1
|
Picard LP, Orazietti A, Tran DP, Tucs A, Hagimoto S, Qi Z, Huang SK, Tsuda K, Kitao A, Sljoka A, Prosser RS. Balancing G protein selectivity and efficacy in the adenosine A 2A receptor. Nat Chem Biol 2025; 21:71-79. [PMID: 39085516 DOI: 10.1038/s41589-024-01682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/23/2024] [Indexed: 08/02/2024]
Abstract
The adenosine A2A receptor (A2AR) engages several G proteins, notably Go and its cognate Gs protein. This coupling promiscuity is facilitated by a dynamic ensemble, revealed by 19F nuclear magnetic resonance imaging of A2AR and G protein. Two transmembrane helix 6 (TM6) activation states, formerly associated with partial and full agonism, accommodate the differing volumes of Gs and Go. While nucleotide depletion biases TM7 toward a fully active state in A2AR-Gs, A2AR-Go is characterized by a dynamic inactive/intermediate fraction. Molecular dynamics simulations reveal that the NPxxY motif, a highly conserved switch, establishes a unique configuration in the A2AR-Go complex, failing to stabilize the helix-8 interface with Gs, and adoption of the active state. The resulting TM7 dynamics hamper G protein coupling, suggesting kinetic gating may be responsible for reduced efficacy in the noncognate G protein complex. Thus, dual TM6 activation states enable greater diversity of coupling partners while TM7 dynamics dictate coupling efficacy.
Collapse
Affiliation(s)
- Louis-Philippe Picard
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada.
| | | | - Duy Phuoc Tran
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Andrejs Tucs
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Sari Hagimoto
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Zhenzhou Qi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada
| | - Shuya Kate Huang
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada
| | - Koji Tsuda
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Adnan Sljoka
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan.
- Department of Chemistry, York University, Toronto, Ontario, Canada.
| | - R Scott Prosser
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Takagi M, Nagatani A, Kawano K, Hata A, Yokoyama A, Hayashida K, Hoshi H, Sakurai M, Oyama T, Kuroda Y, Yamaoka Y, Fujiwara T, Miyanoiri Y, Hoshino M, Yano Y, Takasu K, Matsuzaki K. Stable and Minimum Size Solubilization of Membrane Proteins with Cocktails of Phospholipid Analogues. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63358-63367. [PMID: 39509591 DOI: 10.1021/acsami.4c15697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Membrane proteins (MPs) play important roles in various cellular processes and are major targets for drugs. Solubilization of MPs is often needed for structural and biophysical studies. For high-resolution nuclear magnetic resonance measurements, there is a size limit of the sample (<100 kDa), and a high thermal stability at an increased temperature is required. Furthermore, lipid bilayer-like environments are desirable to preserve the native states of MPs. However, existing solubilization techniques do not fulfill these requirements at the same time. In this study, we combined two phospholipid analogues as a solubilizer and stabilizer to isolate MPs. This method maintained bacteriorhodopsin (bR) extracted from purple membranes in its native state for 7 d at 40 °C. The solubility was comparable to that of conventional detergents for MPs, and the thermal stability of the solubilizate was the best among them. The increase in the molecular size caused by the solubilization of bR was only 20 kDa, indicating that 20 phospholipid analogue molecules were sufficient to solubilize one bR molecule. 15N-1H heteronuclear single quantum coherence spectra of solubilized 2H- and 15N-labeled bR gave ∼80% of the expected peaks. In addition, the lysate of human neuropeptide Y2 receptor-expressing mammalian cells exhibited ligand recognition for 7 d at 37 °C, suggesting that this technique can be used for ligand screening. Moreover, the structure of the single membrane-spanning M2 protein of the influenza A virus expressed in Escherichia coli was stably maintained for 7 d at 40 °C. Thus, our method is promising for various MP studies.
Collapse
Affiliation(s)
- Mai Takagi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Ayana Nagatani
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kenichi Kawano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Ayami Hata
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Azusa Yokoyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Koichi Hayashida
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Haruka Hoshi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Mao Sakurai
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Oyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yusuke Kuroda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yousuke Yamaoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- School of Pharmacy, Hyogo Medical University, Kobe 650-8530, Japan
| | - Takahiro Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Miyanoiri
- Research Center for Next-Generation Protein Sciences, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya 663-8179, Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Escobedo F, Gospalswamy M, Hägerbäumer P, Stank TJ, Victor J, Groth G, Gohlke H, Dargel C, Hellweg T, Etzkorn M. Characterization of size-tuneable aescin-lipid nanoparticles as platform for stabilization of membrane proteins. Colloids Surf B Biointerfaces 2024; 242:114071. [PMID: 39002202 DOI: 10.1016/j.colsurfb.2024.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Abstract
Disc-like lipid nanoparticles stabilized by saponin biosurfactants display fascinating properties, including their temperature-driven re-organization. β-Aescin, a saponin from seed extract of the horse chestnut tree, shows strong interactions with lipid membranes and has gained interest due to its beneficial therapeutic implications as well as its ability to decompose continuous lipid membranes into size-tuneable discoidal nanoparticles. Here, we characterize lipid nanoparticles formed by aescin and the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine. We present site-resolved insights into central molecular interactions and their modulations by temperature and aescin content. Using the membrane protein bacteriorhodopsin, we additionally demonstrate that, under defined conditions, aescin-lipid discs can accommodate medium-sized transmembrane proteins. Our data reveal the general capability of this fascinating system to generate size-tuneable aescin-lipid-protein particles, opening the road for further applications in biochemical, biophysical and structural studies.
Collapse
Affiliation(s)
- Fatima Escobedo
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, Universitätsstr. 1, Düsseldorf 40225, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH., Wilhelm-Johnen-Str, Jülich 52425, Germany
| | - Mohanraj Gospalswamy
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Pia Hägerbäumer
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, Bielefeld 33615, Germany
| | - Tim Julian Stank
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, Bielefeld 33615, Germany
| | - Julian Victor
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Georg Groth
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Biochemical Plant Physiology, Universitätsstr. 1, Düsseldorf 40225, Germany
| | - Holger Gohlke
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, Düsseldorf 40225, Germany; Institute for Bio, and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH., Wilhelm-Johnen-Str, Jülich 52425, Germany
| | - Carina Dargel
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, Bielefeld 33615, Germany; Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, Münster 48149, Germany.
| | - Thomas Hellweg
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, Bielefeld 33615, Germany.
| | - Manuel Etzkorn
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, Universitätsstr. 1, Düsseldorf 40225, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH., Wilhelm-Johnen-Str, Jülich 52425, Germany.
| |
Collapse
|
4
|
Sahoo GR, Roy AS, Srivastava M. Time-Frequency Analysis of Two-Dimensional Electron Spin Resonance Signals. J Phys Chem A 2023; 127:7793-7801. [PMID: 37699569 PMCID: PMC10529365 DOI: 10.1021/acs.jpca.3c02708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Two-dimensional electron spin resonance (2D ESR) spectroscopy is a unique experimental technique for probing protein structure and dynamics, including processes that occur at the microsecond time scale. While it provides significant resolution enhancement over the one-dimensional experimental setup, spectral broadening and noise make extraction of spectral information highly challenging. Traditionally, two-dimensional Fourier transform (2D FT) is applied for the analysis of 2D ESR signals, although its efficiency is limited to stationary signals. In addition, it often fails to resolve overlapping peaks in 2D ESR. In this work, we propose a time-frequency analysis of 2D time-domain signals, which identifies all frequency peaks by decoupling a signal into its distinct constituent components via projection on the time-frequency plane. The method utilizes 2D undecimated discrete wavelet transform (2D UDWT) as an intermediate step in the analysis, followed by signal reconstruction and 2D FT. We have applied the method to a simulated 2D double quantum coherence (DQC) signal for validation and a set of experimental 2D ESR signals, demonstrating its efficiency in resolving overlapping peaks in the frequency domain, while displaying frequency evolution with time in case of non-stationary data.
Collapse
Affiliation(s)
- Gyana Ranjan Sahoo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Aritro Sinha Roy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- National Biomedical Resources for Advanced ESR Technologies (ACERT), Ithaca, New York 14853, United States
| | - Madhur Srivastava
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- National Biomedical Resources for Advanced ESR Technologies (ACERT), Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Manzer ZA, Selivanovitch E, Ostwalt AR, Daniel S. Membrane protein synthesis: no cells required. Trends Biochem Sci 2023; 48:642-654. [PMID: 37087310 DOI: 10.1016/j.tibs.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
Despite advances in membrane protein (MP) structural biology and a growing interest in their applications, these proteins remain challenging to study. Progress has been hindered by the complex nature of MPs and innovative methods will be required to circumvent technical hurdles. Cell-free protein synthesis (CFPS) is a burgeoning technique for synthesizing MPs directly into a membrane environment using reconstituted components of the cellular transcription and translation machinery in vitro. We provide an overview of CFPS and how this technique can be applied to the synthesis and study of MPs. We highlight numerous strategies including synthesis methods and folding environments, each with advantages and limitations, to provide a survey of how CFPS techniques can advance the study of MPs.
