1
|
Perica K, Kotchetkov IS, Mansilla-Soto J, Ehrich F, Herrera K, Shi Y, Dobrin A, Gönen M, Sadelain M. HIV immune evasin Nef enhances allogeneic CAR T cell potency. Nature 2025; 640:793-801. [PMID: 39884316 DOI: 10.1038/s41586-025-08657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/20/2024] [Indexed: 02/01/2025]
Abstract
Autologous chimeric antigen receptor (CAR) T cells are a genetically engineered therapy that is highly effective against B cell malignancies and multiple myeloma1. However, the length and cost of personalized manufacturing limits access and leaves patients vulnerable to disease progression. Allogeneic cell therapies have the potential to increase patient access and improve treatment outcomes but are limited by immune rejection2,3. To devise a strategy to protect allogeneic CAR T cells from host immune cells, we turned to lymphotropic viruses that have evolved integrated mechanisms for immune escape of virus-infected lymphocytes4. We find that viral evasins that partially reduce human leukocyte antigen class I expression can shelter CAR T cells from mismatched CD8+ T cells without triggering 'missing-self' rejection by natural killer cells. However, this protection alone is insufficient to sustain effective allogeneic CAR T cell therapy. HIV-1 Nef uniquely also acts through the serine/threonine kinase Pak2 to abate activation-induced cell death and promote survival of CAR T cells in vivo. Thus, virus-like immune escape can harness several mechanisms that act in concert to enhance the therapeutic efficacy of allogeneic CAR T cells.
Collapse
Affiliation(s)
- Karlo Perica
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ivan S Kotchetkov
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Fiona Ehrich
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Herrera
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuzhe Shi
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Columbia Initiative in Cell Engineering and Therapy (CICET), Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical College, New York, NY, USA
| | - Anton Dobrin
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Columbia Initiative in Cell Engineering and Therapy (CICET), Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Wang C, Du M, Jiang Z, Cong R, Wang W, Zhang T, Chen J, Zhang G, Li L. PI3K-AKT-mediated phosphorylation of Thr260 in CgCaspase-3/6/7 regulates heat-induced activation in oysters. Commun Biol 2024; 7:1459. [PMID: 39511363 PMCID: PMC11543851 DOI: 10.1038/s42003-024-07184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Cysteine-aspartic proteases (caspases) are critical drivers of apoptosis, exhibiting expansion and domain shuffling in mollusks. However, the functions and regulatory mechanisms of these caspases remain unclear. In this study, we identified a group of Caspase-3/6/7 in Bivalvia and Gastropoda with a long inter-subunit linker (IL) that inhibits cleavage activation. Within this region, we found that conserved phosphorylation at Thr260 in oysters, mediated by the PI3K-AKT pathway, suppresses heat-induced activation. This mechanism is involved in divergent temperature adaptation between two allopatric congeneric oyster species, the relatively cold-adapted Crassostrea gigas and warm-adapted Crassostrea angulata. Our study elucidates the role of these effector caspase members and their long IL in bivalves, revealing that the PI3K-AKT pathway phosphorylates Thr260 on CgCASP3/6/7's linker to inhibit heat-induced activation. These findings provide insights into the evolution and function of apoptotic regulatory mechanisms in bivalves.
Collapse
Affiliation(s)
- Chaogang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Mingyang Du
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuxiang Jiang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Wei Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Taiping Zhang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jincheng Chen
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guofan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China.
| |
Collapse
|
3
|
Ge J, Wang Y, Li X, Lu Q, Yu H, Liu H, Ma K, Deng X, Luo ZQ, Liu X, Qiu J. Phosphorylation of caspases by a bacterial kinase inhibits host programmed cell death. Nat Commun 2024; 15:8464. [PMID: 39349471 PMCID: PMC11442631 DOI: 10.1038/s41467-024-52817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
The intracellular bacterial pathogen Legionella pneumophila utilizes the Dot/Icm system to translocate over 330 effectors into the host cytosol. These virulence factors modify a variety of cell processes, including pathways involved in cell death and survival, to promote bacterial proliferation. Here, we show that the effector LegK3 is a eukaryotic-like Ser/Thr kinase that functions to suppress host apoptosis. Mechanistically, LegK3 directly phosphorylates multiple caspases involved in apoptosis signaling, including Caspase-3, Caspase-7, and Caspase-9. LegK3-induced phosphorylation of these caspases occurs at serine (Ser29 in Caspase-3 and Ser199 in Caspase-7) or threonine (Thr102 in Caspase-9) residues located in the prodomain or interdomain linkers. These modifications interfere with the suitability of the caspases as the substrates of initiator caspases or upstream regulators without impacting their proteolytic activity. Collectively, our study reveals a novel strategy used by L. pneumophila to maintain the integrity of infected cells for its intracellular growth.
Collapse
Affiliation(s)
- Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xueyu Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qian Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hangqian Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kelong Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Ghorbani N, Yaghubi R, Davoodi J, Pahlavan S. How does caspases regulation play role in cell decisions? apoptosis and beyond. Mol Cell Biochem 2024; 479:1599-1613. [PMID: 37976000 DOI: 10.1007/s11010-023-04870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
Caspases are a family of cysteine proteases, and the key factors behind the cellular events which occur during apoptosis and inflammation. However, increasing evidence shows the non-conventional pro-survival action of apoptotic caspases in crucial processes. These cellular events include cell proliferation, differentiation, and migration, which may appear in the form of metastasis, and chemotherapy resistance in cancerous situations. Therefore, there should be a precise and strict control of caspases activity, perhaps through maintaining the threshold below the required levels for apoptosis. Thus, understanding the regulators of caspase activities that render apoptotic caspases as non-apoptotic is of paramount importance both mechanistically and clinically. Furthermore, the functions of apoptotic caspases are affected by numerous post-translational modifications. In the present mini-review, we highlight the various mechanisms that directly impact caspases with respect to their anti- or non-apoptotic functions. In this regard, post-translational modifications (PTMs), isoforms, subcellular localization, transient activity, substrate availability, substrate selection, and interaction-mediated regulations are discussed.
Collapse
Affiliation(s)
- Negar Ghorbani
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Roham Yaghubi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Jamshid Davoodi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Buikhuisen JY, Gomez Barila PM, Cameron K, Suijkerbuijk SJE, Lieftink C, di Franco S, Krotenberg Garcia A, Uceda Castro R, Lenos KJ, Nijman LE, Torang A, Longobardi C, de Jong JH, Dekker D, Stassi G, Vermeulen L, Beijersbergen RL, van Rheenen J, Huveneers S, Medema JP. Subtype-specific kinase dependency regulates growth and metastasis of poor-prognosis mesenchymal colorectal cancer. J Exp Clin Cancer Res 2023; 42:56. [PMID: 36869386 PMCID: PMC9983221 DOI: 10.1186/s13046-023-02600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/15/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) can be divided into four consensus molecular subtypes (CMS), each with distinct biological features. CMS4 is associated with epithelial-mesenchymal transition and stromal infiltration (Guinney et al., Nat Med 21:1350-6, 2015; Linnekamp et al., Cell Death Differ 25:616-33, 2018), whereas clinically it is characterized by lower responses to adjuvant therapy, higher incidence of metastatic spreading and hence dismal prognosis (Buikhuisen et al., Oncogenesis 9:66, 2020). METHODS To understand the biology of the mesenchymal subtype and unveil specific vulnerabilities, a large CRISPR-Cas9 drop-out screen was performed on 14 subtyped CRC cell lines to uncover essential kinases in all CMSs. Dependency of CMS4 cells on p21-activated kinase 2 (PAK2) was validated in independent 2D and 3D in vitro cultures and in vivo models assessing primary and metastatic outgrowth in liver and peritoneum. TIRF microscopy was used to uncover actin cytoskeleton dynamics and focal adhesion localization upon PAK2 loss. Subsequent functional assays were performed to determine altered growth and invasion patterns. RESULTS PAK2 was identified as a key kinase uniquely required for growth of the mesenchymal subtype CMS4, both in vitro and in vivo. PAK2 plays an important role in cellular attachment and cytoskeletal rearrangements (Coniglio et al., Mol Cell Biol 28:4162-72, 2008; Grebenova et al., Sci Rep 9:17171, 2019). In agreement, deletion or inhibition of PAK2 impaired actin cytoskeleton dynamics in CMS4 cells and, as a consequence, significantly reduced invasive capacity, while it was dispensable for CMS2 cells. Clinical relevance of these findings was supported by the observation that deletion of PAK2 from CMS4 cells prevented metastatic spreading in vivo. Moreover, growth in a model for peritoneal metastasis was hampered when CMS4 tumor cells were deficient for PAK2. CONCLUSION Our data reveal a unique dependency of mesenchymal CRC and provide a rationale for PAK2 inhibition to target this aggressive subgroup of colorectal cancer.
