1
|
Larmore M, Esarte Palomero O, Kamat N, DeCaen PG. A synthetic method to assay polycystin channel biophysics. eLife 2024; 13:RP98534. [PMID: 39466685 PMCID: PMC11517255 DOI: 10.7554/elife.98534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Ion channels are biological transistors that control ionic flux across cell membranes to regulate electrical transmission and signal transduction. They are found in all biological membranes and their conductive state kinetics are frequently disrupted in human diseases. Organelle ion channels are among the most resistant to functional and pharmacological interrogation. Traditional channel protein reconstitution methods rely upon exogenous expression and/or purification from endogenous cellular sources which are frequently contaminated by resident ionophores. Here, we describe a fully synthetic method to assay functional properties of polycystin channels that natively traffic to primary cilia and endoplasmic reticulum organelles. Using this method, we characterize their oligomeric assembly, membrane integration, orientation, and conductance while comparing these results to their endogenous channel properties. Outcomes define a novel synthetic approach that can be applied broadly to investigate channels resistant to biophysical analysis and pharmacological characterization.
Collapse
Affiliation(s)
- Megan Larmore
- Department of Pharmacology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Orhi Esarte Palomero
- Department of Pharmacology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Neha Kamat
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern UniversityEvanstonUnited States
- Center for Synthetic Biology, Northwestern UniversityEvanstonUnited States
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
- Chemistry of Life Processes Institute, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
2
|
Staudner T, Geiges L, Khamseekaew J, Sure F, Korbmacher C, Ilyaskin AV. Disease-associated missense mutations in the pore loop of polycystin-2 alter its ion channel function in a heterologous expression system. J Biol Chem 2024; 300:107574. [PMID: 39009345 PMCID: PMC11630642 DOI: 10.1016/j.jbc.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Polycystin-2 (PC2) is mutated in ∼15% of patients with autosomal dominant polycystic kidney disease (ADPKD). PC2 belongs to the family of transient receptor potential (TRP) channels and can function as a homotetramer. We investigated whether three disease-associated mutations (F629S, C632R, or R638C) localized in the channel's pore loop alter ion channel properties of human PC2 expressed in Xenopus laevis oocytes. Expression of wild-type (WT) PC2 typically resulted in small but measurable Na+ inward currents in the absence of extracellular divalent cations. These currents were no longer observed when individual pore mutations were introduced in WT PC2. Similarly, Na+ inward currents mediated by the F604P gain-of-function (GOF) PC2 construct (PC2 F604P) were abolished by each of the three pore mutations. In contrast, when the mutations were introduced in another GOF construct, PC2 L677A N681A, only C632R had a complete loss-of-function effect, whereas significant residual Na+ inward currents were observed with F629S (∼15%) and R638C (∼30%). Importantly, the R638C mutation also abolished the Ca2+ permeability of PC2 L677A N681A and altered its monovalent cation selectivity. To elucidate the molecular mechanisms by which the R638C mutation affects channel function, molecular dynamics (MD) simulations were used in combination with functional experiments and site-directed mutagenesis. Our findings suggest that R638C stabilizes ionic interactions between Na+ ions and the selectivity filter residue D643. This probably explains the reduced monovalent cation conductance of the mutant channel. In summary, our data support the concept that altered ion channel properties of PC2 contribute to the pathogenesis of ADPKD.
Collapse
Affiliation(s)
- Tobias Staudner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Linda Geiges
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Juthamas Khamseekaew
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Florian Sure
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Christoph Korbmacher
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Alexandr V Ilyaskin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany.
| |
Collapse
|
3
|
Ha K, Mundt-Machado N, Bisignano P, Pinedo A, Raleigh DR, Loeb G, Reiter JF, Cao E, Delling M. Cilia-enriched oxysterol 7β,27-DHC is required for polycystin ion channel activation. Nat Commun 2024; 15:6468. [PMID: 39085216 PMCID: PMC11291729 DOI: 10.1038/s41467-024-50318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Polycystin-1 (PC-1) and PC-2 form a heteromeric ion channel complex that is abundantly expressed in primary cilia of renal epithelial cells. This complex functions as a non-selective cation channel, and mutations within the polycystin complex cause autosomal dominant polycystic kidney disease (ADPKD). The spatial and temporal regulation of the polycystin complex within the ciliary membrane remains poorly understood. Using both whole-cell and ciliary patch-clamp recordings, we identify a cilia-enriched oxysterol, 7β,27-dihydroxycholesterol (DHC), that serves as a necessary activator of the polycystin complex. We further identify an oxysterol-binding pocket within PC-2 and showed that mutations within this binding pocket disrupt 7β,27-DHC-dependent polycystin activation. Pharmacologic and genetic inhibition of oxysterol synthesis reduces channel activity in primary cilia. In summary, our findings reveal a regulator of the polycystin complex. This oxysterol-binding pocket in PC-2 may provide a specific target for potential ADPKD therapeutics.
