1
|
Tian L, Li Y, Shi Y. Dark and Dronc activation in Drosophila melanogaster. Proc Natl Acad Sci U S A 2024; 121:e2312784121. [PMID: 38381783 PMCID: PMC10907274 DOI: 10.1073/pnas.2312784121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
The onset of apoptosis is characterized by a cascade of caspase activation, where initiator caspases are activated by a multimeric adaptor complex known as the apoptosome. In Drosophila melanogaster, the initiator caspase Dronc undergoes autocatalytic activation in the presence of the Dark apoptosome. Despite rigorous investigations, the activation mechanism for Dronc remains elusive. Here, we report the cryo-EM structures of an auto-inhibited Dark monomer and a single-layered, multimeric Dark/Dronc complex. Our biochemical analysis suggests that the auto-inhibited Dark oligomerizes upon binding to Dronc, which is sufficient for the activation of both Dark and Dronc. In contrast, the previously observed double-ring Dark apoptosome may represent a non-functional or "off-pathway" conformation. These findings expand our understanding on the molecular mechanism of apoptosis in Drosophila.
Collapse
Affiliation(s)
- Lu Tian
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yini Li
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yigong Shi
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake Institute for Advanced Study, Hangzhou310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou310024, China
| |
Collapse
|
2
|
Heron R, Amato C, Wood W, Davidson AJ. Understanding the diversity and dynamics of in vivo efferocytosis: Insights from the fly embryo. Immunol Rev 2023; 319:27-44. [PMID: 37589239 PMCID: PMC10952863 DOI: 10.1111/imr.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
The clearance of dead and dying cells, termed efferocytosis, is a rapid and efficient process and one that is critical for organismal health. The extraordinary speed and efficiency with which dead cells are detected and engulfed by immune cells within tissues presents a challenge to researchers who wish to unravel this fascinating process, since these fleeting moments of uptake are almost impossible to catch in vivo. In recent years, the fruit fly (Drosophila melanogaster) embryo has emerged as a powerful model to circumvent this problem. With its abundance of dying cells, specialist phagocytes and relative ease of live imaging, the humble fly embryo provides a unique opportunity to catch and study the moment of cell engulfment in real-time within a living animal. In this review, we explore the recent advances that have come from studies in the fly, and how live imaging and genetics have revealed a previously unappreciated level of diversity in the efferocytic program. A variety of efferocytic strategies across the phagocytic cell population ensure efficient and rapid clearance of corpses wherever death is encountered within the varied and complex setting of a multicellular living organism.
Collapse
Affiliation(s)
- Rosalind Heron
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Clelia Amato
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Will Wood
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Andrew J. Davidson
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
- School of Cancer SciencesWolfson Wohl Cancer Research Centre, University of GlasgowGlasgowUK
| |
Collapse
|
3
|
Förderer A, Kourelis J. NLR immune receptors: structure and function in plant disease resistance. Biochem Soc Trans 2023; 51:1473-1483. [PMID: 37602488 PMCID: PMC10586772 DOI: 10.1042/bst20221087] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are a diverse family of intracellular immune receptors that play crucial roles in recognizing and responding to pathogen invasion in plants. This review discusses the overall model of NLR activation and provides an in-depth analysis of the different NLR domains, including N-terminal executioner domains, the nucleotide-binding oligomerization domain (NOD) module, and the leucine-rich repeat (LRR) domain. Understanding the structure-function relationship of these domains is essential for developing effective strategies to improve plant disease resistance and agricultural productivity.
