
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Yingqi Xu
- Cross-Faculty NMR Centre, Department of Life Sciences, Imperial College London, London, UK
| | | | - Sambit K Nanda
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Paula Mancebo-Gamella
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nicola T Wood
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Stephen J Matthews
- Cross-Faculty NMR Centre, Department of Life Sciences, Imperial College London, London, UK
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
17
|
Burslem GM. The chemical biology of ubiquitin. Biochim Biophys Acta Gen Subj 2022; 1866:130079. [PMID: 34971772 PMCID: PMC10038182 DOI: 10.1016/j.bbagen.2021.130079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
This mini-review will cover the various chemical biology approaches employed to prepare and modulate ubiquitin chains and the ubiquitin-proteasome system. Emphasis will be given to the biochemistry and chemical biology of poly-ubiquitin chain preparation as a tool to elucidate its roles in biological systems as well as the hijacking of the ubiquitin proteasome system using heterobifunctional compounds to induce intracellular ubiquitination.
Collapse
Affiliation(s)
- George M Burslem
- Department of Biochemistry and Biophysics, Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
18
|
Akimoto G, Fernandes AP, Bode JW. Site-Specific Protein Ubiquitylation Using an Engineered, Chimeric E1 Activating Enzyme and E2 SUMO Conjugating Enzyme Ubc9. ACS CENTRAL SCIENCE 2022; 8:275-281. [PMID: 35237717 PMCID: PMC8883482 DOI: 10.1021/acscentsci.1c01490] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Indexed: 05/10/2023]
Abstract
Ubiquitylation-the attachment of ubiquitin (Ub) to proteins in eukaryotic cells-involves a vast number of enzymes from three different classes, resulting in heterogeneous attachment sites and ubiquitin chains. Recently, we introduced lysine acylation using conjugating enzymes (LACE) in which ubiquitin or peptide thioester is site-specifically transferred to a short peptide tag by the SUMO E2 conjugating enzyme Ubc9. This process, however, suffers from slow kinetics-due to a rate-limiting thioester loading step-and the requirement for thioesters restricts its use to in vitro reactions. To overcome these challenges, we devised a chimeric E1 containing the Ub fold domain of the SUMO E1 and the remaining domains of the Ub E1, which activates and loads native Ub onto Ubc9 and obviates the need for Ub thioester in LACE. The chimeric E1 was subjected to directed evolution to improve its apparent second-order rate constant (k cat/K M) 400-fold. We demonstrate the utility of the chimeric E1 by site-specific transfer of mono- and oligo-Ub to various target proteins in vitro. Additionally, the chimeric E1, Ubc9, Ub, and the target protein can be coexpressed in Escherichia coli for the facile preparation of monoubiquitylated proteins.
Collapse
|
19
|
Anoh R, Burke KA, Schmelyun DP, Lombardi PM. Generation of Monoubiquitin and K63-Linked Polyubiquitin Chains for Protein Interaction Studies. Methods Mol Biol 2022; 2444:271-282. [PMID: 35290643 DOI: 10.1007/978-1-0716-2063-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ubiquitylation is a posttranslational modification that utilizes protein-protein binding interactions to regulate cellular processes. In ubiquitin signaling, a vast array of mono- and polyubiquitin modifications to substrate proteins are recognized by a diverse group of ubiquitin-binding proteins. Identifying ubiquitin-binding proteins and characterizing their binding properties is necessary for understanding the structural basis of ubiquitin signaling. This chapter provides a means of studying ubiquitin-binding interactions in vitro by describing how to generate monoubiquitin and K63-linked polyubiquitin chains and perform pull-down assays with ubiquitin-binding proteins, which is of particular relevance for DNA damage and other signaling pathways.
Collapse
Affiliation(s)
- Rita Anoh
- Department of Science, Mount St. Mary's University, Emmitsburg, MD, USA
| | - Kate A Burke
- Department of Science, Mount St. Mary's University, Emmitsburg, MD, USA
| | - Dhane P Schmelyun
- Department of Science, Mount St. Mary's University, Emmitsburg, MD, USA
| | - Patrick M Lombardi
- Department of Science, Mount St. Mary's University, Emmitsburg, MD, USA.
| |
Collapse
|
20
|
Cotton TR, Cobbold SA, Bernardini JP, Richardson LW, Wang XS, Lechtenberg BC. Structural basis of K63-ubiquitin chain formation by the Gordon-Holmes syndrome RBR E3 ubiquitin ligase RNF216. Mol Cell 2021; 82:598-615.e8. [PMID: 34998453 DOI: 10.1016/j.molcel.2021.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/11/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
An increasing number of genetic diseases are linked to deregulation of E3 ubiquitin ligases. Loss-of-function mutations in the RING-between-RING (RBR) family E3 ligase RNF216 (TRIAD3) cause Gordon-Holmes syndrome (GHS) and related neurodegenerative diseases. Functionally, RNF216 assembles K63-linked ubiquitin chains and has been implicated in regulation of innate immunity signaling pathways and synaptic plasticity. Here, we report crystal structures of key RNF216 reaction states including RNF216 in complex with ubiquitin and its reaction product, K63 di-ubiquitin. Our data provide a molecular explanation for chain-type specificity and reveal the molecular basis for disruption of RNF216 function by pathogenic GHS mutations. Furthermore, we demonstrate how RNF216 activity and chain-type specificity are regulated by phosphorylation and that RNF216 is allosterically activated by K63-linked di-ubiquitin. These molecular insights expand our understanding of RNF216 function and its role in disease and further define the mechanistic diversity of the RBR E3 ligase family.
