1
|
Nguyen A, Heim JB, Cordara G, Chan MC, Johannesen H, Charlesworth C, Li M, Azumaya CM, Madden B, Krengel U, Meves A, Campbell MG. Structural and functional characterization of integrin α5-targeting antibodies for anti-angiogenic therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631572. [PMID: 39829743 PMCID: PMC11741253 DOI: 10.1101/2025.01.08.631572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Integrins are a large family of heterodimeric receptors important for cell adhesion and signaling. Integrin α5β1, also known as the fibronectin receptor, is a key mediator of angiogenesis and its dysregulation is associated with tumor proliferation, progression, and metastasis. Despite numerous efforts, α5β1-targeting therapeutics have been unsuccessful in large part due to efficacy and off-target effects. To mediate activation and signaling, integrins undergo drastic conformational changes. However, how therapeutics influence or are affected by integrin conformation remains incompletely characterized. Using cell biology, biophysics, and electron microscopy, we shed light on these relationships by characterizing two potentially therapeutic anti-α5β1 antibodies, BIIG2 and MINT1526A. We show that both antibodies bind α5β1 with nanomolar affinity and reduce angiogenesis in vitro. We demonstrate BIIG2 reduces tumor growth in two human xenograft mouse models and exhibits a strong specificity for connective tissue-resident fibroblasts and melanoma cells. Using electron microscopy, we map out the molecular interfaces mediating the integrin-antibody interactions and reveal that although both antibodies have overlapping epitopes and block fibronectin binding via steric hindrance, the effect on the conformational equilibrium is drastically different. While MINT1526A constricts α5β1's range of flexibility, BIIG2 binds without restricting the available conformational states. These mechanistic insights, coupled with the functional analysis, guide which aspects should be prioritized to avoid off-target effects or partial agonism in the design of future integrin-targeted therapeutics.
Collapse
Affiliation(s)
- Adam Nguyen
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Biological Physics Structure and Design Program, University of Washington, Seattle, Washington 98195, USA
| | - Joel B. Heim
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
- Current Address: Nykode Therapeutics, Oslo Science Park, 0349 Oslo, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | - Matthew C. Chan
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Hedda Johannesen
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | - Cristine Charlesworth
- Medical Genome Facility, Proteomics Core, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ming Li
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Caleigh M. Azumaya
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Current Address: Genentech, South San Francisco, California 94080, USA
| | - Benjamin Madden
- Medical Genome Facility, Proteomics Core, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ute Krengel
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | - Alexander Meves
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Melody G. Campbell
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Biological Physics Structure and Design Program, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
2
|
Zhu Z, Olson KS, Magliery TJ. 50 Years of Antibody Numbering Schemes: A Statistical and Structural Evaluation Reveals Key Differences and Limitations. Antibodies (Basel) 2024; 13:99. [PMID: 39727482 DOI: 10.3390/antib13040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND The complementarity-determining region (CDR) of antibodies represents the most diverse region both in terms of sequence and structural characteristics, playing the most critical role in antibody recognition and binding for immune responses. Over the past decades, several numbering schemes have been introduced to define CDRs based on sequence. However, the existence of diverse numbering schemes has led to potential confusion, and a comprehensive evaluation of these schemes is lacking. METHODS We employ statistical analyses to quantify the diversity of CDRs compared to the framework regions. RESULTS Comparative analyses across different numbering schemes demonstrate notable variations in CDR definitions. The Kabat and AbM numbering schemes tend to incorporate more conserved residues into their CDR definitions, whereas CDRs defined by the Chothia and IMGT numbering schemes display greater diversity, sometimes missing certain loop residues. Notably, we identify a critical residue, L29, within the kappa light chain CDR1, which appears to act as a pivotal structural point within the loop. In contrast, most numbering schemes designate the topological equivalent point in the lambda light chain as L30, suggesting the need for further refinement in the current numbering schemes. CONCLUSIONS These findings shed light on regional sequence and structural conservation within antibody sequence databases while also highlighting discrepancies stemming from different numbering schemes. These insights yield valuable guidelines for the precise delineation of antibody CDRs and the strategic design of antibody repertoires, with practical implications in developing innovative antibody-based therapeutics and diagnostics.
Collapse
Affiliation(s)
- Zirui Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Chemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Katherine S Olson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas J Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Mayasin YP, Osinnikova MN, Kharisova CB, Kitaeva KV, Filin IY, Gorodilova AV, Kutovoi GI, Solovyeva VV, Golubev AI, Rizvanov AA. Extracellular Matrix as a Target in Melanoma Therapy: From Hypothesis to Clinical Trials. Cells 2024; 13:1917. [PMID: 39594665 PMCID: PMC11592585 DOI: 10.3390/cells13221917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Melanoma is a malignant, highly metastatic neoplasm showing increasing morbidity and mortality. Tumor invasion and angiogenesis are based on remodeling of the extracellular matrix (ECM). Selective inhibition of functional components of cell-ECM interaction, such as hyaluronic acid (HA), matrix metalloproteinases (MMPs), and integrins, may inhibit tumor progression and enhance the efficacy of combination treatment with immune checkpoint inhibitors (ICIs), chemotherapy, or immunotherapy. In this review, we combine the results of different approaches targeting extracellular matrix elements in melanoma in preclinical and clinical studies. The identified limitations of many approaches, including side effects, low selectivity, and toxicity, indicate the need for further studies to optimize therapy. Nevertheless, significant progress in expanding our understanding of tumor biology and the development of targeted therapies holds great promise for the early approaches developed several decades ago to inhibit metastasis through ECM targeting.