Collapse
Affiliation(s)
- Joyce Y Buikhuisen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Patricia M Gomez Barila
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Kate Cameron
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Saskia J E Suijkerbuijk
- Oncode Institute, Amsterdam, The Netherlands.,Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cor Lieftink
- Oncode Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Simone di Franco
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Ana Krotenberg Garcia
- Oncode Institute, Amsterdam, The Netherlands.,Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rebeca Uceda Castro
- Oncode Institute, Amsterdam, The Netherlands.,Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kristiaan J Lenos
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Lisanne E Nijman
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Arezo Torang
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Ciro Longobardi
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Joan H de Jong
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Daniëlle Dekker
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Roderick L Beijersbergen
- Oncode Institute, Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Oncode Institute, Amsterdam, The Netherlands.,Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Oncode Institute, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Meshkini F, Moradi A, Hosseinkhani S. Upregulation of RIPK1 implicates in HEK 293T cell death upon transient transfection of A53T-α-synuclein. Int J Biol Macromol 2023; 230:123216. [PMID: 36634793 DOI: 10.1016/j.ijbiomac.2023.123216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Alpha-synuclein (α-SN) is the central protein in synucleinopathies including Parkinson's disease. Nevertheless, the molecular mechanisms through which α-SN leads to neuronal death remain unclear. METHODS To elucidate the relationship between α-SN and apoptosis, some indicators of the intrinsic and extrinsic apoptotic cell death were assessed in normal and a stable HEK293T cell line expressing firefly luciferase after transfection with the wild-type (WT) and A53T mutant α-SN. RESULTS Opposite to WT-α-SN, overexpression of A53T-α-SN resulted in enhanced expression of almost two fold for RIPK1 (93.0 %), FADD (45 %), Caspase-8, and Casp-9 activity (52.0 %) in measured time. Transfection of both WT-α-SN and A53T-α-SN showed an increase in the Casp-3/Procasp-3 ratio (WT: 60.5 %; A53T: 41.0 %), Casp-3 activity (WT: 65.0 %; A53T: 20.5 %), and a decrease in luciferase activity (WT: 50 %; A53T: 34.8 %). Overexpression of A53T-α-SN brought about with more cell death percentage compared to WT-α-SN within 36 h. No significant alteration in cytochrome c and reactive oxygen species release into cytosol were observed for both WT-α-SN and A53T-α-SN. CONCLUSION Altogether, these findings highlight the link between disease related mutants of α-SN (like A53T-α-SN) in triggering of RIPK1-dependent extrinsic apoptotic pathway in cell death during neurodegeneration.
Collapse
Affiliation(s)
- Fatemeh Meshkini
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ali Moradi
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Hyperactivation of p21-Activated Kinases in Human Cancer and Therapeutic Sensitivity. Biomedicines 2023; 11:biomedicines11020462. [PMID: 36830998 PMCID: PMC9953343 DOI: 10.3390/biomedicines11020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Over the last three decades, p21-activated kinases (PAKs) have emerged as prominent intracellular nodular signaling molecules in cancer cells with a spectrum of cancer-promoting functions ranging from cell survival to anchorage-independent growth to cellular invasiveness. As PAK family members are widely overexpressed and/or hyperactivated in a variety of human tumors, over the years PAKs have also emerged as therapeutic targets, resulting in the development of clinically relevant PAK inhibitors. Over the last two decades, this has been a promising area of active investigation for several academic and pharmaceutical groups. Similar to other kinases, blocking the activity of one PAK family member leads to compensatory activity on the part of other family members. Because PAKs are also activated by stress-causing anticancer drugs, PAKs are components in the rewiring of survival pathways in the action of several therapeutic agents; in turn, they contribute to the development of therapeutic resistance. This, in turn, creates an opportunity to co-target the PAKs to achieve a superior anticancer cellular effect. Here we discuss the role of PAKs and their effector pathways in the modulation of cellular susceptibility to cancer therapeutic agents and therapeutic resistance.
Collapse
|
8
|
Xu H, Wang D, Ramponi C, Wang X, Zhang H. The P21-Activated Kinase 1 and 2 As Potential Therapeutic Targets for the Management of Cardiovascular Disease. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2022:5. [PMID: 39899001 PMCID: PMC7617276 DOI: 10.53941/ijddp.v1i1.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Group I p21-activated kinases (Paks) are members of the serine/threonine protein kinase family. Paks are encoded by three genes (Pak 1 - 3) and are involved in the regulation of various biological processes. Pak1 and Pak2 are key members, sharing 91% sequence identity in their kinase domains. Recent studies have shown that Pak1/2 protect the heart from various types of stresses. Activated Pak1/2 participate in the maintenance of cellular homeostasis and metabolism, thus enhancing the adaptation and resilience of cardiomyocytes to stress. The structure, activation and function of Pak1/2 as well as their protective roles against the occurrence of cardiovascular disease are described in this review. The values of Pak1/2 as therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Honglin Xu
- Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dingwei Wang
- Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Chiara Ramponi
- Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Xin Wang
- Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hongyuan Zhang
- Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Weghorst F, Mirzakhanyan Y, Hernandez KL, Gershon PD, Cramer KS. Non-Apoptotic Caspase Activity Preferentially Targets a Novel Consensus Sequence Associated With Cytoskeletal Proteins in the Developing Auditory Brainstem. Front Cell Dev Biol 2022; 10:844844. [PMID: 35330912 PMCID: PMC8940215 DOI: 10.3389/fcell.2022.844844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
The auditory brainstem relies on precise circuitry to facilitate sound source localization. In the chick, the development of this specialized circuitry requires non-apoptotic activity of caspase-3, for which we previously identified several hundred proteolytic substrates. Here we tested whether the sequence of the caspase cleavage site differentially encodes proteolytic preference in apoptotic and non-apoptotic contexts. We constructed a consensus sequence for caspase activity in the non-apoptotic chick auditory brainstem comprising the four residues N-terminal to the cleavage site: IX(G/R)D↓ where X represents no significant enrichment and ↓ represents the cleavage site. We identified GO terms significantly enriched among caspase substrates containing motifs found in the above consensus sequence. (G/R)D↓ was associated with the term “Structural Constituent of Cytoskeleton” (SCoC), suggesting that SCoC proteins may be specifically targeted by caspase activity during non-apoptotic developmental processes. To ascertain whether this consensus sequence was specific to the non-apoptotic auditory brainstem at embryonic day (E) 10, we used protein mass spectrometry of brainstems harvested at a time when auditory brainstem neurons undergo apoptotic cell death (E13). The apoptotic motif VD was significantly enriched among E13 cleavage sites, indicating that motif preference at the P2 subsite had shifted toward the canonical caspase consensus sequence. Additionally, Monte Carlo simulations revealed that only the GD motif was associated with SCoC substrates in the apoptotic auditory brainstem, indicating that GD encodes specificity for SCoC proteins in both non-apoptotic and apoptotic contexts, despite not being preferred in the latter. Finally, to identify candidate human non-apoptotic consensus sequences, we used Monte Carlo analyses to determine motifs and motif pairs associated with SCoC caspase substrates in the Degrabase, a database of cleavage sites in human apoptotic cell lines. We found 11 motifs significantly associated with SCoC proteolysis, including IXXD and GD. We employed a stepwise method to select motif pairs that optimized SCoC specificity for a given coverage of SCoC cleavage events, yielding 11 motif pairs likely to be preferred in SCoC-directed human non-apoptotic caspase consensus sequences. GD + IXXD was among these motif pairs, suggesting a conservation of non-apoptotic consensus sites among vertebrates.
