1
|
Salamh S, Sayyed-Ahmad A. Investigating the effects of cysteine-118 oxidation on G12D KRas structure and dynamics: insights from MD simulations. J Biomol Struct Dyn 2024; 42:6968-6981. [PMID: 37480262 DOI: 10.1080/07391102.2023.2238080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Mutations of Ras proteins are believed to be among the most prominent causes of cancer. There is increasing evidence that the activity of Ras may be controlled by the redox state of cysteine residues located within the NKCD motif. This redox signaling is critical to both physiological and pathological processes and occurs when C118 is oxidized in a reversible manner. In this study, we used atomistic molecular dynamics simulations and Markov state models to investigate the structural and conformational effects of C118 oxidation on the oncogenic mutant KRas(G12D). While both mutants share common features and exhibit some distinct conformational states and fluctuations, we have found that the oxidized variant KRas(G12D/C118SOH) is more dynamic than the unoxidized counterpart, particularly in the switch II region. Additionally, C118 oxidation is found to alter the structure of the nucleotide-binding site and the switch regions as well as perturb the conformational equilibrium between Ras active and inactive states. These conformational preferences may alter the affinity to different effectors, resulting in selective downstream activation. Our results are anticipated to help future drug development efforts aimed at KRAS-related anticancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shimaa Salamh
- Department of Physics, Birzeit University, Birzeit, Palestine
| | | |
Collapse
|
2
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
3
|
Shi S, Zheng L, Ren Y, Wang Z. Impacts of Mutations in the P-Loop on Conformational Alterations of KRAS Investigated with Gaussian Accelerated Molecular Dynamics Simulations. Molecules 2023; 28:molecules28072886. [PMID: 37049650 PMCID: PMC10095679 DOI: 10.3390/molecules28072886] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
G12 mutations heavily affect conformational transformation and activity of KRAS. In this study, Gaussian accelerated molecular dynamics (GaMD) simulations were performed on the GDP-bound wild-type (WT), G12A, G12D, and G12R KRAS to probe mutation-mediated impacts on conformational alterations of KRAS. The results indicate that three G12 mutations obviously affect the structural flexibility and internal dynamics of the switch domains. The analyses of the free energy landscapes (FELs) suggest that three G12 mutations induce more conformational states of KRAS and lead to more disordered switch domains. The principal component analysis shows that three G12 mutations change concerted motions and dynamics behavior of the switch domains. The switch domains mostly overlap with the binding region of KRAS to its effectors. Thus, the high disorder states and concerted motion changes of the switch domains induced by G12 mutations affect the activity of KRAS. The analysis of interaction network of GDP with KRAS signifies that the instability in the interactions of GDP and magnesium ion with the switch domain SW1 drives the high disordered state of the switch domains. This work is expected to provide theoretical aids for understanding the function of KRAS.
Collapse
Affiliation(s)
- Shuhua Shi
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Linqi Zheng
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Yonglian Ren
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Ziyu Wang
- School of Science, Shandong Jianzhu University, Jinan 250101, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
4
|
Leini R, Pantsar T. In Silico Evaluation of the Thr58-Associated Conserved Water with KRAS Switch-II Pocket Binders. J Chem Inf Model 2023; 63:1490-1505. [PMID: 36854010 PMCID: PMC10015465 DOI: 10.1021/acs.jcim.2c01479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The KRAS switch-II pocket (SII-P) has proven to be one of the most successful tools for targeting KRAS with small molecules to date. This has been demonstrated with several KRAS(G12C)-targeting covalent inhibitors, already resulting in two FDA-approved drugs. Several earlier-stage compounds have also been reported to engage KRAS SII-P with other position 12 mutants, including G12D, G12S, and G12R. A highly conserved water molecule exists in the KRAS SII-P, linking Thr58 of switch-II and Gly10 of β1 sheet. This conserved water is also present in the cocrystal structures of most of the disclosed small-molecule inhibitors but is only displaced by a handful of SII-P binders. Here, we evaluated the conserved water molecule energetics by the WaterMap for the SII-P binders with publicly disclosed structures and studied the water behavior in the presence of selected inhibitors by microsecond timescale molecular dynamics (MD) simulations using two water models (total simulation time of 120 μs). Our data revealed the high-energy nature of this hydration site when coexisting with an SII-P binder and that there is a preference for a single isolated hydration site in this location within the most advanced compounds. Furthermore, water displacement was only achieved with a few disclosed compounds and was suboptimal, as for instance a cyanomethyl group as a water displacer appears to introduce repulsion with the native conformation of Thr58. These results suggested that this conserved water should be considered more central when designing new inhibitors, especially in the design of noncovalent inhibitors targeting the SII-P.