Collapse
Affiliation(s)
- Kodaji Ha
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Nadine Mundt-Machado
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Paola Bisignano
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Aide Pinedo
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriel Loeb
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Markus Delling
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Hilgendorf KI, Myers BR, Reiter JF. Emerging mechanistic understanding of cilia function in cellular signalling. Nat Rev Mol Cell Biol 2024; 25:555-573. [PMID: 38366037 PMCID: PMC11199107 DOI: 10.1038/s41580-023-00698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Primary cilia are solitary, immotile sensory organelles present on most cells in the body that participate broadly in human health, physiology and disease. Cilia generate a unique environment for signal transduction with tight control of protein, lipid and second messenger concentrations within a relatively small compartment, enabling reception, transmission and integration of biological information. In this Review, we discuss how cilia function as signalling hubs in cell-cell communication using three signalling pathways as examples: ciliary G-protein-coupled receptors (GPCRs), the Hedgehog (Hh) pathway and polycystin ion channels. We review how defects in these ciliary signalling pathways lead to a heterogeneous group of conditions known as 'ciliopathies', including metabolic syndromes, birth defects and polycystic kidney disease. Emerging understanding of these pathways' transduction mechanisms reveals common themes between these cilia-based signalling pathways that may apply to other pathways as well. These mechanistic insights reveal how cilia orchestrate normal and pathophysiological signalling outputs broadly throughout human biology.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Benjamin R Myers
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
5
|
Wang Z, Chen M, Su Q, Morais TDC, Wang Y, Nazginov E, Pillai AR, Qian F, Shi Y, Yu Y. Molecular and structural basis of the dual regulation of the polycystin-2 ion channel by small-molecule ligands. Proc Natl Acad Sci U S A 2024; 121:e2316230121. [PMID: 38483987 PMCID: PMC10962963 DOI: 10.1073/pnas.2316230121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
Mutations in the PKD2 gene, which encodes the polycystin-2 (PC2, also called TRPP2) protein, lead to autosomal dominant polycystic kidney disease (ADPKD). As a member of the transient receptor potential (TRP) channel superfamily, PC2 functions as a non-selective cation channel. The activation and regulation of the PC2 channel are largely unknown, and direct binding of small-molecule ligands to this channel has not been reported. In this work, we found that most known small-molecule agonists of the mucolipin TRP (TRPML) channels inhibit the activity of the PC2_F604P, a gain-of-function mutant of the PC2 channel. However, two of them, ML-SA1 and SF-51, have dual regulatory effects, with low concentration further activating PC2_F604P, and high concentration leading to inactivation of the channel. With two cryo-electron microscopy (cryo-EM) structures, a molecular docking model, and mutagenesis results, we identified two distinct binding sites of ML-SA1 in PC2_F604P that are responsible for activation and inactivation, respectively. These results provide structural and functional insights into how ligands regulate PC2 channel function through unusual mechanisms and may help design compounds that are more efficient and specific in regulating the PC2 channel and potentially also for ADPKD treatment.
Collapse
Affiliation(s)
- Zhifei Wang
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Mengying Chen
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang province310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang province310024, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qiang Su
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang province310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang province310024, China
| | - Tiago D. C. Morais
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Yan Wang
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Elianna Nazginov
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Akhilraj R. Pillai
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Yigong Shi
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang province310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang province310024, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yong Yu
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| |
Collapse
|
6
|
Herianto S, Subramani B, Chen BR, Chen CS. Recent advances in liposome development for studying protein-lipid interactions. Crit Rev Biotechnol 2024; 44:1-14. [PMID: 36170980 DOI: 10.1080/07388551.2022.2111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
Protein-lipid interactions are crucial for various cellular biological processes like intracellular signaling, membrane transport, and cytoskeletal dynamics. Therefore, studying these interactions is essential to understand and unravel their specific functions. Nevertheless, the interacting proteins of many lipids are poorly understood and still require systematic study. Liposomes are the most well-known and familiar biomimetic systems used to study protein-lipid interactions. Although liposomes have been widely used for studying protein-lipid interactions in classical methods such as the co-flotation assay (CFA), co-sedimentation assay (CSA), and flow cytometric assay (FCA), an overview of their current applications and developments in high-throughput methods is not yet available. Here, we summarize the liposome development in low and high-throughput methods to study protein-lipid interactions. Besides, a constructive comment for each platform is presented to stimulate the advancement of these technologies in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry (Chemical Biology Division), College of Science, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Boopathi Subramani
- Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Ruei Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Huang J, Korsunsky A, Yazdani M, Chen J. Targeting TRP channels: recent advances in structure, ligand binding, and molecular mechanisms. Front Mol Neurosci 2024; 16:1334370. [PMID: 38273937 PMCID: PMC10808746 DOI: 10.3389/fnmol.2023.1334370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of transmembrane ion channels that are widely expressed, have important physiological roles, and are associated with many human diseases. These proteins are actively pursued as promising drug targets, benefitting greatly from advances in structural and mechanistic studies of TRP channels. At the same time, the complex, polymodal activation and regulation of TRP channels have presented formidable challenges. In this short review, we summarize recent progresses toward understanding the structural basis of TRP channel function, as well as potential ligand binding sites that could be targeted for therapeutics. A particular focus is on the current understanding of the molecular mechanisms of TRP channel activation and regulation, where many fundamental questions remain unanswered. We believe that a deeper understanding of the functional mechanisms of TRP channels will be critical and likely transformative toward developing successful therapeutic strategies targeting these exciting proteins. This endeavor will require concerted efforts from computation, structural biology, medicinal chemistry, electrophysiology, pharmacology, drug safety and clinical studies.