Collapse
Affiliation(s)
- Thomas R Cotton
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Simon A Cobbold
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonathan P Bernardini
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lachlan W Richardson
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiangyi S Wang
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Bernhard C Lechtenberg
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
21
|
Schoeffler AJ, Helgason E, Popovych N, Dueber EC. Diagnosing and mitigating method-based avidity artifacts that confound polyubiquitin-binding assays. BIOPHYSICAL REPORTS 2021; 1:100033. [PMID: 36425458 PMCID: PMC9680732 DOI: 10.1016/j.bpr.2021.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/09/2021] [Indexed: 06/16/2023]
Abstract
Polyubiquitination is a complex form of posttranslational modification responsible for the control of numerous cellular processes. Many ubiquitin-binding proteins recognize distinct polyubiquitin chain types, and these associations help drive ubiquitin-signaling pathways. There is considerable interest in understanding the specificity of ubiquitin-binding proteins; however, because of the multivalent nature of polyubiquitin, affinity measurements of these interactions that rely on affixing ubiquitin-binding proteins to a surface can display artifactual, method-dependent avidity, or "bridging." This artifact, which is distinct from biologically relevant, avid interactions with polyubiquitin, is commonplace in such polyubiquitin-binding measurements and can lead to dramatic overestimations of binding affinities for particular chain types, and thus, incorrect conclusions about specificity. Here, we use surface-based measurements of ubiquitin binding in three model systems to illustrate bridging and lay out practical ways of identifying and mitigating it. Specifically, we describe a simple fitting model that enables researchers to diagnose the severity of bridging artifacts, determine whether they can be minimized, and more accurately evaluate polyubiquitin-binding specificity.
Collapse
Affiliation(s)
- Allyn J. Schoeffler
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Elizabeth Helgason
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Nataliya Popovych
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| | - Erin C. Dueber
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California
| |
Collapse
|
22
|
Song B, Chen Y, Liu X, Yuan F, Tan EYJ, Lei Y, Song N, Han Y, Pascal BD, Griffin PR, Luo C, Wu B, Luo D, Zheng J. Ordered assembly of the cytosolic RNA-sensing MDA5-MAVS signaling complex via binding to unanchored K63-linked poly-ubiquitin chains. Immunity 2021; 54:2218-2230.e5. [PMID: 34644557 DOI: 10.1016/j.immuni.2021.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/05/2021] [Accepted: 09/14/2021] [Indexed: 11/15/2022]
Abstract
The RNA sensor MDA5 recruits the signaling adaptor MAVS to initiate type I interferon signaling and downstream antiviral responses, a process that requires K63-linked polyubiquitin chains. Here, we examined the mechanisms whereby K63-polyUb chain regulate MDA5 activation. Only long unanchored K63-polyUbn (n ≥ 8) could mediate tetramerization of the caspase activation and recruitment domains of MDA5 (MDA5CARDs). Cryoelectron microscopy structures of a polyUb13-bound MDA5CARDs tetramer and a polyUb11-bound MDA5CARDs-MAVSCARD assembly revealed a tower-like formation, wherein eight Ubs tethered along the outer rim of the helical shell, bridging MDA5CARDs and MAVSCARD tetramers into proximity. ATP binding and hydrolysis promoted the stabilization of RNA-bound MDA5 prior to MAVS activation via allosteric effects on CARDs-polyUb complex. Abundant ATP prevented basal activation of apo MDA5. Our findings reveal the ordered assembly of a MDA5 signaling complex competent to recruit and activate MAVS and highlight differences with RIG-I in terms of CARD orientation and Ub sensing that suggest different abilities to induce antiviral responses.
Collapse
Affiliation(s)
- Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Chen
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Eddie Yong Jun Tan
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 636921, Singapore
| | - Yixuan Lei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yinqi Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Patrick R Griffin
- The Scripps Research Institute, Department of Molecular Medicine, Jupiter, FL 33458, USA
| | - Cheng Luo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bin Wu
- NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 636921, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore 636921, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 636921, Singapore
| | - Jie Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| |
Collapse
|
23
|
De Cesare V, Moran J, Traynor R, Knebel A, Ritorto MS, Trost M, McLauchlan H, Hastie CJ, Davies P. High-throughput matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry-based deubiquitylating enzyme assay for drug discovery. Nat Protoc 2020; 15:4034-4057. [PMID: 33139956 DOI: 10.1038/s41596-020-00405-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/26/2020] [Indexed: 12/24/2022]
Abstract
Deubiquitylating enzymes (DUBs) play a vital role in the ubiquitin pathway by editing or removing ubiquitin from their substrate. As breakthroughs within the ubiquitin field continue to highlight the potential of deubiquitylating enzymes as drug targets, there is increasing demand for versatile high-throughput (HT) tools for the identification of potent and selective DUB modulators. Here we present the HT adaptation of the previously published MALDI-TOF-based DUB assay method. In a MALDI-TOF DUB assay, we quantitate the amount of mono-ubiquitin generated by the in vitro cleavage of ubiquitin chains by DUBs. The method has been specifically developed for use with nanoliter-dispensing robotics to meet drug discovery requirements for the screening of large and diverse compound libraries. Contrary to the most common DUB screening technologies currently available, the MALDI-TOF DUB assay combines the use of physiological substrates with the sensitivity and reliability of the mass spectrometry-based readout.