Collapse
Affiliation(s)
- Forrest Weghorst
- Department of Neurobiology and Behavior, UC Irvine, Irvine, CA, United States
| | - Yeva Mirzakhanyan
- Department of Molecular Biology and Biochemistry, UC Irvine, Irvine, CA, United States
| | | | - Paul D Gershon
- Department of Molecular Biology and Biochemistry, UC Irvine, Irvine, CA, United States
| | - Karina S Cramer
- Department of Neurobiology and Behavior, UC Irvine, Irvine, CA, United States
| |
Collapse
|
10
|
Peng Y, Tang Q, Xiao F, Fu N. Regulation of Lipid Metabolism by Lamin in Mutation-Related Diseases. Front Pharmacol 2022; 13:820857. [PMID: 35281936 PMCID: PMC8914069 DOI: 10.3389/fphar.2022.820857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Nuclear lamins, known as type 5 intermediate fibers, are composed of lamin A, lamin C, lamin B1, and lamin B2, which are encoded by LMNA and LMNB genes, respectively. Importantly, mutations in nuclear lamins not only participate in lipid disorders but also in the human diseases, such as lipodystrophy, metabolic-associated fatty liver disease, and dilated cardiomyopathy. Among those diseases, the mechanism of lamin has been widely discussed. Thereby, this review mainly focuses on the regulatory mechanism of the mutations in the lamin gene in lipid alterations and the human diseases. Considering the protean actions, targeting nuclear lamins may be a potent therapeutic avenue for lipid metabolic disorders and human diseases in the future.
Collapse
Affiliation(s)
- Yue Peng
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang, China
| | - Qianyu Tang
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang, China
| | - Fan Xiao
- The Affiliated Nanhua Hospital, Clinical Research Institute, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Nian Fu, ; Fan Xiao,
| | - Nian Fu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang, China
- The Affiliated Nanhua Hospital, Clinical Research Institute, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Nian Fu, ; Fan Xiao,
| |
Collapse
|
11
|
PHOrming the inflammasome: phosphorylation is a critical switch in inflammasome signalling. Biochem Soc Trans 2021; 49:2495-2507. [PMID: 34854899 PMCID: PMC8786285 DOI: 10.1042/bst20200987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
Inflammasomes are protein complexes in the innate immune system that regulate the production of pro-inflammatory cytokines and inflammatory cell death. Inflammasome activation and subsequent cell death often occur within minutes to an hour, so the pathway must be dynamically controlled to prevent excessive inflammation and the development of inflammatory diseases. Phosphorylation is a fundamental post-translational modification that allows rapid control over protein function and the phosphorylation of inflammasome proteins has emerged as a key regulatory step in inflammasome activation. Phosphorylation of inflammasome sensor and adapter proteins regulates their inter- and intra-molecular interactions, subcellular localisation, and function. The control of inflammasome phosphorylation may thus provide a new strategy for the development of anti-inflammatory therapeutics. Herein we describe the current knowledge of how phosphorylation operates as a critical switch for inflammasome signalling.
Collapse
|
12
|
hsa_circ_0013401 Accelerates the Growth and Metastasis and Prevents Apoptosis and Autophagy of Neuroblastoma Cells by Sponging miR-195 to Release PAK2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9936154. [PMID: 34853631 PMCID: PMC8629642 DOI: 10.1155/2021/9936154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023]
Abstract
Background Increased levels of circRNAs have been identified in a variety of cancers. However, the specific functions and mechanisms of circRNAs in neuroblastoma (NB) have not been fully explored. Methods The levels of hsa_circ_0045997, hsa_circ_0080307, hsa_circ_0013401, hsa_circ_0077578, and microRNA-195 were confirmed by RT-qPCR in NB. Gain- and loss-of-function assays and rescue experiments were conducted to determine the influence of hsa_circ_0013401, miR-195, and P21-activated kinase 2 (PAK2) on the proliferation, apoptosis, autophagy, migration, and invasion of NB cells. Regulatory gene targets were validated by the luciferase assay. A xenograft mouse model was used to determine the in vivo effects of hsa_circ_0013401. Results hsa_circ_0013401 was highly expressed, miR-195 was lowly expressed, and there was a negative correlation between hsa_circ_0013401 and miR-195 in NB. The inhibitory effects of hsa_circ_0013401 knockdown suppressed the proliferation, migration, and invasion and induced the apoptosis and autophagy of NB cells by targeting miR-195 to downregulate PAK2 expression. Luciferase reporter assays showed that miR-195 was a direct target of hsa_circ_0013401, and PAK2 was the downstream target gene of miR-195. In vivo studies showed that hsa_circ_0013401 promotes tumor formation. Conclusions hsa_circ_0013401 induced NB progression through miR-195 to enhance PAK2. Therefore, we might highlight a novel regulatory axis (hsa_circ_0013401/miR-195/PAK2) in NB.
Collapse
|
13
|
Araya LE, Soni IV, Hardy JA, Julien O. Deorphanizing Caspase-3 and Caspase-9 Substrates In and Out of Apoptosis with Deep Substrate Profiling. ACS Chem Biol 2021; 16:2280-2296. [PMID: 34553588 DOI: 10.1021/acschembio.1c00456] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Caspases are a family of enzymes that regulate biological processes such as inflammation and programmed cell death, through proteolysis. For example, in the intrinsic pathway of apoptosis, cell death signaling involves cytochrome c release from the mitochondria, which leads to the activation of caspase-9 and eventually the executioners caspase-3 and -7. One key step in our understanding of these proteases is to identify their respective protein substrates. Although hundreds of substrates have been linked to caspase-3, only a small handful of substrates have been reported for caspase-9. Employing deep profiling by subtiligase N-terminomics, we present here an unbiased analysis of caspase-3 and caspase-9 substrates in native cell lysates. We identified 906 putative protein substrates associated with caspase-3 and 124 protein substrates for caspase-9. This is the most comprehensive list of caspase substrates reported for each of these proteases, revealing a pool of new substrates that could not have been discovered using other approaches. Over half of the caspase-9 substrates were also cleaved by caspase-3, but often at unique sites, suggesting an evolved functional redundancy for these two proteases. Correspondingly, nearly half of the caspase-9 cleavage sites were not recognized by caspase-3. Our results suggest that in addition to its important role in activating the executioners, the role of caspase-9 is likely broader and more complex than previously appreciated, which includes proteolysis of key apoptotic substrates other than just caspase-3 and -7 and involvement in non-apoptotic pathways. Our results are well poised to aid the discovery of new biological functions for these two caspases.
