1
|
Marchak A, Grant PA, Neilson KM, Datta Majumdar H, Yaklichkin S, Johnson D, Moody SA. Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates. Dev Biol 2017; 429:213-224. [PMID: 28663133 PMCID: PMC5554722 DOI: 10.1016/j.ydbio.2017.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/17/2023]
Abstract
In many animals, maternally synthesized mRNAs are critical for primary germ layer formation. In Xenopus, several maternal mRNAs are enriched in the animal blastomere progenitors of the embryonic ectoderm. We previously identified one of these, WW-domain binding protein 2 N-terminal like (wbp2nl), that others previously characterized as a sperm protein (PAWP) that promotes meiotic resumption. Herein we demonstrate that it has an additional developmental role in regionalizing the embryonic ectoderm. Knock-down of Wbp2nl in the dorsal ectoderm reduced cranial placode and neural crest gene expression domains and expanded neural plate domains; knock-down in ventral ectoderm reduced epidermal gene expression. Conversely, increasing levels of Wbp2nl in the neural plate induced ectopic epidermal and neural crest gene expression and repressed many neural plate and cranial placode genes. The effects in the neural plate appear to be mediated, at least in part, by down-regulating chd, a BMP antagonist. Because the cellular function of Wbp2nl is not known, we mutated several predicted motifs. Expressing mutated proteins in embryos showed that a putative phosphorylation site at Thr45 and an α-helix in the PH-G domain are required to ectopically induce epidermal and neural crest genes in the neural plate. An intact YAP-binding motif also is required for ectopic epidermal gene expression as well as for down-regulating chd. This work reveals novel developmental roles for a cytoplasmic protein that promotes epidermal and neural crest formation at the expense of neural ectoderm.
Collapse
Affiliation(s)
- Alexander Marchak
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Paaqua A Grant
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA; Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Karen M Neilson
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Himani Datta Majumdar
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Sergey Yaklichkin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Diana Johnson
- Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA.
| |
Collapse
|
2
|
Chaikuad A, Bullock AN. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a022111. [PMID: 27549117 DOI: 10.1101/cshperspect.a022111] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Stimulation of the transforming growth factor β (TGF-β) family receptors activates an intracellular phosphorylation-dependent signaling cascade that culminates in Smad transcriptional activation and turnover. Structural studies have identified a number of allosteric mechanisms that control the localization, conformation, and oligomeric state of the receptors and Smads. Such mechanisms dictate the ordered binding of substrate and adaptor proteins that determine the directionality of the signaling process. Activation of the pathway has been illustrated by the various structures of the receptor-activated Smads (R-Smads) with SARA, Smad4, and YAP, respectively, whereas mechanisms of down-regulation have been elucidated by the structural complexes of FKBP12, Ski, and Smurf1. Interesting parallels have emerged between the R-Smads and the Forkhead-associated (FHA) and interferon regulatory factor (IRF)-associated domains, as well as the Hippo pathway. However, important questions remain as to the mechanism of Smad-independent signaling.
Collapse
Affiliation(s)
- Apirat Chaikuad
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
3
|
Iglesias-Bexiga M, Castillo F, Cobos ES, Oka T, Sudol M, Luque I. WW domains of the yes-kinase-associated-protein (YAP) transcriptional regulator behave as independent units with different binding preferences for PPxY motif-containing ligands. PLoS One 2015; 10:e0113828. [PMID: 25607641 PMCID: PMC4301871 DOI: 10.1371/journal.pone.0113828] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 10/31/2014] [Indexed: 12/28/2022] Open
Abstract
YAP is a WW domain-containing effector of the Hippo tumor suppressor pathway, and the object of heightened interest as a potent oncogene and stemness factor. YAP has two major isoforms that differ in the number of WW domains they harbor. Elucidating the degree of co-operation between these WW domains is important for a full understanding of the molecular function of YAP. We present here a detailed biophysical study of the structural stability and binding properties of the two YAP WW domains aimed at investigating the relationship between both domains in terms of structural stability and partner recognition. We have carried out a calorimetric study of the structural stability of the two YAP WW domains, both isolated and in a tandem configuration, and their interaction with a set of functionally relevant ligands derived from PTCH1 and LATS kinases. We find that the two YAP WW domains behave as independent units with different binding preferences, suggesting that the presence of the second WW domain might contribute to modulate target recognition between the two YAP isoforms. Analysis of structural models and phage-display studies indicate that electrostatic interactions play a critical role in binding specificity. Together, these results are relevant to understand of YAP function and open the door to the design of highly specific ligands of interest to delineate the functional role of each WW domain in YAP signaling.