Collapse
Affiliation(s)
- Virginia De Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK.
| | - Jennifer Moran
- MRC Protein Phosphorylation and Ubiquitylation Unit Reagents and Services, University of Dundee, Dundee, Scotland, UK
| | - Ryan Traynor
- MRC Protein Phosphorylation and Ubiquitylation Unit Reagents and Services, University of Dundee, Dundee, Scotland, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| | - Maria Stella Ritorto
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK.,Newcastle University Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Hilary McLauchlan
- MRC Protein Phosphorylation and Ubiquitylation Unit Reagents and Services, University of Dundee, Dundee, Scotland, UK
| | - C James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit Reagents and Services, University of Dundee, Dundee, Scotland, UK
| | - Paul Davies
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
24
|
Schellenberg MJ, Appel CD, Riccio AA, Butler LR, Krahn JM, Liebermann JA, Cortés-Ledesma F, Williams RS. Ubiquitin stimulated reversal of topoisomerase 2 DNA-protein crosslinks by TDP2. Nucleic Acids Res 2020; 48:6310-6325. [PMID: 32356875 DOI: 10.1093/nar/gkaa318] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/30/2020] [Accepted: 04/20/2020] [Indexed: 11/12/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) reverses Topoisomerase 2 DNA-protein crosslinks (TOP2-DPCs) in a direct-reversal pathway licensed by ZATTZNF451 SUMO2 E3 ligase and SUMOylation of TOP2. TDP2 also binds ubiquitin (Ub), but how Ub regulates TDP2 functions is unknown. Here, we show that TDP2 co-purifies with K63 and K27 poly-Ubiquitinated cellular proteins independently of, and separately from SUMOylated TOP2 complexes. Poly-ubiquitin chains of ≥ Ub3 stimulate TDP2 catalytic activity in nuclear extracts and enhance TDP2 binding of DNA-protein crosslinks in vitro. X-ray crystal structures and small-angle X-ray scattering analysis of TDP2-Ub complexes reveal that the TDP2 UBA domain binds K63-Ub3 in a 1:1 stoichiometric complex that relieves a UBA-regulated autoinhibitory state of TDP2. Our data indicates that that poly-Ub regulates TDP2-catalyzed TOP2-DPC removal, and TDP2 single nucleotide polymorphisms can disrupt the TDP2-Ubiquitin interface.
Collapse
Affiliation(s)
- Matthew J Schellenberg
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - C Denise Appel
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Amanda A Riccio
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Logan R Butler
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jenna A Liebermann
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide-Junta de Andalucía, 41092 Sevilla, Spain
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide-Junta de Andalucía, 41092 Sevilla, Spain.,Topology and DNA breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - R Scott Williams
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| |
Collapse
|
25
|
Shine A, Shenoy J, Jayan P, Jiji AC, Vijayan V. Residual Dipolar‐Coupling‐Based Conformational Comparison of Noncovalent Ubiquitin Homodimer with Covalently Linked Diubiquitin. Chemphyschem 2020; 21:888-894. [DOI: 10.1002/cphc.201901100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/06/2020] [Indexed: 11/08/2022]
Affiliation(s)
- A. Shine
- School of Chemistry IISER Thiruvananthapuram Maruthamala PO Vithura Kerala India
| | - J. Shenoy
- School of Chemistry IISER Thiruvananthapuram Maruthamala PO Vithura Kerala India
| | - Parvathy Jayan
- School of Chemistry IISER Thiruvananthapuram Maruthamala PO Vithura Kerala India
| | - A. C. Jiji
- School of Chemistry IISER Thiruvananthapuram Maruthamala PO Vithura Kerala India
| | - Vinesh Vijayan
- School of Chemistry IISER Thiruvananthapuram Maruthamala PO Vithura Kerala India
| |
Collapse
|
26
|
Hausman JM, Kenny S, Iyer S, Babar A, Qiu J, Fu J, Luo ZQ, Das C. The Two Deubiquitinating Enzymes from Chlamydia trachomatis Have Distinct Ubiquitin Recognition Properties. Biochemistry 2020; 59:1604-1617. [PMID: 32275137 PMCID: PMC7700883 DOI: 10.1021/acs.biochem.9b01107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chlamydia trachomatis is the cause of several diseases such as sexually transmitted urogenital disease and ocular trachoma. The pathogen contains a small genome yet, upon infection, expresses two enzymes with deubiquitinating activity, termed ChlaDUB1 and ChlaDUB2, presumed to have redundant deubiquitinase (DUB) function because of the similarity of the primary structure of their catalytic domain. Previous studies have led to structural characterization of the enzymatic properties of ChlaDUB1; however, ChlaDUB2 has yet to be investigated thoroughly. In this study, we investigated the deubiquitinase properties of ChlaDUB2 and compared them to those of ChlaDUB1. This revealed a distinct difference in hydrolytic activity with regard to di- and polyubiquitin chains while showing similar ability to cleave a monoubiquitin-based substrate, ubiquitin aminomethylcoumarin (Ub-AMC). ChlaDUB2 was unable to cleave a diubiquitin substrate efficiently, whereas ChlaDUB1 could rapidly hydrolyze this substrate like a prototypical prokaryotic DUB, SdeA. With polyubiquitinated green fluorescent protein substrate (GFP-Ubn), whereas ChlaDUB1 efficiently disassembled the polyubiquitin chains into the monoubiquitin product, the deubiquitination activity of ChlaDUB2, while showing depletion of the substrate, did not produce appreciable levels of the monoubiquitin product. We report the structures of a catalytic construct of ChlaDUB2 and its complex with ubiquitin propargyl amide. These structures revealed differences in residues involved in substrate recognition between the two Chlamydia DUBs. On the basis of the structures, we conclude that the distal ubiquitin binding is equivalent between the two DUBs, consistent with the Ub-AMC activity result. Therefore, the difference in activity with longer ubiquitinated substrates may be due to the differential recognition of these substrates involving additional ubiquitin binding sites.