Collapse
Affiliation(s)
- Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Grigorii I. Kutovoi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anatolii I. Golubev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
4
|
Mourkogianni E, Karavasili K, Xanthopoulos A, Enake MK, Menounou L, Papadimitriou E. Pleiotrophin Activates cMet- and mTORC1-Dependent Protein Synthesis through PTPRZ1-The Role of α νβ 3 Integrin. Int J Mol Sci 2024; 25:10839. [PMID: 39409168 PMCID: PMC11477150 DOI: 10.3390/ijms251910839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Pleiotrophin (PTN) is a secreted factor that regulates endothelial cell migration through protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) and αvβ3 integrin. Genetic deletion of Ptprz1 results in enhanced endothelial cell proliferation and migration, due to the decreased expression of β3 integrin and the subsequent, enhanced cMet phosphorylation. In the present study, we investigated the effect of PTN and PTPRZ1 on activating the mTORC1 kinase and protein synthesis and identified part of the implicated signaling pathway in endothelial cells. PTN or genetic deletion of Ptprz1 activates protein synthesis in a mTORC1-dependent manner, as shown by the enhanced phosphorylation of the mTORC1-downstream targets ribosomal protein S6 kinase 1 (SK61) and 4E-binding protein 1 (4EBP1) and the upregulation of HIF-1α. The cMet tyrosine kinase inhibitor crizotinib abolishes the stimulatory effects of PTN or PTPRZ1 deletion on mTORC1 activation and protein synthesis, suggesting that mTORC1 activation is downstream of cMet. The mTORC1 inhibitor rapamycin abolishes the stimulatory effect of PTN or PTPRZ1 deletion on endothelial cell migration, suggesting that mTORC1 is involved in the PTN/PTPRZ1-dependent cell migration. The αvβ3 integrin blocking antibody LM609 and the peptide PTN112-136, both known to bind to ανβ3 and inhibit PTN-induced endothelial cell migration, increase cMet phosphorylation and activate mTORC1, suggesting that cMet and mTORC1 activation are required but are not sufficient to stimulate cell migration. Overall, our data highlight novel aspects of the signaling pathway downstream of the PTN/PTPRZ1 axis that regulates endothelial cell functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece; (E.M.); (K.K.); (A.X.); (M.-K.E.); (L.M.)
| |
Collapse
|
5
|
Mariasoosai C, Bose S, Natesan S. Structural insights into the molecular recognition of integrin αVβ3 by RGD-containing ligands: The role of the specificity-determining loop (SDL). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614545. [PMID: 39386435 PMCID: PMC11463590 DOI: 10.1101/2024.09.23.614545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Integrin αVβ3 is a prominent member of the "RGD-recognizing" integrin family of cell surface receptors. αVβ3 binds to various extracellular matrix (ECM) proteins and oxysterols such as 25-hydroxycholesterol, is implicated in several diseases, including cancer metastasis, lung fibrosis, inflammation, and autoimmune diseases, and is pursued as a valuable therapeutic target. Despite enormous efforts to seek a pure antagonist, to date, no single drug candidate has successfully reached clinics due to associated partial agonism and toxicity issues. Developing effective and safe inhibitors require a thorough understanding of the molecular interactions and structural changes related to the receptor's activation and inhibition mechanisms. This study offers a comprehensive residue-residue contact and network analyses of the ligand-binding β-propeller βI domains (headpiece) based on all available experimental structures of integrin αVβ3 in unliganded, agonist-, antagonist-, and antibody-bound states. The analyses reveal many critical interactions that were not reported before and show that specific orientation and interactions of residues from the specificity-determining loop (SDL) are critical in molecular recognition and regulation. Also, the network analysis reveals that residues from the nearby allosteric site (site II) connect to the primary RGD-binding site via SDL, which likely acts as an interface between the two sites. Our results provide valuable insights into molecular interactions, structural changes, distinct features of the active and inactive headpiece conformations, the role of SDL in ligand recognition, and SDL-mediated allostery. Thus, the insights from this study may facilitate the designing of pure antagonists or site II-mediated allosteric modulators to integrin αVβ3 to treat various diseases.
Collapse
Affiliation(s)
- Charles Mariasoosai
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Senthil Natesan
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
6
|
Testa A, Quaglia F, Naranjo NM, Verrillo CE, Shields CD, Lin S, Pickles MW, Hamza DF, Von Schalscha T, Cheresh DA, Leiby B, Liu Q, Ding J, Kelly WK, Hooper DC, Corey E, Plow EF, Altieri DC, Languino LR. Targeting the αVβ3/NgR2 pathway in neuroendocrine prostate cancer. Matrix Biol 2023; 124:49-62. [PMID: 37956856 PMCID: PMC10823877 DOI: 10.1016/j.matbio.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Highly aggressive, metastatic, neuroendocrine prostate cancer, which typically develops from prostate cancer cells acquiring resistance to androgen deprivation therapy, is associated with limited treatment options and hence poor prognosis. We have previously demonstrated that the αVβ3 integrin is over-expressed in neuroendocrine prostate cancer. We now show that LM609, a monoclonal antibody that specifically targets the human αVβ3 integrin, hinders the growth of neuroendocrine prostate cancer patient-derived xenografts in vivo. Our group has recently identified a novel αVβ3 integrin binding partner, NgR2, responsible for regulating the expression of neuroendocrine markers and for inducing neuroendocrine differentiation in prostate cancer cells. Through in vitro functional assays, we here demonstrate that NgR2 is crucial in promoting cell adhesion to αVβ3 ligands. Moreover, we describe for the first time co-fractionation of αVβ3 integrin and NgR2 in small extracellular vesicles derived from metastatic prostate cancer patients' plasma. These prostate cancer patient-derived small extracellular vesicles have a functional impact on human monocytes, increasing their adhesion to fibronectin. The monocytes incubated with small extracellular vesicles do not show an associated change in conventional polarization marker expression and appear to be in an early stage that may be defined as "adhesion competent". Overall, these findings allow us to better understand integrin-directed signaling and cell-cell communication during cancer progression. Furthermore, our results pave the way for new diagnostic and therapeutic perspectives for patients affected by neuroendocrine prostate cancer.