Collapse
Affiliation(s)
- Zachary A Manzer
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ekaterina Selivanovitch
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Alexis R Ostwalt
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Susan Daniel
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
7
|
Yu CH, Wu HY, Lin HS, Yang CS. A conserved Trp residue in HwBR contributes to its unique tolerance toward acidic environments. Biophys J 2022; 121:3136-3145. [PMID: 35808832 PMCID: PMC9463644 DOI: 10.1016/j.bpj.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/10/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Bacteriorhodopsin (BR) is a light-driven outward proton pump found mainly in halophilic archaea. A BR from an archaeon Haloquadratum walsbyi (HwBR) was found to pump protons under more acidic conditions compared with most known BR proteins. The atomic structural study on HwBR unveiled that a pair of hydrogen bonds between the BC and FG loop in its periplasmic region may be a factor in such improved pumping capability. Here, we further investigated the retinal-binding pocket of HwBR and found that Trp94 contributes to the higher acid tolerance. Through single mutations in a BR from Halobacterium salinarum and HwBR, we examined the conserved tryptophan residues in the retinal-binding pocket. Among these residues of HwBR, mutagenesis at Trp94 facing the periplasmic region caused the most significant disruption to optical stability and proton-pumping capability under acidic conditions. The other tryptophan residues of HwBR exerted little impact on both maximum absorption wavelength and pH-dependent proton pumping. Our findings suggest that the residues from Trp94 to the hydrogen bonds at the BC loop confer both optical stability and functionality on the overall protein in low-pH environments.
Collapse
Affiliation(s)
- Cheng-Han Yu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Yu Wu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hong-Syuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Krishnarjuna B, Ramamoorthy A. Detergent-Free Isolation of Membrane Proteins and Strategies to Study Them in a Near-Native Membrane Environment. Biomolecules 2022; 12:1076. [PMID: 36008970 PMCID: PMC9406181 DOI: 10.3390/biom12081076] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Atomic-resolution structural studies of membrane-associated proteins and peptides in a membrane environment are important to fully understand their biological function and the roles played by them in the pathology of many diseases. However, the complexity of the cell membrane has severely limited the application of commonly used biophysical and biochemical techniques. Recent advancements in NMR spectroscopy and cryoEM approaches and the development of novel membrane mimetics have overcome some of the major challenges in this area. For example, the development of a variety of lipid-nanodiscs has enabled stable reconstitution and structural and functional studies of membrane proteins. In particular, the ability of synthetic amphipathic polymers to isolate membrane proteins directly from the cell membrane, along with the associated membrane components such as lipids, without the use of a detergent, has opened new avenues to study the structure and function of membrane proteins using a variety of biophysical and biological approaches. This review article is focused on covering the various polymers and approaches developed and their applications for the functional reconstitution and structural investigation of membrane proteins. The unique advantages and limitations of the use of synthetic polymers are also discussed.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Department of Chemistry and Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry and Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
9
|
Abstract
Membrane proteins (MPs) play essential roles in numerous cellular processes. Because around 70% of the currently marketed drugs target MPs, a detailed understanding of their structure, binding properties, and functional dynamics in a physiologically relevant environment is crucial for a more detailed understanding of this important protein class. We here summarize the benefits of using lipid nanodiscs for NMR structural investigations and provide a detailed overview of the currently used lipid nanodisc systems as well as their applications in solution-state NMR. Despite the increasing use of other structural methods for the structure determination of MPs in lipid nanodiscs, solution NMR turns out to be a versatile tool to probe a wide range of MP features, ranging from the structure determination of small to medium-sized MPs to probing ligand and partner protein binding as well as functionally relevant dynamical signatures in a lipid nanodisc setting. We will expand on these topics by discussing recent NMR studies with lipid nanodiscs and work out a key workflow for optimizing the nanodisc incorporation of an MP for subsequent NMR investigations. With this, we hope to provide a comprehensive background to enable an informed assessment of the applicability of lipid nanodiscs for NMR studies of a particular MP of interest.
Collapse
Affiliation(s)
- Umut Günsel
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
10
|
Majeed S, Ahmad AB, Sehar U, Georgieva ER. Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. MEMBRANES 2021; 11:685. [PMID: 34564502 PMCID: PMC8470526 DOI: 10.3390/membranes11090685] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell-environment, cell-cell and virus-host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors-resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs' mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs' structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Akram Bani Ahmad
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Ujala Sehar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Science Center, Lubbock, TX 79409, USA
| |
Collapse
|
11
|
Dubey A, Stoyanov N, Viennet T, Chhabra S, Elter S, Borggräfe J, Viegas A, Nowak RP, Burdzhiev N, Petrov O, Fischer ES, Etzkorn M, Gelev V, Arthanari H. Lokale Deuterierung ermöglicht NMR‐Messung von Methylgruppen in Proteinen aus eukaryotischen und Zell‐freien Expressionssystemen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abhinav Dubey
- Cancer Biology Dana-Farber Cancer Institute 450 Brookline Avenue LC-3311 Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School 240 Longwood Avenue Boston MA 02215 USA
| | - Nikolay Stoyanov
- Faculty of Chemistry and Pharmacy Sofia University 1 James Bourchier Blvd. 1164 Sofia Bulgarien
| | - Thibault Viennet
- Institute of Physical Biology Heinrich-Heine-University Universitätsstr. 1 40225 Düsseldorf Deutschland
- Institute of Biological Information Processing (IBI-7) Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
- JuStruct: Jülich Center for Structural Biology Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
| | - Sandeep Chhabra
- Cancer Biology Dana-Farber Cancer Institute 450 Brookline Avenue LC-3311 Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School 240 Longwood Avenue Boston MA 02215 USA
| | - Shantha Elter
- Institute of Physical Biology Heinrich-Heine-University Universitätsstr. 1 40225 Düsseldorf Deutschland
- Institute of Biological Information Processing (IBI-7) Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
- JuStruct: Jülich Center for Structural Biology Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
| | - Jan Borggräfe
- Institute of Physical Biology Heinrich-Heine-University Universitätsstr. 1 40225 Düsseldorf Deutschland
- Institute of Biological Information Processing (IBI-7) Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
- JuStruct: Jülich Center for Structural Biology Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
| | - Aldino Viegas
- Institute of Physical Biology Heinrich-Heine-University Universitätsstr. 1 40225 Düsseldorf Deutschland
- Institute of Biological Information Processing (IBI-7) Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
- JuStruct: Jülich Center for Structural Biology Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
| | - Radosław P. Nowak
- Cancer Biology Dana-Farber Cancer Institute 450 Brookline Avenue LC-3311 Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School 240 Longwood Avenue Boston MA 02215 USA
| | - Nikola Burdzhiev
- Faculty of Chemistry and Pharmacy Sofia University 1 James Bourchier Blvd. 1164 Sofia Bulgarien
| | - Ognyan Petrov
- Faculty of Chemistry and Pharmacy Sofia University 1 James Bourchier Blvd. 1164 Sofia Bulgarien
| | - Eric S. Fischer
- Cancer Biology Dana-Farber Cancer Institute 450 Brookline Avenue LC-3311 Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School 240 Longwood Avenue Boston MA 02215 USA
| | - Manuel Etzkorn
- Institute of Physical Biology Heinrich-Heine-University Universitätsstr. 1 40225 Düsseldorf Deutschland
- Institute of Biological Information Processing (IBI-7) Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
- JuStruct: Jülich Center for Structural Biology Forschungszentrum Jülich GmbH 52425 Jülich Deutschland
| | - Vladimir Gelev
- Faculty of Chemistry and Pharmacy Sofia University 1 James Bourchier Blvd. 1164 Sofia Bulgarien
| | - Haribabu Arthanari
- Cancer Biology Dana-Farber Cancer Institute 450 Brookline Avenue LC-3311 Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School 240 Longwood Avenue Boston MA 02215 USA
| |
Collapse
|
12
|
Dubey A, Stoyanov N, Viennet T, Chhabra S, Elter S, Borggräfe J, Viegas A, Nowak RP, Burdzhiev N, Petrov O, Fischer ES, Etzkorn M, Gelev V, Arthanari H. Local Deuteration Enables NMR Observation of Methyl Groups in Proteins from Eukaryotic and Cell-Free Expression Systems. Angew Chem Int Ed Engl 2021; 60:13783-13787. [PMID: 33768661 PMCID: PMC8251921 DOI: 10.1002/anie.202016070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/22/2021] [Indexed: 01/13/2023]
Abstract
Therapeutically relevant proteins such as GPCRs, antibodies and kinases face clear limitations in NMR studies due to the challenges in site-specific isotope labeling and deuteration in eukaryotic expression systems. Here we describe an efficient and simple method to observe the methyl groups of leucine residues in proteins expressed in bacterial, eukaryotic or cell-free expression systems without modification of the expression protocol. The method relies on simple stereo-selective 13 C-labeling and deuteration of leucine that alleviates the need for additional deuteration of the protein. The spectroscopic benefits of "local" deuteration are examined in detail through Forbidden Coherence Transfer (FCT) experiments and simulations. The utility of this labeling method is demonstrated in the cell-free synthesis of bacteriorhodopsin and in the insect-cell expression of the RRM2 domain of human RBM39.