Collapse
Affiliation(s)
- Manuel Iglesias-Bexiga
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Francisco Castillo
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Eva S. Cobos
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071, Granada, Spain
| | - Tsutomu Oka
- Weis Center for Research, Geisinger Clinic, M.C. 26–08, 100 North Academy Avenue, Danville, PA, 17822–2608, United States of America
| | - Marius Sudol
- Weis Center for Research, Geisinger Clinic, M.C. 26–08, 100 North Academy Avenue, Danville, PA, 17822–2608, United States of America
| | - Irene Luque
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071, Granada, Spain
- * E-mail:
| |
Collapse
|
4
|
Meng G, Dai F, Tong X, Li N, Ding X, Song J, Lu C. Genome-wide analysis of the WW domain-containing protein genes in silkworm and their expansion in eukaryotes. Mol Genet Genomics 2014; 290:807-24. [PMID: 25424044 DOI: 10.1007/s00438-014-0958-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/12/2014] [Indexed: 11/26/2022]
Abstract
WW domains are protein modules that mediate protein-protein interactions through recognition of proline-rich peptide motifs and phosphorylated serine/threonine-proline sites. WW domains are found in many different structural and signaling proteins that are involved in a variety of cellular processes. WW domain-containing proteins (WWCPs) and complexes have been implicated in major human diseases including cancer as well as in major signaling cascades such as the Hippo tumor suppressor pathway, making them targets for new diagnostics and therapeutics. There are a number of reports about the WWCPs in different species, but systematic analysis of the WWCP genes and its ligands is still lacking in silkworm and the other organisms. In this study, WWCP genes and PY motif-containing proteins have been identified and analyzed in 56 species including silkworm. Whole-genome screening of B. mori identified thirty-three proteins with thirty-nine WW domains located on thirteen chromosomes. In the 39 silkworm WW domains, 15 domains belong to the Group I WW domain; 14 domains were in Group II/III, 9 domains derived from 8 silkworm WWCPs could not be classified into any group, and Group IV contains only one WW domain. Based on gene annotation, silkworm WWCP genes have functions in multi-biology processes. A detailed list of WWCPs from the other 55 species was sorted in this work. In 14,623 silkworm predicted proteins, nearly 18 % contained PY motif, nearly 30 % contained various motifs totally that could be recognized by WW domains. Gene Ontology and KEGG analysis revealed that dozens of WW domain-binding proteins are involved in Wnt, Hedgehog, Notch, mTOR, EGF and Jak-STAT signaling pathway. Tissue expression patterns of WWCP genes and potential WWCP-binding protein genes on the third day of the fifth instar (L5D3) were examined by microarray analysis. Tissue expression profile analysis found that several WWCP genes and poly-proline or PY motif-containing protein genes took tissue- or gender-dependent expression manner in silkworms. We further analyzed WWCPs and PY motif-containing proteins in representative organisms of invertebrates and vertebrates. The results showed that there are no less than 16 and up to 29 WWCPs in insects, the average is 22. The number of WW domains in insects is no less than 19, and up to 47, the average is 36. In vertebrates, excluding the Hydrobiontes, the number of WWCPs is no less than 34 and up to 49, the average is 43. The number of WW domains in vertebrates is no less than 56 and up to 85, the average is 73. Phylogenetic analysis revealed that most homologous genes of the WWCP subfamily in vertebrates were duplicated during evolution and functions diverged. Nearly 1,000 PY motif-containing protein genes were found in insect genomes and nearly 2,000 genes in vertebrates. The different distributions of WWCP genes and PY motif-containing protein genes in different species revealed a possible positive correlation with organism complexity. In conclusion, this comprehensive bio-information analysis of WWCPs and its binding ligands would provide rich fundamental knowledge and useful information for further exploration of the function of the WW domain-containing proteins not only in silkworm, but also in other species.