Collapse
Affiliation(s)
- Anna Testa
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Fabio Quaglia
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nicole M Naranjo
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Cecilia E Verrillo
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christopher D Shields
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Stephen Lin
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Maxwell W Pickles
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Drini F Hamza
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tami Von Schalscha
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, United States
| | - David A Cheresh
- Department of Pathology, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, United States
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, United States
| | - Jianyi Ding
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, United States
| | - William K Kelly
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - D Craig Hooper
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, United States
| | - Edward F Plow
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Dario C Altieri
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, United States
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Gc JB, Chen J, Pokharel SM, Mohanty I, Mariasoosai C, Obi P, Panipinto P, Bandyopadhyay S, Bose S, Natesan S. Molecular basis for the recognition of 24-(S)-hydroxycholesterol by integrin αvβ3. Sci Rep 2023; 13:9166. [PMID: 37280310 DOI: 10.1038/s41598-023-36040-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/28/2023] [Indexed: 06/08/2023] Open
Abstract
A growing body of evidence suggests that oxysterols such as 25-hydroxycholesterol (25HC) are biologically active and involved in many physiological and pathological processes. Our previous study demonstrated that 25HC induces an innate immune response during viral infections by activating the integrin-focal adhesion kinase (FAK) pathway. 25HC produced the proinflammatory response by binding directly to integrins at a novel binding site (site II) and triggering the production of proinflammatory mediators such as tumor necrosis factor-α (TNF) and interleukin-6 (IL-6). 24-(S)-hydroxycholesterol (24HC), a structural isomer of 25HC, plays a critical role in cholesterol homeostasis in the human brain and is implicated in multiple inflammatory conditions, including Alzheimer's disease. However, whether 24HC can induce a proinflammatory response like 25HC in non-neuronal cells has not been studied and remains unknown. The aim of this study was to examine whether 24HC produces such an immune response using in silico and in vitro experiments. Our results indicate that despite being a structural isomer of 25HC, 24HC binds at site II in a distinct binding mode, engages in varied residue interactions, and produces significant conformational changes in the specificity-determining loop (SDL). In addition, our surface plasmon resonance (SPR) study reveals that 24HC could directly bind to integrin αvβ3, with a binding affinity three-fold lower than 25HC. Furthermore, our in vitro studies with macrophages support the involvement of FAK and NFκB signaling pathways in triggering 24HC-mediated production of TNF. Thus, we have identified 24HC as another oxysterol that binds to integrin αvβ3 and promotes a proinflammatory response via the integrin-FAK-NFκB pathway.
Collapse
Affiliation(s)
- Jeevan B Gc
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA
| | - Justin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA
| | - Swechha M Pokharel
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99210, USA
| | - Indira Mohanty
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99210, USA
| | - Charles Mariasoosai
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA
| | - Peter Obi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA
| | - Paul Panipinto
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA
| | - Smarajit Bandyopadhyay
- Molecular Biotechnology Core Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99210, USA
| | - Senthil Natesan
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA.
| |
Collapse
|
8
|
Chen JR, Zhao JT, Xie ZZ. Integrin-mediated cancer progression as a specific target in clinical therapy. Biomed Pharmacother 2022; 155:113745. [DOI: 10.1016/j.biopha.2022.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/15/2022] Open
|
9
|
Angre T, Kumar A, Singh AK, Thareja S, Kumar P. Role of collagen regulators in cancer treatment: A comprehensive review. Anticancer Agents Med Chem 2022; 22:2956-2984. [DOI: 10.2174/1871520622666220501162351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
Abstract
Abstract:
Collagen is the most important structural protein and also a main component of extra-cellular matrix (ECM). It plays a role in tumor progression. Collagen can be regulated by altering it’s biosynthesis pathway through various signaling pathways, receptors and genes. Activity of cancer cells can also be regulated by other ECM components like metalloproteinases, hyaluronic acid, fibronectin and so on. Hypoxia is also one of the condition which leads to cancer progression by stimulating the expression of procollagen lysine as a collagen crosslinker, which increases the size of collagen fibres promoting cancer spread. The collagen content in cancerous cells leads to resistance in chemotherapy. So, to reduce this resistance, some of the collagen regulating therapies are introduced, which include inhibiting its biosynthesis, disturbing cancer cell signaling pathway, mediating ECM components and directly utilizing collagenase. This study is an effort to compile the strategies reported to control the collagen level and different collagen inhibitors reported so far. More research is needed in this area, growing understandings of collagen’s structural features and its role in cancer progression will aid in the advancement of newer chemotherapies.
Collapse
Affiliation(s)
- Tanuja Angre
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| |
Collapse
|
10
|
Zanardi A, Barbariga M, Conti A, Vegliani F, Curnis F, Alessio M. Oxidized/deamidated-ceruloplasmin dysregulates choroid plexus epithelial cells functionality and barrier properties via RGD-recognizing integrin binding. Neurobiol Dis 2021; 158:105474. [PMID: 34384868 DOI: 10.1016/j.nbd.2021.105474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
Choroid plexus epithelial cells (CPEpiCs) determine the composition of cerebrospinal fluid (CSF) and constitute the blood-CSF barrier (BCSFB), functions that are altered in neurodegenerative diseases. In Parkinson's disease (PD) the pathological environment oxidizes and deamidates the ceruloplasmin, a CSF-resident ferroxidase, which undergoes a gain of RGD-recognizing integrin binding property, that may result in signal transduction. We investigated the effects that oxidized/deamidated ceruloplasmin (Cp-ox/de) may exert on CPEpiCs functions. Through RGD-recognizing integrins binding, Cp-ox/de mediates CPEpiCs adhesion and intracellular signaling, resulting in cell proliferation inhibition and alteration of the secretome profile in terms of proteins related to cell-extracellular matrix interaction. Oxidative conditions, comparable to those found in the CSF of PD patients, induced CPEpiCs barrier leakage, allowing Cp-ox/de to cross it, transducing integrins-mediated signal that further worsens BCSFB integrity. This mechanism might contribute to PD pathological processes altering CSF composition and aggravating the already compromised BCSFB function.