Collapse
Affiliation(s)
- Alexander Förderer
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
4
|
Xi Y, Cesari S, Kroj T. Insight into the structure and molecular mode of action of plant paired NLR immune receptors. Essays Biochem 2022; 66:513-526. [PMID: 35735291 PMCID: PMC9528088 DOI: 10.1042/ebc20210079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
The specific recognition of pathogen effectors by intracellular nucleotide-binding domain and leucine-rich repeat receptors (NLRs) is an important component of plant immunity. NLRs have a conserved modular architecture and can be subdivided according to their signaling domain that is mostly a coiled-coil (CC) or a Toll/Interleukin1 receptor (TIR) domain into CNLs and TNLs. Single NLR proteins are often sufficient for both effector recognition and immune activation. However, sometimes, they act in pairs, where two different NLRs are required for disease resistance. Functional studies have revealed that in these cases one NLR of the pair acts as a sensor (sNLR) and one as a helper (hNLR). The genes corresponding to such resistance protein pairs with one-to-one functional co-dependence are clustered, generally with a head-to-head orientation and shared promoter sequences. sNLRs in such functional NLR pairs have additional, non-canonical and highly diverse domains integrated in their conserved modular architecture, which are thought to act as decoys to trap effectors. Recent structure-function studies on the Arabidopsis thaliana TNL pair RRS1/RPS4 and on the rice CNL pairs RGA4/RGA5 and Pik-1/Pik-2 are unraveling how such protein pairs function together. Focusing on these model NLR pairs and other recent examples, this review highlights the distinctive features of NLR pairs and their various fascinating mode of action in pathogen effector perception. We also discuss how these findings on NLR pairs pave the way toward improved plant disease resistance.
Collapse
Affiliation(s)
- Yuxuan Xi
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Stella Cesari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
5
|
Li X, Liu Y, Liu X, Du J, Bhawal UK, Xu J, Guo L, Liu Y. Advances in the Therapeutic Effects of Apoptotic Bodies on Systemic Diseases. Int J Mol Sci 2022; 23:ijms23158202. [PMID: 35897778 PMCID: PMC9331698 DOI: 10.3390/ijms23158202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Apoptosis plays an important role in development and in the maintenance of homeostasis. Apoptotic bodies (ApoBDs) are specifically generated from apoptotic cells and can contain a large variety of biological molecules, which are of great significance in intercellular communications and the regulation of phagocytes. Emerging evidence in recent years has shown that ApoBDs are essential for maintaining homeostasis, including systemic bone density and immune regulation as well as tissue regeneration. Moreover, studies have revealed the therapeutic effects of ApoBDs on systemic diseases, including cancer, atherosclerosis, diabetes, hepatic fibrosis, and wound healing, which can be used to treat potential targets. This review summarizes current research on the generation, application, and reconstruction of ApoBDs regarding their functions in cellular regulation and on systemic diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.
Collapse
Affiliation(s)
- Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Xu Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Ujjal Kumar Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan;
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100006, China
- Correspondence: (L.G.); (Y.L.)
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
- Immunology Research Center for Oral and Systematic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Correspondence: (L.G.); (Y.L.)
| |
Collapse
|
6
|
Maruta N, Burdett H, Lim BYJ, Hu X, Desa S, Manik MK, Kobe B. Structural basis of NLR activation and innate immune signalling in plants. Immunogenetics 2022; 74:5-26. [PMID: 34981187 PMCID: PMC8813719 DOI: 10.1007/s00251-021-01242-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
Animals and plants have NLRs (nucleotide-binding leucine-rich repeat receptors) that recognize the presence of pathogens and initiate innate immune responses. In plants, there are three types of NLRs distinguished by their N-terminal domain: the CC (coiled-coil) domain NLRs, the TIR (Toll/interleukin-1 receptor) domain NLRs and the RPW8 (resistance to powdery mildew 8)-like coiled-coil domain NLRs. CC-NLRs (CNLs) and TIR-NLRs (TNLs) generally act as sensors of effectors secreted by pathogens, while RPW8-NLRs (RNLs) signal downstream of many sensor NLRs and are called helper NLRs. Recent studies have revealed three dimensional structures of a CNL (ZAR1) including its inactive, intermediate and active oligomeric state, as well as TNLs (RPP1 and ROQ1) in their active oligomeric states. Furthermore, accumulating evidence suggests that members of the family of lipase-like EDS1 (enhanced disease susceptibility 1) proteins, which are uniquely found in seed plants, play a key role in providing a link between sensor NLRs and helper NLRs during innate immune responses. Here, we summarize the implications of the plant NLR structures that provide insights into distinct mechanisms of action by the different sensor NLRs and discuss plant NLR-mediated innate immune signalling pathways involving the EDS1 family proteins and RNLs.