Collapse
Affiliation(s)
- Jian Huang
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Aron Korsunsky
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Mahdieh Yazdani
- Modeling and Informatics, Merck & Co., Inc., West Point, PA, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
8
|
Ansell TB, Song W, Coupland CE, Carrique L, Corey RA, Duncan AL, Cassidy CK, Geurts MMG, Rasmussen T, Ward AB, Siebold C, Stansfeld PJ, Sansom MSP. LipIDens: simulation assisted interpretation of lipid densities in cryo-EM structures of membrane proteins. Nat Commun 2023; 14:7774. [PMID: 38012131 PMCID: PMC10682427 DOI: 10.1038/s41467-023-43392-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) enables the determination of membrane protein structures in native-like environments. Characterising how membrane proteins interact with the surrounding membrane lipid environment is assisted by resolution of lipid-like densities visible in cryo-EM maps. Nevertheless, establishing the molecular identity of putative lipid and/or detergent densities remains challenging. Here we present LipIDens, a pipeline for molecular dynamics (MD) simulation-assisted interpretation of lipid and lipid-like densities in cryo-EM structures. The pipeline integrates the implementation and analysis of multi-scale MD simulations for identification, ranking and refinement of lipid binding poses which superpose onto cryo-EM map densities. Thus, LipIDens enables direct integration of experimental and computational structural approaches to facilitate the interpretation of lipid-like cryo-EM densities and to reveal the molecular identities of protein-lipid interactions within a bilayer environment. We demonstrate this by application of our open-source LipIDens code to ten diverse membrane protein structures which exhibit lipid-like densities.
Collapse
Affiliation(s)
- T Bertie Ansell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Wanling Song
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK
| | - Claire E Coupland
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Loic Carrique
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Chemistry, Aarhus University, Lagelsandsgade 140, 8000, Aarhus C, Denmark
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Maxwell M G Geurts
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Tim Rasmussen
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, Haus D15, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Phillip J Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
9
|
Papadourakis M, Sinenka H, Matricon P, Hénin J, Brannigan G, Pérez-Benito L, Pande V, van Vlijmen H, de Graaf C, Deflorian F, Tresadern G, Cecchini M, Cournia Z. Alchemical Free Energy Calculations on Membrane-Associated Proteins. J Chem Theory Comput 2023; 19:7437-7458. [PMID: 37902715 PMCID: PMC11017255 DOI: 10.1021/acs.jctc.3c00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 10/31/2023]
Abstract
Membrane proteins have diverse functions within cells and are well-established drug targets. The advances in membrane protein structural biology have revealed drug and lipid binding sites on membrane proteins, while computational methods such as molecular simulations can resolve the thermodynamic basis of these interactions. Particularly, alchemical free energy calculations have shown promise in the calculation of reliable and reproducible binding free energies of protein-ligand and protein-lipid complexes in membrane-associated systems. In this review, we present an overview of representative alchemical free energy studies on G-protein-coupled receptors, ion channels, transporters as well as protein-lipid interactions, with emphasis on best practices and critical aspects of running these simulations. Additionally, we analyze challenges and successes when running alchemical free energy calculations on membrane-associated proteins. Finally, we highlight the value of alchemical free energy calculations calculations in drug discovery and their applicability in the pharmaceutical industry.