Collapse
Affiliation(s)
- John M. Hausman
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Sebastian Kenny
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Shalini Iyer
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Aditya Babar
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jiazhang Qiu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Xi’an Road 5333, Changchun, Jilin 130062, China
| | - Jiaqi Fu
- Department of Biology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhao-Qing Luo
- Department of Biology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
Zerbe CM, Mouser DJ, Cole JL. Oligomerization of RIG-I and MDA5 2CARD domains. Protein Sci 2020; 29:521-526. [PMID: 31697400 PMCID: PMC6954692 DOI: 10.1002/pro.3776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022]
Abstract
The innate immune system is the first line of defense against invading pathogens. The retinoic acid-inducible gene I (RIG-I) like receptors (RLRs), RIG-I and melanoma differentiation-associated protein 5 (MDA5), are critical for host recognition of viral RNAs. These receptors contain a pair of N-terminal tandem caspase activation and recruitment domains (2CARD), an SF2 helicase core domain, and a C-terminal regulatory domain. Upon RLR activation, 2CARD associates with the CARD domain of MAVS, leading to the oligomerization of MAVS, downstream signaling and interferon induction. Unanchored K63-linked polyubiquitin chains (polyUb) interacts with the 2CARD domain, and in the case of RIG-I, induce tetramer formation. However, the nature of the MDA5 2CARD signaling complex is not known. We have used sedimentation velocity analytical ultracentrifugation to compare MDA5 2CARD and RIG-I 2CARD binding to polyUb and to characterize the assembly of MDA5 2CARD oligomers in the absence of polyUb. Multi-signal sedimentation velocity analysis indicates that Ub4 binds to RIG-I 2CARD with a 3:4 stoichiometry and cooperatively induces formation of an RIG-I 2CARD tetramer. In contrast, Ub4 and Ub7 interact with MDA5 2CARD weakly and form complexes with 1:1 and 2:1 stoichiometries but do not induce 2CARD oligomerization. In the absence of polyUb, MDA5 2CARD self-associates to forms large oligomers in a concentration-dependent manner. Thus, RIG-I and MDA5 2CARD assembly processes are distinct. MDA5 2CARD concentration-dependent self-association, rather than polyUb binding, drives oligomerization and MDA5 2CARD forms oligomers larger than tetramer. We propose a mechanism where MDA5 2CARD oligomers, rather than a stable tetramer, function to nucleate MAVS polymerization.
Collapse
Affiliation(s)
- Cassie M. Zerbe
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticut
| | - David J. Mouser
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticut
| | - James L. Cole
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticut
- Department of ChemistryUniversity of ConnecticutStorrsConnecticut
| |
Collapse
|
28
|
Blythe EE, Gates SN, Deshaies RJ, Martin A. Multisystem Proteinopathy Mutations in VCP/p97 Increase NPLOC4·UFD1L Binding and Substrate Processing. Structure 2019; 27:1820-1829.e4. [PMID: 31623962 DOI: 10.1016/j.str.2019.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022]
Abstract
Valosin-containing protein (VCP)/p97 is an essential ATP-dependent protein unfoldase. Dominant mutations in p97 cause multisystem proteinopathy (MSP), a disease affecting the brain, muscle, and bone. Despite the identification of numerous pathways that are perturbed in MSP, the molecular-level defects of these p97 mutants are not completely understood. Here, we use biochemistry and cryoelectron microscopy to explore the effects of MSP mutations on the unfoldase activity of p97 in complex with its substrate adaptor NPLOC4⋅UFD1L (UN). We show that all seven analyzed MSP mutants unfold substrates faster. Mutant homo- and heterohexamers exhibit tighter UN binding and faster substrate processing. Our structural studies suggest that the increased UN affinity originates from a decoupling of p97's nucleotide state and the positioning of its N-terminal domains. Together, our data support a gain-of-function model for p97-UN-dependent processes in MSP and underscore the importance of N-terminal domain movements for adaptor recruitment and substrate processing by p97.
Collapse
Affiliation(s)
- Emily E Blythe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Stephanie N Gates
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Amgen Research, Thousand Oaks, CA 91320, USA
| | - Andreas Martin
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
29
|
Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, Hur S, Chang HY. N6-Methyladenosine Modification Controls Circular RNA Immunity. Mol Cell 2019; 76:96-109.e9. [PMID: 31474572 PMCID: PMC6778039 DOI: 10.1016/j.molcel.2019.07.016] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/25/2019] [Accepted: 07/10/2019] [Indexed: 02/08/2023]
Abstract
Circular RNAs (circRNAs) are prevalent in eukaryotic cells and viral genomes. Mammalian cells possess innate immunity to detect foreign circRNAs, but the molecular basis of self versus foreign identity in circRNA immunity is unknown. Here, we show that N6-methyladenosine (m6A) RNA modification on human circRNAs inhibits innate immunity. Foreign circRNAs are potent adjuvants to induce antigen-specific T cell activation, antibody production, and anti-tumor immunity in vivo, and m6A modification abrogates immune gene activation and adjuvant activity. m6A reader YTHDF2 sequesters m6A-circRNA and is essential for suppression of innate immunity. Unmodified circRNA, but not m6A-modified circRNA, directly activates RNA pattern recognition receptor RIG-I in the presence of lysine-63-linked polyubiquitin chain to cause filamentation of the adaptor protein MAVS and activation of the downstream transcription factor IRF3. CircRNA immunity has considerable parallel to prokaryotic DNA restriction modification system that transforms nucleic acid chemical modification into organismal innate immunity.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Adenosine/administration & dosage
- Adenosine/analogs & derivatives
- Adenosine/immunology
- Adenosine/metabolism
- Adjuvants, Immunologic/administration & dosage
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- DEAD Box Protein 58/immunology
- DEAD Box Protein 58/metabolism
- Female
- HEK293 Cells
- HeLa Cells
- Humans
- Immunity, Innate
- Immunization
- Interferon Regulatory Factor-3/immunology
- Interferon Regulatory Factor-3/metabolism
- Interferons/immunology
- Interferons/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice, Inbred C57BL
- Polyubiquitin/immunology
- Polyubiquitin/metabolism
- Protein Multimerization
- RNA, Circular/administration & dosage
- RNA, Circular/immunology
- RNA, Circular/metabolism
- RNA-Binding Proteins/immunology
- RNA-Binding Proteins/metabolism
- Receptors, Immunologic
- Ubiquitination
Collapse
Affiliation(s)
- Y Grace Chen
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Robert Chen
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rohit Verma
- Institute for Immunity, Transplantation and Infection, Department of Pathology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Sudhir Pai Kasturi