Collapse
Affiliation(s)
- Gang Meng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China,
| | | | | | | | | | | | | |
Collapse
|
5
|
Andl T, Le Bras GF, Richards NF, Allison GL, Loomans HA, Washington MK, Revetta F, Lee RK, Taylor C, Moses HL, Andl CD. Concerted loss of TGFβ-mediated proliferation control and E-cadherin disrupts epithelial homeostasis and causes oral squamous cell carcinoma. Carcinogenesis 2014; 35:2602-10. [PMID: 25233932 DOI: 10.1093/carcin/bgu194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although the etiology of squamous cell carcinomas of the oral mucosa is well understood, the cellular origin and the exact molecular mechanisms leading to their formation are not. Previously, we observed the coordinated loss of E-cadherin (CDH1) and transforming growth factor beta receptor II (TGFBR2) in esophageal squamous tumors. To investigate if the coordinated loss of Cdh1 and Tgfbr2 is sufficient to induce tumorigenesis in vivo, we developed two mouse models targeting ablation of both genes constitutively or inducibly in the oral-esophageal epithelium. We show that the loss of both Cdh1 and Tgfbr2 in both models is sufficient to induce squamous cell carcinomas with animals succumbing to the invasive disease by 18 months of age. Advanced tumors have the ability to invade regional lymph nodes and to establish distant pulmonary metastasis. The mouse tumors showed molecular characteristics of human tumors such as overexpression of Cyclin D1. We addressed the question whether TGFβ signaling may target known stem cell markers and thereby influence tumorigenesis. From our mouse and human models, we conclude that TGFβ signaling regulates key aspects of stemness and quiescence in vitro and in vivo. This provides a new explanation for the importance of TGFβ in mucosal homeostasis.
Collapse
Affiliation(s)
- Thomas Andl
- Division of Dermatology, Department of Medicine, Department of Surgery, Department of Cancer Biology, Vanderbilt Ingram Cancer Center, Vanderbilt Digestive Disease Center and Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | | | | | | | | | - M Kay Washington
- Vanderbilt Ingram Cancer Center, Vanderbilt Digestive Disease Center and Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | - Frank Revetta
- Vanderbilt Ingram Cancer Center, Vanderbilt Digestive Disease Center and Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | | | | | - Harold L Moses
- Department of Cancer Biology, Vanderbilt Ingram Cancer Center
| | - Claudia D Andl
- Department of Surgery, Department of Cancer Biology, Vanderbilt Ingram Cancer Center, Vanderbilt Digestive Disease Center and
| |
Collapse
|
6
|
Abu-Odeh M, Bar-Mag T, Huang H, Kim T, Salah Z, Abdeen SK, Sudol M, Reichmann D, Sidhu S, Kim PM, Aqeilan RI. Characterizing WW domain interactions of tumor suppressor WWOX reveals its association with multiprotein networks. J Biol Chem 2014; 289:8865-80. [PMID: 24550385 DOI: 10.1074/jbc.m113.506790] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WW domains are small modules present in regulatory and signaling proteins that mediate specific protein-protein interactions. The WW domain-containing oxidoreductase (WWOX) encodes a 46-kDa tumor suppressor that contains two N-terminal WW domains and a central short-chain dehydrogenase/reductase domain. Based on its ligand recognition motifs, the WW domain family is classified into four groups. The largest one, to which WWOX belongs, recognizes ligands with a PPXY motif. To pursue the functional properties of the WW domains of WWOX, we employed mass spectrometry and phage display experiments to identify putative WWOX-interacting partners. Our analysis revealed that the first WW (WW1) domain of WWOX is the main functional interacting domain. Furthermore, our study uncovered well known and new PPXY-WW1-interacting partners and shed light on novel LPXY-WW1-interacting partners of WWOX. Many of these proteins are components of multiprotein complexes involved in molecular processes, including transcription, RNA processing, tight junction, and metabolism. By utilizing GST pull-down and immunoprecipitation assays, we validated that WWOX is a substrate of the E3 ubiquitin ligase ITCH, which contains two LPXY motifs. We found that ITCH mediates Lys-63-linked polyubiquitination of WWOX, leading to its nuclear localization and increased cell death. Our data suggest that the WW1 domain of WWOX provides a versatile platform that links WWOX with individual proteins associated with physiologically important networks.