Collapse
Affiliation(s)
- Luam E. Araya
- Department of Biochemistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Ishankumar V. Soni
- Department of Chemistry, University of Massachusetts, Amherst 01003, Massachusetts, United States
| | - Jeanne A. Hardy
- Department of Chemistry, University of Massachusetts, Amherst 01003, Massachusetts, United States
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| |
Collapse
|
14
|
Anson F, Thayumanavan S, Hardy JA. Exogenous Introduction of Initiator and Executioner Caspases Results in Different Apoptotic Outcomes. JACS AU 2021; 1:1240-1256. [PMID: 34467362 PMCID: PMC8385707 DOI: 10.1021/jacsau.1c00261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 05/06/2023]
Abstract
The balance of pro-apoptotic and pro-survival proteins defines a cell's fate. These processes are controlled through an interdependent and finely tuned protein network that enables survival or leads to apoptotic cell death. The caspase family of proteases is central to this apoptotic network, with initiator and executioner caspases, and their interaction partners, regulating and executing apoptosis. In this work, we interrogate and modulate this network by exogenously introducing specific initiator or executioner caspase proteins. Each caspase is exogenously introduced using redox-responsive polymeric nanogels. Although caspase-3 might be expected to be the most effective due to the centrality of its role in apoptosis and its heightened catalytic efficiency relative to other family members, we observed that caspase-7 and caspase-9 are the most effective at inducing apoptotic cell death. By critically analyzing the introduced activity of the delivered caspase, the pattern of substrate cleavage, as well as the ability to activate endogenous caspases, we conclude that the efficacy of each caspase correlated with the levels of pro-survival factors that both directly and indirectly impact the introduced caspase. These findings lay the groundwork for developing methods for exogenous introduction of caspases as a therapeutic option that can be tuned to the apoptotic balance in a proliferating cell.
Collapse
|
15
|
Soares S, Guerreiro SG, Cruz-Martins N, Faria I, Baylina P, Sales MG, Correa-Duarte MA, Fernandes R. The Influence of miRNAs on Radiotherapy Treatment in Prostate Cancer - A Systematic Review. Front Oncol 2021; 11:704664. [PMID: 34414113 PMCID: PMC8369466 DOI: 10.3389/fonc.2021.704664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022] Open
Abstract
In the last years, extensive investigation on miRNomics have shown to have great advantages in cancer personalized medicine regarding diagnosis, treatment and even clinical outcomes. Prostate cancer (PCa) is the second most common male cancer and about 50% of all PCa patients received radiotherapy (RT), despite some of them develop radioresistance. Here, we aim to provide an overview on the mechanisms of miRNA biogenesis and to discuss the functional impact of miRNAs on PCa under radiation response. As main findings, 23 miRNAs were already identified as being involved in genetic regulation of PCa cell response to RT. The mechanisms of radioresistance are still poorly understood, despite it has been suggested that miRNAs play an important role in cell signaling pathways. Identification of miRNAs panel can be thus considered an upcoming and potentially useful strategy in PCa diagnosis, given that radioresistance biomarkers, in both prognosis and therapy still remains a challenge.
Collapse
Affiliation(s)
- Sílvia Soares
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal.,LaBMI - Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology & Innovation Center (PORTIC), P.PORTO - Polytechnic Institute of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), Porto, Portugal.,Faculty of Chemistry, University of Vigo, Vigo, Spain.,CEB, Centre of Biological Engineering of Minho University, Braga, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Susana G Guerreiro
- Institute for Research and Innovation in Health (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto-IPATIMUP, Porto, Portugal.,Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Natália Cruz-Martins
- Institute for Research and Innovation in Health (i3S), Porto, Portugal.,Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra, Portugal
| | - Isabel Faria
- School of Health, Polytechnic of Porto, Porto, Portugal
| | - Pilar Baylina
- LaBMI - Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology & Innovation Center (PORTIC), P.PORTO - Polytechnic Institute of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), Porto, Portugal.,School of Health, Polytechnic of Porto, Porto, Portugal
| | - Maria Goreti Sales
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal.,CEB, Centre of Biological Engineering of Minho University, Braga, Portugal.,Biomark@UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Miguel A Correa-Duarte
- Faculty of Chemistry, University of Vigo, Vigo, Spain.,CINBIO, University of Vigo, Vigo, Spain.,Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Vigo, Spain
| | - Rúben Fernandes
- LaBMI - Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology & Innovation Center (PORTIC), P.PORTO - Polytechnic Institute of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), Porto, Portugal.,School of Health, Polytechnic of Porto, Porto, Portugal
| |
Collapse
|
16
|
Nguyen TTM, Gillet G, Popgeorgiev N. Caspases in the Developing Central Nervous System: Apoptosis and Beyond. Front Cell Dev Biol 2021; 9:702404. [PMID: 34336853 PMCID: PMC8322698 DOI: 10.3389/fcell.2021.702404] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
The caspase family of cysteine proteases represents the executioners of programmed cell death (PCD) type I or apoptosis. For years, caspases have been known for their critical roles in shaping embryonic structures, including the development of the central nervous system (CNS). Interestingly, recent findings have suggested that aside from their roles in eliminating unnecessary neural cells, caspases are also implicated in other neurodevelopmental processes such as axon guidance, synapse formation, axon pruning, and synaptic functions. These results raise the question as to how neurons regulate this decision-making, leading either to cell death or to proper development and differentiation. This review highlights current knowledge on apoptotic and non-apoptotic functions of caspases in the developing CNS. We also discuss the molecular factors involved in the regulation of caspase-mediated roles, emphasizing the mitochondrial pathway of cell death.
Collapse
Affiliation(s)
- Trang Thi Minh Nguyen
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Germain Gillet
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Laboratoire d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Nikolay Popgeorgiev
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
17
|
Kim YH, Hwang JS, Yoon IN, Lee JH, Lee J, Park KC, Seok H, Kim H. The insect peptide CopA3 blocks programmed cell death by directly binding caspases and inhibiting their proteolytic activation. Biochem Biophys Res Commun 2021; 547:82-88. [PMID: 33610044 DOI: 10.1016/j.bbrc.2021.01.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
Caspases play essential roles in apoptotic processes, which is necessary for cellular homeostasis. However, over-activation of caspases and subsequent excessive apoptosis is considered a main cause of Parkinson's disease and liver diseases. Here, we found that the insect-derived peptide, CopA3, which has shown antiapoptotic effects in many apoptosis models, directly binds to caspases. The resulting complexes do not dissociate during denaturing polyacrylamide gel electrophoresis, as evidenced by a distinct shift in the migration of caspase reflecting an increase in their molecular weight. Surface plasmon resonance and experiment using cysteine-substituted mutants of CopA3 collectively revealed that binding of CopA3 to caspases is dependent on an internal cysteine residue. Notably, CopA3 binding significantly inhibited proteolytic activation of downstream caspases by upstream caspases. In summary, the demonstration that CopA3 directly binds to caspases and inhibits their activating cleavage suggests a possible therapeutic approach for treating human diseases resulting from uncontrolled apoptosis.