Collapse
Affiliation(s)
- Abhinav Dubey
- Cancer BiologyDana-Farber Cancer Institute450 Brookline Avenue LC-3311BostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBostonMA02215USA
| | - Nikolay Stoyanov
- Faculty of Chemistry and PharmacySofia University1 James Bourchier Blvd.1164SofiaBulgaria
| | - Thibault Viennet
- Institute of Physical BiologyHeinrich-Heine-UniversityUniversitätsstr. 140225DüsseldorfGermany
- Institute of Biological Information Processing (IBI-7)Forschungszentrum Jülich GmbH52425JülichGermany
- JuStruct: Jülich Center for Structural BiologyForschungszentrum Jülich GmbH52425JülichGermany
| | - Sandeep Chhabra
- Cancer BiologyDana-Farber Cancer Institute450 Brookline Avenue LC-3311BostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBostonMA02215USA
| | - Shantha Elter
- Institute of Physical BiologyHeinrich-Heine-UniversityUniversitätsstr. 140225DüsseldorfGermany
- Institute of Biological Information Processing (IBI-7)Forschungszentrum Jülich GmbH52425JülichGermany
- JuStruct: Jülich Center for Structural BiologyForschungszentrum Jülich GmbH52425JülichGermany
| | - Jan Borggräfe
- Institute of Physical BiologyHeinrich-Heine-UniversityUniversitätsstr. 140225DüsseldorfGermany
- Institute of Biological Information Processing (IBI-7)Forschungszentrum Jülich GmbH52425JülichGermany
- JuStruct: Jülich Center for Structural BiologyForschungszentrum Jülich GmbH52425JülichGermany
| | - Aldino Viegas
- Institute of Physical BiologyHeinrich-Heine-UniversityUniversitätsstr. 140225DüsseldorfGermany
- Institute of Biological Information Processing (IBI-7)Forschungszentrum Jülich GmbH52425JülichGermany
- JuStruct: Jülich Center for Structural BiologyForschungszentrum Jülich GmbH52425JülichGermany
| | - Radosław P. Nowak
- Cancer BiologyDana-Farber Cancer Institute450 Brookline Avenue LC-3311BostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBostonMA02215USA
| | - Nikola Burdzhiev
- Faculty of Chemistry and PharmacySofia University1 James Bourchier Blvd.1164SofiaBulgaria
| | - Ognyan Petrov
- Faculty of Chemistry and PharmacySofia University1 James Bourchier Blvd.1164SofiaBulgaria
| | - Eric S. Fischer
- Cancer BiologyDana-Farber Cancer Institute450 Brookline Avenue LC-3311BostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBostonMA02215USA
| | - Manuel Etzkorn
- Institute of Physical BiologyHeinrich-Heine-UniversityUniversitätsstr. 140225DüsseldorfGermany
- Institute of Biological Information Processing (IBI-7)Forschungszentrum Jülich GmbH52425JülichGermany
- JuStruct: Jülich Center for Structural BiologyForschungszentrum Jülich GmbH52425JülichGermany
| | - Vladimir Gelev
- Faculty of Chemistry and PharmacySofia University1 James Bourchier Blvd.1164SofiaBulgaria
| | - Haribabu Arthanari
- Cancer BiologyDana-Farber Cancer Institute450 Brookline Avenue LC-3311BostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical School240 Longwood AvenueBostonMA02215USA
| |
Collapse
|
13
|
Jones AJY, Gabriel F, Tandale A, Nietlispach D. Structure and Dynamics of GPCRs in Lipid Membranes: Physical Principles and Experimental Approaches. Molecules 2020; 25:E4729. [PMID: 33076366 PMCID: PMC7587580 DOI: 10.3390/molecules25204729] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the vast amount of information generated through structural and biophysical studies of GPCRs has provided unprecedented mechanistic insight into the complex signalling behaviour of these receptors. With this recent information surge, it has also become increasingly apparent that in order to reproduce the various effects that lipids and membranes exert on the biological function for these allosteric receptors, in vitro studies of GPCRs need to be conducted under conditions that adequately approximate the native lipid bilayer environment. In the first part of this review, we assess some of the more general effects that a membrane environment exerts on lipid bilayer-embedded proteins such as GPCRs. This is then followed by the consideration of more specific effects, including stoichiometric interactions with specific lipid subtypes. In the final section, we survey a range of different membrane mimetics that are currently used for in vitro studies, with a focus on NMR applications.
Collapse
Affiliation(s)
| | | | | | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (A.J.Y.J.); (F.G.); (A.T.)
| |
Collapse
|
14
|
Extraction and reconstitution of membrane proteins into lipid nanodiscs encased by zwitterionic styrene-maleic amide copolymers. Sci Rep 2020; 10:9940. [PMID: 32555261 PMCID: PMC7303149 DOI: 10.1038/s41598-020-66852-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
Membrane proteins can be reconstituted in polymer-encased nanodiscs for studies under near-physiological conditions and in the absence of detergents, but traditional styrene-maleic acid copolymers used for this purpose suffer severely from buffer incompatibilities. We have recently introduced zwitterionic styrene-maleic amide copolymers (zSMAs) to overcome this limitation. Here, we compared the extraction and reconstitution of membrane proteins into lipid nanodiscs by a series of zSMAs with different styrene:maleic amide molar ratios, chain sizes, and molecular weight distributions. These copolymers solubilize, stabilize, and support membrane proteins in nanodiscs with different efficiencies depending on both the structure of the copolymers and the membrane proteins.
Collapse
|
15
|
Kehlenbeck DM, Josts I, Nitsche J, Busch S, Forsyth VT, Tidow H. Comparison of lipidic carrier systems for integral membrane proteins - MsbA as case study. Biol Chem 2020; 400:1509-1518. [PMID: 31141477 DOI: 10.1515/hsz-2019-0171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/15/2019] [Indexed: 01/13/2023]
Abstract
Membrane protein research suffers from the drawback that detergents, which are commonly used to solubilize integral membrane proteins (IMPs), often lead to protein instability and reduced activity. Recently, lipid nanodiscs (NDs) and saposin-lipoprotein particles (Salipro) have emerged as alternative carrier systems that keep membrane proteins in a native-like lipidic solution environment and are suitable for biophysical and structural studies. Here, we systematically compare nanodiscs and Salipros with respect to long-term stability as well as activity and stability of the incorporated membrane protein using the ABC transporter MsbA as model system. Our results show that both systems are suitable for activity measurements as well as structural studies in solution. Based on our results we suggest screening of different lipids with respect to activity and stability of the incorporated IMP before performing structural studies.
Collapse
Affiliation(s)
- Dominique-Maurice Kehlenbeck
- The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Inokentijs Josts
- The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Julius Nitsche
- The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Geesthacht, Lichtenbergstr. 1, 85747 Garching bei München, Germany
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue-Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France.,School of Life Sciences, Keele University, Staffordshire ST5 5BG, England
| | - Henning Tidow
- The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
16
|
F Dudás E, Wacha A, Bóta A, Bodor A. Peptide-bicelle interaction: Following variations in size and morphology by a combined NMR-SAXS approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183095. [PMID: 31672542 DOI: 10.1016/j.bbamem.2019.183095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Changes in membrane properties occurring upon protein interaction are key questions in understanding membrane protein function. To report on the occurring size and shape variation we present here a combined NMR-SAXS method performed under physiological conditions using the same samples, enabling determination of a global parameter, the hydration radius (rH) and estimating the bicelle shape. We use zwitterionic (DMPC/DHPC) and negatively charged (DMPC/DHPC/DMPG) bicelles and investigate the interaction with model transmembrane and surface active peptides (KALP23 and melittin). 1H NMR measurements based mostly on the translational diffusion coefficient D determination are used to characterize cmc values of DHPC micelles under the investigated conditions, to describe DHPC distribution with exact determination of the q (long chain/short chain) lipid ratio, to estimate aggregation numbers and effective rH values. The scattering curve is used to fit a lenticular core-shell model enabling us to describe the bicelle shape in terms of ellipsoidal axis length parameters. For all studied systems formation of oblate ellipsoids is found. Even though the rG/rH ratio would be an elegant way to characterize shape variations, we show that changes occurring upon peptide-bicelle interaction in the "effective" size and in the measure on the anisometry - morphology - of the objects can be described by using rH and the simplistic ellipsoidal core-shell model. While the influence of the transmembrane KALP peptide is significant, effects upon addition of surface active melittin peptide seem negligible. This synergy of techniques under controlled conditions can provide information about bicellar shape modulation occurring during peptide-bicelle interactions.