Collapse
Affiliation(s)
- Renne Leini
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - Tatu Pantsar
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| |
Collapse
|
5
|
Li Y, Luo Z, Wang X, Zhang S, Hei H, Qin J. Design of new drugs for medullary thyroid carcinoma. Front Oncol 2022; 12:993725. [PMID: 36544713 PMCID: PMC9760674 DOI: 10.3389/fonc.2022.993725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/18/2022] [Indexed: 12/08/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is one of the common malignant endocrine tumors, which seriously affects human health. Although surgical resection offers a potentially curative therapeutic option to some MTC patients, most patients do not benefit from it due to the difficulty to access the tumors and tumor metastasis. The survival rate of MTC patients has improved with the recent advances in the research, which has improved our understanding of the molecular mechanism underlying MTC and enabled the development and approval of novel targeted drugs. In this article, we reviewed the molecular mechanisms related to MTC progression and the principle for the design of molecular targeted drugs, and proposed some future directions for prospective studies exploring targeted drugs for MTC.
Collapse
Affiliation(s)
- Yanqing Li
- Department of Thyroid and Neck, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,The Medical School of Zhengzhou University, Zhengzhou, China
| | - Ziyu Luo
- Department of Thyroid and Neck, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,The Medical School of Zhengzhou University, Zhengzhou, China
| | - Xinxing Wang
- Department of Pain and Rehabilitation and Palliative Medicine, Henan Cancer Hospital, Zhengzhou, China,*Correspondence: Songtao Zhang, ; Hu Hei, ; Jianwu Qin, ; Xinxing Wang,
| | - Songtao Zhang
- Department of Thyroid and Neck, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,The Medical School of Zhengzhou University, Zhengzhou, China,*Correspondence: Songtao Zhang, ; Hu Hei, ; Jianwu Qin, ; Xinxing Wang,
| | - Hu Hei
- Department of Thyroid and Neck, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,The Medical School of Zhengzhou University, Zhengzhou, China,*Correspondence: Songtao Zhang, ; Hu Hei, ; Jianwu Qin, ; Xinxing Wang,
| | - Jianwu Qin
- Department of Thyroid and Neck, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,The Medical School of Zhengzhou University, Zhengzhou, China,*Correspondence: Songtao Zhang, ; Hu Hei, ; Jianwu Qin, ; Xinxing Wang,
| |
Collapse
|
6
|
Issahaku AR, Salifu EY, Soliman MES. Inside the cracked kernel: establishing the molecular basis of AMG510 and MRTX849 in destabilising KRASG12C mutant switch I and II in cancer treatment. J Biomol Struct Dyn 2022:1-13. [PMID: 35543250 DOI: 10.1080/07391102.2022.2074141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Kirsten rat sarcoma oncoprotein (KRAS) has been punctuated by drug development failures for decades due to frequent mutations that occur mostly at codon 12 and the seemingly intractable targeting of the protein. However, with advances in covalent targeting, the oncoprotein is being expunged from the 'undruggable' list of proteins. This feat has seen some covalent drugs at different stages of clinical trials. The advancement of AMG510 and MRTX849 as inhibitors of cysteine mutated KRAS (KRASG12C) to phase-III clinical trials informed the biased selection of AMG510 and MRTX849 for this study. Despite this advance, the molecular and atomistic modus operandi of these drugs is yet to come to light. In this study, we employed computational tools to unravel the atomistic interactions and subsequent conformational effects of AMG510 and MRTX849 on the mutant KRASG12C. It was revealed that AMG510 and MRTX849 complexes presented similar total free binding energies, (ΔGbind), of -88.15 ± 5.96 kcal/mol and -88.71 ± 7.70 kcal/mol, respectively. Gly10, Lys16, Thr58, Gly60, Glu62, Glu63, Arg68, Asp69, Met72, His95, Tyr96, Gln99, Arg102 and Val103 interacted prominently with AMG510 and MRTX849. These residues interacted with the pharmacophoric moieties of AMG510 and MRTX849 via hydrogen bonds with decreasing bond lengths at various stages of the simulation. These interactions together with pi-pi stacking, pi-sigma and pi-alkyl interactions induced unfolding of switch I whiles compacting switch II, which could interrupt the binding of effector proteins to these interfaces. These insights present useful atomistic perspectives into the success of AMG510 and MRTX849 which could guide the design of more selective and potent KRAS inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdul Rashid Issahaku
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Elliasu Y Salifu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
KRAS(G12D) can be targeted by potent inhibitors via formation of salt bridge. Cell Discov 2022; 8:5. [PMID: 35075146 PMCID: PMC8786924 DOI: 10.1038/s41421-021-00368-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