Collapse
Affiliation(s)
- Young Ha Kim
- Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 487-711, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon, 441-707, Republic of Korea
| | - I Na Yoon
- Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 487-711, Republic of Korea
| | - Joon Ha Lee
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon, 441-707, Republic of Korea
| | - Junguee Lee
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-ro 64, Jung-gu, Daejeon, 301-723, Republic of Korea
| | - Ki Cheol Park
- Clinical Research Institute, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Heon Seok
- Korea Brain Bank, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Ho Kim
- Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 487-711, Republic of Korea.
| |
Collapse
|
18
|
Zhang M, Xiang Z, Wang F, Shan R, Li L, Chen J, Liu BA, Huang J, Sun LQ, Zhou WB. STARD4 promotes breast cancer cell malignancy. Oncol Rep 2020; 44:2487-2502. [PMID: 33125124 PMCID: PMC7610339 DOI: 10.3892/or.2020.7802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BRCA) is one of the most common malignancies encountered in women worldwide. Lipid metabolism has been found to be involved in cancer progression. Steroidogenic acute regulatory protein-related lipid transfer 4 (STARD4) is an important cholesterol transporter involved in the regulatory mechanism of intracellular cholesterol homeostasis. However, to the best of our knowledge, the molecular functions of STARD4 in BRCA are unclear. Immunohistochemical staining and public dataset analysis were performed to investigate the expression levels of STARD4 in BRCA. In the present study, high expression of STARD4 was identified in BRCA samples and higher STARD4 expression was significantly associated with shorter distant metastasis-free survival time in patients with BRCA, which indicated that STARD4 may be associated with BRCA progression. Cell cytometry system Celigo® analysis, Cell Counting K-8 assays, flow cytometry, wound healing assays and transwell assays were used to investigate the effects of STARD4 knockdown on proliferation, cell cycle, apoptosis and migration in BRCA cells. Loss-of-function assays demonstrated that STARD4 acted as an oncogene to promote proliferation and cell cycle progression, while suppressing apoptosis in BRCA cells in vitro and in vivo. Furthermore, knockdown of STARD4 significantly suppressed BRCA metastasis. To assess the mechanism of action of STARD4, microarray analysis was performed following STARD4 knockdown in MDA-MB-231 cells. The data were analyzed in detail using bioinformatics, and a series of genes, including E74 like ETS transcription factor 1, cAMP responsive element binding protein 1 and p21 (RAC1) activated kinase 2, which have been previously reported to be crucial genes implicated in the malignant phenotype of cancer cells, were identified to be regulated by STARD4. Loss-of function assays demonstrated that knockdown of STARD4 suppressed BRCA proliferation and migration. These findings suggested that STARD4 had an oncogenic effect in human BRCA progression.
Collapse
Affiliation(s)
- Min Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhen Xiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Feng Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Rong Shan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ling Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Juan Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bao-An Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Juan Huang
- Hunan Province Clinic Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wei-Bing Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
19
|
Huang J, Huang A, Poplawski A, DiPino F, Traugh JA, Ling J. PAK2 activated by Cdc42 and caspase 3 mediates different cellular responses to oxidative stress-induced apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118645. [PMID: 31926209 DOI: 10.1016/j.bbamcr.2020.118645] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
Abstract
p21-activated protein kinase (PAK2) is a unique member of the PAK family kinases that plays important roles in stress signaling. It can be activated by binding to the small GTPase, Cdc42 and Rac1, or by caspase 3 cleavage. Cdc42-activated PAK2 mediates cytostasis, whereas caspase 3-cleaved PAK2 contributes to apoptosis. However, the relationship between these two states of PAK2 activation remains elusive. In this study, through protein biochemical analyses and various cell-based assays, we demonstrated that full-length PAK2 activated by Cdc42 was resistant to the cleavage by caspase 3 in vitro and within cells. When mammalian cells were treated by oxidative stress using hydrogen peroxide, PAK2 was highly activated through caspase 3 cleavage that led to apoptosis. However, when PAK2 was pre-activated by Cdc42 or by mild stress such as serum deprivation, it was no longer able to be cleaved by caspase 3 upon hydrogen peroxide treatment, and the subsequent apoptosis was also largely inhibited. Furthermore, cells expressing active mutants of full-length PAK2 became more resistant to hydrogen peroxide-induced apoptosis than inactive mutants. Taken together, this study identified two states of PAK2 activation, wherein Cdc42- and autophosphorylation-dependent activation inhibited the constitutive activation of PAK2 by caspase cleavage. The regulation between these two states of PAK2 activation provides a new molecular mechanism to support PAK2 as a molecular switch for controlling cytostasis and apoptosis in response to different types and levels of stress with broad physiological and pathological relevance.
Collapse
Affiliation(s)
- John Huang
- Department of Biochemistry, University of California, Riverside, CA 92521, United States of America
| | - Allen Huang
- Canyon Crest Academy, San Diego, CA 92130, United States of America
| | - Amelia Poplawski
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509, United States of America; Misericordia University, Dallas, PA 18612, United States of America
| | - Frank DiPino
- Misericordia University, Dallas, PA 18612, United States of America
| | - Jolinda A Traugh
- Department of Biochemistry, University of California, Riverside, CA 92521, United States of America
| | - Jun Ling
- California University of Science and Medicine, Colton, CA 92324, United States of America; Geisinger Commonwealth School of Medicine, Scranton, PA 18509, United States of America; Department of Biochemistry, University of California, Riverside, CA 92521, United States of America.
| |
Collapse
|
20
|
Binder P, Wang S, Radu M, Zin M, Collins L, Khan S, Li Y, Sekeres K, Humphreys N, Swanton E, Reid A, Pu F, Oceandy D, Guan K, Hille SS, Frey N, Müller OJ, Cartwright EJ, Chernoff J, Wang X, Liu W. Pak2 as a Novel Therapeutic Target for Cardioprotective Endoplasmic Reticulum Stress Response. Circ Res 2019; 124:696-711. [PMID: 30620686 PMCID: PMC6407830 DOI: 10.1161/circresaha.118.312829] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Secreted and membrane-bound proteins, which account for 1/3 of all proteins, play critical roles in heart health and disease. The endoplasmic reticulum (ER) is the site for synthesis, folding, and quality control of these proteins. Loss of ER homeostasis and function underlies the pathogenesis of many forms of heart disease. Objective: To investigate mechanisms responsible for regulating cardiac ER function, and to explore therapeutic potentials of strengthening ER function to treat heart disease. Methods and Results: Screening a range of signaling molecules led to the discovery that Pak (p21-activated kinase)2 is a stress-responsive kinase localized in close proximity to the ER membrane in cardiomyocytes. We found that Pak2 cardiac deleted mice (Pak2-CKO) under tunicamycin stress or pressure overload manifested a defective ER response, cardiac dysfunction, and profound cell death. Small chemical chaperone tauroursodeoxycholic acid treatment of Pak2-CKO mice substantiated that Pak2 loss-induced cardiac damage is an ER-dependent pathology. Gene array analysis prompted a detailed mechanistic study, which revealed that Pak2 regulation of protective ER function was via the IRE (inositol-requiring enzyme)-1/XBP (X-box–binding protein)-1–dependent pathway. We further discovered that this regulation was conferred by Pak2 inhibition of PP2A (protein phosphatase 2A) activity. Moreover, IRE-1 activator, Quercetin, and adeno-associated virus serotype-9–delivered XBP-1s were able to relieve ER dysfunction in Pak2-CKO hearts. This provides functional evidence, which supports the mechanism underlying Pak2 regulation of IRE-1/XBP-1s signaling. Therapeutically, inducing Pak2 activation by genetic overexpression or adeno-associated virus serotype-9–based gene delivery was capable of strengthening ER function, improving cardiac performance, and diminishing apoptosis, thus protecting the heart from failure. Conclusions: Our findings uncover a new cardioprotective mechanism, which promotes a protective ER stress response via the modulation of Pak2. This novel therapeutic strategy may present as a promising option for treating cardiac disease and heart failure.
Collapse
Affiliation(s)
- Pablo Binder
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Shunyao Wang
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Maria Radu
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA (M.R., J.C.)
| | - Min Zin
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Lucy Collins
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Saba Khan
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Yatong Li
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Karolina Sekeres
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universitaet Dresden, Germany (K.S., K.G.)
| | - Neil Humphreys
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Eileithyia Swanton
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Adam Reid
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Fay Pu
- Edinburgh University Medical School, United Kingdom (F.P.)
| | - Delvac Oceandy
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universitaet Dresden, Germany (K.S., K.G.)
| | - Susanne S Hille
- Department of Internal Medicine III, University of Kiel, Germany (S.S.H., N.F., O.J.M.)
| | - Norbert Frey
- Department of Internal Medicine III, University of Kiel, Germany (S.S.H., N.F., O.J.M.)