Collapse
Affiliation(s)
- E F Dudás
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - A Wacha
- Institute for Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - A Bóta
- Institute for Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - A Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
| |
Collapse
|
17
|
Kooijman L, Ansorge P, Schuster M, Baumann C, Löhr F, Jurt S, Güntert P, Zerbe O. Backbone and methyl assignment of bacteriorhodopsin incorporated into nanodiscs. JOURNAL OF BIOMOLECULAR NMR 2020; 74:45-60. [PMID: 31754899 PMCID: PMC7015963 DOI: 10.1007/s10858-019-00289-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/11/2019] [Indexed: 05/21/2023]
Abstract
Resonance assignments are challenging for membrane proteins due to the size of the lipid/detergent-protein complex and the presence of line-broadening from conformational exchange. As a consequence, many correlations are missing in the triple-resonance NMR experiments typically used for assignments. Herein, we present an approach in which correlations from these solution-state NMR experiments are supplemented by data from 13C unlabeling, single-amino acid type labeling, 4D NOESY data and proximity of moieties to lipids or water in combination with a structure of the protein. These additional data are used to edit the expected peaklists for the automated assignment protocol FLYA, a module of the program package CYANA. We demonstrate application of the protocol to the 262-residue proton pump from archaeal bacteriorhodopsin (bR) in lipid nanodiscs. The lipid-protein assembly is characterized by an overall correlation time of 44 ns. The protocol yielded assignments for 62% of all backbone (H, N, Cα, Cβ, C') resonances of bR, corresponding to 74% of all observed backbone spin systems, and 60% of the Ala, Met, Ile (δ1), Leu and Val methyl groups, thus enabling to assign a large fraction of the protein without mutagenesis data. Most missing resonances stem from the extracellular half, likely due intermediate exchange line-broadening. Further analysis revealed that missing information of the amino acid type of the preceding residue is the largest problem, and that 4D NOESY experiments are particularly helpful to compensate for that information loss.
Collapse
Affiliation(s)
- Laurens Kooijman
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Philipp Ansorge
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthias Schuster
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Christian Baumann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Simon Jurt
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Peter Güntert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
18
|
Swiecicki JM, Santana JT, Imperiali B. A Strategic Approach for Fluorescence Imaging of Membrane Proteins in a Native-like Environment. Cell Chem Biol 2019; 27:245-251.e3. [PMID: 31831268 DOI: 10.1016/j.chembiol.2019.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/22/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023]
Abstract
Biological membranes are complex barriers in which membrane proteins and thousands of lipidic species participate in structural and functional interactions. Developing a strategic approach that allows uniform labeling of membrane proteins while maintaining a lipidic environment that retains functional interactions is highly desirable for in vitro fluorescence studies. Herein, we focus on complementing current methods by integrating the powerful processes of unnatural amino acid mutagenesis, bioorthogonal labeling, and the detergent-free membrane protein solubilization based on the amphiphilic styrene-maleic acid (SMA) polymer. Importantly, the SMA polymer preserves a thermodynamically stable shell of phospholipids. The approach that we present is both rapid and generalizable providing a population of uniquely labeled membrane proteins in lipid nanoparticles for quantitative fluorescence-based studies.
Collapse
Affiliation(s)
- Jean-Marie Swiecicki
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jordan Tyler Santana
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Klöpfer K, Hagn F. Beyond detergent micelles: The advantages and applications of non-micellar and lipid-based membrane mimetics for solution-state NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:271-283. [PMID: 31779883 DOI: 10.1016/j.pnmrs.2019.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Membrane proteins are important players in signal transduction and the exchange of metabolites within or between cells. Thus, this protein class is the target of around 60 % of currently marketed drugs, emphasizing their essential biological role. Besides functional assays, structural and dynamical investigations on this protein class are crucial to fully understanding their functionality. Even though X-ray crystallography and electron microscopy are the main methods to determine structures of membrane proteins and their complexes, NMR spectroscopy can contribute essential information on systems that (a) do not crystallize and (b) are too small for EM. Furthermore, NMR is a versatile tool for monitoring functional dynamics of biomolecules at various time scales. A crucial aspect of such studies is the use of a membrane mimetic that resembles a native environment and thus enables the extraction of functional insights. In recent decades, the membrane protein NMR community has moved from rather harsh detergents to membrane systems having more native-like properties. In particular, most recently phospholipid nanodiscs have been developed and optimized mainly for solution-state NMR but are now also being used for solid-state NMR spectroscopy. Nanodiscs consist of a patch of a planar lipid bilayer that is encircled by different (bio-)polymers to form particles of defined and tunable size. In this review, we provide an overview of available membrane mimetics, including nanodiscs, amphipols and bicelles, that are suitable for high-resolution NMR spectroscopy and describe how these advanced membrane mimetics can facilitate NMR studies on the structure and dynamics of membrane proteins. Since the stability of membrane proteins depends critically on the chosen membrane mimetic, we emphasize the importance of a suitable system that is not necessarily developed for solution-state NMR applications and hence requires optimization for each membrane protein. However, lipid-based membrane mimetics offer the possibility of performing NMR experiments at elevated temperatures and studying ligand and partner protein complexes as well as their functional dynamics in a realistic membrane environment. In order to be able to make an informed decision during the selection of a suitable membrane system, we provide a detailed overview of the available options for various membrane protein classes and thereby facilitate this often-difficult selection process for a broad range of desired NMR applications.
Collapse
Affiliation(s)
- Kai Klöpfer
- Bavarian NMR Center at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85747 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Franz Hagn
- Bavarian NMR Center at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85747 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
20
|
Puthenveetil R, Vinogradova O. Solution NMR: A powerful tool for structural and functional studies of membrane proteins in reconstituted environments. J Biol Chem 2019; 294:15914-15931. [PMID: 31551353 DOI: 10.1074/jbc.rev119.009178] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A third of the genes in prokaryotic and eukaryotic genomes encode membrane proteins that are either essential for signal transduction and solute transport or function as scaffold structures. Unlike many of their soluble counterparts, the overall structural and functional organization of membrane proteins is sparingly understood. Recent advances in X-ray crystallography, cryo-EM, and nuclear magnetic resonance (NMR) are closing this gap by enabling an in-depth view of these ever-elusive proteins at atomic resolution. Despite substantial technological advancements, however, the overall proportion of membrane protein entries in the Protein Data Bank (PDB) remains <4%. This paucity is mainly attributed to difficulties associated with their expression and purification, propensity to form large multisubunit complexes, and challenges pertinent to identification of an ideal detergent, lipid, or detergent/lipid mixture that closely mimic their native environment. NMR is a powerful technique to obtain atomic-resolution and dynamic details of a protein in solution. This is accomplished through an assortment of isotopic labeling schemes designed to acquire multiple spectra that facilitate deduction of the final protein structure. In this review, we discuss current approaches and technological developments in the determination of membrane protein structures by solution NMR and highlight recent structural and mechanistic insights gained with this technique. We also discuss strategies for overcoming size limitations in NMR applications, and we explore a plethora of membrane mimetics available for the structural and mechanistic understanding of these essential cellular proteins.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Department of Molecular and Cell Biology, college of liberal arts and sciences, University of Connecticut at Storrs, Storrs, Connecticut 06269
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut at Storrs, Storrs, Connecticut 06269
| |
Collapse
|
21
|
Löhr F, Gebel J, Henrich E, Hein C, Dötsch V. Towards complete polypeptide backbone NH assignment via combinatorial labeling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 302:50-63. [PMID: 30959416 DOI: 10.1016/j.jmr.2019.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Combinatorial selective isotope labeling is a valuable tool to facilitate polypeptide backbone resonance assignment in cases of low sensitivity or extensive chemical shift degeneracy. It involves recording of 15N-HSQC and 2D HN-projections of triple-resonance spectra on a limited set of samples containing different combinations of labeled and unlabeled amino acid types. Using labeling schemes in which the three backbone heteronuclei (amide nitrogen, α-carbon and carbonyl carbon) are enriched in 15N or 13C isotopes - individually as well as simultaneously - usually yields abundant amino-acid type information of consecutive residues i and i - 1. Although this results in a large number of anchor points that can be used in the sequential assignment process, for most amide signals the exact positioning of the corresponding residue the polypeptide sequence still relies on matching intra- and interresidual 13C chemical shifts obtained from 3D spectra. An obvious way to obtain more sequence-specific assignments directly with combinatorial labeling would be to increase the number of samples. This is, however, undesirable because of increased sample preparation efforts and costs. Irrespective of the number of samples, unambiguous assignments cannot be accomplished for i - 1/i pairs that are not unique in the sequence. Here we show that the ambiguity for non-unique pairs can be resolved by including information about the labeling state of residues i + 1 and i - 2. Application to a 35-residue peptide resulted in complete assignments of all detectable signals in the 15N HSQC which, due to its repetitive sequence and 13C chemical shift degeneracies, was difficult to achieve by other means. For a medium-sized protein (165 residues, rotational correlation time 8.2 ns) the improved protocol allowed the extent of backbone amide assignment to be expanded to 88% solely using a suite of 2D 1H-15N correlated spectra.