- Emory Vaccine Center/Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Laura Amaya
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - James P Broughton
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Jeewon Kim
- Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Cristhian Cadena
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Department of Pathology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Cadena C, Ahmad S, Xavier A, Willemsen J, Park S, Park JW, Oh SW, Fujita T, Hou F, Binder M, Hur S. Ubiquitin-Dependent and -Independent Roles of E3 Ligase RIPLET in Innate Immunity. Cell 2019; 177:1187-1200.e16. [PMID: 31006531 PMCID: PMC6525047 DOI: 10.1016/j.cell.2019.03.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/28/2019] [Accepted: 03/07/2019] [Indexed: 01/22/2023]
Abstract
The conventional view posits that E3 ligases function primarily through conjugating ubiquitin (Ub) to their substrate molecules. We report here that RIPLET, an essential E3 ligase in antiviral immunity, promotes the antiviral signaling activity of the viral RNA receptor RIG-I through both Ub-dependent and -independent manners. RIPLET uses its dimeric structure and a bivalent binding mode to preferentially recognize and ubiquitinate RIG-I pre-oligomerized on dsRNA. In addition, RIPLET can cross-bridge RIG-I filaments on longer dsRNAs, inducing aggregate-like RIG-I assemblies. The consequent receptor clustering synergizes with the Ub-dependent mechanism to amplify RIG-I-mediated antiviral signaling in an RNA-length dependent manner. These observations show the unexpected role of an E3 ligase as a co-receptor that directly participates in receptor oligomerization and ligand discrimination. It also highlights a previously unrecognized mechanism by which the innate immune system measures foreign nucleic acid length, a common criterion for self versus non-self nucleic acid discrimination.
Collapse
Affiliation(s)
- Cristhian Cadena
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA
| | - Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA
| | - Audrey Xavier
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA; Institute of Chemistry and Biochemistry, Free University of Berlin, Germany
| | - Joschka Willemsen
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response" (division F170), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sehoon Park
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA
| | - Ji Woo Park
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA; Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Seong-Wook Oh
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Fajian Hou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response" (division F170), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sun Hur
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA.
| |
Collapse
|
31
|
Matsumoto ML, Castellanos ER, Zeng YJ, Kirkpatrick DS. Interpreting the Language of Polyubiquitin with Linkage-Specific Antibodies and Mass Spectrometry. Methods Mol Biol 2019; 1844:385-400. [PMID: 30242722 DOI: 10.1007/978-1-4939-8706-1_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Posttranslational modification of cellular proteins by ubiquitin serves a variety of functions. Among the multitude of ubiquitin substrates, ubiquitin itself is the most prevalent. For many years, the direct detection of polyubiquitin chains attached to cellular substrates was not practical, with cell biologists relegated to indirect approaches involving site-directed mutagenesis or in vitro biochemistry. Recent advances in two technologies-polyubiquitin linkage-specific antibodies and mass spectrometry proteomics, have overcome that limitation. Using one or both of these, the direct analysis of polyubiquitin chain linkages on cellular substrate proteins may be performed. This paper describes the complimentary nature of linkage-specific antibodies and mass spectrometry proteomics for the characterization of complex ubiquitin signals using lessons learned in early development of both technologies.
Collapse
Affiliation(s)
- Marissa L Matsumoto
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA, USA.
| | - Erick R Castellanos
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Yi Jimmy Zeng
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
32
|
The ubiquitin interacting motifs of USP37 act on the proximal Ub of a di-Ub chain to enhance catalytic efficiency. Sci Rep 2019; 9:4119. [PMID: 30858488 PMCID: PMC6412040 DOI: 10.1038/s41598-019-40815-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/14/2019] [Indexed: 02/08/2023] Open
Abstract
USP37 is a deubiquitinase (DUB) with roles in the regulation of DNA damage repair and the cohesion of sister chromatids during mitosis. USP37 contains a unique insert of three ubiquitin interacting motifs (UIMs) within its catalytic DUB domain. We investigated the role of the three UIMs in the ability of USP37 to cleave di-ubiquitin chains. We found that the third UIM of USP37 recognizes the proximal ubiquitin moiety of K48 di-Ub to potentiate cleavage activity and posit that this mechanism of action may be generalizable to other chain types. In the case of K48-linked ubiquitin chains this potentiation stemmed largely from a dramatic increase in catalytic rate (kcat). We also developed and characterized three ubiquitin variant (UbV) inhibitors that selectively engage distinct binding sites in USP37. In addition to validating the deduced functional roles of the three UIMs in catalysis, the UbVs highlight a novel and effective means to selectively inhibit members of the difficult to drug DUB family.
Collapse
|
33
|
Recent advances in the chemical synthesis and semi-synthesis of poly-ubiquitin-based proteins and probes. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9401-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Urner LH, Maier YB, Haag R, Pagel K. Exploring the Potential of Dendritic Oligoglycerol Detergents for Protein Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:174-180. [PMID: 30276626 PMCID: PMC6318253 DOI: 10.1007/s13361-018-2063-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
The ability to design detergents that are suitable for protein analysis by mass spectrometry (MS) represents an on-going challenge in the field of native MS. Desirable detergent characteristics include charge-reducing properties and low gas-phase stabilities of complexes formed with proteins. In this work, the gas-phase properties of oligoglycerol detergents (OGDs) are optimized by fine tuning of their molecular structure. Furthermore, a tandem mass spectrometry (MS/MS) approach is presented that estimates the gas-phase properties of detergents simply by studying the dissociation behaviour of protein-detergent complexes (PDCs) formed with the soluble protein β-lactoglobulin (BLG). Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Leonhard H Urner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany
| | - Yasmine B Maier
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany
| | - Kevin Pagel
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany.
