1
|
Soltani N, Shahbazi Z, Karimipoor M, Fallah MS, Zafarghandi Motlagh F, Amini M, Jamali M, Bagherian H, Zeinali R, Zeinali S. Mutations in COL6A Gene Family Responsible for Muscular Dystrophies in Three Unrelated Families. IRANIAN BIOMEDICAL JOURNAL 2024; 28:297-304. [PMID: 39397694 PMCID: PMC11829160 DOI: 10.61186/ibj.4018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/27/2023] [Indexed: 10/15/2024]
Abstract
Background Muscular dystrophy is an inherited disease with clinical and genetic heterogeneity. Muscle weakness is the primary symptom of these disorders that often leads to disability and death. The overall prevalence for all types of muscular dystrophies worldwide is 19.8-25.1 per 100,000 population. Autosomal recessive types of muscular dystrophies are more common in Iran, likely due to the high rate of consanguineous marriage. We aimed at deciphering molecular defects in three unrelated families with muscular dystrophies not related to Duchene muscular dystrophy (MD) or limb girdle muscular dystrophies. We are reporting families having affected children with MD owing to the mutations in three genes related to the COL6A (collagen type VI, alpha subunit) gene family. Methods Three unrelated families, who had at least one member affected with MD and for whom a definite molecular diagnosis was not provided by routine methods, were investigated by WES and confirmed by Sanger sequencing. Results In the first family, a homozygous variant was found in the COL6A3 gene (NM_004369.4:c.4390C>T:p.Arg1464Ter), which explains the clinical symptoms observed in this family. In the second family, two homozygote missense variants with possible relevance to the patient’s phenotype were identified in COL6A1 and COL6A2 genes (NM_001848.2:c.803A>G: p.Glu268Gly and NM_001849.3:c.2489G>A:p.Arg830Gln). Also, a heterozygous pathogenic variant in the COL6A2 gene (NM_001849.3: c.1053+1G>T) was detected in the third family. Conclusion WES can serve as an effective method for detecting the causative mutations in families with unresolved cases of MD. The data provided herein broadens the spectrum of mutations causing MD in Iran.
Collapse
Affiliation(s)
- Nasibeh Soltani
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Human Genetics, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Zahra Shahbazi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Masoume Amini
- Department of Human Genetics, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Mojdeh Jamali
- Department of Human Genetics, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Hamideh Bagherian
- Department of Human Genetics, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Razie Zeinali
- Department of Human Genetics, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Sirous Zeinali
- Department of Human Genetics, Kawsar Human Genetics Research Center, Tehran, Iran
| |
Collapse
|
2
|
Wang Q, Tian S, Zhang X, Zhang Y, Wang Y, Xie S. Insights into the tolerant function of VWA proteins in terms of expression analysis and RGLG5-VWA crystal structure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108864. [PMID: 38943876 DOI: 10.1016/j.plaphy.2024.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
The VWA domain commonly functions as a crucial component of multiprotein complexes, facilitating protein-protein interactions. However, limited studies have focused on the systemic study of VWA proteins in plants. Here, we identified 28 VWA protein genes in Arabidopsis thaliana, categorized into three clades, with one tandem duplication event and four paralogous genes within collinearity blocks. Then, we determined their expression patterns under abiotic stresses by transcriptomic analysis. All five RGLG genes were found to be responsive to at least one kind of abiotic stress, and RGLG5 was identified as a multiple stress-responsive gene, coding an E3 ubiquitin ligase with a VWA domain and a C-terminal RING domain. Subsequently, we explored tolerant function of RGLG5 by determining the crystal structure of its VWA domain. The structural comparison revealed the allosteric regulation mechanism of RGLG5-VWA, wherein the deflection of α7 led to displacement of key residue binding metal ion within MIDAS motif. Our findings provide full-scale knowledge on VWA proteins, and insights into tolerant function of RGLG5-VWA in terms of crystal structure.
Collapse
Affiliation(s)
- Qin Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China.
| | - Shicheng Tian
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | | | - Yutong Zhang
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuran Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Shuyang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China.
| |
Collapse
|
3
|
Henriksen K, Genovese F, Reese-Petersen A, Audoly LP, Sun K, Karsdal MA, Scherer PE. Endotrophin, a Key Marker and Driver for Fibroinflammatory Disease. Endocr Rev 2024; 45:361-378. [PMID: 38091968 PMCID: PMC11492497 DOI: 10.1210/endrev/bnad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Our overview covers several key areas related to recent results obtained for collagen type VI and endotrophin (ETP). (1) An introduction to the history of ETP, including how it was identified, how it is released, and its function and potential receptors. (2) An introduction to the collagen family, with a focus on what differentiates collagen type VI from an evolutionary standpoint. (3) An overview of collagen type VI, the 6 individual chains (COL6A1, A2, A3, A4, A5, and A6), their differences and similarities, as well as their expression profiles and function. (4) A detailed analysis of COL6A3, including the cleaved product endotrophin, and what separates it from the other 5 collagen 6 molecules, including its suggested function based on insights gained from knockout and gain of function mouse models. (5) The pathology of ETP. What leads to its presence and release and what are the consequences thereof? (6) Functional implications of circulating ETP. Here we review the data with the functional roles of ETP in mind. (7) We propose that ETP is a mediator for fibrotic (or fibroinflammatory) disorders. Based on what we know about ETP, we have to consider it as a target for the treatment of fibrotic (or fibroinflammatory) disorders. What segment(s) of the patient population would most dramatically respond to an ETP-targeted intervention? How can we find the population that would profit most from an intervention? We aim to present a broad overview over the ETP field at large, providing an assessment of where the future research efforts need to be placed to tap into the vast potential of ETP, both as a marker and as a target in different diseases.