Collapse
Affiliation(s)
- Frank Löhr
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Jakob Gebel
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Erik Henrich
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Christopher Hein
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
22
|
Arana MR, Fiori MC, Altenberg GA. Functional and structural comparison of the ABC exporter MsbA studied in detergent and reconstituted in nanodiscs. Biochem Biophys Res Commun 2019; 512:448-452. [PMID: 30902387 DOI: 10.1016/j.bbrc.2019.03.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
Purified membrane proteins are most frequently studied solubilized in detergent, but the properties of detergent micelles are very different from those of lipid bilayers. Therefore, there is an increasing interest in studying membrane proteins under conditions that resemble the membrane protein native environment more closely. Although there are indications of differences between membrane proteins in detergent and in lipid bilayers, direct functional and structural comparisons are very hard to find. Nanodiscs have been established as a new platform that consists of two molecules of a membrane scaffold protein that surround a small lipid-bilayer patch. Here, we undertook the task of comparing the function and conformational states of the transport protein MsbA in detergent and nanodiscs using ATPase activity and luminescence resonance energy transfer (LRET) measurements to assess differences in activity and conformational states, respectively. MsbA is a prototypical member of the ATP binding cassette protein superfamily. MsbA activity was higher in nanodiscs vs detergent, which had clear structural correlates: an increase in the fraction of molecules displaying closed nucleotide-binding domain dimers in the apo state, and a decrease in the distance of the "dissociated" nucleotide-binding domains. Our LRET studies support the notion that the widely separated nucleotide binding domains observed in the MsbA x-ray structures in detergent do not correspond to physiological conformations. Although our studies focus on a particular ABC exporter, the possibility of similar environment effects on other membrane proteins should be carefully considered.
Collapse
Affiliation(s)
- Maite R Arana
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6551, USA; Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 570, 2000, Rosario, Argentina
| | - Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6551, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430-6551, USA.
| |
Collapse
|
23
|
Viennet T, Bungert-Plümke S, Elter S, Viegas A, Fahlke C, Etzkorn M. Reconstitution and NMR Characterization of the Ion-Channel Accessory Subunit Barttin in Detergents and Lipid-Bilayer Nanodiscs. Front Mol Biosci 2019; 6:13. [PMID: 30931313 PMCID: PMC6427064 DOI: 10.3389/fmolb.2019.00013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/19/2019] [Indexed: 01/21/2023] Open
Abstract
Barttin is an accessory subunit of ClC-K chloride channels expressed in the kidney and the inner ear. Main functions of ClC-K/barttin channels are the generation of the cortico-medullary osmotic gradients in the kidney and the endocochlear potential in the inner ear. Mutations in the gene encoding barttin, BSND, result in impaired urinary concentration and sensory deafness. Barttin is predicted to be a two helical integral membrane protein that directly interacts with its ion channel in the membrane bilayer where it stabilizes the channel complex, promotes its incorporation into the surface membrane and leads to channel activation. It therefore is an attractive target to address fundamental questions of intermolecular communication within the membrane. However, so far inherent challenges in protein expression and stabilization prevented comprehensive in vitro studies and structural characterization. Here we demonstrate that cell-free expression enables production of sufficient quantities of an isotope-labeled barttin variant (I72X Barttin, capable to promote surface membrane insertion and channel activation) for NMR-based structural studies. Additionally, we established purification protocols as well as reconstitution strategies in detergent micelles and phospholipid bilayer nanodiscs. Stability, folding, and NMR data quality are reported as well as a suitable assignment strategy, paving the way to its structural characterization.
Collapse
Affiliation(s)
- Thibault Viennet
- Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Complex Systems 6, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, Jülich, Germany
| | - Stefanie Bungert-Plümke
- Institute of Complex Systems 4, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, Jülich, Germany
| | - Shantha Elter
- Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Aldino Viegas
- Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christoph Fahlke
- Institute of Complex Systems 4, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, Jülich, Germany
| | - Manuel Etzkorn
- Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Complex Systems 6, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, Jülich, Germany
| |
Collapse
|
24
|
Kao YM, Cheng CH, Syue ML, Huang HY, Chen IC, Yu TY, Chu LK. Photochemistry of Bacteriorhodopsin with Various Oligomeric Statuses in Controlled Membrane Mimicking Environments: A Spectroscopic Study from Femtoseconds to Milliseconds. J Phys Chem B 2019; 123:2032-2039. [DOI: 10.1021/acs.jpcb.9b01224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu-Min Kao
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Chung-Hao Cheng
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ming-Lun Syue
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Hsin-Yu Huang
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - I-Chia Chen
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
25
|
Henrich E, Löhr F, Mezhyrova J, Laguerre A, Bernhard F, Dötsch V. Synthetic Biology-Based Solution NMR Studies on Membrane Proteins in Lipid Environments. Methods Enzymol 2018; 614:143-185. [PMID: 30611423 DOI: 10.1016/bs.mie.2018.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although membrane proteins are in the focus of biochemical research for many decades the general knowledge of this important class is far behind soluble proteins. Despite several recent technical developments, the most challenging feature still is the generation of high-quality samples in environments suitable for the selected application. Reconstitution of membrane proteins into lipid bilayers will generate the most native-like environment and is therefore commonly desired. However, it poses tremendous problems to solution-state NMR analysis due to the dramatic increase in particle size resulting in high rotational correlation times. Nevertheless, a few promising strategies for the solution NMR analysis of membrane inserted proteins are emerging and will be discussed in this chapter. We focus on the generation of membrane protein samples in nanodisc membranes by cell-free systems and will describe the characteristic advantages of that platform in providing tailored protein expression and folding environments. We indicate frequent problems that have to be overcome in cell-free synthesis, nanodisc preparation, and customization for samples dedicated for solution-state NMR. Detailed instructions for sample preparation are given, and solution NMR approaches suitable for membrane proteins in bilayers are compiled. We further discuss the current strategies applied for signal detection from such difficult samples and describe the type of information that can be extracted from the various experiments. In summary, a comprehensive guideline for the analysis of membrane proteins in native-like membrane environments by solution-state NMR techniques will be provided.
Collapse
Affiliation(s)
- Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Julija Mezhyrova
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Lipids modulate the insertion and folding of the nascent chains of alpha helical membrane proteins. Biochem Soc Trans 2018; 46:1355-1366. [PMID: 30190329 DOI: 10.1042/bst20170424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023]
Abstract
Membrane proteins must be inserted into a membrane and folded into their correct structure to function correctly. This insertion occurs during translation and synthesis by the ribosome for most α-helical membrane proteins. Precisely how this co-translational insertion and folding occurs, and the role played by the surrounding lipids, is still not understood. Most of the work on the influence of the lipid environment on folding and insertion has focussed on denatured, fully translated proteins, and thus does not replicate folding during unidirectional elongation of nascent chains that occurs in the cell. This review aims to highlight recent advances in elucidating lipid composition and bilayer properties optimal for insertion and folding of nascent chains in the membrane and in the assembly of oligomeric proteins.
Collapse
|
27
|
High-Efficiency Expression of Yeast-Derived G-Protein Coupled Receptors and 19F Labeling for Dynamical Studies. Methods Mol Biol 2018; 1688:407-421. [PMID: 29151220 DOI: 10.1007/978-1-4939-7386-6_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
We describe a detailed protocol for heterologous expression of the human adenosine A2A G-protein coupled receptor (GPCR), using Pichia pastoris. Details are also provided for the reconstitution and functional purification steps. Yields of 2-6 mg/g membrane were obtained prior to functional purification (ligand column purification). Typically, functional purification reduced overall yields by a factor of 2-4, resulting in final functional production of 0.5-3 mg/L membrane. Yeast is an excellent protein expression system for NMR given its high tolerance for isotope-enriched solvents and its ability to grow in minimal media.
Collapse
|
28
|
Prade E, Mahajan M, Im S, Zhang M, Gentry KA, Anantharamaiah GM, Waskell L, Ramamoorthy A. A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elke Prade
- Biophysics and Department of Chemistry University of Michigan Ann Arbor MI 48109-1055 USA
| | - Mukesh Mahajan
- Biophysics and Department of Chemistry University of Michigan Ann Arbor MI 48109-1055 USA
| | - Sang‐Choul Im
- Department of Anesthesiology University of Michigan and VA Medical Center Ann Arbor MI 48105-1055 USA
| | - Meng Zhang
- Biophysics and Department of Chemistry University of Michigan Ann Arbor MI 48109-1055 USA
| | - Katherine A. Gentry
- Biophysics and Department of Chemistry University of Michigan Ann Arbor MI 48109-1055 USA
| | | | - Lucy Waskell
- Department of Anesthesiology University of Michigan and VA Medical Center Ann Arbor MI 48105-1055 USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry University of Michigan Ann Arbor MI 48109-1055 USA
| |
Collapse
|
29
|
Prade E, Mahajan M, Im SC, Zhang M, Gentry KA, Anantharamaiah GM, Waskell L, Ramamoorthy A. A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs. Angew Chem Int Ed Engl 2018; 57:8458-8462. [PMID: 29722926 DOI: 10.1002/anie.201802210] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/18/2018] [Indexed: 01/08/2023]
Abstract
Structural interactions that enable electron transfer to cytochrome-P450 (CYP450) from its redox partner CYP450-reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membrane-bound functional complex to reveal interactions between the full-length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochrome-b5 (cyt-b5 ), Arg 125 on the C-helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study protein-protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.
