1
|
Hasan MK, Jeannine Brady L. Nucleic acid-binding KH domain proteins influence a spectrum of biological pathways including as part of membrane-localized complexes. J Struct Biol X 2024; 10:100106. [PMID: 39040530 PMCID: PMC11261784 DOI: 10.1016/j.yjsbx.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
K-Homology domain (KH domain) proteins bind single-stranded nucleic acids, influence protein-protein interactions of proteins that harbor them, and are found in all kingdoms of life. In concert with other functional protein domains KH domains contribute to a variety of critical biological activities, often within higher order machineries including membrane-localized protein complexes. Eukaryotic KH domain proteins are linked to developmental processes, morphogenesis, and growth regulation, and their aberrant expression is often associated with cancer. Prokaryotic KH domain proteins are involved in integral cellular activities including cell division and protein translocation. Eukaryotic and prokaryotic KH domains share structural features, but are differentiated based on their structural organizations. In this review, we explore the structure/function relationships of known examples of KH domain proteins, and highlight cases in which they function within or at membrane surfaces. We also summarize examples of KH domain proteins that influence bacterial virulence and pathogenesis. We conclude the article by discussing prospective research avenues that could be pursued to better investigate this largely understudied protein category.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Hornegger H, Anisimova AS, Muratovic A, Bourgeois B, Spinetti E, Niedermoser I, Covino R, Madl T, Karagöz GE. IGF2BP1 phosphorylation in the disordered linkers regulates ribonucleoprotein condensate formation and RNA metabolism. Nat Commun 2024; 15:9054. [PMID: 39426983 PMCID: PMC11490574 DOI: 10.1038/s41467-024-53400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
The insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) is a conserved RNA-binding protein that regulates RNA stability, localization and translation. IGF2BP1 is part of various ribonucleoprotein (RNP) condensates. However, the mechanism that regulates its assembly into condensates remains unknown. By using proteomics, we demonstrate that phosphorylation of IGF2BP1 at S181 in a disordered linker is regulated in a stress-dependent manner. Phosphomimetic mutations in two disordered linkers, S181E and Y396E, modulate RNP condensate formation by IGF2BP1 without impacting its binding affinity for RNA. Intriguingly, the S181E mutant, which lies in linker 1, impairs IGF2BP1 condensate formation in vitro and in cells, whereas a Y396E mutant in the second linker increases condensate size and dynamics. Structural approaches show that the first linker binds RNAs nonspecifically through its RGG/RG motif, an interaction weakened in the S181E mutant. Notably, linker 2 interacts with IGF2BP1's folded domains and these interactions are partially impaired in the Y396E mutant. Importantly, the phosphomimetic mutants impact IGF2BP1's interaction with RNAs and remodel the transcriptome in cells. Our data reveal how phosphorylation modulates low-affinity interaction networks in disordered linkers to regulate RNP condensate formation and RNA metabolism.
Collapse
Affiliation(s)
- Harald Hornegger
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Aleksandra S Anisimova
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Adnan Muratovic
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
| | - Benjamin Bourgeois
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Elena Spinetti
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Isabell Niedermoser
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
- Institute of Computer Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - G Elif Karagöz
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria.
- Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Fakhar M, Gul M, Li W. Interactive Structural Analysis of KH3-4 Didomains of IGF2BPs with Preferred RNA Motif Having m 6A Through Dynamics Simulation Studies. Int J Mol Sci 2024; 25:11118. [PMID: 39456902 PMCID: PMC11508745 DOI: 10.3390/ijms252011118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
m6A modification is the most common internal modification of messenger RNA in eukaryotes, and the disorder of m6A can trigger cancer progression. The GGACU is considered the most frequent consensus sequence of target transcripts which have a GGAC m6A core motif. Newly identified m6A 'readers' insulin-like growth factor 2 mRNA-binding proteins modulate gene expression by binding to the m6A binding sites of target mRNAs, thereby affecting various cancer-related processes. The dynamic impact of the methylation at m6A within the GGAC motif on human IGF2BPs has not been investigated at the structural level. In this study, through in silico analysis, we mapped IGF2BPs binding sites for the GGm6AC RNA core motif of target mRNAs. Subsequent molecular dynamics simulation analysis at 400 ns revealed that only the KH4 domain of IGF2BP1, containing the 503GKGG506 motif and its periphery residues, was involved in the interaction with the GGm6AC backbone. Meanwhile, the methyl group of m6A is accommodated by a shallow hydrophobic cradle formed by hydrophobic residues. Interestingly, in IGF2BP2 and IGF2BP3 complexes, the RNA was observed to shift from the KH4 domain to the KH3 domain in the simulation at 400 ns, indicating a distinct dynamic behavior. This suggests a conformational stabilization upon binding, likely essential for the functional interactions involving the KH3-4 domains. These findings highlight the potential of targeting IGF2BPs' interactions with m6A modifications for the development of novel oncological therapies.
Collapse
Affiliation(s)
- Muhammad Fakhar
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (M.F.); (M.G.)