KRAS mutation occurs in nearly 30% of human cancers, yet the most prevalent and oncogenic KRAS(G12D) variant still lacks inhibitors. Herein, we designed a series of potent inhibitors that can form a salt bridge with KRAS’s Asp12 residue. Our ITC results show that these inhibitors have similar binding affinity with both GDP-bound and GTP-bound KRAS(G12D), and our crystallographic studies reveal the structural basis of inhibitor binding-induced switch-II pocket in KRAS(G12D), experimentally confirming the formation of a salt bridge between the piperazine moiety of the inhibitors and the Asp12 residue of the mutant protein. Among KRAS family proteins and mutants, both ITC and enzymatic assays demonstrate the selectivity of the inhibitors for KRAS(G12D); and the inhibitors disrupt the KRAS–CRAF interaction. We also observed the inhibition of cancer cell proliferation as well as MAPK signaling by a representative inhibitor (TH-Z835). However, since the inhibition was not fully dependent on KRAS mutation status, it is possible that our inhibitors may have off-target effects via targeting non-KRAS small GTPases. Experiments with mouse xenograft models of pancreatic cancer showed that TH-Z835 significantly reduced tumor volume and synergized with an anti-PD-1 antibody. Collectively, our study demonstrates proof-of-concept for a strategy based on salt-bridge and induced-fit pocket formation for KRAS(G12D) targeting, which warrants future medicinal chemistry efforts for optimal efficacy and minimized off-target effects.
Collapse
|
8
|
Mysore VP, Zhou ZW, Ambrogio C, Li L, Kapp JN, Lu C, Wang Q, Tucker MR, Okoro JJ, Nagy-Davidescu G, Bai X, Plückthun A, Jänne PA, Westover KD, Shan Y, Shaw DE. A structural model of a Ras-Raf signalosome. Nat Struct Mol Biol 2021; 28:847-857. [PMID: 34625747 PMCID: PMC8643099 DOI: 10.1038/s41594-021-00667-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/25/2021] [Indexed: 01/29/2023]
Abstract
The protein K-Ras functions as a molecular switch in signaling pathways regulating cell growth. In the human mitogen-activated protein kinase (MAPK) pathway, which is implicated in many cancers, multiple K-Ras proteins are thought to assemble at the cell membrane with Ras effector proteins from the Raf family. Here we propose an atomistic structural model for such an assembly. Our starting point was an asymmetric guanosine triphosphate-mediated K-Ras dimer model, which we generated using unbiased molecular dynamics simulations and verified with mutagenesis experiments. Adding further K-Ras monomers in a head-to-tail fashion led to a compact helical assembly, a model we validated using electron microscopy and cell-based experiments. This assembly stabilizes K-Ras in its active state and presents composite interfaces to facilitate Raf binding. Guided by existing experimental data, we then positioned C-Raf, the downstream kinase MEK1 and accessory proteins (Galectin-3 and 14-3-3σ) on and around the helical assembly. The resulting Ras-Raf signalosome model offers an explanation for a large body of data on MAPK signaling.
Collapse
Affiliation(s)
| | - Zhi-Wei Zhou
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chiara Ambrogio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonas N Kapp
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Chunya Lu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- D. E. Shaw Research, New York, NY, USA
| | | | - Jeffrey J Okoro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Xiaochen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - David E Shaw
- D. E. Shaw Research, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Huang M, Wang Y. GLOBAL AND TARGETED PROFILING OF GTP-BINDING PROTEINS IN BIOLOGICAL SAMPLES BY MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:215-235. [PMID: 32519381 PMCID: PMC7725852 DOI: 10.1002/mas.21637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 05/05/2023]
Abstract
GTP-binding proteins are among the most important enzyme families that are involved in a plethora of biological processes. However, owing to the enormous diversity of the nucleotide-binding protein family, comprehensive analyses of the expression level, structure, activity, and regulatory mechanisms of GTP-binding proteins remain challenging with the use of conventional approaches. The many advances in mass spectrometry (MS) instrumentation and data acquisition methods, together with a variety of enrichment approaches in sample preparation, render MS a powerful tool for the comprehensive characterizations of the activities and expression levels of various GTP-binding proteins. We review herein the recent developments in the application of MS-based techniques, together with general and widely used affinity enrichment approaches, for the proteome-wide and targeted capture, identification, and quantification of GTP-binding proteins. The working principles, advantages, and limitations of various strategies for profiling the expression level, activity, posttranslational modifications, and interactome of GTP-binding proteins are discussed. It can be envisaged that future applications of MS-based proteomics will lead to a better understanding about the roles of GTP-binding proteins in different biological processes and human diseases. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Ming Huang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