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.
| |
Collapse
|
35
|
|
36
|
Liang LJ, Si Y, Tang S, Huang D, Wang ZA, Tian C, Zheng JS. Biochemical properties of K11,48-branched ubiquitin chains. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Si Y, Liang L, Tang S, Qi Y, Huang Y, Liu L. Semi-synthesis of disulfide-linked branched tri-ubiquitin mimics. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9189-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
38
|
Kniss A, Schuetz D, Kazemi S, Pluska L, Spindler PE, Rogov VV, Husnjak K, Dikic I, Güntert P, Sommer T, Prisner TF, Dötsch V. Chain Assembly and Disassembly Processes Differently Affect the Conformational Space of Ubiquitin Chains. Structure 2018; 26:249-258.e4. [DOI: 10.1016/j.str.2017.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/15/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
39
|
Ahmad S, Mu X, Yang F, Greenwald E, Park JW, Jacob E, Zhang CZ, Hur S. Breaching Self-Tolerance to Alu Duplex RNA Underlies MDA5-Mediated Inflammation. Cell 2018; 172:797-810.e13. [PMID: 29395326 DOI: 10.1016/j.cell.2017.12.016] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/09/2017] [Accepted: 12/08/2017] [Indexed: 01/23/2023]
Abstract
Aberrant activation of innate immune receptors can cause a spectrum of immune disorders, such as Aicardi-Goutières syndrome (AGS). One such receptor is MDA5, a viral dsRNA sensor that induces antiviral immune response. Using a newly developed RNase-protection/RNA-seq approach, we demonstrate here that constitutive activation of MDA5 in AGS results from the loss of tolerance to cellular dsRNAs formed by Alu retroelements. While wild-type MDA5 cannot efficiently recognize Alu-dsRNAs because of its limited filament formation on imperfect duplexes, AGS variants of MDA5 display reduced sensitivity to duplex structural irregularities, assembling signaling-competent filaments on Alu-dsRNAs. Moreover, we identified an unexpected role of an RNA-rich cellular environment in suppressing aberrant MDA5 oligomerization, highlighting context dependence of self versus non-self discrimination. Overall, our work demonstrates that the increased efficiency of MDA5 in recognizing dsRNA comes at a cost of self-recognition and implicates a unique role of Alu-dsRNAs as virus-like elements that shape the primate immune system.
Collapse
Affiliation(s)
- Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xin Mu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Fei Yang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Emily Greenwald
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ji Woo Park
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Biology Department in Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Etai Jacob
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cheng-Zhong Zhang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biomedical Informatics, Harvard Medical School, MA 02115, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Zaffagnini G, Savova A, Danieli A, Romanov J, Tremel S, Ebner M, Peterbauer T, Sztacho M, Trapannone R, Tarafder AK, Sachse C, Martens S. p62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J 2018; 37:embj.201798308. [PMID: 29343546 PMCID: PMC5830917 DOI: 10.15252/embj.201798308] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
The removal of misfolded, ubiquitinated proteins is an essential part of the protein quality control. The ubiquitin-proteasome system (UPS) and autophagy are two interconnected pathways that mediate the degradation of such proteins. During autophagy, ubiquitinated proteins are clustered in a p62-dependent manner and are subsequently engulfed by autophagosomes. However, the nature of the protein substrates targeted for autophagy is unclear. Here, we developed a reconstituted system using purified components and show that p62 and ubiquitinated proteins spontaneously coalesce into larger clusters. Efficient cluster formation requires substrates modified with at least two ubiquitin chains longer than three moieties and is based on p62 filaments cross-linked by the substrates. The reaction is inhibited by free ubiquitin, K48-, and K63-linked ubiquitin chains, as well as by the autophagosomal marker LC3B, suggesting a tight cross talk with general proteostasis and autophagosome formation. Our study provides mechanistic insights on how substrates are channeled into autophagy.
Collapse
Affiliation(s)
- Gabriele Zaffagnini
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Adriana Savova
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Alberto Danieli
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Julia Romanov
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Shirley Tremel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Ebner
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Thomas Peterbauer
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Martin Sztacho
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Riccardo Trapannone
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Abul K Tarafder
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carsten Sachse
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sascha Martens
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Abstract
The availability of different polyubiquitin chains of specific linkage types has changed the appreciation of the specificity in the ubiquitin (Ub) system. Numerous E2 Ub-conjugating enzymes and E3 Ub ligases, Ub-binding domains (UBDs), and deubiquitinases (DUBs) are now known to assemble, bind, or hydrolyze individual linkage types, respectively. Biochemical and structural studies of these processes require milligram quantities of pure polyUb. Here we describe protocols that allow the enzymatic synthesis and purification of six of the eight homotypic polyUb chains through the use of chain-specific Ub ligases and DUBs.