Collapse
Affiliation(s)
- Kim Henriksen
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | - Federica Genovese
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | | | | | - Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Morten A Karsdal
- Department of Cardiovascular Disease, Nordic Bioscience A/S, DK-2730 Herlev, Denmark
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Gregory CA, Ma J, Lomeli S. The coordinated activities of collagen VI and XII in maintenance of tissue structure, function and repair: evidence for a physical interaction. Front Mol Biosci 2024; 11:1376091. [PMID: 38606288 PMCID: PMC11007232 DOI: 10.3389/fmolb.2024.1376091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
Collagen VI and collagen XII are structurally complex collagens of the extracellular matrix (ECM). Like all collagens, type VI and XII both possess triple-helical components that facilitate participation in the ECM network, but collagen VI and XII are distinct from the more abundant fibrillar collagens in that they also possess arrays of structurally globular modules with the capacity to propagate signaling to attached cells. Cell attachment to collagen VI and XII is known to regulate protective, proliferative or developmental processes through a variety of mechanisms, but a growing body of genetic and biochemical evidence suggests that at least some of these phenomena may be potentiated through mechanisms that require coordinated interaction between the two collagens. For example, genetic studies in humans have identified forms of myopathic Ehlers-Danlos syndrome with overlapping phenotypes that result from mutations in either collagen VI or XII, and biochemical and cell-based studies have identified accessory molecules that could form bridging interactions between the two collagens. However, the demonstration of a direct or ternary structural interaction between collagen VI or XII has not yet been reported. This Hypothesis and Theory review article examines the evidence that supports the existence of a functional complex between type VI and XII collagen in the ECM and discusses potential biological implications.
Collapse
Affiliation(s)
- Carl A. Gregory
- Department of Medical Physiology, Texas A&M School of Medicine, Bryan, TX, United States
| | | | | |
Collapse
|
5
|
Zhang M, Zhang J, Liang Y, Tian S, Xie S, Zhou T, Wang Q. The regulation of RGLG2-VWA by Ca 2+ ions. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140966. [PMID: 37734561 DOI: 10.1016/j.bbapap.2023.140966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
RGLG2, an E3 ubiquitin ligase in Arabidopsis thaliana, affects hormone signaling and participates in drought regulation. Here, we determined two crystal structures of RGLG2 VWA domain, representing two conformations, open and closed, respectively. The two structures reveal that Ca2+ ions are allosteric regulators of RGLG2-VWA, which adopts open state when NCBS1(Novel Calcium ions Binding Site 1) binds Ca2+ ions and switches to closed state after Ca2+ ions are removed. This mechanism of allosteric regulation is identical to RGLG1-VWA, but distinct from integrin α and β VWA domains. Therefore, our data provide a backdrop for understanding the role of the Ca2+ ions in conformational change of VWA domain. In addition, we found that RGLG2closed, corresponding to low affinity, can bind pseudo-ligand, which has never been observed in other VWA domains.
Collapse
Affiliation(s)
- MeiLing Zhang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - JiaXiang Zhang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Yan Liang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - ShiCheng Tian
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - ShuYang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Tong Zhou
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China.
| |
Collapse
|
6
|
Singh M, Becker M, Godwin AR, Baldock C. Structural studies of elastic fibre and microfibrillar proteins. Matrix Biol Plus 2021; 12:100078. [PMID: 34355160 PMCID: PMC8322146 DOI: 10.1016/j.mbplus.2021.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Elastic tissues owe their functional properties to the composition of their extracellular matrices, particularly the range of extracellular, multidomain extensible elastic fibre and microfibrillar proteins. These proteins include elastin, fibrillin, latent TGFβ binding proteins (LTBPs) and collagens, where their biophysical and biochemical properties not only give the matrix structural integrity, but also play a vital role in the mechanisms that underlie tissue homeostasis. Thus far structural information regarding the structure and hierarchical assembly of these molecules has been challenging and the resolution has been limited due to post-translational modification and their multidomain nature leading to flexibility, which together result in conformational and structural heterogeneity. In this review, we describe some of the matrix proteins found in elastic fibres and the new emerging techniques that can shed light on their structure and dynamic properties.