- Correspondence author: Yinsheng Wang. Telephone: (951)827-2700;
| |
Collapse
|
10
|
Ganaie AA, Siddique HR, Sheikh IA, Parray A, Wang L, Panyam J, Villalta PW, Deng Y, Konety BR, Saleem M. A novel terpenoid class for prevention and treatment of KRAS-driven cancers: Comprehensive analysis using in situ, in vitro, and in vivo model systems. Mol Carcinog 2020; 59:886-896. [PMID: 32291806 PMCID: PMC7334075 DOI: 10.1002/mc.23200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Inhibiting the disease progression in KRAS-driven cancers after diagnosis has been a difficult task for clinicians to manage due to the lack of effective intervention/preventive therapies. KRAS-driven cancers depend on sustained KRAS signaling. Although developing inhibitors of KRAS signaling has proven difficult in the past, the quest for identifying newer agents has not stopped. Based on studies showing terpenoids as modulators of KRAS-regulated downstream molecular pathways, we asked if this chemical family has an affinity of inhibiting KRAS protein activity. Using crystal structure as a bait in silico, we identified 20 terpenoids for their KRAS protein-binding affinity. We next carried out biological validation of in silico data by employing in situ, in vitro, patient-derived explant ex vivo, and KPC transgenic mouse models. In this report, we provide a comprehensive analysis of a lup-20(29)-en-3b-ol (lupeol) as a KRAS inhibitor. Using nucleotide exchange, isothermal titration calorimetry, differential scanning fluorimetry, and immunoprecipitation assays, we show that lupeol has the potential to reduce the guanosine diphosphate/guanosine triphosphate exchange of KRAS protein including mutant KRASG12V . Lupeol treatment inhibited the KRAS activation in KRAS-activated cell models (NIH-panel, colorectal, lung, and pancreatic intraepithelial neoplasia) and patient tumor explants ex vivo. Lupeol reduced the three-dimensional growth of KRAS-activated cells. The pharmacokinetic analysis showed the bioavailability of lupeol after consumption via oral and intraperitoneal routes in animals. Tested under prevention settings, the lupeol consumption inhibited the development of pancreatic intraepithelial neoplasia in LSL-KRASG12D/Pdx-cre mice (pancreatic ductal adenocarcinoma progression model). These data suggest that the selected members of the triterpene family (such as lupeol) could be exploited as clinical agents for preventing the disease progression in KRAS-driven cancers which however warrants further investigation.
Collapse
Affiliation(s)
- Arsheed A. Ganaie
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Hifzur R. Siddique
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Department of Zoology, Aligarh Muslim University, India
| | - Ishfaq A. Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aijaz Parray
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Academic Health Systems Hamad Medical Corporation, Doha, Qatar
| | | | - Jayanth Panyam
- School of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Peter W. Villalta
- Analytical Chemistry Core, Masonic Cancer Center, University of Minnesota, MN
| | - Yibin Deng
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Badrinath R. Konety
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Mohammad Saleem
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
11
|
KRAS(G12C)-AMG 510 interaction dynamics revealed by all-atom molecular dynamics simulations. Sci Rep 2020; 10:11992. [PMID: 32686745 PMCID: PMC7371895 DOI: 10.1038/s41598-020-68950-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/03/2020] [Indexed: 01/02/2023] Open
Abstract
The first KRAS(G12C) targeting inhibitor in clinical development, AMG 510, has shown promising antitumor activity in clinical trials. On the molecular level, however, the interaction dynamics of this covalently bound drug–protein complex has been undetermined. Here, we disclose the interaction dynamics of the KRAS(G12C)–AMG 510 complex by long timescale all-atom molecular dynamics (MD) simulations (total of 75 μs). Moreover, we investigated the influence of the recently reported post-translational modification (PTM) of KRAS’ N-terminus, removal of initiator methionine (iMet1) with acetylation of Thr2, to this complex. Our results demonstrate that AMG 510 does not entrap KRAS into a single conformation, as one would expect based on the crystal structure, but rather into an ensemble of conformations. AMG 510 binding is extremely stable regardless of highly dynamic interface of KRAS’ switches. Overall, KRAS(G12C)–AMG 510 complex partially mimic the native dynamics of GDP bound KRAS; however, AMG 510 stabilizes the α3-helix region. N-terminally modified KRAS displays similar interaction dynamics with AMG 510 as when Met1 is present, but this PTM appears to stabilize β2–β3-loop. These results provide novel conformational insights on the molecular level to KRAS(G12C)–AMG 510 interactions and dynamics, providing new perspectives to RAS related drug discovery.
