1
|
Cao X, Huang S, Wagner MM, Cho YT, Chiu DC, Wartchow KM, Lazarian A, McIntire LB, Smolka MB, Baskin JM. A phosphorylation-controlled switch confers cell cycle-dependent protein relocalization. Nat Cell Biol 2024; 26:1804-1816. [PMID: 39209962 PMCID: PMC11559143 DOI: 10.1038/s41556-024-01495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Tools for acute manipulation of protein localization enable elucidation of spatiotemporally defined functions, but their reliance on exogenous triggers can interfere with cell physiology. This limitation is particularly apparent for studying mitosis, whose highly choreographed events are sensitive to perturbations. Here we exploit the serendipitous discovery of a phosphorylation-controlled, cell cycle-dependent localization change of the adaptor protein PLEKHA5 to develop a system for mitosis-specific protein recruitment to the plasma membrane that requires no exogenous stimulus. Mitosis-enabled anchor-away/recruiter system comprises an engineered, 15 kDa module derived from PLEKHA5 capable of recruiting functional protein cargoes to the plasma membrane during mitosis, either through direct fusion or via GFP-GFP nanobody interaction. Applications of the mitosis-enabled anchor-away/recruiter system include both knock sideways to rapidly extract proteins from their native localizations during mitosis and conditional recruitment of lipid-metabolizing enzymes for mitosis-selective editing of plasma membrane lipid content, without the need for exogenous triggers or perturbative synchronization methods.
Collapse
Affiliation(s)
- Xiaofu Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shiying Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Mateusz M Wagner
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Yuan-Ting Cho
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Din-Chi Chiu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | | | - Artur Lazarian
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Marcus B Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Cao X, Huang S, Wagner MM, Cho YT, Chiu DC, Wartchow KM, Lazarian A, McIntire LB, Smolka MB, Baskin JM. A phosphorylation-controlled switch confers cell cycle-dependent protein relocalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597552. [PMID: 38895347 PMCID: PMC11185714 DOI: 10.1101/2024.06.05.597552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tools for acute manipulation of protein localization enable elucidation of spatiotemporally defined functions, but their reliance on exogenous triggers can interfere with cell physiology. This limitation is particularly apparent for studying mitosis, whose highly choreographed events are sensitive to perturbations. Here we exploit the serendipitous discovery of a phosphorylation-controlled, cell cycle-dependent localization change of the adaptor protein PLEKHA5 to develop a system for mitosis-specific protein recruitment to the plasma membrane that requires no exogenous stimulus. Mitosis-enabled Anchor-away/Recruiter System (MARS) comprises an engineered, 15-kDa module derived from PLEKHA5 capable of recruiting functional protein cargoes to the plasma membrane during mitosis, either through direct fusion or via GFP-GFP nanobody interaction. Applications of MARS include both knock sideways to rapidly extract proteins from their native localizations during mitosis and conditional recruitment of lipid-metabolizing enzymes for mitosis-selective editing of plasma membrane lipid content, without the need for exogenous triggers or perturbative synchronization methods.
Collapse
Affiliation(s)
- Xiaofu Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States, 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States, 14853
| | - Shiying Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States, 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States, 14853
| | - Mateusz M. Wagner
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States, 14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States, 14853
| | - Yuan-Ting Cho
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States, 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States, 14853
| | - Din-Chi Chiu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States, 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States, 14853
| | - Krista M. Wartchow
- Department of Radiology, Weill Cornell Medicine, New York, New York, United States, 10065
| | - Artur Lazarian
- Department of Radiology, Weill Cornell Medicine, New York, New York, United States, 10065
| | - Laura Beth McIntire
- Department of Radiology, Weill Cornell Medicine, New York, New York, United States, 10065
| | - Marcus B. Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States, 14853
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States, 14853
| | - Jeremy M. Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States, 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States, 14853
| |
Collapse
|
3
|
Gao T, Cho EA, Zhang P, Wu J. Inhibition of talin-induced integrin activation by a double-hit stapled peptide. Structure 2023; 31:948-957.e3. [PMID: 37369205 PMCID: PMC10526925 DOI: 10.1016/j.str.2023.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Integrins are ubiquitously expressed cell-adhesion proteins. Activation of integrins is triggered by talin through an inside-out signaling pathway, which can be driven by RAP1-interacting adaptor molecule (RIAM) through its interaction with talin at two distinct sites. A helical talin-binding segment (TBS) in RIAM interacts with both sites in talin, leading to integrin activation. The bispecificity inspires a "double-hit" strategy for inhibiting talin-induced integrin activation. We designed an experimental peptidomimetic inhibitor, S-TBS, derived from TBS and containing a molecular staple, which leads to stronger binding to talin and inhibition of talin:integrin interaction. The crystallographic study validates that S-TBS binds to the talin rod through the same interface as TBS. Moreover, the helical S-TBS exhibits excellent cell permeability and effectively suppresses integrin activation in cells in a talin-dependent manner. Our results shed light on a new class of integrin inhibitors and a novel approach to design multi-specific peptidomimetic inhibitors.