Collapse
Affiliation(s)
- Natsumi Maruta
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Hayden Burdett
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK
| | - Bryan Y J Lim
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiahao Hu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sneha Desa
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohammad Kawsar Manik
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
7
|
Lindblad JL, Tare M, Amcheslavsky A, Shields A, Bergmann A. Non-apoptotic enteroblast-specific role of the initiator caspase Dronc for development and homeostasis of the Drosophila intestine. Sci Rep 2021; 11:2645. [PMID: 33514791 PMCID: PMC7846589 DOI: 10.1038/s41598-021-81261-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
The initiator caspase Dronc is the only CARD-domain containing caspase in Drosophila and is essential for apoptosis. Here, we report that homozygous dronc mutant adult animals are short-lived due to the presence of a poorly developed, defective and leaky intestine. Interestingly, this mutant phenotype can be significantly rescued by enteroblast-specific expression of dronc+ in dronc mutant animals, suggesting that proper Dronc function specifically in enteroblasts, one of four cell types in the intestine, is critical for normal development of the intestine. Furthermore, enteroblast-specific knockdown of dronc in adult intestines triggers hyperplasia and differentiation defects. These enteroblast-specific functions of Dronc do not require the apoptotic pathway and thus occur in a non-apoptotic manner. In summary, we demonstrate that an apoptotic initiator caspase has a very critical non-apoptotic function for normal development and for the control of the cell lineage in the adult midgut and therefore for proper physiology and homeostasis.
Collapse
Affiliation(s)
- Jillian L Lindblad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Meghana Tare
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani, Rajasthan, 333031, India
| | - Alla Amcheslavsky
- University of Massachusetts Medical School, MassBiologics, 460 Walk Hill Road, Boston, MA, USA
| | - Alicia Shields
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Andreas Bergmann
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
8
|
Song W, Forderer A, Yu D, Chai J. Structural biology of plant defence. THE NEW PHYTOLOGIST 2021; 229:692-711. [PMID: 32880948 DOI: 10.1111/nph.16906] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Plants employ the innate immune system to discriminate between self and invaders through two types of immune receptors, one on the plasma membrane and the other in the intracellular space. The immune receptors on the plasma membrane are pattern recognition receptors (PRRs) that can perceive pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs) leading to pattern-triggered immunity (PTI). Particular pathogens are capable of overcoming PTI by secreting specific effectors into plant cells to perturb different components of PTI signalling through various mechanisms. Most of the immune receptors from the intracellular space are the nucleotide-binding leucine-rich repeat receptors (NLRs), which specifically recognize pathogen-secreted effectors to mediate effector-triggered immunity (ETI). In this review, we will summarize recent progress in structural studies of PRRs, NLRs, and effectors, and discuss how these studies shed light on ligand recognition and activation mechanisms of the two types of immune receptors and the diversified mechanisms used by effectors to manipulate plant immune signalling.
Collapse
Affiliation(s)
- Wen Song
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| | - Alexander Forderer
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| | - Dongli Yu
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| | - Jijie Chai
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50923, Germany
| |
Collapse
|
9
|
Arthurton L, Nahotko DA, Alonso J, Wendler F, Baena‐Lopez LA. Non-apoptotic caspase activation preserves Drosophila intestinal progenitor cells in quiescence. EMBO Rep 2020; 21:e48892. [PMID: 33135280 PMCID: PMC7726796 DOI: 10.15252/embr.201948892] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Caspase malfunction in stem cells often precedes the appearance and progression of multiple types of cancer, including human colorectal cancer. However, the caspase-dependent regulation of intestinal stem cell properties remains poorly understood. Here, we demonstrate that Dronc, the Drosophila ortholog of caspase-9/2 in mammals, limits the number of intestinal progenitor cells and their entry into the enterocyte differentiation programme. Strikingly, these unexpected roles for Dronc are non-apoptotic and have been uncovered under experimental conditions without epithelial replenishment. Supporting the non-apoptotic nature of these functions, we show that they require the enzymatic activity of Dronc, but are largely independent of the apoptotic pathway. Alternatively, our genetic and functional data suggest that they are linked to the caspase-mediated regulation of Notch signalling. Our findings provide novel insights into the non-apoptotic, caspase-dependent modulation of stem cell properties that could improve our understanding of the origin of intestinal malignancies.