Collapse
|
12
|
Wei L, Wen W, Rao L, Huang Y, Lei M, Liu K, Hu S, Song R, Ren Y, Wan J. Cov_FB3D: A De Novo Covalent Drug Design Protocol Integrating the BA-SAMP Strategy and Machine-Learning-Based Synthetic Tractability Evaluation. J Chem Inf Model 2020; 60:4388-4402. [PMID: 32233478 DOI: 10.1021/acs.jcim.9b01197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
De novo drug design actively seeks to use sets of chemical rules for the fast and efficient identification of structurally new chemotypes with the desired set of biological properties. Fragment-based de novo design tools have been successfully applied in the discovery of noncovalent inhibitors. Nevertheless, these tools are rarely applied in the field of covalent inhibitor design. Herein, we present a new protocol, called Cov_FB3D, which involves the in silico assembly of potential novel covalent inhibitors by identifying the active fragments in the covalently binding site of the target protein. In this protocol, we propose a BA-SAMP strategy, which combines the noncovalent moiety score with the X-Score as the molecular mechanism (MM) level, and the covalent candidate score with the PM7 as the QM level. The synthetic accessibility of each suggested compound could be further evaluated with machine-learning-based synthetic complexity evaluation (SCScore). An in-depth test of this protocol against the crystal structures of 15 covalent complexes consisting of BTK inhibitors, KRAS inhibitors, EGFR inhibitors, EphB1 inhibitors, MAGL inhibitors, and MAPK inhibitors revealed that most of these inhibitors could be de novo reproduced from the fragments by Cov_FB3D. The binding modes of most generated reference poses could accurately reproduce the known binding mode of most of the reference covalent adduct in the binding site (RMSD ≤ 2 Å). In particular, most of these inhibitors were ranked in the top 2%, using the BA-SAMP strategy. Notably, the novel human ALDOA inhibitor (T1) with potent inhibitory activity (0.34 ± 0.03 μM) and greater synthetic accessibility was successfully de novo designed by this protocol. The positive results confirm the abilities of Cov_FB3D protocol.
Collapse
Affiliation(s)
- Lin Wei
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Wuqiang Wen
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yunyuan Huang
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengting Lei
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, People's Republic of China
| | - Saiya Hu
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Rongrong Song
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanliang Ren
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian Wan
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
13
|
Pantsar T. The current understanding of KRAS protein structure and dynamics. Comput Struct Biotechnol J 2019; 18:189-198. [PMID: 31988705 PMCID: PMC6965201 DOI: 10.1016/j.csbj.2019.12.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 01/10/2023] Open
Abstract
One of the most common drivers in human cancer is the mutant KRAS protein. Not so long ago KRAS was considered as an undruggable oncoprotein. After a long struggle, however, we finally see some light at the end of the tunnel as promising KRAS targeted therapies are in or approaching clinical trials. In recent years, together with the promising progress in RAS drug discovery, our understanding of KRAS has increased tremendously. This progress has been accompanied with a resurgence of publicly available KRAS structures, which were limited to nine structures less than ten years ago. Furthermore, the ever-increasing computational capacity has made biologically relevant timescales accessible, enabling molecular dynamics (MD) simulations to study the dynamics of KRAS protein in more detail at the atomistic level. In this minireview, my aim is to provide the reader an overview of the publicly available KRAS structural data, insights to conformational dynamics revealed by experiments and what we have learned from MD simulations. Also, I will discuss limitations of the current data and provide suggestions for future research related to KRAS, which would fill out the existing gaps in our knowledge and provide guidance in deciphering this enigmatic oncoprotein.
Collapse
Affiliation(s)
- Tatu Pantsar
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| |
Collapse
|
14
|
Chabrol E, Stojko J, Nicolas A, Botzanowski T, Fould B, Antoine M, Cianférani S, Ferry G, Boutin JA. VHH characterization.Recombinant VHHs: Production, characterization and affinity. Anal Biochem 2019; 589:113491. [PMID: 31676284 DOI: 10.1016/j.ab.2019.113491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/19/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Among the biological approaches to therapeutics, are the cells, such as CAR-T cells engineered or not, the antibodies armed or not, and the smaller protein scaffolds that can be modified to render them specific of other proteins, à la façon of antibodies. For several years, we explored ways to substitute antibodies by nanobodies (also known as VHHs), the smallest recognizing part of camelids' heavy-chain antibodies: production of those small proteins in host microorganisms, minute analyses, characterization, and qualification of their affinity towards designed targets. Here, we present three standard VHHs described in the literature: anti-albumin, anti-EGF receptor and anti-HER2, a typical cancer cell surface -associated protein. Because they differ slightly in global structure, they are good models to assess our body of analytical methodologies. The VHHs were expressed in several bacteria strains in order to identify and overcome the bottlenecks to obtain homogeneous preparations of this protein. A large panel of biophysical tools, ranging from spectroscopy to mass spectrometry, was here combined to assess VHH structural features and the impact of the disulfide bond. The routes are now ready to move to more complex VHHs raised against specific targets in numerous areas including oncology.