Collapse
Affiliation(s)
- Alan Zanardi
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| | - Marco Barbariga
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy
| | - Antonio Conti
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| | - Franco Vegliani
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| | - Massimo Alessio
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
11
|
Zhang J, Wang T, Saigal A, Johnson J, Morrisson J, Tabrizifard S, Hollingsworth SA, Eddins MJ, Mao W, O'Neill K, Garcia-Calvo M, Carballo-Jane E, Liu D, Ham T, Zhou Q, Dong W, Meng HW, Hicks J, Cai TQ, Akiyama T, Pinto S, Cheng AC, Greshock T, Marquis JC, Ren Z, Talukdar S, Shaheen HH, Handa M. Discovery of a new class of integrin antibodies for fibrosis. Sci Rep 2021; 11:2118. [PMID: 33483531 PMCID: PMC7822819 DOI: 10.1038/s41598-021-81253-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Lung fibrosis, or the scarring of the lung, is a devastating disease with huge unmet medical need. There are limited treatment options and its prognosis is worse than most types of cancer. We previously discovered that MK-0429 is an equipotent pan-inhibitor of αv integrins that reduces proteinuria and kidney fibrosis in a preclinical model. In the present study, we further demonstrated that MK-0429 significantly inhibits fibrosis progression in a bleomycin-induced lung injury model. In search of newer integrin inhibitors for fibrosis, we characterized monoclonal antibodies discovered using Adimab's yeast display platform. We identified several potent neutralizing integrin antibodies with unique human and mouse cross-reactivity. Among these, Ab-31 blocked the binding of multiple αv integrins to their ligands with IC50s comparable to those of MK-0429. Furthermore, both MK-0429 and Ab-31 suppressed integrin-mediated cell adhesion and latent TGFβ activation. In IPF patient lung fibroblasts, TGFβ treatment induced profound αSMA expression in phenotypic imaging assays and Ab-31 demonstrated potent in vitro activity at inhibiting αSMA expression, suggesting that the integrin antibody is able to modulate TGFβ action though mechanisms beyond the inhibition of latent TGFβ activation. Together, our results highlight the potential to develop newer integrin therapeutics for the treatment of fibrotic lung diseases.
Collapse
Affiliation(s)
- Ji Zhang
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| | - Tao Wang
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Ashmita Saigal
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Josephine Johnson
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Jennifer Morrisson
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Sahba Tabrizifard
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Scott A Hollingsworth
- Computational & Structural Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Michael J Eddins
- Computational & Structural Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Wenxian Mao
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Kim O'Neill
- In Vitro Pharmacology, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Margarita Garcia-Calvo
- In Vitro Pharmacology, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Ester Carballo-Jane
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - DingGang Liu
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Taewon Ham
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Qiong Zhou
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Weifeng Dong
- SALAR, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Hsien-Wei Meng
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Jacqueline Hicks
- Discovery Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Tian-Quan Cai
- In Vivo Pharmacology, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Taro Akiyama
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Shirly Pinto
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Alan C Cheng
- Computational & Structural Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Thomas Greshock
- Discovery Chemistry, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - John C Marquis
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Zhao Ren
- Quantitative Biosciences, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Saswata Talukdar
- Departments of Cardiometabolic Diseases, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Hussam Hisham Shaheen
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Masahisa Handa
- Discovery Biologics, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| |
Collapse
|
12
|
Kunjiappan S, Pavadai P, Vellaichamy S, Ram Kumar Pandian S, Ravishankar V, Palanisamy P, Govindaraj S, Srinivasan G, Premanand A, Sankaranarayanan M, Theivendren P. Surface receptor‐mediated targeted drug delivery systems for enhanced cancer treatment: A state‐of‐the‐art review. Drug Dev Res 2020; 82:309-340. [DOI: 10.1002/ddr.21758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Selvaraj Kunjiappan
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy M.S. Ramaiah University of Applied Sciences Bengaluru Karnataka India
| | - Sivakumar Vellaichamy
- Department of Pharmaceutics Arulmigu Kalasalingam College of Pharmacy Krishnankoil Tamilnadu India
| | | | | | - Ponnusamy Palanisamy
- School of Mechanical Engineering Vellore Institute of Technology Vellore Tamilnadu India
| | - Saravanan Govindaraj
- Department of Pharmaceutical Chemistry MNR College of Pharmacy Sangareddy Telangana India
| | - Gowshiki Srinivasan
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Adhvitha Premanand
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | | | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry Swamy Vivekananda College of Pharmacy Elayampalayam, Namakkal Tamilnadu India
| |
Collapse
|
13
|
Abstract
INTRODUCTION Integrins are a family of 24 cell adhesion receptors that play a role in the biggest unmet needs in medicine - cardiovascular disease, immunology and cancer. Their discovery promised huge potential for the pharmaceutical industry. Areas covered. Over 35-years since their discovery, there is little to show for the hundreds of billions of dollars of investment in anti-integrin drug discovery programmes. In this review the author discusses the reasons for the failure of this promising class of drugs and the future for this class of drugs. Expert opinion. Within 10-years, there was a plethora of potent, specific anti-integrin molecules and since their discovery, many of these agents have entered clinical trials. The success in discovering these agents was due to recently discovered monoclonal antibody technology. The integrin-recognition domain Arg-Gly-Asp (RGD) provided the basis for discovering small molecule inhibitors to integrins - both cyclic peptides and peptidomimetics. Most agents failed in the Phase III clinical trials and those agents that did make it to the market were plagued with issues of toxicity and limited efficacy and were soon replaced with non-integrin targeting agents. Their failure was due to a combination of poor pharmacokinetics and pharmacodynamics, complicated by the complex pathophysiology of integrins.