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mehreen Gul
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (M.F.); (M.G.)
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (M.F.); (M.G.)
| |
Collapse
|
4
|
Ma S, Hu Y, Xu W, Xiong W, Xu X, Hou Y, Wang Y, Chen P, Yang W, Lu H, Zhao Y. Insulin-like growth factor-2 mRNA-binding protein 2 facilitates post-ischemic angiogenesis by increasing the stability of fibroblast growth factor 2 mRNA and its protein expression. Heliyon 2024; 10:e37364. [PMID: 39296104 PMCID: PMC11409114 DOI: 10.1016/j.heliyon.2024.e37364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background Post-ischemic angiogenesis is crucial for reestablishing blood flow in conditions such as peripheral artery disease (PAD). The role of insulin-like growth factor-2 mRNA-binding protein 2 (IGF2BP2) in post-transcriptional RNA metabolism and its involvement in post-ischemic angiogenesis remains unclear. Methods Using a human GEO database and a hind-limb ischemia (HLI) mouse model, the predominant isoform IGF2BP2 in ischemic gastrocnemius tissue was identified. Adeno-associated virus with the Tie1 promoter induced IGF2BP2 overexpression in the HLI model, evaluating the expression of vascular structural proteins (CD31 and α-SMA) and blood flow recovery after HLI. In vitro experiments with human umbilical vein endothelial cells (HUVECs) demonstrated that lentivirus-mediated IGF2BP2 overexpression upregulates cell proliferation, migration, and tube formation. GeneCards, RNAct databases, and subsequent reverse transcription quantitative polymerase chain reaction (RT-qPCR) predicted IGF2BP2 interactions with fibroblast growth factor 2 (FGF2) mRNA, and actinomycin D treatment, binding site predictions and CLIP-seq data further confirmed this interaction. Furthermore, western blotting, enzyme-linked immunosorbent assay, and RNA immunoprecipitation followed by RT-qPCR were performed to validate IGF2BP2's interaction with FGF2 mRNA and to assess its role in stabilizing FGF2 mRNA, as well as its impact on FGF2 protein expression. Results HLI reduced IGF2BP2 expression in the gastrocnemius tissue, which gradually increased during blood flow recovery. IGF2BP2 overexpression in HLI mice accelerated blood flow recovery and increased capillary and small artery densities. The overexpression of IGF2BP2 in HUVECs stimulated proliferation, migration, and tube formation by interacting with FGF2 mRNA to increase its stability. This interaction resulted in increased levels of FGF2 protein and secretion, ultimately promoting angiogenesis. Conclusions IGF2BP2 contributes to blood flow restoration post-ischemia in vivo and promotes angiogenesis in HUVECs by enhancing FGF2 mRNA stability and FGF2 protein expression and secretion. These findings underscore IGF2BP2's therapeutic potential in ischemic conditions, such as PAD.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032, Shanghai, China
| | - Wangguo Xu
- Department of Cardiology, Yongchuan Hospital of Chongqing Medical University, 402160, Chongqing, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Xinyu Xu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Yajie Hou
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Ying Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Panke Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Wenbi Yang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032, Shanghai, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, 563000, Zunyi, Guizhou, China
| |
Collapse
|
5
|
Rana P, Ujjainiya R, Bharti V, Maiti S, Ekka MK. IGF2BP1-Mediated Regulation of CCN1 Expression by Specific Binding to G-Quadruplex Structure in Its 3'UTR. Biochemistry 2024; 63:2166-2182. [PMID: 39133064 DOI: 10.1021/acs.biochem.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The intricate regulation of gene expression is fundamental to the biological complexity of higher organisms, and is primarily governed by transcriptional and post-transcriptional mechanisms. The 3'-untranslated region (3'UTR) of mRNA is rich in cis-regulatory elements like G-quadruplexes (G4s), and plays a crucial role in post-transcriptional regulation. G4s have emerged as significant gene regulators, impacting mRNA stability, translation, and localization. In this study, we investigate the role of a robust parallel G4 structure situated within the 3'UTR of CCN1 mRNA in post-transcriptional regulation. This G4 structure is proximal to the stop codon of human CCN1, and evolutionarily conserved. We elucidated its interaction with the insulin-like growth factor 2 binding protein 1 (IGF2BP1), a noncanonical RNA N6-methyladenosine (m6A) modification reader, revealing a novel interplay between RNA modifications and G-quadruplex structures. Knockdown experiments and mutagenesis studies demonstrate that IGF2BP1 binds specifically to the G4 structure, modulating CCN1 mRNA stability. Additionally, we unveil the role of IGF2BP1's RNA recognition motifs in G4 recognition, highlighting this enthalpically driven interaction. Our findings offer fresh perspectives on the complex mechanisms of post-transcriptional gene regulation mediated by G4 RNA secondary structures.