Collapse
Affiliation(s)
- Mukti Singh
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Mark Becker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Alan R.F. Godwin
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| |
Collapse
|
7
|
Pham PN, Huličiak M, Biedermannová L, Černý J, Charnavets T, Fuertes G, Herynek Š, Kolářová L, Kolenko P, Pavlíček J, Zahradník J, Mikulecky P, Schneider B. Protein Binder (ProBi) as a New Class of Structurally Robust Non-Antibody Protein Scaffold for Directed Evolution. Viruses 2021; 13:v13020190. [PMID: 33514045 PMCID: PMC7911045 DOI: 10.3390/v13020190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Engineered small non-antibody protein scaffolds are a promising alternative to antibodies and are especially attractive for use in protein therapeutics and diagnostics. The advantages include smaller size and a more robust, single-domain structural framework with a defined binding surface amenable to mutation. This calls for a more systematic approach in designing new scaffolds suitable for use in one or more methods of directed evolution. We hereby describe a process based on an analysis of protein structures from the Protein Data Bank and their experimental examination. The candidate protein scaffolds were subjected to a thorough screening including computational evaluation of the mutability, and experimental determination of their expression yield in E. coli, solubility, and thermostability. In the next step, we examined several variants of the candidate scaffolds including their wild types and alanine mutants. We proved the applicability of this systematic procedure by selecting a monomeric single-domain human protein with a fold different from previously known scaffolds. The newly developed scaffold, called ProBi (Protein Binder), contains two independently mutable surface patches. We demonstrated its functionality by training it as a binder against human interleukin-10, a medically important cytokine. The procedure yielded scaffold-related variants with nanomolar affinity.
Collapse
|
8
|
Solomon-Degefa H, Gebauer JM, Jeffries CM, Freiburg CD, Meckelburg P, Bird LE, Baumann U, Svergun DI, Owens RJ, Werner JM, Behrmann E, Paulsson M, Wagener R. Structure of a collagen VI α3 chain VWA domain array: adaptability and functional implications of myopathy causing mutations. J Biol Chem 2020; 295:12755-12771. [PMID: 32719005 DOI: 10.1074/jbc.ra120.014865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/16/2020] [Indexed: 12/23/2022] Open
Abstract
Collagen VI is a ubiquitous heterotrimeric protein of the extracellular matrix (ECM) that plays an essential role in the proper maintenance of skeletal muscle. Mutations in collagen VI lead to a spectrum of congenital myopathies, from the mild Bethlem myopathy to the severe Ullrich congenital muscular dystrophy. Collagen VI contains only a short triple helix and consists primarily of von Willebrand factor type A (VWA) domains, protein-protein interaction modules found in a range of ECM proteins. Disease-causing mutations occur commonly in the VWA domains, and the second VWA domain of the α3 chain, the N2 domain, harbors several such mutations. Here, we investigate structure-function relationships of the N2 mutations to shed light on their possible myopathy mechanisms. We determined the X-ray crystal structure of N2, combined with monitoring secretion efficiency in cell culture of selected N2 single-domain mutants, finding that mutations located within the central core of the domain severely affect secretion efficiency. In longer α3 chain constructs, spanning N6-N3, small-angle X-ray scattering demonstrates that the tandem VWA array has a modular architecture and samples multiple conformations in solution. Single-particle EM confirmed the presence of multiple conformations. Structural adaptability appears intrinsic to the VWA domain region of collagen VI α3 and has implications for binding interactions and modulating stiffness within the ECM.
Collapse
Affiliation(s)
| | - Jan M Gebauer
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Carolin D Freiburg
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Louise E Bird
- The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell, Oxford, United Kingdom.,Structural Biology Division, Wellcome Human Genetics Centre, University of Oxford, Oxford, United Kingdom
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Raymond J Owens
- The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell, Oxford, United Kingdom.,Structural Biology Division, Wellcome Human Genetics Centre, University of Oxford, Oxford, United Kingdom
| | - Jörn M Werner
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Elmar Behrmann
- Institute of Biochemistry, University of Cologne, Cologne, Germany.,Max Planck Research Group Structural Dynamics of Proteins, Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany .,Center for Molecular Medicine (CMMC), Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| |
Collapse
|
9
|
Ca 2+-based allosteric switches and shape shifting in RGLG1 VWA domain. Comput Struct Biotechnol J 2020; 18:821-833. [PMID: 32308929 PMCID: PMC7155146 DOI: 10.1016/j.csbj.2020.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
RGLG1 is an E3 ubiquitin ligase in Arabidopsis thaliana that participates in ABA signaling and regulates apical dominance. Here, we present crystal structures of RGLG1 VWA domain, revealing two novel calcium ions binding sites (NCBS1 and NCBS2). Furthermore, the structures with guided mutagenesis in NCBS1 prove that Ca2+ ions play important roles in controlling conformational change of VWA, which is stabilized in open state with Ca2+ bound and converted to closed state after Ca2+ removal. This allosteric regulation mechanism is distinct from the ever reported one involving the C-terminal helix in integrin α and β I domains. The mutation of a key residue in NCBS2 do not abolish its Ca2+-binding potential, with no conformational change. MD simulations reveals that open state of RGLG1 VWA has higher ligand affinity than its closed state, consisting with integrin. Structural comparison of ion-free-MIDAS with Mg2+-MIDAS reveals that Mg2+ binding to MIDAS does not induce conformational change. With acquisition of first structure of plant VWA domain in both open state and closed state, we carefully analyze the conformational change and propose a totally new paradigm for its transition of open-closed states, which will be of great value for guiding future researches on VWA proteins and their important biological significance.
