1
|
Clanchy FI, Borghese F, Bystrom J, Balog A, Penn H, Hull DN, Mageed RA, Taylor PC, Williams RO. Inflammatory disease status and response to TNF blockade are associated with mechanisms of endotoxin tolerance. J Autoimmun 2024; 148:103300. [PMID: 39116634 DOI: 10.1016/j.jaut.2024.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
The mechanisms of endotoxin tolerance (ET), which down-regulate inflammation, are well described in response to exogenous toll-like receptor ligands, but few studies have focused on ET-associated mechanisms in inflammatory disease. As blocking TNF can attenuate the development of ET, the effect of anti-TNF on the expression of key ET-associated molecules in inflammatory auto-immune disease was measured; changes in inflammatory gene expression were confirmed using an ET bioassay. The expression of immunomodulatory molecules was measured in a murine model of arthritis treated with anti-TNF and the expression of ET-associated molecules was measured in whole blood in rheumatoid arthritis (RA) and ankylosing spondylitis (AS) patients, before and after therapy. The expression of ET-associated genes was also measured in RA patient monocytes before and after therapy, in anti-TNF responders and non-responders. Tnfaip3, Ptpn6 and Irak3 were differentially expressed in affected paws, spleens, lymph nodes and circulating leucocytes in experimental murine arthritis treated with anti-TNF. Prior to therapy, the expression of TNFAIP3, INPP5D, PTPN6, CD38 and SIGIRR in whole blood differed between human healthy controls and RA or AS patients. In blood monocytes from RA patients, the expression of TNFAIP3 was significantly reduced by anti-TNF therapy in non-responders. Prior to therapy, anti-TNF non-responders had higher expression of TNFAIP3 and SLPI, compared to responders. Although the expression of TNFAIP3 was significantly higher in RA non-responders prior to treatment, the post-treatment reduction to a level similar to responders did not coincide with a clinical response to therapy.
Collapse
Affiliation(s)
- Felix Il Clanchy
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom; Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| | - Federica Borghese
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Jonas Bystrom
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Attila Balog
- Department of Rheumatology and Immunology, Szent-Györgyi Albert Clinical Centre, University of Szeged, Szeged, Hungary
| | - Henry Penn
- Northwick Park Hospital, Harrow, United Kingdom
| | - Dobrina N Hull
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Rizgar A Mageed
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Richard O Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| |
Collapse
|
2
|
Weng P, Lan M, Zhang H, Fan H, Wang X, Ran C, Yue Z, Hu J, Xu A, Huang S. Both IRAK3 and IRAK1 Activate the MyD88-TRAF6 Pathway in Zebrafish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:362-372. [PMID: 38847613 DOI: 10.4049/jimmunol.2400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 07/17/2024]
Abstract
IL-1R-associated kinases (IRAKs) are signal transducers of the TLR/IL-1R-MyD88-TRAF6 pathways. Vertebrates possess two IRAK lineages, IRAK1/2/3 and IRAK4. In mammals, IRAK4/IRAK1 and IRAK4/IRAK2 are pathway enhancers, whereas IRAK3 is a repressor. However, in bony fish, IRAK2 is absent, and it remains elusive how fish IRAK1/3/4 functionally differ from their mammalian counterparts. In this study, we explored this using the zebrafish model. First, we showed that in human 293T cells, zebrafish IRAK1 and IRAK4 were components of the Myddosome (MyD88-IRAK4-IRAK1) complex, with IRAK1 serving as a potent pathway enhancer. Then, we discovered two zebrafish IRAK3 variants: one (IRAK3a) contains an N-terminal Death domain, a middle pseudokinase domain, and a C-terminal TRAF6-binding domain, whereas the other (IRAK3b) lost both the kinase and TRAF6-binding domains. This truncation of IRAK3 variants could be a conserved phenomenon in fish, because it is also observed in trout and grass carp. We proceeded to show that zebrafish IRAK3a acts as a pathway enhancer by binding with MyD88 and TRAF6, but its activity is milder than IRAK1, possibly because it has no kinase activity. Zebrafish IRAK3b, however, plays a sheer negative role, apparently because of its lack of kinase and TRAF6-binding domains. Moreover, zebrafish IRAK3a/3b inhibit the activity of IRAK1/4, not by interacting with IRAK1/4 but possibly by competing for MyD88 and TRAF6. Finally, we have verified the essential activities of zebrafish IRAK1/3a/3b/4 in zebrafish cells and embryos. In summary, to our knowledge, our findings provide new insights into the molecular functions of fish IRAKs and the evolution of the IRAK functional modes in vertebrates.