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Germany (S.S.H., N.F., O.J.M.).,DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany (O.J.M.)
| | - Elizabeth J Cartwright
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA (M.R., J.C.)
| | - Xin Wang
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Wei Liu
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| |
Collapse
|
21
|
Larrea tridentata Extract Mitigates Oxidative Stress-Induced Cytotoxicity in Human Neuroblastoma SH-SY5Y Cells. Antioxidants (Basel) 2019; 8:antiox8100427. [PMID: 31557847 PMCID: PMC6827101 DOI: 10.3390/antiox8100427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Creosote bush (Larrea tridentata; LT) leaves extracts were tested for their potential efficacy to mitigate cellular oxidative stress on human SH-SY5Y cells. Here, the differential nuclear staining assay, a bioimager system, and flow cytometric protocols, concurrently with several specific chemicals, were used to measure the percentage of cell viability and several facets implicated in the cytoprotective mechanism of LT extracts. Initially, three LT extracts, prepared with different solvents, ethanol, ethanol:water (e/w), and water, were tested for their capacity to rescue the viability of cells undergoing aggressive H2O2-induced oxidative stress. Results indicate that the LT extract prepared with a mixture of ethanol:water (LT-e/w; 60:40% v/v) displayed the most effective cytoprotection rescue activity. Interestingly, by investigating the LT-e/w mechanism of action, it was found that LT-e/w extract decreases the levels of H2O2-provoked reactive oxidative species (ROS) accumulation, mitochondrial depolarization, phosphatidylserine externalization, caspase-3/7 activation, and poly (ADP-ribose) polymerase (PARP) cleavage significantly, which are hallmarks of apoptosis. Thus, out of the three LT extracts tested, our findings highlight that the LT-e/w extract was the most effective protective reagent on SH-SY5Y cells undergoing oxidative stress in vitro, functioning as a natural anti-apoptotic extract. These findings warrant further LT-e/w extract examination in a holistic context.
Collapse
|
22
|
Yao GW, Bai JR, Zhang DP. P21 activated kinase 2 promotes pancreatic cancer growth and metastasis. Oncol Lett 2019; 17:3709-3718. [PMID: 30930982 PMCID: PMC6425405 DOI: 10.3892/ol.2019.10040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/23/2019] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer has an overall 5-year survival rate of only 9%, due to its rapid metastasis and poor prognosis. To combat this disease, novel therapeutic targets and biomarkers are required. In this study, immunohistochemistry was used to detect the expression of P21 activated kinase 2 (PAK2) protein in the tissues of cancer and the paired adjacent normal tissues. The association between PAK2 and the clinicopathologic features of patients with pancreatic cancer was subsequently analyzed. The results indicated that PAK2 was overexpressed in the cancer tissues, which indicated high pTNM stage, poor tumor grade, lymph node metastasis and vascular invasion. In addition, the results demonstrated evidence of a close association between PAK2 expression and poor prognosis of patients with pancreatic cancer. The results also suggested that PAK2 may promote pancreatic cancer cell proliferation and migration in vitro through clone formation, MTT, wound healing and Transwell assays. The present study further identified that PAK2 could stimulate pancreatic cancer growth and metastasis in mice. Decreased expression of proliferation marker protein Ki-67 and proliferating cell nuclear antigen in response to PAK2 knockdown further verified the role of PAK2 in promoting cell proliferation by western blot analysis. In addition, the expression levels of matrix metallopeptidase (MMP) 2 and MMP9 were decreased in PANC1 and BxPC3 cell lines transfected with PAK2-short hairpin RNA as indicated in western blot analysis, suggesting a function of PAK2 in promoting cell invasion. Collectively, these findings revealed a critical role for PAK2 in the development of pancreatic cancer and may have important implications for the management of this disease.
Collapse
Affiliation(s)
- Guo-Wang Yao
- Department of the 1st Hepato-Biliary-Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Jing-Rui Bai
- Department of the 1st Hepato-Biliary-Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Da-Peng Zhang
- Department of the 1st Hepato-Biliary-Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| |
Collapse
|
23
|
MacPherson DJ, Mills CL, Ondrechen MJ, Hardy JA. Tri-arginine exosite patch of caspase-6 recruits substrates for hydrolysis. J Biol Chem 2018; 294:71-88. [PMID: 30420425 DOI: 10.1074/jbc.ra118.005914] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/07/2018] [Indexed: 12/15/2022] Open
Abstract
Caspases are cysteine-aspartic proteases involved in the regulation of programmed cell death (apoptosis) and a number of other biological processes. Despite overall similarities in structure and active-site composition, caspases show striking selectivity for particular protein substrates. Exosites are emerging as one of the mechanisms by which caspases can recruit, engage, and orient these substrates for proper hydrolysis. Following computational analyses and database searches for candidate exosites, we utilized site-directed mutagenesis to identify a new exosite in caspase-6 at the hinge between the disordered N-terminal domain (NTD), residues 23-45, and core of the caspase-6 structure. We observed that substitutions of the tri-arginine patch Arg-42-Arg-44 or the R44K cancer-associated mutation in caspase-6 markedly alter its rates of protein substrate hydrolysis. Notably, turnover of protein substrates but not of short peptide substrates was affected by these exosite alterations, underscoring the importance of this region for protein substrate recruitment. Hydrogen-deuterium exchange MS-mediated interrogation of the intrinsic dynamics of these enzymes suggested the presence of a substrate-binding platform encompassed by the NTD and the 240's region (containing residues 236-246), which serves as a general exosite for caspase-6-specific substrate recruitment. In summary, we have identified an exosite on caspase-6 that is critical for protein substrate recognition and turnover and therefore highly relevant for diseases such as cancer in which caspase-6-mediated apoptosis is often disrupted, and in neurodegeneration in which caspase-6 plays a central role.
Collapse
Affiliation(s)
- Derek J MacPherson
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003
| | - Caitlyn L Mills
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Jeanne A Hardy
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003.
| |
Collapse
|
24
|
Song N, Li T. Regulation of NLRP3 Inflammasome by Phosphorylation. Front Immunol 2018; 9:2305. [PMID: 30349539 PMCID: PMC6186804 DOI: 10.3389/fimmu.2018.02305] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/17/2018] [Indexed: 01/01/2023] Open
Abstract
The cytosolic pattern recognition receptor (PRR) NOD-like receptor family, pyrin domain containing 3 (NLRP3) senses a wide range of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Upon activation, NLRP3 triggers the assembly of inflammasome via the self-oligomerization and the recruitment of apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and pro-caspase-1, facilitating the robust immune responses including the secretion of proinflammatory cytokines and pyroptosis. The NLRP3 inflammasome must be well orchestrated to prevent the aberrant activations under physiological and pathological conditions, because uncontrolled activation of NLRP3 inflammasome is one of the major causes of a variety of autoimmune diseases and metabolic disorders. Therefore, understanding the molecular mechanisms for controlling NLRP3 inflammasome activation may provide novel strategies for the treatment of NLRP3-related diseases. Although NLRP3 inflammasome can be regulated at the transcriptional level, the post-translational modification (PTM) of NLRP3 as well as other inflammasome components has also been showed to be critical for the regulation of its activation. Several kinases and phosphatases have been shown to control NLRP3 inflammasome activation in response to either exogenous pathogen infections or endogenous molecules, such as bile acids. In this review, we summarize our current knowledge of phosphorylation patterns and their functional role in the regulation of NLRP3 inflammasome, and suggest interesting areas for future research.