Collapse
|
10
|
Gebauer JM, Flachsenberg F, Windler C, Richer B, Baumann U, Seeger K. Structural and biophysical characterization of the type VII collagen vWFA2 subdomain leads to identification of two binding sites. FEBS Open Bio 2020; 10:580-592. [PMID: 32031736 PMCID: PMC7137805 DOI: 10.1002/2211-5463.12807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 11/09/2022] Open
Abstract
Type VII collagen is an extracellular matrix protein, which is important for skin stability; however, detailed information at the molecular level is scarce. The second vWFA (von Willebrand factor type A) domain of type VII collagen mediates important interactions, and immunization of mice induces skin blistering in certain strains. To understand vWFA2 function and the pathophysiological mechanisms leading to skin blistering, we structurally characterized this domain by X-ray crystallography and NMR spectroscopy. Cell adhesion assays identified two new interactions: one with β1 integrin via its RGD motif and one with laminin-332. The latter interaction was confirmed by surface plasmon resonance with a KD of about 1 mm. These data show that vWFA2 has additional functions in the extracellular matrix besides interacting with type I collagen.
Collapse
Affiliation(s)
- Jan M Gebauer
- Institute of Biochemistry, University of Cologne, Germany
| | | | - Cordula Windler
- Institute of Chemistry and Metabolomics, University of Lübeck, Germany
| | - Barbara Richer
- Institute of Chemistry and Metabolomics, University of Lübeck, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Germany
| | - Karsten Seeger
- Institute of Chemistry and Metabolomics, University of Lübeck, Germany
| |
Collapse
|
11
|
Berry KN, Brett TJ. Structural and Biophysical Analysis of the CLCA1 VWA Domain Suggests Mode of TMEM16A Engagement. Cell Rep 2020; 30:1141-1151.e3. [PMID: 31995732 PMCID: PMC7050472 DOI: 10.1016/j.celrep.2019.12.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/14/2019] [Accepted: 12/16/2019] [Indexed: 01/09/2023] Open
Abstract
The secreted protein calcium-activated chloride channel regulator 1 (CLCA1) utilizes a von Willebrand factor type A (VWA) domain to bind to and potentiate the calcium-activated chloride channel TMEM16A. To gain insight into this unique potentiation mechanism, we determined the 2.0-Å crystal structure of human CLCA1 VWA bound to Ca2+. The structure reveals the metal-ion-dependent adhesion site (MIDAS) in a high-affinity "open" conformation, engaging in crystal contacts that likely mimic how CLCA1 engages TMEM16A. The CLCA1 VWA contains a disulfide bond between α3 and α4 in close proximity to the MIDAS that is invariant in the CLCA family and unique in VWA structures. Further biophysical studies indicate that CLCA1 VWA is preferably stabilized by Mg2+ over Ca2+ and that α6 atypically extends from the VWA core. Finally, an analysis of TMEM16A structures suggests residues likely to mediate interaction with CLCA1 VWA.
Collapse
Affiliation(s)
- Kayla N Berry
- Immunology Program and Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Internal Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tom J Brett
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
12
|
Abdillahi SM, Maaß T, Kasetty G, Strömstedt AA, Baumgarten M, Tati R, Nordin SL, Walse B, Wagener R, Schmidtchen A, Mörgelin M. Collagen VI Contains Multiple Host Defense Peptides with Potent In Vivo Activity. THE JOURNAL OF IMMUNOLOGY 2018; 201:1007-1020. [PMID: 29925677 DOI: 10.4049/jimmunol.1700602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/01/2018] [Indexed: 11/19/2022]
Abstract
Collagen VI is a ubiquitous extracellular matrix component that forms extensive microfibrillar networks in most connective tissues. In this study, we describe for the first time, to our knowledge, that the collagen VI von Willebrand factor type A-like domains exhibit a broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria in human skin infections in vivo. In silico sequence and structural analysis of VWA domains revealed that they contain cationic and amphipathic peptide sequence motifs, which might explain the antimicrobial nature of collagen VI. In vitro and in vivo studies show that these peptides exhibited significant antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa through membrane disruption. Our findings shed new light on the role of collagen VI-derived peptides in innate host defense and provide templates for development of peptide-based antibacterial therapies.