Collapse
Affiliation(s)
- Lewis Arthurton
- Sir William Dunn School of PathologyUniversity of OxfordOxfordshireUK
| | | | - Jana Alonso
- Laboratorio de Agrobiología Juan José Bravo Rodríguez (Cabildo Insular de La Palma)Unidad Técnica del IPNA‐CSICSanta Cruz de La PalmaSpain
| | - Franz Wendler
- Sir William Dunn School of PathologyUniversity of OxfordOxfordshireUK
| | | |
Collapse
|
10
|
Noori AR, Tashakor A, Nikkhah M, Eriksson LA, Hosseinkhani S, Fearnhead HO. Loss of WD2 subdomain of Apaf-1 forms an apoptosome structure which blocks activation of caspase-3 and caspase-9. Biochimie 2020; 180:23-29. [PMID: 33132160 DOI: 10.1016/j.biochi.2020.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022]
Abstract
Split luciferase complementary assay has been used to investigate the effect of WD domain deletion on Apaf-1 oligomerization. Apaf-1 is an adaptor molecule in formation of apoptosome that activates caspase-9, an activation that is a key event in the mitochondrial cell death pathway. Structural studies suggest that normally Apaf-1 is held in an inactive conformation by intramolecular interactions between Apaf-1's nucleotide binding domain and one of its WD40 domains (WD1). In the prevailing model of Apaf-1 activation, cytochrome c binds to sites in WD1 and in Apaf-1's second WD40 domain (WD2), moving WD1 and WD2 closer together and rotating WD1 away from the nucleotide binding domain. This allows Apaf-1 to bind dATP or ATP and to form the apoptosome, which activates caspase-9. This model predicts that cytochrome c binding to both WD domains is necessary for apoptosome formation and that an Apaf-1 with only WD1 will be locked in an inactive conformation that cannot be activated by cytochrome c. Here we investigated the effect of removing one WD domain (Apaf-1 1-921) on Apaf-1 interactions and caspase activation. Apaf-1 1-921 could not activate caspase-9, even in the presence of cytochrome c. These data show that a single WD domain is sufficient to lock Apaf-1 in an inactive state and this state cannot be altered by cytochrome c.
Collapse
Affiliation(s)
- Ali-Reza Noori
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Tashakor
- Pharmacology and Therapeutics, School of Medicine, NUI Galway, Galway, Ireland
| | - Maryam Nikkhah
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Howard O Fearnhead
- Pharmacology and Therapeutics, School of Medicine, NUI Galway, Galway, Ireland
| |
Collapse
|
11
|
Diversity in the intrinsic apoptosis pathway of nematodes. Commun Biol 2020; 3:478. [PMID: 32859965 PMCID: PMC7456325 DOI: 10.1038/s42003-020-01208-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/03/2020] [Indexed: 11/08/2022] Open
Abstract
Early studies of the free-living nematode C. elegans informed us how BCL-2-regulated apoptosis in humans is regulated. However, subsequent studies showed C. elegans apoptosis has several unique features compared with human apoptosis. To date, there has been no detailed analysis of apoptosis regulators in nematodes other than C. elegans. Here, we discovered BCL-2 orthologues in 89 free-living and parasitic nematode taxa representing four evolutionary clades (I, III, IV and V). Unlike in C. elegans, 15 species possess multiple (two to five) BCL-2-like proteins, and some do not have any recognisable BCL-2 sequences. Functional studies provided no evidence that BAX/BAK proteins have evolved in nematodes, and structural studies of a BCL-2 protein from the basal clade I revealed it lacks a functionally important feature of the C. elegans orthologue. Clade I CED-4/APAF-1 proteins also possess WD40-repeat sequences associated with apoptosome assembly, not present in C. elegans, or other nematode taxa studied.