Collapse
Affiliation(s)
- Panwei Weng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Mengjiao Lan
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Huiping Fan
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Xiao Wang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Chenrui Ran
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Zirui Yue
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Jiaxuan Hu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangdong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
3
|
Liu J, Copland DA, Clare AJ, Gorski M, Richards BT, Scott L, Theodoropoulou S, Greferath U, Cox K, Shi G, Bell OH, Ou K, Powell JLB, Wu J, Robles LM, Li Y, Nicholson LB, Coffey PJ, Fletcher EL, Guymer R, Radeke MJ, Heid IM, Hageman GS, Chan YK, Dick AD. Replenishing IRAK-M expression in retinal pigment epithelium attenuates outer retinal degeneration. Sci Transl Med 2024; 16:eadi4125. [PMID: 38838135 DOI: 10.1126/scitranslmed.adi4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Chronic inflammation is a constitutive component of many age-related diseases, including age-related macular degeneration (AMD). Here, we identified interleukin-1 receptor-associated kinase M (IRAK-M) as a key immunoregulator in retinal pigment epithelium (RPE) that declines during the aging process. Rare genetic variants of IRAK3, which encodes IRAK-M, were associated with an increased likelihood of developing AMD. In human samples and mouse models, IRAK-M abundance in the RPE declined with advancing age or exposure to oxidative stress and was further reduced in AMD. Irak3-knockout mice exhibited an increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M led to a disruption in RPE cell homeostasis, characterized by compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of adeno-associated virus (AAV)-expressing human IRAK3 rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in Irak3-knockout mice. Our data show that replenishment of IRAK-M in the RPE may redress dysregulated pro-inflammatory processes in AMD, suggesting a potential treatment for retinal degeneration.
Collapse
Affiliation(s)
- Jian Liu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Alison J Clare
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg 93053, Germany
| | - Burt T Richards
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Louis Scott
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Sofia Theodoropoulou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Ursula Greferath
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Katherine Cox
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Gongyu Shi
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Oliver H Bell
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Kepeng Ou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Jenna Le Brun Powell
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Jiahui Wu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Luis Martinez Robles
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Yingxin Li
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Lindsay B Nicholson
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Peter J Coffey
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Erica L Fletcher
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Monte J Radeke
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg 93053, Germany
| | - Gregory S Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 2PD, UK
| |
Collapse
|
4
|
Gürkan B, Poelman H, Pereverzeva L, Kruijswijk D, de Vos AF, Groenen AG, Nollet EE, Wichapong K, Lutgens E, van der Poll T, Du J, Wiersinga WJ, Nicolaes GAF, van ‘t Veer C. The IRAK-M death domain: a tale of three surfaces. Front Mol Biosci 2024; 10:1265455. [PMID: 38268724 PMCID: PMC10806146 DOI: 10.3389/fmolb.2023.1265455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024] Open
Abstract
The anti-inflammatory interleukin-1 receptor associated kinase-M (IRAK-M) is a negative regulator of MyD88/IRAK-4/IRAK-1 signaling. However, IRAK-M has also been reported to activate NF-κB through the MyD88/IRAK-4/IRAK-M myddosome in a MEKK-3 dependent manner. Here we provide support that IRAK-M uses three surfaces of its Death Domain (DD) to activate NF-κB downstream of MyD88/IRAK-4/IRAK-M. Surface 1, with central residue Trp74, binds to MyD88/IRAK-4. Surface 2, with central Lys60, associates with other IRAK-M DDs to form an IRAK-M homotetramer under the MyD88/IRAK-4 scaffold. Surface 3; with central residue Arg97 is located on the opposite side of Trp74 in the IRAK-M DD tetramer, lacks any interaction points with the MyD88/IRAK-4 complex. Although the IRAK-M DD residue Arg97 is not directly involved in the association with MyD88/IRAK-4, Arg97 was responsible for 50% of the NF-κB activation though the MyD88/IRAK-4/IRAK-M myddosome. Arg97 was also found to be pivotal for IRAK-M's interaction with IRAK-1, and important for IRAK-M's interaction with TRAF6. Residue Arg97 was responsible for 50% of the NF-κB generated by MyD88/IRAK-4/IRAK-M myddosome in IRAK-1/MEKK3 double knockout cells. By structural modeling we found that the IRAK-M tetramer surface around Arg97 has excellent properties that allow formation of an IRAK-M homo-octamer. This model explains why mutation of Arg97 results in an IRAK-M molecule with increased inhibitory properties: it still binds to myddosome, competing with myddosome IRAK-1 binding, while resulting in less NF-κB formation. The findings further identify the structure-function properties of IRAK-M, which is a potential therapeutic target in inflammatory disease.