Collapse
Affiliation(s)
- Michail Papadourakis
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Hryhory Sinenka
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Pierre Matricon
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Jérôme Hénin
- Laboratoire
de Biochimie Théorique UPR 9080, CNRS and Université Paris Cité, 75005 Paris, France
| | - Grace Brannigan
- Center
for Computational and Integrative Biology, Rutgers University−Camden, Camden, New Jersey 08103, United States of America
- Department
of Physics, Rutgers University−Camden, Camden, New Jersey 08102, United States
of America
| | - Laura Pérez-Benito
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Vineet Pande
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Herman van Vlijmen
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Chris de Graaf
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Francesca Deflorian
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Gary Tresadern
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marco Cecchini
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Zoe Cournia
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
10
|
Wang Y, Wang Z, Pavel MA, Ng C, Kashyap P, Li B, Morais TDC, Ulloa GA, Yu Y. The diverse effects of pathogenic point mutations on ion channel activity of a gain-of-function polycystin-2. J Biol Chem 2023; 299:104674. [PMID: 37028763 PMCID: PMC10192930 DOI: 10.1016/j.jbc.2023.104674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease is caused by mutations in PKD1 or PKD2 genes. The latter encodes polycystin-2 (PC2, also known as TRPP2), a member of the transient receptor potential ion channel family. Despite most pathogenic mutations in PKD2 being truncation variants, there are also many point mutations, which cause small changes in protein sequences but dramatic changes in the in vivo function of PC2. How these mutations affect PC2 ion channel function is largely unknown. In this study, we systematically tested the effects of 31 point mutations on the ion channel activity of a gain-of-function PC2 mutant, PC2_F604P, expressed in Xenopus oocytes. The results show that all mutations in the transmembrane domains and channel pore region, and most mutations in the extracellular tetragonal opening for polycystins domain, are critical for PC2_F604P channel function. In contrast, the other mutations in the tetragonal opening for polycystins domain and most mutations in the C-terminal tail cause mild or no effects on channel function as assessed in Xenopus oocytes. To understand the mechanism of these effects, we have discussed possible conformational consequences of these mutations based on the cryo-EM structures of PC2. The results help gain insight into the structure and function of the PC2 ion channel and the molecular mechanism of pathogenesis caused by these mutations.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Zhifei Wang
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Mahmud Arif Pavel
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Courtney Ng
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Parul Kashyap
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Bin Li
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Tiago D C Morais
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Gabriella A Ulloa
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | - Yong Yu
- Department of Biological Sciences, St. John's University, Queens, New York, USA.
| |
Collapse
|
11
|
Abstract
Polycystin subunits can form hetero- and homotetrameric ion channels in the membranes of various compartments of the cell. Homotetrameric polycystin channels are voltage- and calcium-modulated, whereas heterotetrameric versions are proposed to be ligand- or autoproteolytically regulated. Their importance is underscored by variants associated with autosomal dominant polycystic kidney disease and by vital roles in fertilization and embryonic development. The diversity in polycystin assembly and subcellular distribution allows for a multitude of sensory functions by this class of channels. In this review, we highlight their recent structural and functional characterization, which has provided a molecular blueprint to investigate the conformational changes required for channel opening in response to unique stimuli. We consider each polycystin channel type individually, discussing how they contribute to sensory cell biology, as well as their impact on the physiology of various tissues.
Collapse
Affiliation(s)
- Orhi Esarte Palomero
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Megan Larmore
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
12
|
Structural mechanisms of TRPV2 modulation by endogenous and exogenous ligands. Nat Chem Biol 2023; 19:72-80. [PMID: 36163384 DOI: 10.1038/s41589-022-01139-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/10/2022] [Indexed: 12/31/2022]
Abstract
The transient receptor potential vanilloid 2 (TRPV2) ion channel is a polymodal receptor widely involved in many physiological and pathological processes. Despite many TRPV2 modulators being identified, whether and how TRPV2 is regulated by endogenous lipids remains elusive. Here, we report an endogenous cholesterol molecule inside the vanilloid binding pocket (VBP) of TRPV2, with a 'head down, tail up' configuration, resolved at 3.2 Å using cryo-EM. Cholesterol binding antagonizes ligand activation of TRPV2, which is removed from VBP by methyl-β-cyclodextrin (MβCD) as resolved at 2.9 Å. We also observed that estradiol (E2) potentiated TRPV2 activation by 2-aminoethoxydiphenyl borate (2-APB), a classic tool compound for TRP channels. Our cryo-EM structures (resolved at 2.8-3.3 Å) further suggest how E2 disturbed cholesterol binding and how 2-APB bound within the VBP with E2 or without both E2 and endogenous cholesterol, respectively. Therefore, our study has established the structural basis for ligand recognition of the inhibitory endogenous cholesterol and excitatory exogenous 2-APB in TRPV2.
Collapse
|
13
|
Piper SJ, Johnson RM, Wootten D, Sexton PM. Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Chem Rev 2022; 122:13989-14017. [PMID: 35849490 PMCID: PMC9480104 DOI: 10.1021/acs.chemrev.1c00837] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Membrane proteins are highly diverse in both structure and function and can, therefore, present different challenges for structure determination. They are biologically important for cells and organisms as gatekeepers for information and molecule transfer across membranes, but each class of membrane proteins can present unique obstacles to structure determination. Historically, many membrane protein structures have been investigated using highly engineered constructs or using larger fusion proteins to improve solubility and/or increase particle size. Other strategies included the deconstruction of the full-length protein to target smaller soluble domains. These manipulations were often required for crystal formation to support X-ray crystallography or to circumvent lower resolution due to high noise and dynamic motions of protein subdomains. However, recent revolutions in membrane protein biochemistry and cryo-electron microscopy now provide an opportunity to solve high resolution structures of both large, >1 megadalton (MDa), and small, <100 kDa (kDa), drug targets in near-native conditions, routinely reaching resolutions around or below 3 Å. This review provides insights into how the recent advances in membrane biology and biochemistry, as well as technical advances in cryo-electron microscopy, help us to solve structures of a large variety of membrane protein groups, from small receptors to large transporters and more complex machineries.