Collapse
Affiliation(s)
- Mohammad Abu-Odeh
- From the Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ferguson BW, Gao X, Zelazowski MJ, Lee J, Jeter CR, Abba MC, Aldaz CM. The cancer gene WWOX behaves as an inhibitor of SMAD3 transcriptional activity via direct binding. BMC Cancer 2013; 13:593. [PMID: 24330518 PMCID: PMC3871008 DOI: 10.1186/1471-2407-13-593] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/06/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The WW domain containing protein WWOX has been postulated to behave as a tumor suppressor in breast and other cancers. Expression of this protein is lost in over 70% of ER negative tumors. This prompted us to investigate the phenotypic and gene expression effects of loss of WWOX expression in breast cells. METHODS Gene expression microarrays and standard in vitro assays were performed on stably silenced WWOX (shRNA) normal breast cells. Bioinformatic analyses were used to identify gene networks and transcriptional regulators affected by WWOX silencing. Co-immunoprecipitations and GST-pulldowns were used to demonstrate a direct interaction between WWOX and SMAD3. Reporter assays, ChIP, confocal microscopy and in silico analyses were employed to determine the effect of WWOX silencing on TGFβ-signaling. RESULTS WWOX silencing affected cell proliferation, motility, attachment and deregulated expression of genes involved in cell cycle, motility and DNA damage. Interestingly, we detected an enrichment of targets activated by the SMAD3 transcription factor, including significant upregulation of ANGPTL4, FST, PTHLH and SERPINE1 transcripts. Importantly, we demonstrate that the WWOX protein physically interacts with SMAD3 via WW domain 1. Furthermore, WWOX expression dramatically decreases SMAD3 occupancy at the ANGPTL4 and SERPINE1 promoters and significantly quenches activation of a TGFβ responsive reporter. Additionally, WWOX expression leads to redistribution of SMAD3 from the nuclear to the cytoplasmic compartment. Since the TGFβ target ANGPTL4 plays a key role in lung metastasis development, we performed a meta-analysis of ANGPTL4 expression relative to WWOX in microarray datasets from breast carcinomas. We observed a significant inverse correlation between WWOX and ANGPTL4. Furthermore, the WWOX(lo)/ANGPTL4(hi) cluster of breast tumors is enriched in triple-negative and basal-like sub-types. Tumors with this gene expression signature could represent candidates for anti-TGFβ targeted therapies. CONCLUSIONS We show for the first time that WWOX modulates SMAD3 signaling in breast cells via direct WW-domain mediated binding and potential cytoplasmic sequestration of SMAD3 protein. Since loss of WWOX expression increases with breast cancer progression and it behaves as an inhibitor of SMAD3 transcriptional activity these observations may help explain, at least in part, the paradoxical pro-tumorigenic effects of TGFβ signaling in advanced breast cancer.
Collapse
Affiliation(s)
- Brent W Ferguson
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Xinsheng Gao
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Maciej J Zelazowski
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jaeho Lee
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Collene R Jeter
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Martin C Abba
- CINIBA, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| | - C Marcelo Aldaz
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| |
Collapse
|
8
|
Strano S, Fausti F, Di Agostino S, Sudol M, Blandino G. PML Surfs into HIPPO Tumor Suppressor Pathway. Front Oncol 2013; 3:36. [PMID: 23459691 PMCID: PMC3585432 DOI: 10.3389/fonc.2013.00036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/09/2013] [Indexed: 01/21/2023] Open
Abstract
Growth arrest, inhibition of cell proliferation, apoptosis, senescence, and differentiation are the most characterized effects of a given tumor suppressor response. It is becoming increasingly clear that tumor suppression results from the integrated and synergistic activities of different pathways. This implies that tumor suppression includes linear, as well as lateral, crosstalk signaling. The latter may happen through the concomitant involvement of common nodal proteins. Here, we discuss the role of Promyelocytic leukemia protein (PML) in functional cross-talks with the HIPPO and the p53 family tumor suppressor pathways. PML, in addition to its own anti-tumor activity, contributes to the assembly of an integrated and superior network that may be necessary for the maximization of the tumor suppressor response to diverse oncogenic insults.
Collapse
Affiliation(s)
- Sabrina Strano
- Molecular Chemoprevention Group, Molecular Medicine Area, Regina Elena National Cancer Institute Rome, Italy
| | | | | | | | | |
Collapse
|