Collapse
Affiliation(s)
- Nan Song
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,State Key Laboratory of Proteomics, Beijing Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Tao Li
- State Key Laboratory of Proteomics, Beijing Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
25
|
Control of Inflammasome Activation by Phosphorylation. Trends Biochem Sci 2018; 43:685-699. [PMID: 30049633 DOI: 10.1016/j.tibs.2018.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/05/2018] [Accepted: 06/30/2018] [Indexed: 02/08/2023]
Abstract
Inflammasomes are cytosolic protein complexes composed of innate immune sensors, the adaptor protein ASC, and the cysteine protease caspase-1. In response to microbial infection or 'danger signals', inflammasomes play critical roles in host defense or contribute to the pathogenesis of various inflammatory diseases. Recent studies have provided abundant evidence for a vital role of phosphorylation in the regulation of inflammasome assembly and activation. This review integrates previous observations and discoveries for inflammasome regulation by protein phosphorylation with the most recent findings. Additionally, the timely application and clinical prospects in the treatment of inflammatory diseases, by targeting related protein kinases or phosphatases, are also discussed.
Collapse
|
26
|
Eron SJ, MacPherson DJ, Dagbay KB, Hardy JA. Multiple Mechanisms of Zinc-Mediated Inhibition for the Apoptotic Caspases-3, -6, -7, and -8. ACS Chem Biol 2018; 13:1279-1290. [PMID: 29364645 PMCID: PMC5959779 DOI: 10.1021/acschembio.8b00064] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Zinc is emerging as a widely used and important biological regulatory signal. Cellular zinc levels are tightly regulated by a complex array of zinc importers and exporters to control processes such as apoptotic cell death. While caspase inhibition by zinc has been reported previously, the reported inhibition constants were too weak to suggest a critical biological role for zinc-mediated inhibition. In this work, we have adopted a method of assessing available zinc. This allowed assessment of accurate inhibition constants for apoptotic caspases, caspase-3, -6, -7, and -8. Each of these caspases are inhibited by zinc at intracellular levels but with widely differing inhibition constants and different zinc binding stoichiometries. Caspase-3, -6, and -8 appear to be constitutively inhibited by typical zinc levels, and this inhibition must be lifted to allow activation. The inhibition constant for caspase-7 (76 nM) is much weaker than for the other apoptotic caspases (2.6-6.9 nM) suggesting that caspase-7 is not inactivated by normal zinc concentrations but can be inhibited under conditions of zinc stress. Caspase-3, -7, and -8 were found to bind three, one, and two zincs, respectively. In each of these caspases, zinc was present in the active site, in contrast to caspase-6, which binds one zinc allosterically. The most notable new mechanism to emerge from this work is for zinc-mediated inhibition of caspase-8. Zinc binds caspase-8 directly at the active site and at a second site. Zinc binding inhibits formation of the caspase-8 dimer, the activated form of the enzyme. Together these findings suggest that zinc plays a critical role in regulation of apoptosis by direct inactivation of caspases, in a manner that is unique for each caspase.
Collapse
Affiliation(s)
- Scott J. Eron
- Department of Chemistry, 104 LGRT, 710 N. Pleasant St. University of Massachusetts Amherst, MA 01003, USA
| | - Derek J. MacPherson
- Department of Chemistry, 104 LGRT, 710 N. Pleasant St. University of Massachusetts Amherst, MA 01003, USA
| | - Kevin B. Dagbay
- Department of Chemistry, 104 LGRT, 710 N. Pleasant St. University of Massachusetts Amherst, MA 01003, USA
| | - Jeanne A. Hardy
- Department of Chemistry, 104 LGRT, 710 N. Pleasant St. University of Massachusetts Amherst, MA 01003, USA
| |
Collapse
|
27
|
Thomas ME, Grinshpon R, Swartz P, Clark AC. Modifications to a common phosphorylation network provide individualized control in caspases. J Biol Chem 2018; 293:5447-5461. [PMID: 29414778 DOI: 10.1074/jbc.ra117.000728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/24/2018] [Indexed: 11/06/2022] Open
Abstract
Caspase-3 activation and function have been well-defined during programmed cell death, but caspase activity, at low levels, is also required for developmental processes such as lymphoid proliferation and erythroid differentiation. Post-translational modification of caspase-3 is one method used by cells to fine-tune activity below the threshold required for apoptosis, but the allosteric mechanism that reduces activity is unknown. Phosphorylation of caspase-3 at a conserved allosteric site by p38-MAPK (mitogen-activated protein kinase) promotes survival in human neutrophils, and the modification of the loop is thought to be a key regulator in many developmental processes. We utilized phylogenetic, structural, and biophysical studies to define the interaction networks that facilitate the allosteric mechanism in caspase-3. We show that, within the modified loop, Ser150 evolved with the apoptotic caspases, whereas Thr152 is a more recent evolutionary event in mammalian caspase-3. Substitutions at Ser150 result in a pH-dependent decrease in dimer stability, and localized changes in the modified loop propagate to the active site of the same protomer through a connecting surface helix. Likewise, a cluster of hydrophobic amino acids connects the conserved loop to the active site of the second protomer. The presence of Thr152 in the conserved loop introduces a "kill switch" in mammalian caspase-3, whereas the more ancient Ser150 reduces without abolishing enzyme activity. These data reveal how evolutionary changes in a conserved allosteric site result in a common pathway for lowering activity during development or a more recent cluster-specific switch to abolish activity.
Collapse
Affiliation(s)
- Melvin E Thomas
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27608 and
| | - Robert Grinshpon
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27608 and
| | - Paul Swartz
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27608 and
| | - A Clay Clark
- the Department of Biology, University of Texas, Arlington, Texas 76019
| |
Collapse
|
28
|
Keck M, van Dijk RM, Deeg CA, Kistler K, Walker A, von Rüden EL, Russmann V, Hauck SM, Potschka H. Proteomic profiling of epileptogenesis in a rat model: Focus on cell stress, extracellular matrix and angiogenesis. Neurobiol Dis 2018; 112:119-135. [PMID: 29413716 DOI: 10.1016/j.nbd.2018.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 12/26/2022] Open
Abstract
Information about epileptogenesis-associated changes in protein expression patterns is of particular interest for future selection of target and biomarker candidates. Bioinformatic analysis of proteomic data sets can increase our knowledge about molecular alterations characterizing the different phases of epilepsy development following an initial epileptogenic insult. Here, we report findings from a focused analysis of proteomic data obtained for the hippocampus and parahippocampal cortex samples collected during the early post-insult phase, latency phase, and chronic phase of a rat model of epileptogenesis. The study focused on proteins functionally associated with cell stress, cell death, extracellular matrix (ECM) remodeling, cell-ECM interaction, cell-cell interaction, angiogenesis, and blood-brain barrier function. The analysis revealed prominent pathway enrichment providing information about the complex expression alterations of the respective protein groups. In the hippocampus, the number of differentially expressed proteins declined over time during the course of epileptogenesis. In contrast, a peak in the regulation of proteins linked with cell stress and death as well as ECM and cell-cell interaction became evident at later phases during epileptogenesis in the parahippocampal cortex. The data sets provide valuable information about the time course of protein expression patterns during epileptogenesis for a series of proteins. Moreover, the findings provide comprehensive novel information about expression alterations of proteins that have not been discussed yet in the context of epileptogenesis. These for instance include different members of the lamin protein family as well as the fermitin family member 2 (FERMT2). Induction of FERMT2 and other selected proteins, CD18 (ITGB2), CD44 and Nucleolin were confirmed by immunohistochemistry. Taken together, focused bioinformatic analysis of the proteomic data sets completes our knowledge about molecular alterations linked with cell death and cellular plasticity during epileptogenesis. The analysis provided can guide future selection of target and biomarker candidates.