Collapse
Affiliation(s)
- Elke Prade
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Mukesh Mahajan
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Sang-Choul Im
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, MI, 48105-1055, USA
| | - Meng Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Katherine A Gentry
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | | | - Lucy Waskell
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, MI, 48105-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| |
Collapse
|
30
|
Viennet T, Wördehoff MM, Uluca B, Poojari C, Shaykhalishahi H, Willbold D, Strodel B, Heise H, Buell AK, Hoyer W, Etzkorn M. Structural insights from lipid-bilayer nanodiscs link α-Synuclein membrane-binding modes to amyloid fibril formation. Commun Biol 2018; 1:44. [PMID: 30271927 PMCID: PMC6123806 DOI: 10.1038/s42003-018-0049-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/23/2018] [Indexed: 01/24/2023] Open
Abstract
The protein α-Synuclein (αS) is linked to Parkinson’s disease through its abnormal aggregation, which is thought to involve cytosolic and membrane-bound forms of αS. Following previous studies using micelles and vesicles, we present a comprehensive study of αS interaction with phospholipid bilayer nanodiscs. Using a combination of NMR-spectroscopic, biophysical, and computational methods, we structurally and kinetically characterize αS interaction with different membrane discs in a quantitative and site-resolved way. We obtain global and residue-specific αS membrane affinities, and determine modulations of αS membrane binding due to αS acetylation, membrane plasticity, lipid charge density, and accessible membrane surface area, as well as the consequences of the different binding modes for αS amyloid fibril formation. Our results establish a structural and kinetic link between the observed dissimilar binding modes and either aggregation-inhibiting properties, largely unperturbed aggregation, or accelerated aggregation due to membrane-assisted fibril nucleation. Thibault Viennet and colleagues gain structural insight into amyloid fibril formation from their innovative use of lipid bilayer nanodiscs. This study connects α-Synuclein membrane binding modes to its aggregation properties, furthering our understanding of the cause of neurodegerative diseases.
Collapse
Affiliation(s)
- Thibault Viennet
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Michael M Wördehoff
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Boran Uluca
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Chetan Poojari
- Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany.,Department of Physics, Tampere University of Technology, Korkeakoulunkatu 10, 33720, Tampere, Finland.,Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a, 00560, Helsinki, Finland
| | - Hamed Shaykhalishahi
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Birgit Strodel
- Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Henrike Heise
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Alexander K Buell
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Manuel Etzkorn
- Institute of Physical Biology, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany. .,Instititue of Complex Systems (ICS-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany.
| |
Collapse
|
31
|
Le Bon C, Marconnet A, Masscheleyn S, Popot JL, Zoonens M. Folding and stabilizing membrane proteins in amphipol A8-35. Methods 2018; 147:95-105. [PMID: 29678587 DOI: 10.1016/j.ymeth.2018.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023] Open
Abstract
Membrane proteins (MPs) are important pharmacological targets because of their involvement in many essential cellular processes whose dysfunction can lead to a large variety of diseases. A detailed knowledge of the structure of MPs and the molecular mechanisms of their activity is essential to the design of new therapeutic agents. However, studying MPs in vitro is challenging, because it generally implies their overexpression under a functional form, followed by their extraction from membranes and purification. Targeting an overexpressed MP to a membrane is often toxic and expression yields tend to be limited. One alternative is the formation of inclusion bodies (IBs) in the cytosol of the cell, from which MPs need then to be folded to their native conformation before structural and functional analysis can be contemplated. Folding MPs targeted to IBs is a difficult task. Specially designed amphipathic polymers called 'amphipols' (APols), which have been initially developed with the view of improving the stability of MPs in aqueous solutions compared to detergents, can be used to fold both α-helical and β-barrel MPs. APols represent an interesting novel amphipathic medium, in which high folding yields can be achieved. In this review, the properties of APol A8-35 and of the complexes they form with MPs are summarized. An overview of the most important studies reported so far using A8-35 to fold MPs is presented. Finally, from a practical point of view, a detailed description of the folding and trapping methods is given.
Collapse
Affiliation(s)
- Christel Le Bon
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Anaïs Marconnet
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Sandrine Masscheleyn
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Jean-Luc Popot
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Manuela Zoonens
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France.
| |
Collapse
|
32
|
Hoffmann B, Löhr F, Laguerre A, Bernhard F, Dötsch V. Protein labeling strategies for liquid-state NMR spectroscopy using cell-free synthesis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 105:1-22. [PMID: 29548364 DOI: 10.1016/j.pnmrs.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 05/17/2023]
Abstract
Preparation of a protein sample for liquid-state nuclear magnetic resonance (NMR) spectroscopy analysis requires optimization of many parameters. This review describes labeling strategies for obtaining assignments of protein resonances. Particular emphasis is placed on the advantages of cell-free protein production, which enables exclusive labeling of the protein of interest, thereby simplifying downstream processing steps and increasing the availability of different labeling strategies for a target protein. Furthermore, proteins can be synthesized in milligram yields, and the open nature of the cell-free system allows the addition of stabilizers, scrambling inhibitors or hydrophobic solubilization environments directly during the protein synthesis, which is especially beneficial for membrane proteins. Selective amino acid labeling of the protein of interest, the possibility of addressing scrambling issues and avoiding the need for labile amino acid precursors have been key factors in enabling the introduction of new assignment strategies based on different labeling schemes as well as on new pulse sequences. Combinatorial selective labeling methods have been developed to reduce the number of protein samples necessary to achieve a complete backbone assignment. Furthermore, selective labeling helps to decrease spectral overlap and overcome size limitations for solution NMR analysis of larger complexes, oligomers, intrinsically disordered proteins and membrane proteins.
Collapse
Affiliation(s)
- Beate Hoffmann
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
33
|
Liang B, Tamm LK. Solution NMR of SNAREs, complexin and α-synuclein in association with membrane-mimetics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 105:41-53. [PMID: 29548366 PMCID: PMC5863748 DOI: 10.1016/j.pnmrs.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
SNARE-mediated membrane fusion is a ubiquitous process responsible for intracellular vesicle trafficking, including membrane fusion in exocytosis that leads to hormone and neurotransmitter release. The proteins that facilitate this process are highly dynamic and adopt multiple conformations when they interact with other proteins and lipids as they form highly regulated molecular machines that operate on membranes. Solution NMR is an ideal method to capture high-resolution glimpses of the molecular transformations that take place when these proteins come together and work on membranes. Since solution NMR has limitations on the size of proteins and complexes that can be studied, lipid bilayer model membranes cannot be used in these approaches, so the relevant interactions are typically studied in various types of membrane-mimetics that are tractable by solution NMR methods. In this review we therefore first summarize different membrane-mimetic systems that are commonly used or that show promise for solution NMR studies of membrane-interacting proteins. We then summarize recent NMR studies on two SNARE proteins, syntaxin and synaptobrevin, and two related regulatory proteins, complexin and α-synuclein, and their interactions with membrane lipids. These studies provide a structural and dynamical framework for how these proteins might carry out their functions in the vicinity of lipid membranes. The common theme throughout these studies is that membrane interactions have major influences on the structural dynamics of these proteins that cannot be ignored when attempting to explain their functions in contemporary models of SNARE-mediated membrane fusion.