Collapse
Affiliation(s)
- Dermot Cox
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland , Dublin, Ireland
| |
Collapse
|
14
|
Mao D, Lü S, Zhang X, Long M. Mechanically Regulated Outside-In Activation of an I-Domain-Containing Integrin. Biophys J 2020; 119:966-977. [PMID: 32814058 DOI: 10.1016/j.bpj.2020.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022] Open
Abstract
Integrins are heterodimeric transmembrane proteins that mediate cellular adhesion and bidirectional mechanotransductions through their conformational allostery. The allosteric pathway of an I-domain-containing integrin remains unclear because of its complexity and lack of effective experiments. For a typical I-domain-containing integrin αXβ2, molecular dynamics simulations were employed here to investigate the conformational dynamics in the first two steps of outside-in activation, the bindings of both the external and internal ligands. Results showed that the internal ligand binding is a prerequisite to the allosteric transmission from the α- to β-subunits and the exertion of external force to integrin-ligand complex. The opening state of αI domain with downward movement and lower half unfolding of α7-helix ensures the stable intersubunit conformational transmission through external ligand binding first and internal ligand binding later. Reverse binding order induces a, to our knowledge, novel but unstable swingout of β-subunit Hybrid domain with the retained close states of both αI and βI domains. Prebinding of external ligand greatly facilitates the following internal ligand binding and vice versa. These simulations furthered the understanding in the outside-in activation of I-domain-containing integrins from the viewpoint of internal allosteric pathways.
Collapse
Affiliation(s)
- Debin Mao
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Xiao Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Ji X, Han T, Kang N, Huang S, Liu Y. Preparation of RGD4C fused anti-TNFα nanobody and inhibitory activity on triple-negative breast cancer in vivo. Life Sci 2020; 260:118274. [PMID: 32827545 DOI: 10.1016/j.lfs.2020.118274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 01/13/2023]
Abstract
AIMS Triple-negative breast cancer (TNBC) is not sensitive to current endocrine treatments, so new treatment strategies need to be explored. Based on previous antitumour studies on anti-TNFα nanobody, we designed a novel fusion nanobody to enhance antitumour activity of the anti-TNFα nanobody in TNBC. MAIN METHODS The RGD4C contains RGD sequence, which is the smallest recognition unit binding to the αvβ3 receptor on tumour cell membranes and involved in tumour cell adhesion, proliferation, and metastasis. RGD4C was fused to anti-TNFα nanobody to investigate the antitumour activity in vitro and in vivo. KEY FINDINGS The antitumour effects of fusion nanobody V-L-R-H could effectively bind to αvβ3 and inhibit cell migration and proliferation of MDA-MB-231, which had satisfying purification efficiency and approving antigen or receptor binding activity. V-L-R-H could inhibit the TNFα-mediated PI3K/AKT/NF-κB signal pathway and integrin αvβ3 correlative FAK focal adhesion signal pathway. Mouse xenograft tumour experiments showed that the V-L-R-H could inhibit tumour proliferation and metastasis; reduce the TNFα, HIFα, Ki67, and CD31 concentrations in tumour; and inhibit the process of epithelial-mesenchymal transition. SIGNIFICANCE The fusion nanobody enhanced antitumour activity of the anti-TNFα nanobody on TNBC. It provided a reference for the design of dual functional fusion proteins and development of tumour treatment strategies of antagonistic TNFα and αvβ3, and a new therapeutic strategy and research direction for the treatment of TNBC.
Collapse
Affiliation(s)
- Xuemei Ji
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Tianzhen Han
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Nannan Kang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Song Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
16
|
Arias-Mejias SM, Warda KY, Quattrocchi E, Alonso-Quinones H, Sominidi-Damodaran S, Meves A. The role of integrins in melanoma: a review. Int J Dermatol 2020; 59:525-534. [PMID: 32157692 PMCID: PMC7167356 DOI: 10.1111/ijd.14850] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Integrins are the major family of cell adhesion receptors in humans and essential for a wide range of normal physiology, including formation and maintenance of tissue structure integrity, cell migration, proliferation, and differentiation. Integrins also play a prominent role in tumor growth and metastasis. Translational research has tried to define the contribution of integrins to the phenotypic aggressiveness of melanoma because such knowledge is clinically useful. For example, differential expression of integrins in primary cutaneous melanoma can be used to distinguish indolent from aggressive, prometastatic melanoma. Recent studies have shown that gene expression-based testing of patient-derived melanoma tissue is feasible, and molecular tests may fully replace interventional surgical methods such as sentinel lymph node biopsies in the future. Because of their central role in mediating invasion and metastasis, integrins are likely to be useful biomarkers. Integrins are also attractive candidate targets for interventional therapy. This article focuses on the role of integrins in melanoma and highlights recent advances in the field of translational research.
Collapse
Affiliation(s)
- Suzette M. Arias-Mejias
- Department of Dermatology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota
- Center for Clinical and Translational Sciences, Mayo Clinic, 200 First Street SW, Rochester, Minnesota
| | - Katerina Y. Warda
- Department of Dermatology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota
| | - Enrica Quattrocchi
- Department of Dermatology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota
| | - Hector Alonso-Quinones
- Center for Clinical and Translational Sciences, Mayo Clinic, 200 First Street SW, Rochester, Minnesota
| | | | - Alexander Meves
- Department of Dermatology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota
| |
Collapse
|
17
|
Zheng Y, Leftheris K. Insights into Protein–Ligand Interactions in Integrin Complexes: Advances in Structure Determinations. J Med Chem 2020; 63:5675-5696. [DOI: 10.1021/acs.jmedchem.9b01869] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yajun Zheng
- Pliant Therapeutics, South San Francisco, California 94080, United States
| | - Katerina Leftheris
- Pliant Therapeutics, South San Francisco, California 94080, United States
| |
Collapse
|
18
|
Viela F, Speziale P, Pietrocola G, Dufrêne YF. Mechanostability of the Fibrinogen Bridge between Staphylococcal Surface Protein ClfA and Endothelial Cell Integrin α Vβ 3. NANO LETTERS 2019; 19:7400-7410. [PMID: 31532212 DOI: 10.1021/acs.nanolett.9b03080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Binding of the Staphylococcus aureus surface protein clumping factor A (ClfA) to endothelial cell integrin αVβ3 plays a crucial role during sepsis, by causing endothelial cell apoptosis and loss of barrier integrity. ClfA uses the blood plasma protein fibrinogen (Fg) to bind to αVβ3 but how this is achieved at the molecular level is not known. Here we investigate the mechanical strength of the three-component ClfA-Fg-αVβ3 interaction on living bacteria, by means of single-molecule experiments. We find that the ClfA-Fg-αVβ3 ternary complex is extremely stable, being able to sustain forces (∼800 pN) that are much stronger than those of classical bonds between integrins and the Arg-Gly-Asp (RGD) tripeptide sequence (∼100 pN). Adhesion forces between single bacteria and αVβ3 are strongly inhibited by an anti-αVβ3 antibody, the RGD peptide, and the cyclic RGD peptide cilengitide, showing that formation of the complex involves RGD-dependent binding sites and can be efficiently inhibited by αVβ3 blockers. Collectively, our experiments favor a binding mechanism involving the extraordinary elasticity of Fg. In the absence of mechanical stress, RGD572-574 sequences in the Aα chains mediate weak binding to αVβ3, whereas under high mechanical stress exposure of cryptic Aα chain RGD95-97 sequences leads to extremely strong binding to the integrin. Our results identify an unexpected and previously undescribed force-dependent binding mechanism between ClfA and αVβ3 on endothelial cells, which could represent a potential target to fight staphylococcal bloodstream infections.