Collapse
Affiliation(s)
- Sarah J. Piper
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Rachel M. Johnson
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Denise Wootten
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
14
|
Zhu Z, Deng Z, Wang Q, Wang Y, Zhang D, Xu R, Guo L, Wen H. Simulation and Machine Learning Methods for Ion-Channel Structure Determination, Mechanistic Studies and Drug Design. Front Pharmacol 2022; 13:939555. [PMID: 35837274 PMCID: PMC9275593 DOI: 10.3389/fphar.2022.939555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Ion channels are expressed in almost all living cells, controlling the in-and-out communications, making them ideal drug targets, especially for central nervous system diseases. However, owing to their dynamic nature and the presence of a membrane environment, ion channels remain difficult targets for the past decades. Recent advancement in cryo-electron microscopy and computational methods has shed light on this issue. An explosion in high-resolution ion channel structures paved way for structure-based rational drug design and the state-of-the-art simulation and machine learning techniques dramatically improved the efficiency and effectiveness of computer-aided drug design. Here we present an overview of how simulation and machine learning-based methods fundamentally changed the ion channel-related drug design at different levels, as well as the emerging trends in the field.
Collapse
Affiliation(s)
- Zhengdan Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Institute of Big Data Research, Beijing, China
| | - Zhenfeng Deng
- DP Technology, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | | | - Duo Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- DP Technology, Beijing, China
| | - Ruihan Xu
- DP Technology, Beijing, China
- National Engineering Research Center of Visual Technology, Peking University, Beijing, China
| | | | - Han Wen
- DP Technology, Beijing, China
| |
Collapse
|
15
|
Dutta P, Ray K. Ciliary membrane, localised lipid modification and cilia function. J Cell Physiol 2022; 237:2613-2631. [PMID: 35661356 DOI: 10.1002/jcp.30787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
Cilium, a tiny microtubule-based cellular appendage critical for cell signalling and physiology, displays a large variety of receptors. The composition and turnover of ciliary lipids and receptors determine cell behaviour. Due to the exclusion of ribosomal machinery and limited membrane area, a cilium needs adaptive logistics to actively reconstitute the lipid and receptor compositions during development and differentiation. How is this dynamicity generated? Here, we examine whether, along with the Intraflagellar-Transport, targeted changes in sector-wise lipid composition could control the receptor localisation and functions in the cilia. We discuss how an interplay between ciliary lipid composition, localised lipid modification, and receptor function could contribute to cilia growth and signalling. We argue that lipid modification at the cell-cilium interface could generate an added thrust for a selective exchange of membrane lipids and the transmembrane and membrane-associated proteins.
Collapse
Affiliation(s)
- Priya Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
16
|
Song W, Corey RA, Ansell TB, Cassidy CK, Horrell MR, Duncan AL, Stansfeld PJ, Sansom MSP. PyLipID: A Python Package for Analysis of Protein-Lipid Interactions from Molecular Dynamics Simulations. J Chem Theory Comput 2022; 18:1188-1201. [PMID: 35020380 PMCID: PMC8830038 DOI: 10.1021/acs.jctc.1c00708] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 12/11/2022]
Abstract
Lipids play important modulatory and structural roles for membrane proteins. Molecular dynamics simulations are frequently used to provide insights into the nature of these protein-lipid interactions. Systematic comparative analysis requires tools that provide algorithms for objective assessment of such interactions. We introduce PyLipID, a Python package for the identification and characterization of specific lipid interactions and binding sites on membrane proteins from molecular dynamics simulations. PyLipID uses a community analysis approach for binding site detection, calculating lipid residence times for both the individual protein residues and the detected binding sites. To assist structural analysis, PyLipID produces representative bound lipid poses from simulation data, using a density-based scoring function. To estimate residue contacts robustly, PyLipID uses a dual-cutoff scheme to differentiate between lipid conformational rearrangements while bound from full dissociation events. In addition to the characterization of protein-lipid interactions, PyLipID is applicable to analysis of the interactions of membrane proteins with other ligands. By combining automated analysis, efficient algorithms, and open-source distribution, PyLipID facilitates the systematic analysis of lipid interactions from large simulation data sets of multiple species of membrane proteins.