Collapse
Affiliation(s)
- Binyong Liang
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
34
|
Bondarenko V, Wells M, Xu Y, Tang P. Solution NMR Studies of Anesthetic Interactions with Ion Channels. Methods Enzymol 2018; 603:49-66. [PMID: 29673534 DOI: 10.1016/bs.mie.2018.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
NMR spectroscopy is one of the major tools to provide atomic resolution protein structural information. It has been used to elucidate the molecular details of interactions between anesthetics and ion channels, to identify anesthetic binding sites, and to characterize channel dynamics and changes introduced by anesthetics. In this chapter, we present solution NMR methods essential for investigating interactions between ion channels and general anesthetics, including both volatile and intravenous anesthetics. Case studies are provided with a focus on pentameric ligand-gated ion channels and the voltage-gated sodium channel NaChBac.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Marta Wells
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yan Xu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Pei Tang
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
35
|
Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nat Protoc 2017; 13:79-98. [PMID: 29215632 DOI: 10.1038/nprot.2017.094] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Suitable membrane mimetics are crucial to the performance of structural and functional studies of membrane proteins. Phospholipid nanodiscs (formed when a membrane scaffold protein encircles a small portion of a lipid bilayer) have native-like membrane properties. These have been used for a variety of functional studies, but structural studies by high-resolution solution-state NMR spectroscopy of membrane proteins in commonly used nanodiscs of 10-nm diameter were limited by the high molecular weight of these particles, which caused unfavorably large NMR line widths. We have recently constructed truncated versions of the membrane scaffold protein, allowing the preparation of a range of stepwise-smaller nanodiscs (6- to 8-nm diameter) to overcome this limitation. Here, we present a protocol on the assembly of phospholipid nanodiscs of various sizes for structural studies of membrane proteins with solution-state NMR spectroscopy. We describe specific isotope-labeling schemes required for working with large membrane protein systems in nanodiscs, and provide guidelines on the setup of NMR non-uniform sampling (NUS) data acquisition and high-resolution NMR spectra reconstruction. We discuss critical points and pitfalls relating to optimization of nanodiscs for NMR spectroscopy and outline a strategy for the high-resolution structure determination and positioning of isotope-labeled membrane proteins in nanodiscs using nuclear Overhauser enhancement spectroscopy (NOESY) spectroscopy, residual dipolar couplings (RDCs) and paramagnetic relaxation enhancements (PREs). Depending on the target protein of interest, nanodisc assembly and purification can be achieved within 12-24 h. Although the focus of this protocol is on protein NMR, these nanodiscs can also be used for (cryo-) electron microscopy (EM) and small-angle X-ray and neutron-scattering studies.
Collapse
|
36
|
Keeler EG, Michaelis VK, Colvin MT, Hung I, Gor'kov PL, Cross TA, Gan Z, Griffin RG. 17O MAS NMR Correlation Spectroscopy at High Magnetic Fields. J Am Chem Soc 2017; 139:17953-17963. [PMID: 29111706 DOI: 10.1021/jacs.7b08989] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure of two protected amino acids, FMOC-l-leucine and FMOC-l-valine, and a dipeptide, N-acetyl-l-valyl-l-leucine (N-Ac-VL), were studied via one- and two-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy. Utilizing 17O magic-angle spinning (MAS) NMR at multiple magnetic fields (17.6-35.2 T/750-1500 MHz for 1H) the 17O quadrupolar and chemical shift parameters were determined for the two oxygen sites of each FMOC-protected amino acids and the three distinct oxygen environments of the dipeptide. The one- and two-dimensional, 17O, 15N-17O, 13C-17O, and 1H-17O double-resonance correlation experiments performed on the uniformly 13C,15N and 70% 17O-labeled dipeptide prove the attainability of 17O as a probe for structure studies of biological systems. 15N-17O and 13C-17O distances were measured via one-dimensional REAPDOR and ZF-TEDOR experimental buildup curves and determined to be within 15% of previously reported distances, thus demonstrating the use of 17O NMR to quantitate interatomic distances in a fully labeled dipeptide. Through-space hydrogen bonding of N-Ac-VL was investigated by a two-dimensional 1H-detected 17O R3-R-INEPT experiment, furthering the importance of 17O for studies of structure in biomolecular solids.
Collapse
Affiliation(s)
- Eric G Keeler
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Vladimir K Michaelis
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Michael T Colvin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ivan Hung
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Peter L Gor'kov
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Timothy A Cross
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Chien CTH, Helfinger LR, Bostock MJ, Solt A, Tan YL, Nietlispach D. An Adaptable Phospholipid Membrane Mimetic System for Solution NMR Studies of Membrane Proteins. J Am Chem Soc 2017; 139:14829-14832. [PMID: 28990386 PMCID: PMC6109379 DOI: 10.1021/jacs.7b06730] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Based on the saposin-A (SapA) scaffold protein, we demonstrate the suitability of a size-adaptable phospholipid membrane-mimetic system for solution NMR studies of membrane proteins (MPs) under close-to-native conditions. The Salipro nanoparticle size can be tuned over a wide pH range by adjusting the saposin-to-lipid stoichiometry, enabling maintenance of sufficiently high amounts of phospholipid in the Salipro nanoparticle to mimic a realistic membrane environment while controlling the overall size to enable solution NMR for a range of MPs. Three representative MPs, including one G-protein-coupled receptor, were successfully incorporated into SapA-dimyristoylphosphatidylcholine nanoparticles and studied by solution NMR spectroscopy.
Collapse
Affiliation(s)
- Chih-Ta Henry Chien
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Lukas R. Helfinger
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Mark J. Bostock
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Andras Solt
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Yi Lei Tan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | | |
Collapse
|
38
|
Recent advances in biophysical studies of rhodopsins - Oligomerization, folding, and structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1512-1521. [PMID: 28844743 DOI: 10.1016/j.bbapap.2017.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/06/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022]
Abstract
Retinal-binding proteins, mainly known as rhodopsins, function as photosensors and ion transporters in a wide range of organisms. From halobacterial light-driven proton pump, bacteriorhodopsin, to bovine photoreceptor, visual rhodopsin, they have served as prototypical α-helical membrane proteins in a large number of biophysical studies and aided in the development of many cutting-edge techniques of structural biology and biospectroscopy. In the last decade, microbial and animal rhodopsin families have expanded significantly, bringing into play a number of new interesting structures and functions. In this review, we will discuss recent advances in biophysical approaches to retinal-binding proteins, primarily microbial rhodopsins, including those in optical spectroscopy, X-ray crystallography, nuclear magnetic resonance, and electron paramagnetic resonance, as applied to such fundamental biological aspects as protein oligomerization, folding, and structure.
Collapse
|
39
|
Li Y, Kang C. Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules 2017; 22:E1399. [PMID: 28832542 PMCID: PMC6151424 DOI: 10.3390/molecules22091399] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| | - Congbao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| |
Collapse
|
40
|
Zoghbi ME, Altenberg GA. Luminescence resonance energy transfer spectroscopy of ATP-binding cassette proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:854-867. [PMID: 28801111 DOI: 10.1016/j.bbamem.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
The ATP-binding cassette (ABC) superfamily includes regulatory and transport proteins. Most human ABC exporters pump substrates out of cells using energy from ATP hydrolysis. Although major advances have been made toward understanding the molecular mechanism of ABC exporters, there are still many issues unresolved. During the last few years, luminescence resonance energy transfer has been used to detect conformational changes in real time, with atomic resolution, in isolated ABC nucleotide binding domains (NBDs) and full-length ABC exporters. NBDs are particularly interesting because they provide the power stroke for substrate transport. Luminescence resonance energy transfer (LRET) is a spectroscopic technique that can provide dynamic information with atomic-resolution of protein conformational changes under physiological conditions. Using LRET, it has been shown that NBD dimerization, a critical step in ABC proteins catalytic cycle, requires binding of ATP to two nucleotide binding sites. However, hydrolysis at just one of the sites can drive dissociation of the NBD dimer. It was also found that the NBDs of the bacterial ABC exporter MsbA reconstituted in a lipid bilayer membrane and studied at 37°C never separate as much as suggested by crystal structures. This observation stresses the importance of performing structural/functional studies of ABC exporters under physiologic conditions. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Maria E Zoghbi
- School of Natural Sciences, University of California, Merced, 4225 N. Hospital Road, Atwater, CA, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79423-6551, USA.
| |
Collapse
|
41
|
Polymer-encased nanodiscs with improved buffer compatibility. Sci Rep 2017; 7:7432. [PMID: 28785023 PMCID: PMC5547149 DOI: 10.1038/s41598-017-07110-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/23/2017] [Indexed: 01/07/2023] Open
Abstract
Styrene-maleic acid copolymers allow for solubilization and reconstitution of membrane proteins into nanodiscs. These polymer-encased nanodiscs are promising platforms for studies of membrane proteins in a near-physiologic environment without the use of detergents. However, current styrene-maleic acid copolymers display severe limitations in terms of buffer compatibility and ensued flexibility for various applications. Here, we present a new family of styrene-maleic acid copolymers that do not aggregate at low pH or in the presence of polyvalent cations, and can be used to solubilize membrane proteins and produce nanodiscs of controlled sizes.