Collapse
Affiliation(s)
- Eric Chabrol
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Johann Stojko
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Alexandre Nicolas
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, 67000, Strasbourg, France
| | - Benjamin Fould
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Mathias Antoine
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR 7178, 67000, Strasbourg, France
| | - Gilles Ferry
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France.
| | - Jean A Boutin
- PEX Biotechnologies, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France; Institut de Recherches Internationales Servier, 50 rue Carnot, 92284, Suresnes Cedex, France.
| |
Collapse
|
15
|
Bera AK, Lu J, Wales TE, Gondi S, Gurbani D, Nelson A, Engen JR, Westover KD. Structural basis of the atypical activation mechanism of KRAS V14I. J Biol Chem 2019; 294:13964-13972. [PMID: 31341022 PMCID: PMC6755796 DOI: 10.1074/jbc.ra119.009131] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/18/2019] [Indexed: 01/20/2023] Open
Abstract
RAS regulation and signaling are largely accomplished by direct protein-protein interactions, making RAS protein dynamics a critical determinant of RAS function. Here, we report a crystal structure of GDP-bound KRASV14I, a mutated KRAS variant associated with the developmental RASopathy disorder Noonan syndrome (NS), at 1.5-1.6 Å resolution. The structure is notable for revealing a marked extension of switch 1 away from the G-domain and nucleotide-binding site of the KRAS protein. We found that this extension is associated with a loss of the magnesium ion and a tilt in the position of the guanine base because of the additional carbon introduced by the isoleucine substitution. Hydrogen-deuterium exchange MS analysis confirmed that this conformation occurs in solution, but also disclosed a difference in kinetics when compared with KRASA146T, another RAS mutant that displays a nearly identical conformation in previously reported crystal structures. This conformational change contributed to a high rate of guanine nucleotide-exchange factor (GEF)-dependent and -independent nucleotide exchange and to an increase in affinity for SOS Ras/Rac GEF 1 (SOS1), which appears to be the major mode of activation for this RAS variant. These results highlight a mechanistic connection between KRASA146T and KRASV14I that may have implications for the regulation of these variants and for the development of therapeutic strategies to manage KRAS variant-associated disorders.
Collapse
Affiliation(s)
- Asim K Bera
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Jia Lu
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Masachusetts 02115
| | - Sudershan Gondi
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Deepak Gurbani
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Andrew Nelson
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Masachusetts 02115
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| |
Collapse
|
16
|
Barklis E, Stephen AG, Staubus AO, Barklis RL, Alfadhli A. Organization of Farnesylated, Carboxymethylated KRAS4B on Membranes. J Mol Biol 2019; 431:3706-3717. [PMID: 31330153 PMCID: PMC6733658 DOI: 10.1016/j.jmb.2019.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 11/24/2022]
Abstract
Mutations of the Ras proteins HRAS, KRAS4A, KRAS4B, and NRAS are associated with a high percentage of all human cancers. The proteins are composed of highly homologous N-terminal catalytic or globular domains, plus C-terminal hypervariable regions (HVRs). Post-translational modifications of all RAS HVRs helps target RAS proteins to cellular membrane locations where they perform their signaling functions. For the predominant KRAS4 isoform, KRAS4B, post-translational farnesylation and carboxymethylation, along with a patch of HVR basic residues help foster membrane binding. Recent investigations implicate membrane-bound RAS dimers, oligomers, and nanoclusters as landing pads for effector proteins that relay RAS signals. The details of these RAS signaling platforms have not been elucidated completely, in part due to the difficulties in preparing modified proteins. We have employed properly farnesylated and carboxymethylated KRAS4B in lipid monolayer incubations to examine how the proteins assemble on membranes. Our results reveal novel insights into to how KRAS4B may organize on membranes.
Collapse
Affiliation(s)
- Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA.