Collapse
Affiliation(s)
- Martin A Michel
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - David Komander
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Paul R Elliott
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
42
|
Hauenstein AV, Xu G, Kabaleeswaran V, Wu H. Evidence for M1-Linked Polyubiquitin-Mediated Conformational Change in NEMO. J Mol Biol 2017; 429:3793-3800. [PMID: 29111346 PMCID: PMC5705538 DOI: 10.1016/j.jmb.2017.10.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/24/2022]
Abstract
The NF-κB essential modulator (NEMO) is the scaffolding subunit of the inhibitor of κB kinase (IKK) holocomplex and is required for the activation of the catalytic IKK subunits, IKKα and IKKβ, during the canonical inflammatory response. Although structures of shorter constructs of NEMO have been solved, efforts to elucidate the full-length structure of NEMO have proved difficult due to its apparent high conformational plasticity. To better characterize the gross dimensions of full-length NEMO, we employed in-line size exclusion chromatography-small-angle X-ray scattering. We show that NEMO adopts a more compact conformation (Dmax=320Å) than predicted for a fully extended coiled-coil structure (>500Å). In addition, we map a region of NEMO (residues 112-150) in its coiled-coil 1 domain that impedes the binding of linear (M1-linked) di-ubiquitin to its coiled-coil 2-leucine zipper ubiquitin binding domain. This ubiquitin binding inhibition can be overcome by a longer chain of linear, but not K63-linked polyubiquitin. Collectively, these observations suggest that NEMO may be auto-inhibited in the resting state by intramolecular interactions and that during signaling, NEMO may be allosterically activated by binding to long M1-linked polyubiquitin chains.
Collapse
Affiliation(s)
- Arthur V Hauenstein
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, United States
| | - Guozhou Xu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, United States
| | - Venkataraman Kabaleeswaran
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, United States
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, United States.
| |
Collapse
|
43
|
Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP•NPLOC4•UFD1L is enhanced by a mutation that causes multisystem proteinopathy. Proc Natl Acad Sci U S A 2017; 114:E4380-E4388. [PMID: 28512218 DOI: 10.1073/pnas.1706205114] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
p97 is a "segregase" that plays a key role in numerous ubiquitin (Ub)-dependent pathways such as ER-associated degradation. It has been hypothesized that p97 extracts proteins from membranes or macromolecular complexes to enable their proteasomal degradation; however, the complex nature of p97 substrates has made it difficult to directly observe the fundamental basis for this activity. To address this issue, we developed a soluble p97 substrate-Ub-GFP modified with K48-linked ubiquitin chains-for in vitro p97 activity assays. We demonstrate that WT p97 can unfold proteins and that this activity is dependent on the p97 adaptor NPLOC4-UFD1L, ATP hydrolysis, and substrate ubiquitination, with branched chains providing maximal stimulation. Furthermore, we show that a p97 mutant that causes inclusion body myopathy, Paget's disease of bone, and frontotemporal dementia in humans unfolds substrate faster, suggesting that excess activity may underlie pathogenesis. This work overcomes a significant barrier in the study of p97 and will allow the future dissection of p97 mechanism at a level of detail previously unattainable.
Collapse
|
44
|
Kristariyanto YA, Abdul Rehman SA, Weidlich S, Knebel A, Kulathu Y. A single MIU motif of MINDY-1 recognizes K48-linked polyubiquitin chains. EMBO Rep 2017; 18:392-402. [PMID: 28082312 DOI: 10.15252/embr.201643205] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 11/09/2022] Open
Abstract
The eight different types of ubiquitin (Ub) chains that can be formed play important roles in diverse cellular processes. Linkage-selective recognition of Ub chains by Ub-binding domain (UBD)-containing proteins is central to coupling different Ub signals to specific cellular responses. The motif interacting with ubiquitin (MIU) is a small UBD that has been characterized for its binding to monoUb. The recently discovered deubiquitinase MINDY-1/FAM63A contains a tandem MIU repeat (tMIU) that is highly selective at binding to K48-linked polyUb. We here identify that this linkage-selective binding is mediated by a single MIU motif (MIU2) in MINDY-1. The crystal structure of MIU2 in complex with K48-linked polyubiquitin chains reveals that MIU2 on its own binds to all three Ub moieties in an open conformation that can only be accommodated by K48-linked triUb. The weak Ub binder MIU1 increases overall affinity of the tMIU for polyUb chains without affecting its linkage selectivity. Our analyses reveal new concepts for linkage selectivity and polyUb recognition by UBDs.
Collapse
Affiliation(s)
- Yosua Adi Kristariyanto
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Syed Arif Abdul Rehman
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Simone Weidlich
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Axel Knebel
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
45
|
Chojnacki M, Zhang D, Talarowska M, Gałecki P, Szemraj J, Fushman D, Nakasone MA. Characterizing polyubiquitinated forms of the neurodegenerative ubiquitin mutant UBB +1. FEBS Lett 2016; 590:4573-4585. [PMID: 27861798 DOI: 10.1002/1873-3468.12484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023]
Abstract
The ubiquitin mutant UBB+1 has been identified as a hallmark of neurodegenerative diseases. In this study, we characterize polyubiquitinated forms of UBB+1 in vitro and from patient samples. The ability of UBB+1 to be readily ubiquitinated by several E2 enzymes provided a mechanism for the controlled synthesis and purification of defined conjugates. This allowed us to utilize polyUb-UBB+1 conjugates for biochemical assays, as well as solution NMR. Coupled with our immunoassay for detection of ubiquitinated forms of UBB+1 in patient blood samples, we gain a clearer picture of the molecular mechanisms underlying neurodegenerative diseases.
Collapse
Affiliation(s)
- Michal Chojnacki
- Department of Medical Biochemistry, Medical University of Łódź, Poland
| | - Daoning Zhang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, USA
| | | | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Łódź, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Łódź, Poland
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, USA
| | - Mark A Nakasone
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, USA
| |
Collapse
|
46
|
Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci U S A 2016; 113:2642-7. [PMID: 26929360 DOI: 10.1073/pnas.1601561113] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.
Collapse
|
47
|
Alfano C, Faggiano S, Pastore A. The Ball and Chain of Polyubiquitin Structures. Trends Biochem Sci 2016; 41:371-385. [PMID: 26899455 DOI: 10.1016/j.tibs.2016.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
Ubiquitylation is a post-translational modification implicated in several different cellular pathways. The possibility of forming chains through covalent crosslinking between any of the seven lysines, or the initial methionine, and the C terminus of another moiety provides ubiquitin (Ub) with special flexibility in its function in signalling. Here, we review the knowledge accumulated over the past several years about the functions and structural features of polyUb chains. This analysis reveals the need to understand further the functional role of some of the linkages and the structural code that determines recognition of polyUbs by protein partners.