Collapse
Affiliation(s)
- Berke Gürkan
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Hessel Poelman
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
- Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Liza Pereverzeva
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Danielle Kruijswijk
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Alex F. de Vos
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Anouk G. Groenen
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Edgar E. Nollet
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Esther Lutgens
- Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - W. Joost Wiersinga
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Gerry A. F. Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
- Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Cornelis van ‘t Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Li Y, Shah RB, Sarti S, Belcher AL, Lee BJ, Gorbatenko A, Nemati F, Yu H, Stanley Z, Rahman M, Shao Z, Silva JM, Zha S, Sidi S. A noncanonical IRAK4-IRAK1 pathway counters DNA damage-induced apoptosis independently of TLR/IL-1R signaling. Sci Signal 2023; 16:eadh3449. [PMID: 38113335 PMCID: PMC11111193 DOI: 10.1126/scisignal.adh3449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptors (TLRs) and IL-1R in innate immunity. Here, we found that IRAK4 and IRAK1 together inhibited DNA damage-induced cell death independently of TLR or IL-1R signaling. In human cancer cells, IRAK4 was activated downstream of ATR kinase in response to double-strand breaks (DSBs) induced by ionizing radiation (IR). Activated IRAK4 then formed a complex with and activated IRAK1. The formation of this complex required the E3 ubiquitin ligase Pellino1, acting structurally but not catalytically, and the activation of IRAK1 occurred independently of extracellular signaling, intracellular TLRs, and the TLR/IL-1R signaling adaptor MyD88. Activated IRAK1 translocated to the nucleus in a Pellino2-dependent manner. In the nucleus, IRAK1 bound to the PIDD1 subunit of the proapoptotic PIDDosome and interfered with platform assembly, thus supporting cell survival. This noncanonical IRAK signaling pathway was also activated in response to other DSB-inducing agents. The loss of IRAK4, of IRAK4 kinase activity, of either Pellino protein, or of the nuclear localization sequence in IRAK1 sensitized p53-mutant zebrafish to radiation. Thus, the findings may lead to strategies for overcoming tumor resistance to conventional cancer treatments.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richa B. Shah
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samanta Sarti
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alicia L. Belcher
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian J. Lee
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Andrej Gorbatenko
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Current address: Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Francesca Nemati
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Honglin Yu
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zoe Stanley
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahbuba Rahman
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhengping Shao
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jose M. Silva
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Samuel Sidi
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Mahmoud IS, Jarrar YB, Febrimarsa. Modulation of IRAK enzymes as a therapeutic strategy against SARS-CoV-2 induced cytokine storm. Clin Exp Med 2023; 23:2909-2923. [PMID: 37061574 PMCID: PMC10105542 DOI: 10.1007/s10238-023-01064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/02/2023] [Indexed: 04/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the current pandemic coronavirus disease 2019 (COVID-19). Dysregulated and excessive production of cytokines and chemokines, known as cytokine storm, is frequently seen in patients with severe COVID-19 disease and it can provoke a severe systematic inflammation in the patients. The IL-1R/TLRs/IRAKs signaling network is a key pathway in immune cells that plays a central role in regulating innate immunity and inflammatory responses via stimulating the expression and production of various proinflammatory molecules including cytokines. Modulation of IRAKs activity has been proposed to be a promising strategy in the treatment of inflammatory disorders. In this review, we highlight the biochemical properties of IRAKs and their role in regulating inflammatory molecular signaling pathways and discuss the potential targeting of IRAKs to suppress the SARS-CoV-2-induced cytokine storm in COVID-19 patients.