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21072, USA
| | - August O Staubus
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA
| | - Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA
| |
Collapse
|
17
|
Lanfredini S, Thapa A, O'Neill E. RAS in pancreatic cancer. Biochem Soc Trans 2019; 47:961-972. [PMID: 31341034 DOI: 10.1042/bst20170521] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
The pancreas is a gland composed mainly by endocrine and exocrine cells, giving rise to three main tumour types. Pancreatic neuroendocrine tumour or PNET arise from the endocrine portion of the pancreas. On the contrary, pancreatic exocrine neoplasms include pancreatic ductal adenocarcinoma (PDAC) and acinar cell carcinoma. PDAC is the most common type of pancreatic cancer and one of the leading causes of cancer-related death. It has been shown that less than 3% of PDAC patients have an overall survival of up to 5 years in the U.K. This mainly arises since the majority of patients diagnosed with PDAC present with advanced unresectable disease, which is highly resistant to all forms of chemotherapy and radiotherapy. Activating mutations of an isoform of the RAS protein, KRAS, are found in almost all PDAC cases and occur during early stages of malignant transformation. KRAS mutations play a critical role as they are involved in both initiating and maintaining PDAC development. The interaction of RAS with GDP/GTP along with its recruitment to the membrane affects transduction of its activating signals to downstream effectors. In this review, we aim to summarise different mutations of RAS and their prevalence in pancreatic cancer along with other RAS-induced tumours. In addition, we briefly discuss the genetically engineered mouse models that have been developed to study KRAS-mutated adenocarcinomas in the pancreas. These provide an opportunity to also address the importance of targeting RAS for better treatment response in PDAC patients along with the challenges incurred herein.
Collapse
Affiliation(s)
- Simone Lanfredini
- Department of Oncology, Old Road Campus Research Building Roosevelt Drive, University of Oxford, Oxford, U.K
| | - Asmita Thapa
- Department of Oncology, Old Road Campus Research Building Roosevelt Drive, University of Oxford, Oxford, U.K
| | - Eric O'Neill
- Department of Oncology, Old Road Campus Research Building Roosevelt Drive, University of Oxford, Oxford, U.K.
| |
Collapse
|
18
|
Deredge DJ, Wintrode PL. Remodeling KRAS. Structure 2019; 25:1323-1324. [PMID: 28877504 DOI: 10.1016/j.str.2017.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mutations in members of the RAS family of small GTPases have been associated with numerous human cancers. However, RAS family members are notoriously difficult to target. In this issue of Structure, Lu et al. (2017) examine the effects of two compounds with distinct chemical scaffolds on the structure and dynamics of an oncogenic KRAS mutant, thus highlighting the usefulness of HDX-MS for drug development.
Collapse
Affiliation(s)
- Daniel J Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 North Pine St., Baltimore, MD 21201, USA
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 North Pine St., Baltimore, MD 21201, USA.
| |
Collapse
|
19
|
Oncogenic KRas mobility in the membrane and signaling response. Semin Cancer Biol 2019; 54:109-113. [DOI: 10.1016/j.semcancer.2018.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
|
20
|
MS methods to study macromolecule-ligand interaction: Applications in drug discovery. Methods 2018; 144:152-174. [PMID: 29890284 DOI: 10.1016/j.ymeth.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
The interaction of small compounds (i.e. ligands) with macromolecules or macromolecule assemblies (i.e. targets) is the mechanism of action of most of the drugs available today. Mass spectrometry is a popular technique for the interrogation of macromolecule-ligand interactions and therefore is also widely used in drug discovery and development. Thanks to its versatility, mass spectrometry is used for multiple purposes such as biomarker screening, identification of the mechanism of action, ligand structure optimization or toxicity assessment. The evolution and automation of the instruments now allows the development of high throughput methods with high sensitivity and a minimized false discovery rate. Herein, all these approaches are described with a focus on the methods for studying macromolecule-ligand interaction aimed at defining the structure-activity relationships of drug candidates, along with their mechanism of action, metabolism and toxicity.
Collapse
|
21
|
The reactivity-driven biochemical mechanism of covalent KRASG12C inhibitors. Nat Struct Mol Biol 2018; 25:454-462. [DOI: 10.1038/s41594-018-0061-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/04/2018] [Indexed: 02/03/2023]
|
22
|
Stites EC, Shaw AS. Quantitative Systems Pharmacology Analysis of KRAS G12C Covalent Inhibitors. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:342-351. [PMID: 29484842 PMCID: PMC5980551 DOI: 10.1002/psp4.12291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/19/2017] [Accepted: 01/22/2018] [Indexed: 12/24/2022]
Abstract
KRAS has proven difficult to target pharmacologically. Two strategies have recently been described for covalently targeting the most common KRAS mutant in lung cancer, KRAS G12C. Previously, we developed a computational model of the processes that regulate Ras activation. Here, we use this model to investigate KRAS G12C covalent inhibitors. We updated the model to include Ras protein turnover, and validation demonstrates that our model performs well in areas of G12C targeting where conventional wisdom struggles. We then used the model to investigate possible strategies to improve KRAS G12C inhibitors and identified GEF loading as a mechanism that could improve efficacy. Our simulations also found resistance‐promoting mutations may reverse which class of KRAS G12C inhibitor inhibits the system better, suggesting that there may be value to pursuing both types of KRAS G12C inhibitors. Overall, this work demonstrates areas in which systems biology approaches can inform Ras drug development.