Collapse
Affiliation(s)
- Suado M Abdillahi
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden;
| | - Tobias Maaß
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Gopinath Kasetty
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Adam A Strömstedt
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Maria Baumgarten
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Ramesh Tati
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Sara L Nordin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Björn Walse
- Saromics Biostructures AB, 223 63 Lund, Sweden
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden.,Copenhagen Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, 2400 Copenhagen, Denmark and
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden.,Colzyx AB, 223 81 Lund, Sweden
| |
Collapse
|
13
|
Du X, Fan G, Jiao Y, Zhang H, Guo X, Huang R, Zheng Z, Bian C, Deng Y, Wang Q, Wang Z, Liang X, Liang H, Shi C, Zhao X, Sun F, Hao R, Bai J, Liu J, Chen W, Liang J, Liu W, Xu Z, Shi Q, Xu X, Zhang G, Liu X. The pearl oyster Pinctada fucata martensii genome and multi-omic analyses provide insights into biomineralization. Gigascience 2018; 6:1-12. [PMID: 28873964 PMCID: PMC5597905 DOI: 10.1093/gigascience/gix059] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 07/09/2017] [Indexed: 11/14/2022] Open
Abstract
Nacre, the iridescent material found in pearls and shells of molluscs, is formed through an extraordinary process of matrix-assisted biomineralization. Despite recent advances, many aspects of the biomineralization process and its evolutionary origin remain unknown. The pearl oyster Pinctada fucata martensii is a well-known master of biomineralization, but the molecular mechanisms that underlie its production of shells and pearls are not fully understood. We sequenced the highly polymorphic genome of the pearl oyster and conducted multi-omic and biochemical studies to probe nacre formation. We identified a large set of novel proteins participating in matrix-framework formation, many in expanded families, including components similar to that found in vertebrate bones such as collagen-related VWA-containing proteins, chondroitin sulfotransferases, and regulatory elements. Considering that there are only collagen-based matrices in vertebrate bones and chitin-based matrices in most invertebrate skeletons, the presence of both chitin and elements of collagen-based matrices in nacre suggests that elements of chitin- and collagen-based matrices have deep roots and might be part of an ancient biomineralizing matrix. Our results expand the current shell matrix-framework model and provide new insights into the evolution of diverse biomineralization systems.
Collapse
Affiliation(s)
- Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Guangyi Fan
- BGI-Qingdao, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen, 518083 China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - He Zhang
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08349, USA
| | - Ronglian Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Chao Bian
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Qingheng Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhongduo Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | | | - Haiying Liang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | | | - Xiaoxia Zhao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | | | - Ruijuan Hao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Jie Bai
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Jialiang Liu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | | | - Jinlian Liang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | | | - Zhe Xu
- Atlantic Cape Community College, Mays Landing, NJ 08330, USA
| | - Qiong Shi
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, 518083 China
| |
Collapse
|
14
|
Zhang Y, Zhang Y, Zhang Y. Transcriptome-wide identification and competitive disruption of sacum-binding partners in human colorectal cancer. J Mol Graph Model 2018; 80:48-51. [PMID: 29328992 DOI: 10.1016/j.jmgm.2017.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human sacum is regulatory adaptor protein involved in cellular signaling network of colorectal cancer. Molecular evidences suggest that the protein is integrated into oncogenic signaling network by binding to SH3-containing proteins through its proline-rich motifs. In this study, we have performed a transcriptome-wide analysis and identification of sacum-binding partners in the genome profile of human colorectal cancer. The sacum-binding potency of SH3-containing proteins found in colorectal cancer was investigated by using bioinformatics modeling and intermolecular binding analysis. With the protocol we were able to predict those high-affinity domain binders of the proline-rich peptides of human sacum in a high-throughput manner, and to analyze sequence-specific interaction in the domain-peptide recognition at molecular level. Consequently, a number of putative domain binders with both high affinity and specificity were identified, from which the Src SH3 domain was selected as a case study and tested for its binding activity towards the sacum peptides. We also designed two peptide variants that may have potent capability to competitively disrupt sacum interaction with its partners.
Collapse
Affiliation(s)
- Yinguang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yongwang Zhang
- Beijing Union Second Pharmaceutical Factory, Beijing 102600, China
| | - Yuxiang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
15
|
Lamandé SR, Bateman JF. Collagen VI disorders: Insights on form and function in the extracellular matrix and beyond. Matrix Biol 2017; 71-72:348-367. [PMID: 29277723 DOI: 10.1016/j.matbio.2017.12.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 12/18/2022]
Abstract
Mutations in the three canonical collagen VI genes, COL6A1, COL6A2 and COL6A3, cause a spectrum of muscle disease from Bethlem myopathy at the mild end to the severe Ullrich congenital muscular dystrophy. Mutations can be either dominant or recessive and the resulting clinical severity is influenced by the way mutations impact the complex collagen VI assembly process. Most mutations are found towards the N-terminus of the triple helical collagenous domain and compromise extracellular microfibril assembly. Outside the triple helix collagen VI is highly polymorphic and discriminating mutations from rare benign changes remains a major diagnostic challenge. Collagen VI deficiency alters extracellular matrix structure and biomechanical properties and leads to increased apoptosis and oxidative stress, decreased autophagy, and impaired muscle regeneration. Therapies that target these downstream consequences have been tested in a collagen VI null mouse and also in small human trials where they show modest clinical efficacy. An important role for collagen VI in obesity, cancer and diabetes is emerging. A major barrier to developing effective therapies is the paucity of information about how collagen VI deficiency in the extracellular matrix signals the final downstream consequences - the receptors involved and the intracellular messengers await further characterization.