Collapse
Affiliation(s)
- Ismail Sami Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan.
| | - Yazun Bashir Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, As-Salt, Jordan
| | - Febrimarsa
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Republic of Ireland
| |
Collapse
|
7
|
Liu J, Copland DA, Clare AJ, Gorski M, Richards BT, Scott L, Theodoropoulou S, Greferath U, Cox K, Bell OH, Ou K, Powell JLB, Wu J, Robles LM, Li Y, Nicholson LB, Coffey PJ, Fletcher EL, Guymer R, Radeke MJ, Heid IM, Hageman GS, Chan YK, Dick AD. Replenishing Age-Related Decline of IRAK-M Expression in Retinal Pigment Epithelium Attenuates Outer Retinal Degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559733. [PMID: 37808640 PMCID: PMC10557650 DOI: 10.1101/2023.09.27.559733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Unchecked, chronic inflammation is a constitutive component of age-related diseases, including age-related macular degeneration (AMD). Here we identified interleukin-1 receptor-associated kinase (IRAK)-M as a key immunoregulator in retinal pigment epithelium (RPE) that declines with age. Rare genetic variants of IRAK-M increased the likelihood of AMD. IRAK-M expression in RPE declined with age or oxidative stress and was further reduced in AMD. IRAK-M-deficient mice exhibited increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M disrupted RPE cell homeostasis, including compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of AAV-expressing IRAK-M rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in IRAK-M-deficient mice. Our data support that replenishment of IRAK-M expression may redress dysregulated pro-inflammatory processes in AMD, thereby treating degeneration.
Collapse
Affiliation(s)
- Jian Liu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - David A. Copland
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alison J. Clare
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Burt T. Richards
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Louis Scott
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sofia Theodoropoulou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ursula Greferath
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Katherine Cox
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Oliver H. Bell
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kepeng Ou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jenna Le Brun Powell
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jiahui Wu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Luis Martinez Robles
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Yingxin Li
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lindsay B. Nicholson
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Peter J. Coffey
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Erica L. Fletcher
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - Monte J. Radeke
- Neuroscience Research Institute, University of California, Santa Barbara, California, United States
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Gregory S. Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States
| | - Andrew D. Dick
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
8
|
Turek I, Nguyen TH, Galea C, Abad I, Freihat L, Manallack DT, Velkov T, Irving H. Mutations in the Vicinity of the IRAK3 Guanylate Cyclase Center Impact Its Subcellular Localization and Ability to Modulate Inflammatory Signaling in Immortalized Cell Lines. Int J Mol Sci 2023; 24:ijms24108572. [PMID: 37239919 DOI: 10.3390/ijms24108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Interleukin-1 receptor-associated kinase 3 (IRAK3) modulates the magnitude of cellular responses to ligands perceived by interleukin-1 receptors (IL-1Rs) and Toll-like receptors (TLRs), leading to decreases in pro-inflammatory cytokines and suppressed inflammation. The molecular mechanism of IRAK3's action remains unknown. IRAK3 functions as a guanylate cyclase, and its cGMP product suppresses lipopolysaccharide (LPS)-induced nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) activity. To understand the implications of this phenomenon, we expanded the structure-function analyses of IRAK3 through site-directed mutagenesis of amino acids known or predicted to impact different activities of IRAK3. We verified the capacity of the mutated IRAK3 variants to generate cGMP in vitro and revealed residues in and in the vicinity of its GC catalytic center that impact the LPS-induced NFκB activity in immortalized cell lines in the absence or presence of an exogenous membrane-permeable cGMP analog. Mutant IRAK3 variants with reduced cGMP generating capacity and differential regulation of NFκB activity influence subcellular localization of IRAK3 in HEK293T cells and fail to rescue IRAK3 function in IRAK3 knock-out THP-1 monocytes stimulated with LPS unless the cGMP analog is present. Together, our results shed new light on the mechanism by which IRAK3 and its enzymatic product control the downstream signaling, affecting inflammatory responses in immortalized cell lines.