Collapse
Affiliation(s)
- Wanling Song
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
- Rahko,
Clifton House, 46 Clifton
Terrace, Finsbury Park, London N4 3JP, United Kingdom
| | - Robin A. Corey
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - T. Bertie Ansell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - C. Keith Cassidy
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Michael R. Horrell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Anna L. Duncan
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Phillip J. Stansfeld
- School
of Life Sciences & Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark S. P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
17
|
Ansell TB, Curran L, Horrell MR, Pipatpolkai T, Letham SC, Song W, Siebold C, Stansfeld PJ, Sansom MSP, Corey RA. Relative Affinities of Protein-Cholesterol Interactions from Equilibrium Molecular Dynamics Simulations. J Chem Theory Comput 2021; 17:6548-6558. [PMID: 34523933 PMCID: PMC8515805 DOI: 10.1021/acs.jctc.1c00547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 12/18/2022]
Abstract
Specific interactions of lipids with membrane proteins contribute to protein stability and function. Multiple lipid interactions surrounding a membrane protein are often identified in molecular dynamics (MD) simulations and are, increasingly, resolved in cryo-electron microscopy (cryo-EM) densities. Determining the relative importance of specific interaction sites is aided by determination of lipid binding affinities using experimental or simulation methods. Here, we develop a method for determining protein-lipid binding affinities from equilibrium coarse-grained MD simulations using binding saturation curves, designed to mimic experimental protocols. We apply this method to directly obtain affinities for cholesterol binding to multiple sites on a range of membrane proteins and compare our results with free energies obtained from density-based equilibrium methods and with potential of mean force calculations, getting good agreement with respect to the ranking of affinities for different sites. Thus, our binding saturation method provides a robust, high-throughput alternative for determining the relative consequence of individual sites seen in, e.g., cryo-EM derived membrane protein structures surrounded by an array of ancillary lipid densities.
Collapse
Affiliation(s)
- T. Bertie Ansell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Luke Curran
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Michael R. Horrell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Tanadet Pipatpolkai
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
- Department
of Physiology, Anatomy & Genetics, University
of Oxford, South Parks
Road, Oxford, OX1 3PT, U.K.
| | - Suzanne C. Letham
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks
Road, Oxford, OX1 3RE, U.K.
| | - Wanling Song
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Christian Siebold
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, U.K.
| | - Phillip J. Stansfeld
- School
of Life Sciences and Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.
| | - Mark S. P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Robin A. Corey
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| |
Collapse
|
18
|
Marlow B, Kuenze G, Li B, Sanders CR, Meiler J. Structural determinants of cholesterol recognition in helical integral membrane proteins. Biophys J 2021; 120:1592-1604. [PMID: 33640379 DOI: 10.1016/j.bpj.2021.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Cholesterol is an integral component of mammalian membranes. It has been shown to modulate membrane fluidity and dynamics and alter integral membrane protein function. However, understanding the molecular mechanisms of how cholesterol impacts protein function is complicated by limited and conflicting structural data. Because of the nature of the crystallization and cryo-EM structure determination, it is difficult to distinguish between specific and biologically relevant interactions and a nonspecific association. The only widely recognized search algorithm for cholesterol-integral-membrane-protein interaction sites is sequence based, i.e., searching for the so-called "Cholesterol Recognition/interaction Amino acid Consensus" motif. Although these motifs are present in numerous integral membrane proteins, there is inconclusive evidence to support their necessity or sufficiency for cholesterol binding. Here, we leverage the increasing number of experimental cholesterol-integral-membrane-protein structures to systematically analyze putative interaction sites based on their spatial arrangement and evolutionary conservation. This analysis creates three-dimensional representations of general cholesterol interaction sites that form clusters across multiple integral membrane protein classes. We also classify cholesterol-integral-membrane-protein interaction sites as either likely-specific or nonspecific. Information gleaned from our characterization will eventually enable a structure-based approach to predict and design cholesterol-integral-membrane-protein interaction sites.
Collapse
Affiliation(s)
- Brennica Marlow
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Bian Li
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Charles R Sanders
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany.
| |
Collapse
|
19
|
Kaur S, Gomez-Blanco J, Khalifa AAZ, Adinarayanan S, Sanchez-Garcia R, Wrapp D, McLellan JS, Bui KH, Vargas J. Local computational methods to improve the interpretability and analysis of cryo-EM maps. Nat Commun 2021; 12:1240. [PMID: 33623015 PMCID: PMC7902670 DOI: 10.1038/s41467-021-21509-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cryo-electron microscopy (cryo-EM) maps usually show heterogeneous distributions of B-factors and electron density occupancies and are typically B-factor sharpened to improve their contrast and interpretability at high-resolutions. However, 'over-sharpening' due to the application of a single global B-factor can distort processed maps causing connected densities to appear broken and disconnected. This issue limits the interpretability of cryo-EM maps, i.e. ab initio modelling. In this work, we propose 1) approaches to enhance high-resolution features of cryo-EM maps, while preventing map distortions and 2) methods to obtain local B-factors and electron density occupancy maps. These algorithms have as common link the use of the spiral phase transformation and are called LocSpiral, LocBSharpen, LocBFactor and LocOccupancy. Our results, which include improved maps of recent SARS-CoV-2 structures, show that our methods can improve the interpretability and analysis of obtained reconstructions.