Collapse
Affiliation(s)
- Felipe Viela
- Louvain Institute of Biomolecular Science and Technology, UCLouvain , Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve , Belgium
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry , University of Pavia , Viale Taramelli 3/b , 27100 Pavia , Italy
- Department of Industrial and Information Engineering , University of Pavia , 27100 Pavia , Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry , University of Pavia , Viale Taramelli 3/b , 27100 Pavia , Italy
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain , Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve , Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO) , 1300 Wavre , Belgium
| |
Collapse
|
19
|
Dzuricky M, Xiong S, Weber P, Chilkoti A. Avidity and Cell Uptake of Integrin-Targeting Polypeptide Micelles is Strongly Shape-Dependent. NANO LETTERS 2019; 19:6124-6132. [PMID: 31389705 DOI: 10.1021/acs.nanolett.9b02095] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We describe a genetically encoded micelle for targeted delivery consisting of a diblock polypeptide with segments derived from repetitive protein motifs inspired by Drosophila melanogaster Rec-1 resilin and human tropoelastin with a C-terminal fusion of an integrin-targeting fibronectin type III domain. By systematically varying the weight fraction of the hydrophilic elastin-like polypeptide (ELP) block and molecular weight of the diblock polypeptide, we designed micelles of different morphologies that modulate the binding avidity of the human wild-type 10th fibronectin domain (Fn3) as a function of shape. We show that wormlike micelles that present the Fn3 domain have a 1000-fold greater avidity for the αvβ3 receptor compared to the monomer ligand and an avidity that is greater than a clinically relevant antibody that is driven by their multivalency. The amplified avidity of these micelles leads to significantly increased cellular internalization, a feature that may have utility for the intracellular delivery of drugs that are loaded into the core of these micelles.
Collapse
Affiliation(s)
- Michael Dzuricky
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Sinan Xiong
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Patrick Weber
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
- Swiss Nanoscience Institute , University of Basel , Basel 4056 , Switzerland
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
20
|
Gocheva G, Ivanova A. A Look at Receptor–Ligand Pairs for Active-Targeting Drug Delivery from Crystallographic and Molecular Dynamics Perspectives. Mol Pharm 2019; 16:3293-3321. [DOI: 10.1021/acs.molpharmaceut.9b00250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gergana Gocheva
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Anela Ivanova
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
21
|
Kim JE, Jung K, Kim JA, Kim SH, Park HS, Kim YS. Engineering of anti-human interleukin-4 receptor alpha antibodies with potent antagonistic activity. Sci Rep 2019; 9:7772. [PMID: 31123339 PMCID: PMC6533264 DOI: 10.1038/s41598-019-44253-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Development of antagonistic antibody (Ab) against interleukin-4 receptor alpha (IL-4Rα) subunit of IL-4/IL-13 receptors is a promising therapeutic strategy for T helper 2 (TH2)-mediated allergic diseases such as asthma and atopic dermatitis. Here we isolated anti-human IL-4Rα antagonistic Abs from a large yeast surface-displayed human Ab library and further engineered their complementarity-determining regions to improve the affinity using yeast display technology, finally generating a candidate Ab, 4R34.1.19. When reformatted as human IgG1 form, 4R34.1.19 specifically bound to IL-4Rα with a high affinity (KD ≈ 178 pM) and effectively blocked IL-4- and IL-13-dependent signaling in a reporter cell system at a comparable level to that of the clinically approved anti-IL-4Rα dupilumab Ab analogue. Epitope mapping by alanine scanning mutagenesis revealed that 4R34.1.19 mainly bound to IL-4 binding sites on IL-4Rα with different epitopes from those of dupilumab analogue. Further, 4R34.1.19 efficiently inhibited IL-4-dependent proliferation of T cells among human peripheral blood mononuclear cells and suppressed the differentiation of naïve CD4+ T cells from healthy donors and asthmatic patients into TH2 cells, the activities of which were comparable to those of dupilumab analogue. Our work demonstrates that both affinity and epitope are critical factors for the efficacy of anti-IL-4Rα antagonistic Abs.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Keunok Jung
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Jeong-Ah Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Seung-Hyun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| |
Collapse
|
22
|
Paladino A, Civera M, Curnis F, Paolillo M, Gennari C, Piarulli U, Corti A, Belvisi L, Colombo G. The Importance of Detail: How Differences in Ligand Structures Determine Distinct Functional Responses in Integrin α
v
β
3. Chemistry 2019; 25:5959-5970. [DOI: 10.1002/chem.201900169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/22/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Antonella Paladino
- Istituto di Chimica del Riconoscimento Molecolare CNR via Mario Bianco 9 20131 Milan Italy
| | - Monica Civera
- Dipartimento di ChimicaUniversità degli Studi di Milano via Golgi 19 20133 Milan Italy
| | - Flavio Curnis
- IRCCS Ospedale San Raffaele Via Olgettina 60 20132 Milan Italy
| | - Mayra Paolillo
- Dipartimento di Scienze del FarmacoUniversità degli Studi di Pavia Viale Taramelli 6 27100 Pavia Italy
| | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di Milano via Golgi 19 20133 Milan Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Angelo Corti
- IRCCS Ospedale San Raffaele Via Olgettina 60 20132 Milan Italy
| | - Laura Belvisi
- Dipartimento di ChimicaUniversità degli Studi di Milano via Golgi 19 20133 Milan Italy
| | - Giorgio Colombo
- Dipartimento di ChimicaUniversità degli Studi di Pavia Viale Taramelli 12 27100 Pavia Italy
| |
Collapse
|
23
|
Cayrol F, Sterle HA, Díaz Flaqué MC, Barreiro Arcos ML, Cremaschi GA. Non-genomic Actions of Thyroid Hormones Regulate the Growth and Angiogenesis of T Cell Lymphomas. Front Endocrinol (Lausanne) 2019; 10:63. [PMID: 30814977 PMCID: PMC6381017 DOI: 10.3389/fendo.2019.00063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