Collapse
|
12
|
Animal NLRs continue to inform plant NLR structure and function. Arch Biochem Biophys 2019; 670:58-68. [PMID: 31071301 DOI: 10.1016/j.abb.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/10/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022]
Abstract
Plant NLRs share many of the structural hallmarks of their animal counterparts. At a functional level, the central nucleotide-binding pocket appears to have binding and hydrolysis activities, similar to that of animal NLRs. The TIR domains of plant NLRs have been shown to self-associate, and there is emerging evidence that full-length plant NLRs may do so as well. It is therefore tempting to speculate that plant NLRs may form higher-order complexes similar to those of the mammalian inflammasome. Here we review the available knowledge on structure-function relationships in plant NLRs, focusing on how the information available on animal NLRs informs the mechanism of plant NLR function, and highlight the evidence that innate immunity signalling pathways in multicellular organisms often require the formation of higher-order protein complexes.
Collapse
|
13
|
Structural Biology of NOD-Like Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:119-141. [DOI: 10.1007/978-981-13-9367-9_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Wróblewski T, Spiridon L, Martin EC, Petrescu AJ, Cavanaugh K, Truco MJ, Xu H, Gozdowski D, Pawłowski K, Michelmore RW, Takken FL. Genome-wide functional analyses of plant coiled-coil NLR-type pathogen receptors reveal essential roles of their N-terminal domain in oligomerization, networking, and immunity. PLoS Biol 2018; 16:e2005821. [PMID: 30540748 PMCID: PMC6312357 DOI: 10.1371/journal.pbio.2005821] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 12/31/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
The ability to induce a defense response after pathogen attack is a critical feature of the immune system of any organism. Nucleotide-binding leucine-rich repeat receptors (NLRs) are key players in this process and perceive the occurrence of nonself-activities or foreign molecules. In plants, coevolution with a variety of pests and pathogens has resulted in repertoires of several hundred diverse NLRs in single individuals and many more in populations as a whole. However, the mechanism by which defense signaling is triggered by these NLRs in plants is poorly understood. Here, we show that upon pathogen perception, NLRs use their N-terminal domains to transactivate other receptors. Their N-terminal domains homo- and heterodimerize, suggesting that plant NLRs oligomerize upon activation, similar to the vertebrate NLRs; however, consistent with their large number in plants, the complexes are highly heterometric. Also, in contrast to metazoan NLRs, the N-terminus, rather than their centrally located nucleotide-binding (NB) domain, can mediate initial partner selection. The highly redundant network of NLR interactions in plants is proposed to provide resilience to perturbation by pathogens.
Collapse
Affiliation(s)
- Tadeusz Wróblewski
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Laurentiu Spiridon
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Eliza Cristina Martin
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Keri Cavanaugh
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Maria José Truco
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Huaqin Xu
- The Genome Center, University of California–Davis, Davis, California, United States of America
| | - Dariusz Gozdowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Richard W. Michelmore
- The Genome Center, University of California–Davis, Davis, California, United States of America
- Departments of Plant Sciences, Molecular & Cellular Biology, and Medical Microbiology & Immunology, University of California–Davis, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California–Davis, Davis, California, United States of America
| | - Frank L.W. Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Dorstyn L, Akey CW, Kumar S. New insights into apoptosome structure and function. Cell Death Differ 2018; 25:1194-1208. [PMID: 29765111 PMCID: PMC6030056 DOI: 10.1038/s41418-017-0025-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 02/08/2023] Open
Abstract
The apoptosome is a platform that activates apical procaspases in response to intrinsic cell death signals. Biochemical and structural studies in the past two decades have extended our understanding of apoptosome composition and structure, while illuminating the requirements for initiator procaspase activation. A number of studies have now provided high-resolution structures for apoptosomes from C. elegans (CED-4), D. melanogaster (Dark), and H. sapiens (Apaf-1), which define critical protein interfaces, including intra and interdomain interactions. This work also reveals interactions of apoptosomes with their respective initiator caspases, CED-3, Dronc and procaspase-9. Structures of the human apoptosome have defined the requirements for cytochrome c binding, which triggers the conversion of inactive Apaf-1 molecules to an extended, assembly competent state. While recent data have provided a detailed understanding of apoptosome formation and procaspase activation, they also highlight important evolutionary differences with functional implications for caspase activation. Comparison of the CARD/CARD disks and apoptosomes formed by CED-4, Dark and Apaf-1. Cartoons of the active states of the CARD-CARD disks, illustrating the two CED-4 CARD tetrameric ring layers (CED4a and CED4b; top row) and the binding of 8 Dronc CARDs and between 3-4 pc-9 CARDs, to the Dark and Apaf-1 CARD disk respectively (middle and lower rows). Ribbon diagrams of the active CED-4, Dark and Apaf-1 apoptosomes are shown (right column).