Collapse
Affiliation(s)
- Tong Gao
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Eun-Ah Cho
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pingfeng Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jinhua Wu
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
4
|
Bachmann M, Su B, Rahikainen R, Hytönen VP, Wu J, Wehrle-Haller B. ConFERMing the role of talin in integrin activation and mechanosignaling. J Cell Sci 2023; 136:jcs260576. [PMID: 37078342 PMCID: PMC10198623 DOI: 10.1242/jcs.260576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Talin (herein referring to the talin-1 form), is a cytoskeletal adapter protein that binds integrin receptors and F-actin, and is a key factor in the formation and regulation of integrin-dependent cell-matrix adhesions. Talin forms the mechanical link between the cytoplasmic domain of integrins and the actin cytoskeleton. Through this linkage, talin is at the origin of mechanosignaling occurring at the plasma membrane-cytoskeleton interface. Despite its central position, talin is not able to fulfill its tasks alone, but requires help from kindlin and paxillin to detect and transform the mechanical tension along the integrin-talin-F-actin axis into intracellular signaling. The talin head forms a classical FERM domain, which is required to bind and regulate the conformation of the integrin receptor, as well as to induce intracellular force sensing. The FERM domain allows the strategic positioning of protein-protein and protein-lipid interfaces, including the membrane-binding and integrin affinity-regulating F1 loop, as well as the interaction with lipid-anchored Rap1 (Rap1a and Rap1b in mammals) GTPase. Here, we summarize the structural and regulatory features of talin and explain how it regulates cell adhesion and force transmission, as well as intracellular signaling at integrin-containing cell-matrix attachment sites.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1211 Geneva 4, Switzerland
| | - Baihao Su
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Rolle Rahikainen
- Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere University, FI-33520 Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere University, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Jinhua Wu
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1211 Geneva 4, Switzerland
| |
Collapse
|
5
|
Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol 2022; 23:1148-1156. [PMID: 35879449 PMCID: PMC10754321 DOI: 10.1038/s41590-022-01267-2] [Citation(s) in RCA: 284] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
Long recognized as an evolutionarily ancient cell type involved in tissue homeostasis and immune defense against pathogens, macrophages are being re-discovered as regulators of several diseases, including cancer. Tumor-associated macrophages (TAMs) represent the most abundant innate immune population in the tumor microenvironment (TME). Macrophages are professional phagocytic cells of the hematopoietic system specializing in the detection, phagocytosis and destruction of bacteria and other harmful micro-organisms, apoptotic cells and metabolic byproducts. In contrast to these healthy macrophage functions, TAMs support cancer cell growth and metastasis and mediate immunosuppressive effects on the adaptive immune cells of the TME. Cancer is one of the most potent insults on macrophage physiology, inducing changes that are intimately linked with disease progression. In this Review, we outline hallmarks of TAMs and discuss the emerging mechanisms that contribute to their pathophysiological adaptations and the vulnerabilities that provide attractive targets for therapeutic exploitation in cancer.
Collapse
Affiliation(s)
- Anthos Christofides
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laura Strauss
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Sanofi /Tidal, Cambridge, MA, USA
| | - Alan Yeo
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Carol Cao
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Alain Charest
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Integrin Regulators in Neutrophils. Cells 2022; 11:cells11132025. [PMID: 35805108 PMCID: PMC9266208 DOI: 10.3390/cells11132025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and are critical for innate immunity and inflammation. Integrins are critical for neutrophil functions, especially for their recruitment to sites of inflammation or infections. Integrin conformational changes during activation have been heavily investigated but are still not fully understood. Many regulators, such as talin, Rap1-interacting adaptor molecule (RIAM), Rap1, and kindlin, are critical for integrin activation and might be potential targets for integrin-regulating drugs in treating inflammatory diseases. In this review, we outline integrin activation regulators in neutrophils with a focus on the above critical regulators, as well as newly discovered modulators that are involved in integrin activation.
Collapse
|
7
|
Wen L, Moser M, Ley K. Molecular mechanisms of leukocyte β2 integrin activation. Blood 2022; 139:3480-3492. [PMID: 35167661 PMCID: PMC10082358 DOI: 10.1182/blood.2021013500] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/06/2022] [Indexed: 11/20/2022] Open
Abstract
Integrins are transmembrane receptors that mediate cell-cell and cell-extracellular matrix adhesion. Although all integrins can undergo activation (affinity change for ligands), the degree of activation is most spectacular for integrins on blood cells. The β2 integrins are exclusively expressed on the surface of all leukocytes including neutrophils, lymphocytes, and monocytes. They are essential for many leukocyte functions and are strictly required for neutrophil arrest from rolling. The inside-out integrin activation process receives input from chemokine receptors and adhesion molecules. The integrin activation pathway involves many cytoplasmic signaling molecules such as spleen tyrosine kinase, other kinases like Bruton's tyrosine kinase, phosphoinositide 3-kinases, phospholipases, Rap1 GTPases, and the Rap1-GTP-interacting adapter molecule. These signaling events ultimately converge on talin-1 and kindlin-3, which bind to the integrin β cytoplasmic domain and induce integrin conformational changes: extension and high affinity for ligand. Here, we review recent structural and functional insights into how talin-1 and kindlin-3 enable integrin activation, with a focus on the distal signaling components that trigger β2 integrin conformational changes and leukocyte adhesion under flow.