Collapse
Affiliation(s)
- Ilona Turek
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3552, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3552, Australia
| | - Trang H Nguyen
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3552, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3552, Australia
| | - Charles Galea
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Isaiah Abad
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Lubna Freihat
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - David T Manallack
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Tony Velkov
- Department of Microbiology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Helen Irving
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, Bendigo, VIC 3552, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC 3552, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| |
Collapse
|
9
|
Li Y, Shah RB, Sarti S, Belcher AL, Lee BJ, Gorbatenko A, Nemati F, Yu I, Stanley Z, Shao Z, Silva JM, Zha S, Sidi S. A Non-Canonical IRAK Signaling Pathway Triggered by DNA Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527716. [PMID: 36798275 PMCID: PMC9934671 DOI: 10.1101/2023.02.08.527716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptor (TLR) and IL-1R signaling, with no reported roles outside of innate immunity. We find that vertebrate cells exposed to ionizing radiation (IR) sequentially activate IRAK4 and IRAK1 through a phosphorylation cascade mirroring that induced by TLR/IL-1R, resulting in a potent anti-apoptotic response. However, IR-induced IRAK1 activation does not require the receptors or the IRAK4/1 adaptor protein MyD88, and instead of remaining in the cytoplasm, the activated kinase is immediately transported to the nucleus via a conserved nuclear localization signal. We identify: double-strand DNA breaks (DSBs) as the biologic trigger for this pathway; the E3 ubiquitin ligase Pellino1 as the scaffold enabling IRAK4/1 activation in place of TLR/IL-1R-MyD88; and the pro-apoptotic PIDDosome (PIDD1-RAIDD-caspase-2) as a critical downstream target in the nucleus. The data delineate a non-canonical IRAK signaling pathway derived from, or ancestral to, TLR signaling. This DSB detection pathway, which is also activated by genotoxic chemotherapies, provides multiple actionable targets for overcoming tumor resistance to mainstay cancer treatments.
Collapse
|
10
|
Santana FR, Linossi EM, Jura N. Trapping Tribbles: Nanobody-assisted structure of the TRIB2 pseudokinase. Structure 2022; 30:1465-1467. [DOI: 10.1016/j.str.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Sheetz JB, Lemmon MA. Looking lively: emerging principles of pseudokinase signaling. Trends Biochem Sci 2022; 47:875-891. [PMID: 35585008 PMCID: PMC9464697 DOI: 10.1016/j.tibs.2022.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Progress towards understanding catalytically 'dead' protein kinases - pseudokinases - in biology and disease has hastened over the past decade. An especially lively area for structural biology, pseudokinases appear to be strikingly similar to their kinase relatives, despite lacking key catalytic residues. Distinct active- and inactive-like conformation states, which are crucial for regulating bona fide protein kinases, are conserved in pseudokinases and appear to be essential for function. We discuss recent structural data on conformational transitions and nucleotide binding by pseudokinases, from which some common principles emerge. In both pseudokinases and bona fide kinases, a conformational toggle appears to control the ability to interact with signaling effectors. We also discuss how biasing this conformational toggle may provide opportunities to target pseudokinases pharmacologically in disease.
Collapse
Affiliation(s)
- Joshua B Sheetz
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06505, USA; Yale Cancer Biology Institute, Yale West Campus, West Haven, CT 06516, USA.