Collapse
|
42
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Puthenveetil R, Nguyen K, Vinogradova O. Nanodiscs and Solution NMR: preparation, application and challenges. NANOTECHNOLOGY REVIEWS 2017; 6:111-126. [PMID: 28373928 PMCID: PMC5375033 DOI: 10.1515/ntrev-2016-0076] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanodiscs provide an excellent system for the structure-function investigation of membrane proteins. Its direct advantage lies in presenting a water soluble form of an otherwise hydrophobic molecule, making it amenable to a plethora of solution techniques. Nuclear Magnetic Resonance is one such high resolution approach that looks at the structure and dynamics of a protein with atomic level precision. Recently, there has been a breakthrough in making nanodiscs more susceptible for structure determination by solution NMR, yet it still remains to become the preferred choice for a membrane mimetic. In this practical review, we provide a general discourse on nanodisc and its application to solution NMR. We also offer potential solutions to remediate the technical challenges associated with nanodisc preparation and the choice of proper experimental set-ups. Along with discussing several structural applications, we demonstrate an alternative use of nanodiscs for functional studies, where we investigated the phosphorylation of a cell surface receptor, Integrin. This is the first successful manifestation of observing activated receptor phosphorylation in nanodiscs through NMR. We additionally present an on-column method for nanodisc preparation with multiple strategies and discuss the potential use of alternative nanoscale phospholipid bilayer systems like SMA lipid discs and Saposin-A lipoprotein discs.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Department of Molecular and Cell Biology, CLAS, University of Connecticut at Storrs, Storrs, CT 06269
| | - Khiem Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut at Storrs, Storrs, CT 06269
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut at Storrs, Storrs, CT 06269
| |
Collapse
|
44
|
The power, pitfalls and potential of the nanodisc system for NMR-based studies. Biol Chem 2016; 397:1335-1354. [DOI: 10.1515/hsz-2016-0224] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Abstract
The choice of a suitable membrane mimicking environment is of fundamental importance for the characterization of structure and function of membrane proteins. In this respect, usage of the lipid bilayer nanodisc technology provides a unique potential for nuclear magnetic resonance (NMR)-based studies. This review summarizes the recent advances in this field, focusing on (i) the strengths of the system, (ii) the bottlenecks that may be faced, and (iii) promising capabilities that may be explored in future studies.
Collapse
|
45
|
Bronder AM, Bieker A, Elter S, Etzkorn M, Häussinger D, Oesterhelt F. Oriented Membrane Protein Reconstitution into Tethered Lipid Membranes for AFM Force Spectroscopy. Biophys J 2016; 111:1925-1934. [PMID: 27806274 PMCID: PMC5103026 DOI: 10.1016/j.bpj.2016.08.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022] Open
Abstract
Membrane proteins act as a central interface between the extracellular environment and the intracellular response and as such represent one of the most important classes of drug targets. The characterization of the molecular properties of integral membrane proteins, such as topology and interdomain interaction, is key to a fundamental understanding of their function. Atomic force microscopy (AFM) and force spectroscopy have the intrinsic capabilities of investigating these properties in a near-native setting. However, atomic force spectroscopy of membrane proteins is traditionally carried out in a crystalline setup. Alternatively, model membrane systems, such as tethered bilayer membranes, have been developed for surface-dependent techniques. While these setups can provide a more native environment, data analysis may be complicated by the normally found statistical orientation of the reconstituted protein in the model membrane. We have developed a model membrane system that enables the study of membrane proteins in a defined orientation by single-molecule force spectroscopy. Our approach is demonstrated using cell-free expressed bacteriorhodopsin coupled to a quartz glass surface in a defined orientation through a protein anchor and reconstituted inside an artificial membrane system. This approach offers an effective way to study membrane proteins in a planar lipid bilayer. It can be easily transferred to all membrane proteins that possess a suitable tag and can be reconstituted into a lipid bilayer. In this respect, we anticipate that this technique may contribute important information on structure, topology, and intra- and intermolecular interactions of other seven-transmembrane helical receptors.
Collapse
Affiliation(s)
- Anna M Bronder
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
| | - Adeline Bieker
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Shantha Elter
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Filipp Oesterhelt
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany; Department for Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
46
|
From Nanodiscs to Isotropic Bicelles: A Procedure for Solution Nuclear Magnetic Resonance Studies of Detergent-Sensitive Integral Membrane Proteins. Structure 2016; 24:1830-1841. [PMID: 27618661 DOI: 10.1016/j.str.2016.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023]
Abstract
Nanodiscs and isotropic bicelles are promising membrane mimetics in the field of solution nuclear magnetic resonance (NMR) spectroscopy of integral membrane proteins (IMPs). Despite varied challenges to solution NMR studies of IMPs, we attribute the paucity of solution NMR structures in these environments to the inability of diverse IMPs to withstand detergent treatment during standard nanodisc and bicelle preparations. Here, we present a strategy that creates small isotropic bicelles from IMPs co-translationally embedded in large nanodiscs using cell-free expression. Our results demonstrate appreciable gains in NMR spectral quality while preserving lipid-IMP contacts. We validate the approach on the detergent-sensitive LspA, which finally allowed us to perform high-quality triple-resonance NMR experiments for structural studies. Our strategy of producing bicelles from nanodiscs comprehensively avoids detergent during expression and preparation and is suitable for solution NMR spectroscopy of lipid-IMP complexes.
Collapse
|
47
|
Tuning the Photocycle Kinetics of Bacteriorhodopsin in Lipid Nanodiscs. Biophys J 2016; 109:1899-906. [PMID: 26536266 DOI: 10.1016/j.bpj.2015.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/19/2015] [Accepted: 09/11/2015] [Indexed: 11/22/2022] Open
Abstract
Monodisperse lipid nanodiscs are particularly suitable for characterizing membrane protein in near-native environment. To study the lipid-composition dependence of photocycle kinetics of bacteriorhodopsin (bR), transient absorption spectroscopy was utilized to monitor the evolution of the photocycle intermediates of bR reconstituted in nanodiscs composed of different ratios of the zwitterionic lipid (DMPC, dimyristoyl phosphatidylcholine; DOPC, dioleoyl phosphatidylcholine) to the negatively charged lipid (DOPG, dioleoyl phosphatidylglycerol; DMPG, dimyristoyl phosphatidylglycerol). The characterization of ion-exchange chromatography showed that the negative surface charge of nanodiscs increased as the content of DOPG or DMPG was increased. The steady-state absorption contours of the light-adapted monomeric bR in nanodiscs composed of different lipid ratios exhibited highly similar absorption features of the retinal moiety at 560 nm, referring to the conservation of the tertiary structure of bR in nanodiscs of different lipid compositions. In addition, transient absorption contours showed that the photocycle kinetics of bR was significantly retarded and the transient populations of intermediates N and O were decreased as the content of DMPG or DOPG was reduced. This observation could be attributed to the negatively charged lipid heads of DMPG and DOPG, exhibiting similar proton relay capability as the native phosphatidylglycerol (PG) analog lipids in the purple membrane. In this work, we not only demonstrated the usefulness of nanodiscs as a membrane-mimicking system, but also showed that the surrounding lipids play a crucial role in altering the biological functions, e.g., the ion translocation kinetics of the transmembrane proteins.
Collapse
|
48
|
Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding. Proc Natl Acad Sci U S A 2016; 113:E3629-38. [PMID: 27298341 DOI: 10.1073/pnas.1604125113] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Heterotrimeric G proteins play a pivotal role in the signal-transduction pathways initiated by G-protein-coupled receptor (GPCR) activation. Agonist-receptor binding causes GDP-to-GTP exchange and dissociation of the Gα subunit from the heterotrimeric G protein, leading to downstream signaling. Here, we studied the internal mobility of a G-protein α subunit in its apo and nucleotide-bound forms and characterized their dynamical features at multiple time scales using solution NMR, small-angle X-ray scattering, and molecular dynamics simulations. We find that binding of GTP analogs leads to a rigid and closed arrangement of the Gα subdomain, whereas the apo and GDP-bound forms are considerably more open and dynamic. Furthermore, we were able to detect two conformational states of the Gα Ras domain in slow exchange whose populations are regulated by binding to nucleotides and a GPCR. One of these conformational states, the open state, binds to the GPCR; the second conformation, the closed state, shows no interaction with the receptor. Binding to the GPCR stabilizes the open state. This study provides an in-depth analysis of the conformational landscape and the switching function of a G-protein α subunit and the influence of a GPCR in that landscape.
Collapse
|
49
|
Zhang H, van Ingen H. Isotope-labeling strategies for solution NMR studies of macromolecular assemblies. Curr Opin Struct Biol 2016; 38:75-82. [PMID: 27295425 DOI: 10.1016/j.sbi.2016.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 12/21/2022]
Abstract
Proteins come together in macromolecular assemblies, recognizing and binding to each other through their structures, and operating on their substrates through their motions. Detailed characterization of these processes is particularly suited to NMR, a high-resolution technique sensitive to structure, dynamics, and interactions. Advances in isotope-labeling have enabled such studies to an ever-increasing range of systems. Here we highlight recent applications and bring to the fore the range of options to produce labeled proteins and to control the specific placement of isotopes. The increased labeling control and affordability, together with the possibility to combine strategies will further deepen and extend the range of protein assembly investigations.
Collapse
Affiliation(s)
- Heyi Zhang
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, The Netherlands
| | - Hugo van Ingen
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, The Netherlands.
| |
Collapse
|
50
|
Liew LSY, Lee MY, Wong YL, Cheng J, Li Q, Kang C. Selection of suitable detergents for obtaining an active dengue protease in its natural form from E. coli. Protein Expr Purif 2016; 121:141-8. [DOI: 10.1016/j.pep.2016.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/18/2016] [Accepted: 02/01/2016] [Indexed: 01/05/2023]
|