Collapse
Affiliation(s)
- Shireen R Lamandé
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic, Australia; Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia.
| | - John F Bateman
- Musculoskeletal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Vic, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
16
|
Zhang Y, Zhang Y, Zhang Y. Transcriptome-wide identification and competitive disruption of sacum-binding partners in human colorectal cancer. J Mol Graph Model 2017; 77:259-262. [PMID: 28898789 DOI: 10.1016/j.jmgm.2017.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/23/2017] [Accepted: 08/31/2017] [Indexed: 11/19/2022]
Abstract
Human sacum is regulatory adaptor protein involved in cellular signaling network of colorectal cancer. Molecular evidence suggests that the protein is integrated into oncogenic signaling network by binding to SH3-containing proteins through its proline-rich motifs. In this study, we have performed a transcriptome-wide analysis and identification of sacum-binding partners in the genome profile of human colorectal cancer. The sacum-binding potency of SH3-containing proteins found in colorectal cancer was investigated by using bioinformatics modeling and intermolecular binding analysis. With the protocol we were able to predict those high-affinity domain binders of the proline-rich peptides of human sacum in a high-throughput manner, and to analyze sequence-specific interaction in the domain-peptide recognition at molecular level. Consequently, a number of putative domain binders with both high affinity and specificity were identified, from which the Src SH3 domain was selected as a case study and tested for its binding activity towards the sacum peptides. We also designed two peptide variants that may have potent capability to competitively disrupt sacum interaction with its partners.
Collapse
Affiliation(s)
- Yinguang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yongwang Zhang
- Beijing Union Second Pharmaceutical Factory, Beijing 102600, China
| | - Yuxiang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
17
|
Godwin ARF, Starborg T, Sherratt MJ, Roseman AM, Baldock C. Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales. Acta Biomater 2017; 52:21-32. [PMID: 27956360 PMCID: PMC5402720 DOI: 10.1016/j.actbio.2016.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/06/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022]
Abstract
Extracellular matrix microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular cartilage where it anchors cells into the matrix allowing for transduction of biochemical and mechanical signals. It is not understood how collagen VI is arranged into microfibrils or how these microfibrils are arranged into tissues. Therefore we have characterised the hierarchical organisation of collagen VI across multiple length scales. The frozen hydrated nanostructure of purified collagen VI microfibrils was reconstructed using cryo-TEM. The bead region has a compact hollow head and flexible tail regions linked by the collagenous interbead region. Serial block face SEM imaging coupled with electron tomography of the pericellular matrix (PCM) of murine articular cartilage revealed that the PCM has a meshwork-like organisation formed from globular densities ∼30nm in diameter. These approaches can characterise structures spanning nanometer to millimeter length scales to define the nanostructure of individual collagen VI microfibrils and the micro-structural organisation of these fibrils within tissues to help in the future design of better mimetics for tissue engineering. STATEMENT OF SIGNIFICANCE Cartilage is a connective tissue rich in extracellular matrix molecules and is tough and compressive to cushion the bones of joints. However, in adults cartilage is poorly repaired after injury and so this is an important target for tissue engineering. Many connective tissues contain collagen VI, which forms microfibrils and networks but we understand very little about these assemblies or the tissue structures they form. Therefore, we have use complementary imaging techniques to image collagen VI microfibrils from the nano-scale to the micro-scale in order to understand the structure and the assemblies it forms. These findings will help to inform the future design of scaffolds to mimic connective tissues in regenerative medicine applications.
Collapse
Affiliation(s)
- Alan R F Godwin
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Tobias Starborg
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Michael J Sherratt
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Alan M Roseman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK.
| |
Collapse
|
18
|
Maaß T, Bayley CP, Mörgelin M, Lettmann S, Bonaldo P, Paulsson M, Baldock C, Wagener R. Heterogeneity of Collagen VI Microfibrils: STRUCTURAL ANALYSIS OF NON-COLLAGENOUS REGIONS. J Biol Chem 2016; 291:5247-58. [PMID: 26742845 PMCID: PMC4777857 DOI: 10.1074/jbc.m115.705160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/23/2015] [Indexed: 11/29/2022] Open
Abstract
Collagen VI, a collagen with uncharacteristically large N- and C-terminal non-collagenous regions, forms a distinct microfibrillar network in most connective tissues. It was long considered to consist of three genetically distinct α chains (α1, α2, and α3). Intracellularly, heterotrimeric molecules associate to form dimers and tetramers, which are then secreted and assembled to microfibrils. The identification of three novel long collagen VI α chains, α4, α5, and α6, led to the question if and how these may substitute for the long α3 chain in collagen VI assembly. Here, we studied structural features of the novel long chains and analyzed the assembly of these into tetramers and microfibrils. N- and C-terminal globular regions of collagen VI were recombinantly expressed and studied by small angle x-ray scattering (SAXS). Ab initio models of the N-terminal globular regions of the α4, α5, and α6 chains showed a C-shaped structure similar to that found for the α3 chain. Single particle EM nanostructure of the N-terminal globular region of the α4 chain confirmed the C-shaped structure revealed by SAXS. Immuno-EM of collagen VI extracted from tissue revealed that like the α3 chain the novel long chains assemble to homotetramers that are incorporated into mixed microfibrils. Moreover, SAXS models of the C-terminal globular regions of the α1, α2, α4, and α6 chains were generated. Interestingly, the α1, α2, and α4 C-terminal globular regions dimerize. These self-interactions may play a role in tetramer formation.