T-cell lymphomas (TCL) are a heterogeneous group of aggressive clinical lymphoproliferative disorders with considerable clinical, morphological, immunophenotypic, and genetic variation, including ~10-15% of all lymphoid neoplasms. Several evidences indicate an important role of the non-neoplastic microenvironment in promoting both tumor growth and dissemination in T cell malignancies. Thus, dysregulation of integrin expression and activity is associated with TCL survival and proliferation. We found that thyroid hormones acting via the integrin αvβ3 receptor are crucial factors in tumor microenvironment (TME) affecting the pathophysiology of TCL cells. Specifically, TH-activated αvβ3 integrin signaling promoted TCL proliferation and induced and an angiogenic program via the up-regulation of the vascular endothelial growth factor (VEGF). This was observed both on different TCL cell lines representing the different subtypes of human hematological malignancy, and in preclinical models of TCL tumors xenotransplanted in immunodeficient mice as well. Moreover, development of solid tumors by inoculation of murine TCLs in syngeneic hyperthyroid mice, showed increased tumor growth along with increased expression of cell cycle regulators. The genomic or pharmacological inhibition of integrin αvβ3 decreased VEGF production, induced TCL cell death and decreased in vivo tumor growth and angiogenesis. Here, we review the non-genomic actions of THs on TCL regulation and their contribution to TCL development and evolution. These actions not only provide novel new insights on the endocrine modulation of TCL, but also provide a potential molecular target for its treatment.
Collapse
Affiliation(s)
- Florencia Cayrol
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Helena A Sterle
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Maria Celeste Díaz Flaqué
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Maria Laura Barreiro Arcos
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Graciela A Cremaschi
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Jiang S, Qiu GH, Zhu N, Hu ZY, Liao DF, Qin L. ANGPTL3: a novel biomarker and promising therapeutic target. J Drug Target 2019; 27:876-884. [PMID: 30615486 DOI: 10.1080/1061186x.2019.1566342] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Angiopoietin-like protein 3 (ANGPTL3) belongs to a multifunctional secreted protein that mainly expresses in the liver, and is regulated by numerous post-translational modifications, including multiple cleavage and glycosylation. Accumulating evidences have revealed that ANGPTL3 plays a critical role in both biological processes, such as lipid metabolism, angiogenesis and haematopoietic function and pathological changes, including atherosclerosis, carcinogenesis, nephrotic syndrome, diabetes, liver diseases and so on. Thus, ANGPTL3 may serve as a potential biomarker in these diseases. Furthermore, ANGPTL3 signalling pathways including LXR/ANGPTL3, thyroid hormone/ANGPTL3, insulin/ANGPTL3 and leptin/ANGPTL3 are also involved in physiological and pathological processes. Some biological ANGPTL3 inhibitors, chemical drugs and traditional Chinese medicine exert beneficial effects by targeting ANGPTL3 directly or indirectly. Therefore, elucidating the effects and underlying mechanisms of ANGPTL3 is essential to develop promising strategies in the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Shuang Jiang
- a School of Pharmacy , Hunan University of Chinese Medicine , Changsha , Hunan , China.,b Division of Stem Cell Regulation and Application , Hunan University of Chinese Medicine , Changsha , Hunan , China
| | - Guo-Hui Qiu
- a School of Pharmacy , Hunan University of Chinese Medicine , Changsha , Hunan , China.,c Department of Pharmacy , Hunan Provincial People's Hospital , Changsha , Hunan , China
| | - Neng Zhu
- d The First Affiliated Hospital , Hunan University of Chinese Medicine , Changsha , Hunan , China
| | - Zhe-Yu Hu
- e Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya Medical School , Central South University , Changsha , Hunan , China
| | - Duan-Fang Liao
- a School of Pharmacy , Hunan University of Chinese Medicine , Changsha , Hunan , China.,b Division of Stem Cell Regulation and Application , Hunan University of Chinese Medicine , Changsha , Hunan , China
| | - Li Qin
- a School of Pharmacy , Hunan University of Chinese Medicine , Changsha , Hunan , China.,b Division of Stem Cell Regulation and Application , Hunan University of Chinese Medicine , Changsha , Hunan , China
| |
Collapse
|
25
|
Wallstabe L, Mades A, Frenz S, Einsele H, Rader C, Hudecek M. CAR T cells targeting α vβ 3 integrin are effective against advanced cancer in preclinical models. ACTA ACUST UNITED AC 2018; 1. [PMID: 30420973 DOI: 10.1002/acg2.11] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective Integrins are heterodimeric receptors that convey cell-to-cell and cell-to-matrix interactions. Integrin αvβ3 is expressed in several tumour entities including melanoma, glioblastoma, breast, pancreatic and prostate cancer, where it promotes tumour cell survival and metastasis. Here, we generated αvβ3-specific chimeric antigen receptor (CAR) T-cells and analysed their antitumour function in pre-clinical models in vitro and in vivo. Methods αvβ3-CARs comprising a super-humanised hLM609 targeting domain with either high or low affinity (hLM609v7, K d = 3 nM vs. hLM609v11, K d = 160 nM) and equipped with either a long or a short IgG4-Fc extracellular spacer (229 vs. 12 amino acids) were expressed in CD8+ and CD4+ T-cells through lentiviral transduction. Results αvβ3-CAR T-cells eliminated αvβ3-positive tumour cells rapidly and specifically, produced IFN-γ and IL-2 (CD4+ > CD8+) and exhibited productive proliferation. In vitro, we observed the strongest reactivity with the higher-affinity hLM609v7 αvβ3-CAR in the short spacer configuration, consistent with the tumour membrane-distal localization of the hLM609 epitope. In a murine xenograft model of metastatic A-375 melanoma, the strongest antitumour effect was mediated by the lower-affinity hLM609v11 αvβ3-CAR. Notably, a single administration of hLM609v11 αvβ3-CAR T-cells was able to induce complete elimination of melanoma lesions, leading to long-term tumour-free survival. Conclusions These data establish αvβ3 integrin as a novel target for CAR T-cell immunotherapy, and affirm our previous notion that binding domain affinity and spacer length can be calibrated to augment CAR reactivity. Clinical implications αvβ3-CAR T-cells have therapeutic potential in several prevalent solid tumours, including melanoma and triple-negative breast cancer.