Collapse
Affiliation(s)
- Satinder Kaur
- Departament of Anatomy and Cell Biology, McGill University 3640 Rue University, Montréal, QC, Canada
| | - Josue Gomez-Blanco
- Departament of Anatomy and Cell Biology, McGill University 3640 Rue University, Montréal, QC, Canada
| | - Ahmad A Z Khalifa
- Departament of Anatomy and Cell Biology, McGill University 3640 Rue University, Montréal, QC, Canada
| | - Swathi Adinarayanan
- Departament of Anatomy and Cell Biology, McGill University 3640 Rue University, Montréal, QC, Canada
| | - Ruben Sanchez-Garcia
- Biocomputing Unit, Centro Nacional de Biotecnología-CSIC C/Darwin 3, Cantoblanco, Madrid, Spain
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Khanh Huy Bui
- Departament of Anatomy and Cell Biology, McGill University 3640 Rue University, Montréal, QC, Canada
| | - Javier Vargas
- Departmento de Óptica, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
20
|
Abstract
Mechanosensing is a key feature through which organisms can receive inputs from the environment and convert them into specific functional and behavioral outputs. Mechanosensation occurs in many cells and tissues, regulating a plethora of molecular processes based on the distribution of forces and stresses both at the cell membrane and at the intracellular organelles levels, through complex interactions between cells’ microstructures, cytoskeleton, and extracellular matrix. Although several primary and secondary mechanisms have been shown to contribute to mechanosensation, a fundamental pathway in simple organisms and mammals involves the presence of specialized sensory neurons and the presence of different types of mechanosensitive ion channels on the neuronal cell membrane. In this contribution, we present a review of the main ion channels which have been proven to be significantly involved in mechanotransduction in neurons. Further, we discuss recent studies focused on the biological mechanisms and modeling of mechanosensitive ion channels’ gating, and on mechanotransduction modeling at different scales and levels of details.
Collapse
|
21
|
Abstract
The properties of natural lipid bilayers are vital to the regulation of many membrane proteins. Scaffolded nanodiscs provide an in vitro lipid bilayer platform to host membrane proteins in an environment that approximates native lipid bilayers. However, the properties of scaffold-enclosed bilayers may depart significantly from those of bulk cellular membranes. Therefore, to improve the usefulness of nanodiscs it is essential to understand the properties of lipids restricted by scaffolds. We used computational molecular dynamics and modeling approaches to understand the effects of nanodisc size, scaffold type (DNA or protein), and hydrophobic modification of DNA scaffolds on bilayer stability and degree to which the properties of enclosed bilayers approximate bulk bilayers. With respect to achieving bulk bilayer behavior, we found that charge neutralization of DNA scaffolds was more important than the total hydrophobic content of their modifications: bilayer properties were better for scaffolds having a large number of short alkyl chains than those having fewer long alkyl chains. Further, complete charge neutralization of DNA scaffolds enabled better lipid binding, and more stable bilayers, as shown by steered molecular dynamics simulations that measured the force required to dislodge scaffolds from lipid bilayer patches. Considered together, our simulations provide a guide to the design of DNA-scaffolded nanodiscs suitable for studying membrane proteins.
Collapse
Affiliation(s)
- Vishal Maingi
- Department of Bioengineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Paul W K Rothemund
- Departments of Bioengineering, Computing + Mathematical Sciences, and Computation & Neural Systems, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
22
|
A Non-covalent Ligand Reveals Biased Agonism of the TRPA1 Ion Channel. Neuron 2020; 109:273-284.e4. [PMID: 33152265 DOI: 10.1016/j.neuron.2020.10.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
Abstract
The TRPA1 ion channel is activated by electrophilic compounds through the covalent modification of intracellular cysteine residues. How non-covalent agonists activate the channel and whether covalent and non-covalent agonists elicit the same physiological responses are not understood. Here, we report the discovery of a non-covalent agonist, GNE551, and determine a cryo-EM structure of the TRPA1-GNE551 complex, revealing a distinct binding pocket and ligand-interaction mechanism. Unlike the covalent agonist allyl isothiocyanate, which elicits channel desensitization, tachyphylaxis, and transient pain, GNE551 activates TRPA1 into a distinct conducting state without desensitization and induces persistent pain. Furthermore, GNE551-evoked pain is relatively insensitive to antagonist treatment. Thus, we demonstrate the biased agonism of TRPA1, a finding that has important implications for the discovery of effective drugs tailored to different disease etiologies.
Collapse
|
23
|
Nechipurenko IV. The Enigmatic Role of Lipids in Cilia Signaling. Front Cell Dev Biol 2020; 8:777. [PMID: 32850869 PMCID: PMC7431879 DOI: 10.3389/fcell.2020.00777] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/24/2020] [Indexed: 12/21/2022] Open
Abstract
Primary cilia are specialized cellular structures that project from the surface of most cell types in metazoans and mediate transduction of major signaling pathways. The ciliary membrane is contiguous with the plasma membrane, yet it exhibits distinct protein and lipid composition, which is essential for ciliary function. Diffusion barriers at the base of a cilium are responsible for establishing unique molecular composition of this organelle. Although considerable progress has been made in identifying mechanisms of ciliary protein trafficking in and out of cilia, it remains largely unknown how the distinct lipid identity of the ciliary membrane is achieved. In this mini review, I summarize recent developments in characterizing lipid composition and organization of the ciliary membrane and discuss the emerging roles of lipids in modulating activity of ciliary signaling components including ion channels and G protein-coupled receptors.