Collapse
Affiliation(s)
- Tobias Maaß
- From the Center for Biochemistry, Medical Faculty
| | - Christopher P Bayley
- the Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Matthias Mörgelin
- the Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-221 84 Lund, Sweden, and
| | | | - Paolo Bonaldo
- the Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Mats Paulsson
- From the Center for Biochemistry, Medical Faculty, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases, and Center for Musculoskeletal Biomechanics, University of Cologne, D-50931 Cologne, Germany
| | - Clair Baldock
- the Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom,
| | - Raimund Wagener
- From the Center for Biochemistry, Medical Faculty, Center for Molecular Medicine,
| |
Collapse
|
19
|
Abstract
Collagens mediate essential hemostasis by maintaining the integrity and stability of the vascular wall. Imbalanced turnover of collagens by uncontrolled formation and/or degradation may result in pathologic conditions such as fibrosis. Thickening of the vessel wall because of accumulation of collagens may lead to arterial occlusion or thrombosis. Thinning of the wall because of collagen degradation or deficiency may lead to rupture of the vessel wall or aneurysm. Preventing excessive hemorrhage or thrombosis relies on collagen-mediated actions. Von Willebrand factor, integrins and glycoprotein VI, as well as clotting factors, can bind collagen to restore normal hemostasis after trauma. This review outlines the essential roles of collagens in mediating hemostasis, with a focus on collagens types I, III, IV, VI, XV, and XVIII.
Collapse
Affiliation(s)
| | - N G Kjeld
- Nordic Bioscience A/S, Herlev, Denmark
| | | |
Collapse
|
20
|
Wang T, Liang Y, Li H, Li H, He Q, Xue Y, Shen C, Zhang C, Xiang J, Ding J, Qiao L, Zheng Q. Single Nucleotide Polymorphisms and Osteoarthritis: An Overview and a Meta-Analysis. Medicine (Baltimore) 2016; 95:e2811. [PMID: 26886631 PMCID: PMC4998631 DOI: 10.1097/md.0000000000002811] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is a complex disorder characterized by degenerative articular cartilage and is largely attributed to genetic risk factors. Single nucleotide polymorphisms (SNPs) are common DNA variants that have shown promising and efficiency, compared with positional cloning, to map candidate genes of complex diseases, including OA. In this study, we aim to provide an overview of multiple SNPs from a number of genes that have recently been linked to OA susceptibility. We also performed a comprehensive meta-analysis to evaluate the association of SNP rs7639618 of double von Willebrand factor A domains (DVWA) gene with OA susceptibility. A systematic search of studies on the association of SNPs with susceptibility to OA was conducted in PubMed and Google scholar. Studies subjected to meta-analysis include human and case-control studies that met the Hardy-Weinberg equilibrium model and provide sufficient data to calculate an odds ratio (OR). A total of 9500 OA cases and 9365 controls in 7 case-control studies relating to SNP rs7639618 were included in this study and the ORs with 95% confidence intervals (CIs) were calculated. Over 50 SNPs from different genes have been shown to be associated with either hip (23), or knee (20), or both (13) OA. The ORs of these SNPs for OA and the subtypes are not consistent. As to SNP rs7639618 of DVWA, increased knee OA risk was observed in all genetic models analyzed. Specifically, people from Asian with G-allele showed significantly increased risk of knee OA (A versus G: OR = 1.28, 95% CI 1.13-1.46; AA versus GG: OR = 1.60, 95% CI 1.25-2.05; GA versus GG: OR = 1.31, 95% CI 1.18-1.44; AA versus GA+GG: OR = 1.34, 95% CI 1.12-1.61; AA+GA versus GG: OR = 1.40, 95% CI 1.19-1.64), but not in Caucasians or with hip OA. Our results suggest that multiple SNPs play different roles in the pathogenesis of OA and its subtypes; SNP rs7639618 of DVWA gene is associated with a significantly increased risk of knee OA in Asians. Given the limited sample size, further studies are needed to evaluate this observation.
Collapse
Affiliation(s)
- Ting Wang
- From the Center for Reproduction and Genetics (TW, HL, HL, QH, YX, CS, CZ, JX, JD, LQ), Suzhou Hospital affiliated to Nanjing Medical University, Suzhou, Jiangsu; Department of Laboratory Medicine (YL), Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai; Department of Hematology and Hematological Laboratory Science (QZ), Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China (QZ); and Department of Anatomy and Cell Biology (QZ), Rush University Medical Center, Chicago, IL
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Luo J, Cimermancic P, Viswanath S, Ebmeier CC, Kim B, Dehecq M, Raman V, Greenberg CH, Pellarin R, Sali A, Taatjes DJ, Hahn S, Ranish J. Architecture of the Human and Yeast General Transcription and DNA Repair Factor TFIIH. Mol Cell 2015; 59:794-806. [PMID: 26340423 DOI: 10.1016/j.molcel.2015.07.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/10/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
TFIIH is essential for both RNA polymerase II transcription and DNA repair, and mutations in TFIIH can result in human disease. Here, we determine the molecular architecture of human and yeast TFIIH by an integrative approach using chemical crosslinking/mass spectrometry (CXMS) data, biochemical analyses, and previously published electron microscopy maps. We identified four new conserved "topological regions" that function as hubs for TFIIH assembly and more than 35 conserved topological features within TFIIH, illuminating a network of interactions involved in TFIIH assembly and regulation of its activities. We show that one of these conserved regions, the p62/Tfb1 Anchor region, directly interacts with the DNA helicase subunit XPD/Rad3 in native TFIIH and is required for the integrity and function of TFIIH. We also reveal the structural basis for defects in patients with xeroderma pigmentosum and trichothiodystrophy, with mutations found at the interface between the p62 Anchor region and the XPD subunit.