Collapse
Affiliation(s)
- Edward C Stites
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Andrey S Shaw
- Research Biology, Genentech, South San Francisco, California, USA
| |
Collapse
|
23
|
Lu J, Bera AK, Gondi S, Westover KD. KRAS Switch Mutants D33E and A59G Crystallize in the State 1 Conformation. Biochemistry 2017; 57:324-333. [PMID: 29235861 DOI: 10.1021/acs.biochem.7b00974] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
KRAS switch loop movements play a crucial role in regulating RAS signaling, and alteration of these sensitive dynamics is a principal mechanism through which disease-associated RAS mutations lead to aberrant RAS activation. Prior studies suggest that despite a high degree of sequence similarity, the switches in KRAS are more dynamic than those in HRAS. We determined X-ray crystal structures of the rare tumorigenic KRAS mutants KRASD33E, in switch 1 (SW1), and KRASA59G, in switch 2 (SW2), bound to GDP and found these adopt nearly identical, open SW1 conformations as well as altered SW2 conformations. KRASA59G bound to a GTP analogue crystallizes in the same conformation. This open conformation is consistent with the inactive "state 1" previously observed for HRAS bound to GTP. For KRASA59G, switch rearrangements may be regulated by increased flexibility in the 57DXXGQ61 motif at codon 59. However, loss of interactions between side chains at codons 33 and 35 in the SW1 33DPT35 motif drives changes for KRASD33E. The 33DPT35 motif is conserved for multiple members of the RAS subfamily but is not found in RAB, RHO, ARF, or Gα families, suggesting that dynamics mediated by this motif may be important for determining the selectivity of RAS-effector interactions. Biochemically, the consequence of altered switch dynamics is the same, showing impaired interaction with the guanine exchange factor SOS and loss of GAP-dependent GTPase activity. However, interactions with the RBD of RAF are preserved. Overall, these observations add to a body of evidence suggesting that HRAS and KRAS show meaningful differences in functionality stemming from differential protein dynamics independent of the hypervariable region.
Collapse
Affiliation(s)
- Jia Lu
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas , Dallas, Texas 75390, United States
| | - Asim K Bera
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas , Dallas, Texas 75390, United States
| | - Sudershan Gondi
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas , Dallas, Texas 75390, United States
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas , Dallas, Texas 75390, United States
| |
Collapse
|
24
|
Gentile DR, Rathinaswamy MK, Jenkins ML, Moss SM, Siempelkamp BD, Renslo AR, Burke JE, Shokat KM. Ras Binder Induces a Modified Switch-II Pocket in GTP and GDP States. Cell Chem Biol 2017; 24:1455-1466.e14. [PMID: 29033317 PMCID: PMC5915340 DOI: 10.1016/j.chembiol.2017.08.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/31/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022]
Abstract
Covalent inhibitors of K-Ras(G12C) have been reported that exclusively recognize the GDP state. Here, we utilize disulfide tethering of a non-natural cysteine (K-Ras(M72C)) to identify a new switch-II pocket (S-IIP) binding ligand (2C07) that engages the active GTP state. Co-crystal structures of 2C07 bound to H-Ras(M72C) reveal binding in a cryptic groove we term S-IIG. In the GppNHp state, 2C07 binding to a modified S-IIP pushes switch I away from the nucleotide, breaking the network of polar contacts essential for adopting the canonical GTP state. Biochemical studies show that 2C07 alters nucleotide preference and inhibits SOS binding and catalyzed nucleotide exchange. 2C07 was converted to irreversible covalent analogs, which target both nucleotide states, inhibit PI3K activation in vitro, and function as occupancy probes to detect reversible engagement in competition assays. Targeting both nucleotide states opens the possibility of inhibiting oncogenic mutants of Ras, which exist predominantly in the GTP state in cells.
Collapse
Affiliation(s)
- Daniel R Gentile
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Steven M Moss
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Braden D Siempelkamp
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Adam R Renslo
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|