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06505, USA; Yale Cancer Biology Institute, Yale West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
12
|
Bose A, Visweswariah SS. The pseudokinase domain in receptor guanylyl cyclases. Methods Enzymol 2022; 667:535-574. [PMID: 35525553 DOI: 10.1016/bs.mie.2022.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyclic GMP is produced by enzymes called guanylyl cyclases, of which the membrane-associated forms contain an intracellular pseudokinase domain that allosterically regulates the C-terminal guanylyl cyclase domain. Ligand binding to the extracellular domain of these single transmembrane-spanning domain receptors elicits an increase in cGMP levels in the cell. The pseudokinase domain (or kinase-homology domain) in these receptors appears to be critical for ligand-mediated activation. While the pseudokinase domain does not possess kinase activity, biochemical evidence indicates that the domain can bind ATP and thereby allosterically regulate the catalytic activity of these receptors. The pseudokinase domain also appears to be the site of interaction of regulatory proteins, as seen in the retinal guanylyl cyclases that are involved in visual signal transduction. In the absence of structural information on the pseudokinase-guanylyl cyclase domain organization of any member of this family of receptors, biochemical evidence has provided clues to the physical interaction of the pseudokinase and guanylyl cyclase domain. An α-helical linker region between the pseudokinase domain and the guanylyl cyclase domain regulates the basal activity of these receptors in the absence of a stimulatory ligand and is important for stabilizing the structure of the pseudokinase domain that can bind ATP. Here, we present an overview of salient features of ATP-mediated regulation of receptor guanylyl cyclases and describe biochemical approaches that allow a clearer understanding of the intricate interplay between the pseudokinase domain and catalytic domain in these proteins.
Collapse
Affiliation(s)
- Avipsa Bose
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
13
|
Lange SM, Kulathu Y. Purification, crystallization and drug screening of the IRAK pseudokinases. Methods Enzymol 2022; 667:101-121. [PMID: 35525539 DOI: 10.1016/bs.mie.2022.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pseudokinases are emerging as critical components of cell signaling pathways. Consequently, the ability to obtain large quantities of pure protein for structural characterization and drug discovery efforts has become essential for the study of these proteins. Small molecules binding to pseudokinases may induce allosteric changes and serve as valuable tools to study the physiological roles of these "dead" enzymes. The IRAK family of kinases are key components of the innate immune response and the active IRAK family members, IRAK-1 and -4, have been extensively studied. However, the other two IRAKs, IRAK-2 and IRAK-3, are classified as pseudokinases and their detailed functions and roles remain to be described. In this chapter, we present comprehensive protocols for the purification of IRAKs, the crystallization of the pseudokinase domain of IRAK3, and a high-throughput drug screening pipeline using thermal shift and biolayer-interferometry assays to identify small molecule binders.
Collapse
Affiliation(s)
- Sven M Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, Dundee, Scotland, United Kingdom.
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, Dundee, Scotland, United Kingdom
| |
Collapse
|
14
|
Fitzgibbon C, Meng Y, Murphy JM. Co-expression of recombinant RIPK3:MLKL complexes using the baculovirus-insect cell system. Methods Enzymol 2022; 667:183-227. [PMID: 35525542 DOI: 10.1016/bs.mie.2022.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudokinase domains are found throughout the kingdoms of life and serve myriad roles in cell signaling. These domains, which resemble protein kinases but are catalytically-deficient, have been described principally as protein interaction domains. Broadly, pseudokinases have been reported to function as: allosteric regulators of conventional enzymes; scaffolds to nucleate assembly and/or localization of signaling complexes; molecular switches; or competitors of signaling complex assembly. From detailed structural and biochemical studies of individual pseudokinases, a picture of how they mediate protein interactions is beginning to emerge. Many such studies have relied on recombinant protein production in insect cells, where endogenous chaperones and modifying enzymes favor bona fide folding of pseudokinases. Here, we describe methods for co-expression of pseudokinases and their interactors in insect cells, as exemplified by the MLKL pseudokinase, which is the terminal effector in the necroptosis cell death pathway, and its upstream regulator kinase RIPK3. These methods are broadly applicable to co-expression of other pseudokinases with their interaction partners from bacmids using the baculovirus-insect cell expression system.