Collapse
Affiliation(s)
- Jie Luo
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - Peter Cimermancic
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shruthi Viswanath
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christopher C Ebmeier
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Bong Kim
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - Marine Dehecq
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, PO Box 19024, Mailstop A1-162, Seattle, WA 98109, USA; Génétique des Interactions Macromoléculaires, Institut Pasteur, CNRS UMR3525, 25-28 rue du docteur Roux, 75015 Paris, France
| | - Vishnu Raman
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Charles H Greenberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Riccardo Pellarin
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dylan J Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Steven Hahn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, PO Box 19024, Mailstop A1-162, Seattle, WA 98109, USA
| | - Jeff Ranish
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA.
| |
Collapse
|
22
|
Becker AKA, Mikolajek H, Werner JM, Paulsson M, Wagener R. Characterization of recombinantly expressed matrilin VWA domains. Protein Expr Purif 2015; 107:20-8. [PMID: 25462806 PMCID: PMC4294422 DOI: 10.1016/j.pep.2014.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/13/2014] [Accepted: 11/15/2014] [Indexed: 11/01/2022]
Abstract
VWA domains are the predominant independent folding units within matrilins and mediate protein-protein interactions. Mutations in the matrilin-3 VWA domain cause various skeletal diseases. The analysis of the pathological mechanisms is hampered by the lack of detailed structural information on matrilin VWA domains. Attempts to resolve their structures were hindered by low solubility and a tendency to aggregation. We therefore took a comprehensive approach to improve the recombinant expression of functional matrilin VWA domains to enable X-ray crystallography and nuclear magnetic resonance (NMR) studies. The focus was on expression in Escherichia coli, as this allows incorporation of isotope-labeled amino acids, and on finding conditions that enhance solubility. Indeed, circular dichroism (CD) and NMR measurements indicated a proper folding of the bacterially expressed domains and, interestingly, expression of zebrafish matrilin VWA domains and addition of N-ethylmaleimide yielded the most stable proteins. However, such proteins did still not crystallize and allowed only partial peak assignment in NMR. Moreover, bacterially expressed matrilin VWA domains differ in their solubility and functional properties from the same domains expressed in eukaryotic cells. Structural studies of matrilin VWA domains will depend on the use of eukaryotic expression systems.
Collapse
Affiliation(s)
- Ann-Kathrin A Becker
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931, Germany
| | - Halina Mikolajek
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton SO17 1BJ, UK
| | - Jörn M Werner
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton SO17 1BJ, UK
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931, Germany.
| |
Collapse
|
23
|
Castaldi PJ, Cho MH, San José Estépar R, McDonald MLN, Laird N, Beaty TH, Washko G, Crapo JD, Silverman EK. Genome-wide association identifies regulatory Loci associated with distinct local histogram emphysema patterns. Am J Respir Crit Care Med 2014; 190:399-409. [PMID: 25006744 DOI: 10.1164/rccm.201403-0569oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RATIONALE Emphysema is a heritable trait that occurs in smokers with and without chronic obstructive pulmonary disease. Emphysema occurs in distinct pathologic patterns, but the genetic determinants of these patterns are unknown. OBJECTIVES To identify genetic loci associated with distinct patterns of emphysema in smokers and investigate the regulatory function of these loci. METHODS Quantitative measures of distinct emphysema patterns were generated from computed tomography scans from smokers in the COPDGene Study using the local histogram emphysema quantification method. Genome-wide association studies (GWAS) were performed in 9,614 subjects for five emphysema patterns, and the results were referenced against enhancer and DNase I hypersensitive regions from ENCODE and Roadmap Epigenomics cell lines. MEASUREMENTS AND MAIN RESULTS Genome-wide significant associations were identified for seven loci. Two are novel associations (top single-nucleotide polymorphism rs379123 in MYO1D and rs9590614 in VMA8) located within genes that function in cell-cell signaling and cell migration, and five are in loci previously associated with chronic obstructive pulmonary disease susceptibility (HHIP, IREB2/CHRNA3, CYP2A6/ADCK, TGFB2, and MMP12). Five of these seven loci lay within enhancer or DNase I hypersensitivity regions in lung fibroblasts or small airway epithelial cells, respectively. Enhancer enrichment analysis for top GWAS associations (single-nucleotide polymorphisms associated at P < 5 × 10(-6)) identified multiple cell lines with significant enhancer enrichment among top GWAS loci, including lung fibroblasts. CONCLUSIONS This study demonstrates for the first time genetic associations with distinct patterns of pulmonary emphysema quantified by computed tomography scan. Enhancer regions are significantly enriched among these GWAS results, with pulmonary fibroblasts among the cell types showing the strongest enrichment.
Collapse
|