Collapse
Affiliation(s)
- Michael Keck
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Katharina Kistler
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
29
|
Phosphorylation by protein kinase A disassembles the caspase-9 core. Cell Death Differ 2018; 25:1025-1039. [PMID: 29352269 DOI: 10.1038/s41418-017-0052-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023] Open
Abstract
Caspases, the cysteine proteases which facilitate the faithful execution of apoptosis, are tightly regulated by a number of mechanisms including phosphorylation. In response to cAMP, PKA phosphorylates caspase-9 at three sites preventing caspase-9 activation, and suppressing apoptosis progression. Phosphorylation of caspase-9 by PKA at the functionally relevant site Ser-183 acts as an upstream block of the apoptotic cascade, directly inactivating caspase-9 by a two-stage mechanism. First, Ser-183 phosphorylation prevents caspase-9 self-processing and directly blocks substrate binding. In addition, Ser-183 phosphorylation breaks the fundamental interactions within the caspase-9 core, promoting disassembly of the large and small subunits. This occurs despite Ser-183 being a surface residue distal from the interface between the large and small subunits. This phosphorylation-induced disassembly promotes the formation of ordered aggregates around 20 nm in diameter. Similar aggregates of caspase-9 have not been previously reported. This two-stage regulatory mechanism for caspase-9 has likewise not been reported previously but may be conserved across the caspases.
Collapse
|
30
|
Raghupathi K, Eron SJ, Anson F, Hardy JA, Thayumanavan S. Utilizing Inverse Emulsion Polymerization To Generate Responsive Nanogels for Cytosolic Protein Delivery. Mol Pharm 2017; 14:4515-4524. [PMID: 29053277 PMCID: PMC5714657 DOI: 10.1021/acs.molpharmaceut.7b00643] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Therapeutic biologics have various advantages over synthetic drugs in terms of selectivity, their catalytic nature, and, thus, therapeutic efficacy. These properties offer the potential for more effective treatments that may also overcome the undesirable side effects observed due to off-target toxicities of small molecule drugs. Unfortunately, systemic administration of biologics is challenging due to cellular penetration, renal clearance, and enzymatic degradation difficulties. A delivery vehicle that can overcome these challenges and deliver biologics to specific cellular populations has the potential for significant therapeutic impact. In this work, we describe a redox-responsive nanoparticle platform, which can encapsulate hydrophilic proteins and release them only in the presence of a reducing stimulus. We have formulated these nanoparticles using an inverse emulsion polymerization (IEP) methodology, yielding inverse nanoemulsions, or nanogels. We have demonstrated our ability to overcome the liabilities that contribute to activity loss by delivering a highly challenging cargo, functionally active caspase-3, a cysteine protease susceptible to oxidative and self-proteolytic insults, to the cytosol of HeLa cells by encapsulation inside a redox-responsive nanogel.
Collapse
Affiliation(s)
| | - Scott J. Eron
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Francesca Anson
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Jeanne A. Hardy
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003
- Center for Bioactive Delivery at the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003
- Center for Bioactive Delivery at the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
31
|
Serrano BP, Szydlo HS, Alfandari D, Hardy JA. Active site-adjacent phosphorylation at Tyr-397 by c-Abl kinase inactivates caspase-9. J Biol Chem 2017; 292:21352-21365. [PMID: 29066624 DOI: 10.1074/jbc.m117.811976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/11/2017] [Indexed: 12/11/2022] Open
Abstract
Caspase-9 (casp-9) is an initiator caspase and plays a central role in activating apoptotic cell death. Control of all caspases is tightly regulated by a series of phosphorylation events enacted by several different kinases. Caspase-9 is the most heavily phosphorylated of all caspases, with phosphorylation of at least 11 distinct residues in all three caspase-9 domains by nine kinases. Caspase-9 phosphorylation by the non-receptor tyrosine kinase c-Abl at Tyr-153 reportedly leads to caspase-9 activation. All other phosphorylation events on caspases have been shown to block proteolytic function by a number of mechanisms, so we sought to unravel the molecular mechanism of the putative caspase-9 activation by phosphorylation. Surprisingly, we observed no evidence for Tyr-153 phosphorylation of caspase-9 in vitro or in cells, suggesting that Tyr-153 is not phosphorylated by c-Abl. Instead, we identified a new site for c-Abl-mediated phosphorylation, Tyr-397. This residue is adjacent to the caspase-9 active site but, as a member of the second shell, not a residue that directly contacts substrate. Our results further indicate that Tyr-397 is the dominant site of c-Abl phosphorylation both in vitro and upon c-Abl activation in cells. Of note, phosphorylation at this site inhibits caspase-9 activity, and the bulk of the added phosphate moiety appeared to directly block substrate binding. c-Abl plays both proapoptotic and prosurvival roles, and our findings suggest that c-Abl's effects on caspase-9 activity promote the prosurvival mode.
Collapse
Affiliation(s)
| | - Hannah S Szydlo
- Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Dominique Alfandari
- Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | | |
Collapse
|
32
|
Martini C, Bédard M, Lavigne P, Denault JB. Characterization of Hsp90 Co-Chaperone p23 Cleavage by Caspase-7 Uncovers a Peptidase–Substrate Interaction Involving Intrinsically Disordered Regions. Biochemistry 2017; 56:5099-5111. [DOI: 10.1021/acs.biochem.7b00298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cyrielle Martini
- Department
of Pharmacology-Physiology and ‡Department of Biochemistry, Institut
de Pharmacologie de Sherbrooke, Université de Sherbrooke, Faculty of Medicine and Health Sciences, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Mikaël Bédard
- Department
of Pharmacology-Physiology and ‡Department of Biochemistry, Institut
de Pharmacologie de Sherbrooke, Université de Sherbrooke, Faculty of Medicine and Health Sciences, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Pierre Lavigne
- Department
of Pharmacology-Physiology and ‡Department of Biochemistry, Institut
de Pharmacologie de Sherbrooke, Université de Sherbrooke, Faculty of Medicine and Health Sciences, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Bernard Denault
- Department
of Pharmacology-Physiology and ‡Department of Biochemistry, Institut
de Pharmacologie de Sherbrooke, Université de Sherbrooke, Faculty of Medicine and Health Sciences, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
33
|
Multiple proteolytic events in caspase-6 self-activation impact conformations of discrete structural regions. Proc Natl Acad Sci U S A 2017; 114:E7977-E7986. [PMID: 28864531 DOI: 10.1073/pnas.1704640114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Caspase-6 is critical to the neurodegenerative pathways of Alzheimer's, Huntington's, and Parkinson's diseases and has been identified as a potential molecular target for treatment of neurodegeneration. Thus, understanding the global and regional changes in dynamics and conformation provides insights into the unique properties of caspase-6 that may contribute to achieving control of its function. In this work, hydrogen/deuterium exchange MS (H/DX-MS) was used to map the local changes in the conformational flexibility of procaspase-6 at the discrete states that reflect the series of cleavage events that ultimately lead to the fully active, substrate-bound state. Intramolecular self-cleavage at Asp-193 evoked higher solvent exposure in the regions of the substrate-binding loops L1, L3, and L4 and in the 130s region, the intersubunit linker region, the 26-32 region as well as in the stabilized loop 2. Additional removal of the linker allowed caspase-6 to gain more flexibility in the 130s region and in the L2 region converting caspase-6 to a competent substrate-binding state. The prodomain region was found to be intrinsically disordered independent of the activation state of caspase-6; however, its complete removal resulted in the protection of the adjacent 26-32 region, suggesting that this region may play a regulatory role. The molecular details of caspase-6 dynamics in solution provide a comprehensive scaffold for strategic design of therapeutic approaches for neurodegenerative disorders.
Collapse
|