Collapse
Affiliation(s)
- Cheree Fitzgibbon
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
15
|
Sun L, Qu K, Ma X, Hanif Q, Zhang J, Liu J, Chen N, Suolang Q, Lei C, Huang B. Whole-Genome Analyses Reveal Genomic Characteristics and Selection Signatures of Lincang Humped Cattle at the China-Myanmar Border. Front Genet 2022; 13:833503. [PMID: 35391795 PMCID: PMC8981028 DOI: 10.3389/fgene.2022.833503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The location on the Yunnan border with Myanmar and its unique cultural landscape has shaped Lincang humped cattle over time. In the current study, we investigated the genetic characteristics of 22 Lincang humped cattle using whole-genome resequencing data. We found that Lincang humped cattle derived from both Indian indicine and Chinese indicine cattle depicted higher levels of genomic diversity. Based on genome-wide scans, candidate genomic regions were identified that were potentially involved in local thermal and humid environmental adaptions, including genes associated with the body size (TCF12, SENP2, KIF1C, and PFN1), immunity (LIPH, IRAK3, GZMM, and ELANE), and heat tolerance (MED16, DNAJC8, HSPA4, FILIP1L, HELB, BCL2L1, and TPX2). Missense mutations were detected in candidate genes IRAK3, HSPA4, and HELB. Interestingly, eight missense mutations observed in the HELB gene were specific to the indicine cattle pedigree. These mutations may reveal differences between indicine and taurine cattle adapted to variable climatic conditions. Our research provides new insights into the genetic characteristics of Lincang humped cattle representing Lincang and Pu'er areas as an important channel for the migration of Indian indicine from domestication centers toward southwestern China.
Collapse
Affiliation(s)
- Luyang Sun
- Yunnan Academy of Grassland and Animal Science, Kunming, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Xiaohui Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Quji Suolang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| |
Collapse
|
16
|
Modi V, Dunbrack RL. Kincore: a web resource for structural classification of protein kinases and their inhibitors. Nucleic Acids Res 2022; 50:D654-D664. [PMID: 34643709 PMCID: PMC8728253 DOI: 10.1093/nar/gkab920] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
The active form of kinases is shared across different family members, as are several commonly observed inactive forms. We previously performed a clustering of the conformation of the activation loop of all protein kinase structures in the Protein Data Bank (PDB) into eight classes based on the dihedral angles that place the Phe side chain of the DFG motif at the N-terminus of the activation loop. Our clusters are strongly associated with the placement of the activation loop, the C-helix, and other structural elements of kinases. We present Kincore, a web resource providing access to our conformational assignments for kinase structures in the PDB. While other available databases provide conformational states or drug type but not both, KinCore includes the conformational state and the inhibitor type (Type 1, 1.5, 2, 3, allosteric) for each kinase chain. The user can query and browse the database using these attributes or determine the conformational labels of a kinase structure using the web server or a standalone program. The database and labeled structure files can be downloaded from the server. Kincore will help in understanding the conformational dynamics of these proteins and guide development of inhibitors targeting specific states. Kincore is available at http://dunbrack.fccc.edu/kincore.
Collapse
Affiliation(s)
- Vivek Modi
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19148, USA
| | - Roland L Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19148, USA
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Cell intrinsic and extrinsic perturbations to inflammatory signaling pathways are a hallmark of development and progression of hematologic malignancies. The interleukin 1 receptor-associated kinases (IRAKs) are a family of related signaling intermediates (IRAK1, IRAK2, IRAK3, IRAK4) that operate at the nexus of multiple inflammatory pathways implicated in the hematologic malignancies. In this review, we explicate the oncogenic role of these kinases and review recent therapeutic advances in the dawning era of IRAK-targeted therapy. RECENT FINDINGS Emerging evidence places IRAK signaling at the confluence of adaptive resistance and oncogenesis in the hematologic malignancies and solid tissue tumors. Preclinical investigations nominate the IRAK kinases as targetable molecular dependencies in diverse cancers. SUMMARY IRAK-targeted therapies that have matriculated to early phase trials are yielding promising preliminary results. However, studies of IRAK kinase signaling continue to defy conventional signaling models and raise questions as to the design of optimal treatment strategies. Efforts to refine IRAK signaling mechanisms in the malignant context will inspire deliberate IRAK-targeted drug development and informed combination therapy.