Collapse
Affiliation(s)
- Lars Wallstabe
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Andreas Mades
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Silke Frenz
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Nardelli F, Paissoni C, Quilici G, Gori A, Traversari C, Valentinis B, Sacchi A, Corti A, Curnis F, Ghitti M, Musco G. Succinimide-Based Conjugates Improve IsoDGR Cyclopeptide Affinity to α vβ 3 without Promoting Integrin Allosteric Activation. J Med Chem 2018; 61:7474-7485. [PMID: 29883545 DOI: 10.1021/acs.jmedchem.8b00745] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The isoDGR sequence is an integrin-binding motif that has been successfully employed as a tumor-vasculature-homing molecule or for the targeted delivery of drugs and diagnostic agents to tumors. In this context, we previously demonstrated that cyclopeptide 2, the product of the conjugation of c(CGisoDGRG) (1) to 4-( N-maleimidomethyl)cyclohexane-1-carboxamide, can be successfully used as a tumor-homing ligand for nanodrug delivery to neoplastic tissues. Here, combining NMR, computational, and biochemical methods, we show that the succinimide ring contained in 2 contributes to stabilizing interactions with αvβ3, an integrin overexpressed in the tumor vasculature. Furthermore, we demonstrate that various cyclopeptides containing the isoDGR sequence embedded in different molecular scaffolds do not induce αvβ3 allosteric activation and work as pure integrin antagonists. These results could be profitably exploited for the rational design of novel isoDGR-based ligands and tumor-targeting molecules with improved αvβ3-binding properties and devoid of adverse integrin-activating effects.
Collapse
Affiliation(s)
| | - Cristina Paissoni
- IRCCS Ospedale San Raffaele , Via Olgettina 60 , 20132 Milan , Italy.,Dipartimento di Chimica , Università degli Studi di Milano , Via Golgi 19 , 20133 Milan , Italy
| | - Giacomo Quilici
- IRCCS Ospedale San Raffaele , Via Olgettina 60 , 20132 Milan , Italy
| | - Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare, CNR , Via Mario Bianco 9 , 20131 Milan , Italy
| | | | | | - Angelina Sacchi
- IRCCS Ospedale San Raffaele , Via Olgettina 60 , 20132 Milan , Italy
| | - Angelo Corti
- IRCCS Ospedale San Raffaele , Via Olgettina 60 , 20132 Milan , Italy
| | - Flavio Curnis
- IRCCS Ospedale San Raffaele , Via Olgettina 60 , 20132 Milan , Italy
| | - Michela Ghitti
- IRCCS Ospedale San Raffaele , Via Olgettina 60 , 20132 Milan , Italy
| | - Giovanna Musco
- IRCCS Ospedale San Raffaele , Via Olgettina 60 , 20132 Milan , Italy
| |
Collapse
|
27
|
Huang R, Rofstad EK. Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma. J Exp Clin Cancer Res 2018; 37:92. [PMID: 29703238 PMCID: PMC5924434 DOI: 10.1186/s13046-018-0763-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Integrins are a large family of adhesion molecules that mediate cell-cell and cell-extracellular matrix interactions. Among the 24 integrin isoforms, many have been found to be associated with tumor angiogenesis, tumor cell migration and proliferation, and metastasis. Integrins, especially αvβ3, αvβ5 and α5β1, participate in mediating tumor angiogenesis by interacting with the vascular endothelial growth factor and angiopoietin-Tie signaling pathways. Melanoma patients have a poor prognosis when the primary tumor has generated distant metastases, and the melanoma metastatic site is an independent predictor of the survival of these patients. Different integrins on the melanoma cell surface preferentially direct circulating melanoma cells to different organs and promote the development of metastases at specific organ sites. For instance, melanoma cells expressing integrin β3 tend to metastasize to the lungs, whereas those expressing integrin β1 preferentially generate lymph node metastases. Moreover, tumor cell-derived exosomes which contain different integrins may prepare a pre-metastatic niche in specific organs and promote organ-specific metastases. Because of the important role that integrins play in tumor angiogenesis and metastasis, they have become promising targets for the treatment of advanced cancer. In this paper, we review the integrin isoforms responsible for angiogenesis and organ-specific metastasis in malignant melanoma and the inhibitors that have been considered for the future treatment of metastatic disease.
Collapse
Affiliation(s)
- Ruixia Huang
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway.
| | - Einar K Rofstad
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway
| |
Collapse
|