Collapse
Affiliation(s)
- Inna V. Nechipurenko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
24
|
Duncan AL, Corey RA, Sansom MSP. Defining how multiple lipid species interact with inward rectifier potassium (Kir2) channels. Proc Natl Acad Sci U S A 2020. [PMID: 32213593 DOI: 10.5281/zenodo.3634884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Protein-lipid interactions are a key element of the function of many integral membrane proteins. These potential interactions should be considered alongside the complexity and diversity of membrane lipid composition. Inward rectifier potassium channel (Kir) Kir2.2 has multiple interactions with plasma membrane lipids: Phosphatidylinositol (4, 5)-bisphosphate (PIP2) activates the channel; a secondary anionic lipid site has been identified, which augments the activation by PIP2; and cholesterol inhibits the channel. Molecular dynamics simulations are used to characterize in molecular detail the protein-lipid interactions of Kir2.2 in a model of the complex plasma membrane. Kir2.2 has been simulated with multiple, functionally important lipid species. From our simulations we show that PIP2 interacts most tightly at the crystallographic interaction sites, outcompeting other lipid species at this site. Phosphatidylserine (PS) interacts at the previously identified secondary anionic lipid interaction site, in a PIP2 concentration-dependent manner. There is interplay between these anionic lipids: PS interactions are diminished when PIP2 is not present in the membrane, underlining the need to consider multiple lipid species when investigating protein-lipid interactions.
Collapse
Affiliation(s)
- Anna L Duncan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
25
|
Defining how multiple lipid species interact with inward rectifier potassium (Kir2) channels. Proc Natl Acad Sci U S A 2020; 117:7803-7813. [PMID: 32213593 PMCID: PMC7149479 DOI: 10.1073/pnas.1918387117] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ion channels form pores that allow for the selective transport of ions across cell membranes, generating electrical signals in response to a variety of signals. Inward rectifier potassium (Kir) channels in particular are regulated by direct interactions with the complex mixture of lipids that are present in eukaryotic cell membranes. However, the molecular details of these concurrent lipid interactions with Kir channels are not clear and difficult to access via experimental methods. Here, we simulate the Kir2.2 channel in a complex lipid mixture to explore how anionic phospholipids and cholesterol dynamically organize around the membrane protein. In particular we demonstrate a synergy between binding interactions of different anionic phospholipid species which are known to activate Kir channels. Protein–lipid interactions are a key element of the function of many integral membrane proteins. These potential interactions should be considered alongside the complexity and diversity of membrane lipid composition. Inward rectifier potassium channel (Kir) Kir2.2 has multiple interactions with plasma membrane lipids: Phosphatidylinositol (4, 5)-bisphosphate (PIP2) activates the channel; a secondary anionic lipid site has been identified, which augments the activation by PIP2; and cholesterol inhibits the channel. Molecular dynamics simulations are used to characterize in molecular detail the protein–lipid interactions of Kir2.2 in a model of the complex plasma membrane. Kir2.2 has been simulated with multiple, functionally important lipid species. From our simulations we show that PIP2 interacts most tightly at the crystallographic interaction sites, outcompeting other lipid species at this site. Phosphatidylserine (PS) interacts at the previously identified secondary anionic lipid interaction site, in a PIP2 concentration-dependent manner. There is interplay between these anionic lipids: PS interactions are diminished when PIP2 is not present in the membrane, underlining the need to consider multiple lipid species when investigating protein–lipid interactions.
Collapse
|
26
|
Corey RA, Stansfeld PJ, Sansom MS. The energetics of protein-lipid interactions as viewed by molecular simulations. Biochem Soc Trans 2020; 48:25-37. [PMID: 31872229 PMCID: PMC7054751 DOI: 10.1042/bst20190149] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Membranes are formed from a bilayer containing diverse lipid species with which membrane proteins interact. Integral, membrane proteins are embedded in this bilayer, where they interact with lipids from their surroundings, whilst peripheral membrane proteins bind to lipids at the surface of membranes. Lipid interactions can influence the function of membrane proteins, either directly or allosterically. Both experimental (structural) and computational approaches can reveal lipid binding sites on membrane proteins. It is, therefore, important to understand the free energies of these interactions. This affords a more complete view of the engagement of a particular protein with the biological membrane surrounding it. Here, we describe many computational approaches currently in use for this purpose, including recent advances using both free energy and unbiased simulation methods. In particular, we focus on interactions of integral membrane proteins with cholesterol, and with anionic lipids such as phosphatidylinositol 4,5-bis-phosphate and cardiolipin. Peripheral membrane proteins are exemplified via interactions of PH domains with phosphoinositide-containing membranes. We summarise the current state of the field and provide an outlook on likely future directions of investigation.
Collapse
Affiliation(s)
- Robin A. Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Mark S.P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|