Collapse
Affiliation(s)
- Joshua Bennett
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology
| | - Daniel T. Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
18
|
Horne CR, Murphy JM. For Whom the Bell Tolls: The Structure of the Dead Kinase, IRAK3. Structure 2021; 29:197-199. [PMID: 33667374 DOI: 10.1016/j.str.2021.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this issue of Structure, Lange et al. (2020) report the structure of the pseudokinase domain of IRAK3, a negative regulator of Myddosome inflammatory signaling. The IRAK3 pseudokinase domain forms a head-to-head dimer, suggesting a new mode of kinase/pseudokinase allostery by which IRAK3 could attenuate the activity of IRAK4 in cells.
Collapse
Affiliation(s)
- Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
19
|
Oliver MR, Horne CR, Shrestha S, Keown JR, Liang LY, Young SN, Sandow JJ, Webb AI, Goldstone DC, Lucet IS, Kannan N, Metcalf P, Murphy JM. Granulovirus PK-1 kinase activity relies on a side-to-side dimerization mode centered on the regulatory αC helix. Nat Commun 2021; 12:1002. [PMID: 33579933 PMCID: PMC7881018 DOI: 10.1038/s41467-021-21191-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/19/2021] [Indexed: 12/19/2022] Open
Abstract
The life cycle of Baculoviridae family insect viruses depends on the viral protein kinase, PK-1, to phosphorylate the regulatory protein, p6.9, to induce baculoviral genome release. Here, we report the crystal structure of Cydia pomenella granulovirus PK-1, which, owing to its likely ancestral origin among host cell AGC kinases, exhibits a eukaryotic protein kinase fold. PK-1 occurs as a rigid dimer, where an antiparallel arrangement of the αC helices at the dimer core stabilizes PK-1 in a closed, active conformation. Dimerization is facilitated by C-lobe:C-lobe and N-lobe:N-lobe interactions between protomers, including the domain-swapping of an N-terminal helix that crowns a contiguous β-sheet formed by the two N-lobes. PK-1 retains a dimeric conformation in solution, which is crucial for catalytic activity. Our studies raise the prospect that parallel, side-to-side dimeric arrangements that lock kinase domains in a catalytically-active conformation could function more broadly as a regulatory mechanism among eukaryotic protein kinases. The viral Protein Kinase-1 (PK-1) phosphorylates the regulatory protein p6.9, which facilitates baculoviral genome release. Here, the authors combine X-ray crystallography with biophysical and biochemical analyses as well as molecular dynamics simulations to characterize Cydia pomenella granulovirus PK-1, which forms a dimer with a parallel side-to-side arrangement of the kinase domains and furthermore, they provide insights into its catalytic mechanism and evolutionary relationships with other kinases.
Collapse
Affiliation(s)
- Michael R Oliver
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Safal Shrestha
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Jeremy R Keown
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lung-Yu Liang
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew I Webb
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - David C Goldstone
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Isabelle S Lucet
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Peter Metcalf
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
20
|
Mace PD, Murphy JM. There's more to death than life: Noncatalytic functions in kinase and pseudokinase signaling. J Biol Chem 2021; 296:100705. [PMID: 33895136 PMCID: PMC8141879 DOI: 10.1016/j.jbc.2021.100705] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Protein kinases are present in all domains of life and play diverse roles in cellular signaling. Whereas the impact of substrate phosphorylation by protein kinases has long been appreciated, it is becoming increasingly clear that protein kinases also play other, noncatalytic, functions. Here, we review recent developments in understanding the noncatalytic functions of protein kinases. Many noncatalytic activities are best exemplified by protein kinases that are devoid of enzymatic activity altogether-known as pseudokinases. These dead proteins illustrate that, beyond conventional notions of kinase function, catalytic activity can be dispensable for biological function. Through key examples we illustrate diverse mechanisms of noncatalytic kinase activity: as allosteric modulators; protein-based switches; scaffolds for complex assembly; and as competitive inhibitors in signaling pathways. In common, these noncatalytic mechanisms exploit the nature of the protein kinase fold as a versatile protein-protein interaction module. Many examples are also intrinsically linked to the ability of the protein kinase to switch between multiple states, a function shared with catalytic protein kinases. Finally, we consider the contemporary landscape of small molecules to modulate noncatalytic functions of protein kinases, which, although challenging, has significant potential given the scope of noncatalytic protein kinase function in health and disease.
Collapse
Affiliation(s)
- Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - James M Murphy
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|