Collapse
Affiliation(s)
- Caterina Alfano
- Department of Clinical and Basic Neuroscience, King's College London, London, UK
| | | | - Annalisa Pastore
- Department of Clinical and Basic Neuroscience, King's College London, London, UK.
| |
Collapse
|
48
|
Lechtenberg BC, Rajput A, Sanishvili R, Dobaczewska MK, Ware CF, Mace PD, Riedl SJ. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 2016; 529:546-50. [PMID: 26789245 PMCID: PMC4856479 DOI: 10.1038/nature16511] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
Ubiquitination is a central process affecting all facets of cellular signaling and function1. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate2,3. The RBR family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases4–6. The RBR family includes Parkin4 and HOIP, the central catalytic factor of the linear ubiquitin chain assembly complex (LUBAC)7. While structural insights into the RBR E3 ligases Parkin and HHARI in their overall autoinhibited forms are available8–13, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely enigmatic. Here we present the first structure of the fully active HOIP-RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP-RBR adopts a conformation markedly different from that of autoinhibited RBRs. HOIP-RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centers ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, surprisingly, three distinct helix–IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~Ub conjugate as well as an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP-RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases.
Collapse
Affiliation(s)
- Bernhard C Lechtenberg
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Akhil Rajput
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ruslan Sanishvili
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Małgorzata K Dobaczewska
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Carl F Ware
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Peter D Mace
- Biochemistry Department, University of Otago, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Stefan J Riedl
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
49
|
Pham GH, Rana ASJB, Korkmaz EN, Trang VH, Cui Q, Strieter ER. Comparison of native and non-native ubiquitin oligomers reveals analogous structures and reactivities. Protein Sci 2016; 25:456-71. [PMID: 26506216 DOI: 10.1002/pro.2834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Ubiquitin (Ub) chains regulate a wide range of biological processes, and Ub chain connectivity is a critical determinant of the many regulatory roles that this post-translational modification plays in cells. To understand how distinct Ub chains orchestrate different biochemical events, we and other investigators have developed enzymatic and non-enzymatic methods to synthesize Ub chains of well-defined length and connectivity. A number of chemical approaches have been used to generate Ub oligomers connected by non-native linkages; however, few studies have examined the extent to which non-native linkages recapitulate the structural and functional properties associated with native isopeptide bonds. Here, we compare the structure and function of Ub dimers bearing native and non-native linkages. Using small-angle X-ray scattering (SAXS) analysis, we show that scattering profiles for the two types of dimers are similar. Moreover, using an experimental structural library and atomistic simulations to fit the experimental SAXS profiles, we find that the two types of Ub dimers can be matched to analogous structures. An important application of non-native Ub oligomers is to probe the activity and selectivity of deubiquitinases. Through steady-state kinetic analyses, we demonstrate that different families of deubiquitinases hydrolyze native and non-native isopeptide linkages with comparable efficiency and selectivity. Considering the significant challenges associated with building topologically diverse native Ub chains, our results illustrate that chains harboring non-native linkages can serve as surrogate substrates for explorations of Ub function.
Collapse
Affiliation(s)
- Grace H Pham
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Ambar S J B Rana
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - E Nihal Korkmaz
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Vivian H Trang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Qiang Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Eric R Strieter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
50
|
Baiady N, Padala P, Mashahreh B, Cohen-Kfir E, Todd EA, Du Pont KE, Berndsen CE, Wiener R. The Vps27/Hrs/STAM (VHS) Domain of the Signal-transducing Adaptor Molecule (STAM) Directs Associated Molecule with the SH3 Domain of STAM (AMSH) Specificity to Longer Ubiquitin Chains and Dictates the Position of Cleavage. J Biol Chem 2015; 291:2033-2042. [PMID: 26601948 DOI: 10.1074/jbc.m115.689869] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
The deubiquitinating enzyme associated molecule with the SH3 domain of STAM (AMSH) is crucial for the removal of ubiquitin molecules during receptor-mediated endocytosis and lysosomal receptor sorting. AMSH interacts with signal transducing adapter molecule (STAM) 1 or 2, which enhances the activity of AMSH through an unknown mechanism. This stimulation is dependent on the ubiquitin-interacting motif of STAM. Here we investigate the specific mechanism of AMSH stimulation by STAM proteins and the role of the STAM Vps27/Hrs/STAM domain. We show that, in the presence of STAM, the length of the ubiquitin chains affects the apparent cleavage rate. Through measurement of the chain cleavage kinetics, we found that, although the kcat of Lys(63)-linked ubiquitin chain cleavage was comparable for di- and tri-ubiquitin, the Km value was lower for tri-ubiquitin. This increased affinity for longer chains was dependent on the Vps27/Hrs/STAM domain of STAM and required that the substrate ubiquitin chain contain homogenous Lys(63)-linkages. In addition, STAM directed AMSH cleavage toward the distal isopeptide bond in tri-ubiquitin chains. Finally, we generated a structural model of AMSH-STAM to show how the complex binds Lys(63)-linked ubiquitin chains and cleaves at the distal end. These data show how a deubiquitinating enzyme-interacting protein dictates the efficiency and specificity of substrate cleavage.
Collapse
Affiliation(s)
- Nardeen Baiady
- From the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel and
| | - Prasanth Padala
- From the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel and
| | - Bayan Mashahreh
- From the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel and
| | - Einav Cohen-Kfir
- From the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel and
| | - Emily A Todd
- the Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807
| | - Kelly E Du Pont
- the Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807
| | - Christopher E Berndsen
- the Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807
| | - Reuven Wiener
- From the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel and.
| |
Collapse
|