Collapse
Affiliation(s)
- Loretta Dorstyn
- Center for Cancer Biology, University of South Australia and SA Pathology, Frome Road, Adelaide, SA, 5001, Australia.
| | - Christopher W Akey
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Sharad Kumar
- Center for Cancer Biology, University of South Australia and SA Pathology, Frome Road, Adelaide, SA, 5001, Australia.
| |
Collapse
|
16
|
Starfish Apaf-1 activates effector caspase-3/9 upon apoptosis of aged eggs. Sci Rep 2018; 8:1611. [PMID: 29371610 PMCID: PMC5785508 DOI: 10.1038/s41598-018-19845-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/09/2018] [Indexed: 11/29/2022] Open
Abstract
Caspase-3-related DEVDase activity is initiated upon apoptosis in unfertilized starfish eggs. In this study, we cloned a starfish procaspase-3 corresponding to mammalian effector caspase containing a CARD that is similar to the amino terminal CARD of mammalian capsase-9, and we named it procaspase-3/9. Recombinant procaspase-3/9 expressed at 15 °C was cleaved to form active caspase-3/9 which has DEVDase activity. Microinjection of the active caspase-3/9 into starfish oocytes/eggs induced apoptosis. An antibody against the recombinant protein recognized endogenous procaspase-3/9 in starfish oocytes, which was cleaved upon apoptosis in aged unfertilized eggs. These results indicate that caspase-3/9 is an effector caspase in starfish. To verify the mechanism of caspase-3/9 activation, we cloned starfish Apaf-1 containing a CARD, a NOD, and 11 WD40 repeat regions, and we named it sfApaf-1. Recombinant sfApaf-1 CARD interacts with recombinant caspase-3/9 CARD and with endogenous procaspase-3/9 in cell-free preparations made from starfish oocytes, causing the formation of active caspase-3/9. When the cell-free preparation without mitochondria was incubated with inactive recombinant procaspase-3/9 expressed at 37 °C, DEVDase activity increased and apoptosome-like complexes were formed in the high molecular weight fractions containing both sfApaf-1 and cleaved caspase-3/9. These results suggest that sfApaf-1 activation is not dependent on cytochrome c.
Collapse
|
17
|
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 2017; 117:13382-13460. [DOI: 10.1021/acs.chemrev.7b00257] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Luciana Hannibal
- Department
of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg 79106, Germany
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Santiago Oviedo-Rouco
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Veronica Demicheli
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Veronica Tórtora
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Florencia Tomasina
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
18
|
Proapoptotic function of deubiquitinase DUSP31 in Drosophila. Oncotarget 2017; 8:70452-70462. [PMID: 29050293 PMCID: PMC5642568 DOI: 10.18632/oncotarget.19715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/26/2017] [Indexed: 11/25/2022] Open
Abstract
Drosophila have been used to identify new components in apoptosis regulation. The Drosophila protein Dark forms an octameric apoptosome complex that induces the initiator caspase Dronc to trigger the caspase cell death pathway and, therefore, plays an important role in controlling apoptosis. Caspases and Dark are constantly expressed in cells, but their activity is blocked by DIAP1 E3 ligase-mediated ubiquitination and subsequent inactivation or proteasomal degradation. One of the regulatory mechanisms that stabilize proapoptotic factors is the removal of ubiquitin chains by deubiquitinases. In this study performed a modified genetic screen for deubiquitinases (dsRNA lines) to identify those involved in stabilizing proapoptotic components. Loss-of-function alleles of deubiquitinase DUSP31 were identified as suppressors of the Dronc overexpression phenotype. DUSP31 deficiency also suppresses apoptosis induced by the RHG protein, Grim. Genetic analysis revealed for the first time that DUSP31 deficiency sufficiently suppresses the Dark phenotype, indicating its involvement in the control of Dark/Dronc apoptosome function in invertebrate apoptosis.
Collapse
|