Collapse
Affiliation(s)
- Lai Wen
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Klaus Ley
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA
| |
Collapse
|
8
|
Sun H, Lagarrigue F, Ginsberg MH. The Connection Between Rap1 and Talin1 in the Activation of Integrins in Blood Cells. Front Cell Dev Biol 2022; 10:908622. [PMID: 35721481 PMCID: PMC9198492 DOI: 10.3389/fcell.2022.908622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023] Open
Abstract
Integrins regulate the adhesion and migration of blood cells to ensure the proper positioning of these cells in the environment. Integrins detect physical and chemical stimuli in the extracellular matrix and regulate signaling pathways in blood cells that mediate their functions. Integrins are usually in a resting state in blood cells until agonist stimulation results in a high-affinity conformation ("integrin activation"), which is central to integrins' contribution to blood cells' trafficking and functions. In this review, we summarize the mechanisms of integrin activation in blood cells with a focus on recent advances understanding of mechanisms whereby Rap1 regulates talin1-integrin interaction to trigger integrin activation in lymphocytes, platelets, and neutrophils.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Frederic Lagarrigue
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Mark H. Ginsberg
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
9
|
Sari-Ak D, Torres-Gomez A, Yazicioglu YF, Christofides A, Patsoukis N, Lafuente EM, Boussiotis VA. Structural, biochemical, and functional properties of the Rap1-Interacting Adaptor Molecule (RIAM). Biomed J 2021; 45:289-298. [PMID: 34601137 PMCID: PMC9250098 DOI: 10.1016/j.bj.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Leukocytes, the leading players of immune system, are involved in innate and adaptive immune responses. Leukocyte adhesion to endothelial cells during transmigration or to antigen presenting cells during T cell activation, requires integrin activation through a process termed inside-out integrin signaling. In hematopoietic cells, Rap1 and its downstream effector RIAM (Rap1-interacting adaptor molecule) form a cornerstone for inside-out integrin activation. The Rap1/RIAM pathway is involved in signal integration for activation, actin remodeling and cytoskeletal reorganization in T cells, as well as in myeloid cell differentiation and function. RIAM is instrumental for phagocytosis, a process requiring particle recognition, cytoskeletal remodeling and membrane protrusion for engulfment and digestion. In the present review, we discuss the structural and molecular properties of RIAM and the recent discoveries regarding the functional role of the Rap1/RIAM module in hematopoietic cells.
Collapse
Affiliation(s)
- Duygu Sari-Ak
- Department of Medical Biology, School of Medicine, University of Health Sciences, Istanbul, Turkey, 34668
| | - Alvaro Torres-Gomez
- School of Medicine, Unit of Immunology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Yavuz-Furkan Yazicioglu
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK
| | - Anthos Christofides
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, 02215; Department of Medicine, Harvard Medical School, Boston, MA, 02215; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Nikolaos Patsoukis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, 02215; Department of Medicine, Harvard Medical School, Boston, MA, 02215; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Esther M Lafuente
- School of Medicine, Unit of Immunology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, 02215; Department of Medicine, Harvard Medical School, Boston, MA, 02215; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215.
| |
Collapse
|
10
|
Lagarrigue F, Gingras AR. Src-mediated phosphorylation of RIAM promotes integrin activation. Structure 2021; 29:305-307. [PMID: 33798425 DOI: 10.1016/j.str.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this issue of Structure, Cho et al. (2020) identified an intermolecular interaction between two RIAM pleckstrin homology (PH) domains that masks the phosphoinositide-binding site, and that phosphorylation by Src unmasks the PH domain. This provides an explanation of how RIAM plasma membrane translocation is regulated to promote integrin activation.
Collapse
Affiliation(s)
- Frédéric Lagarrigue
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alexandre R Gingras
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Su B, Wu J. Phosphorylation of RIAM Activates Its Adaptor Function in Mediating Integrin Signaling. JOURNAL OF CELLULAR SIGNALING 2021; 2:103-110. [PMID: 35128538 PMCID: PMC8813058 DOI: 10.33696/signaling.2.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Integrins are cellular receptors that regulate cell adhesion and many other cellular functions. Integrins can be activated via an "inside-out pathway" that is promoted by RAP1 GTPase. RAP1-GTP-Interacting Adaptor Molecular (RIAM) mediates integrin activation by linking RAP1 GTPase to talin, an integrin activator. RIAM's function in integrin signaling is tightly regulated. In this commentary, we review recent studies of the molecular mechanisms underlying RIAM autoinhibition via both intramolecular interaction and oligomer assembly, and the phosphorylation-dependent activation of RIAM.
Collapse
Affiliation(s)
| | - Jinhua Wu
- Correspondence should be addressed to Jinhua Wu;
| |
Collapse
|