Collapse
Affiliation(s)
- Priya Rana
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajat Ujjainiya
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal Bharti
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Souvik Maiti
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mary K Ekka
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Ding P, Wu H, Wu J, Li T, He J, Ju Y, Liu Y, Li F, Deng H, Gu R, Zhang L, Guo H, Tian Y, Yang P, Meng N, Li X, Guo Z, Meng L, Zhao Q. N6-methyladenosine modified circPAK2 promotes lymph node metastasis via targeting IGF2BPs/VEGFA signaling in gastric cancer. Oncogene 2024; 43:2548-2563. [PMID: 39014193 DOI: 10.1038/s41388-024-03099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Circular RNAs (circRNAs) have emerged as key regulators of cancer occurrence and progression, as well as promising biomarkers for cancer diagnosis and prognosis. However, the potential mechanisms of circRNAs implicated in lymph node (LN) metastasis of gastric cancer remain unclear. Herein, we identify a novel N6-methyladenosine (m6A) modified circRNA, circPAK2, which is significantly upregulated in gastric cancer tissues and metastatic LN tissues. Functionally, circPAK2 enhances the migration, invasion, lymphangiogenesis, angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis of gastric cancer in vitro and in vivo. Mechanistically, circPAK2 is exported by YTH domain-containing protein 1 (YTHDC1) from the nucleus to the cytoplasm in an m6A methylation-dependent manner. Moreover, increased cytoplasmic circPAK2 interacts with Insulin-Like Growth Factor 2 mRNA-Binding Proteins (IGF2BPs) and forms a circPAK2/IGF2BPs/VEGFA complex to stabilize VEGFA mRNA, which contributes to gastric cancer vasculature formation and aggressiveness. Clinically, high circPAK2 expression is positively associated with LN metastasis and poor prognosis in gastric cancer. This study highlights m6A-modified circPAK2 as a key regulator of LN metastasis of gastric cancer, thus supporting circPAK2 as a promising therapeutic target and prognostic biomarker for gastric cancer.
Collapse
Affiliation(s)
- Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Tongkun Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Jinchen He
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Yingchao Ju
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Animal Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yueping Liu
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fang Li
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huiyan Deng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Renjun Gu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Honghai Guo
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Yuan Tian
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Peigang Yang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Ning Meng
- Department of General Surgery, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China
| | - Xiaolong Li
- Department of General Surgery, Baoding Central Hospital, Baoding, Hebei, China
| | - Zhenjiang Guo
- General Surgery Department, Hengshui People's Hospital, Hengshui, Hebei, China
| | - Lingjiao Meng
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, Hebei, China.
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China.
| |
Collapse
|
7
|
Liu C, Zhuo Y, Yang X, Yang C, Shu M, Hou B, Hou J, Chen X, Wang L, Wu X. Epigenetically associated IGF2BP3 upregulation promotes cell proliferation by regulating E2F1 expression in hepatocellular carcinoma. Sci Rep 2024; 14:16051. [PMID: 38992083 PMCID: PMC11239653 DOI: 10.1038/s41598-024-67021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
RNA-binding proteins (RBPs) are a class of proteins that primarily function by interacting with different types of RNAs and play a critical role in regulating the transcription and translation of cancer-related genes. However, their role in the progression of hepatocellular carcinoma (HCC) remains unclear. In this study, we analyzed RNA sequencing data and the corresponding clinical information of patients with HCC to screen for prognostic RBPs. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) was identified as an independent prognostic factor for liver cancer. It is upregulated in HCC and is associated with a poor prognosis. Elevated IGF2BP3 expression was validated via immunohistochemical analysis using a tissue microarray of patients with HCC. IGF2BP3 knockdown inhibited the proliferation of Hep3B and HepG2 cells, whereas IGF2BP3 overexpression promoted the expansion of HuH-7 and MHCC97H cells. Mechanistically, IGF2BP3 modulates cell proliferation by regulating E2F1 expression. DNA hypomethylation of the IGF2BP3 gene may increase the expression of IGF2BP3, thereby enhancing cell proliferation in HCC. Therefore, IGF2BP3 may act as a novel prognostic biomarker and a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Chenghao Liu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yicheng Zhuo
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaofeng Yang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chen Yang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Min Shu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Bowen Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
8
|
Ding N, Cao G, Wang Z, Xu S, Chen W. Tumor suppressive function of IGF2BP1 in gastric cancer through decreasing MYC. Cancer Sci 2024; 115:427-438. [PMID: 38115228 PMCID: PMC10859605 DOI: 10.1111/cas.16047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Gastric cancer is one of the most common causes of cancer-related death worldwide. The N6 -methyladenosine (m6 A) reader IGF2BP1 (insulin-like growth factor-2 mRNA binding protein 1) has been reported to promote cancer progression by stabilizing oncogenic mRNAs through its m6 A-binding activity in some tumors. However, the role of IGF2BP1 in gastric carcinogenesis remains unclear. In this study, we found that IGF2BP1 is significantly downregulated in tumor tissues from patients with gastric cancer. Lower expression of IGF2BP1 is associated with poor prognosis. Gastric cancer cell proliferation is suppressed by IGF2BP1 in an m6 A-dependent manner. Additionally, IGF2BP1 is able to significantly attenuate tumor growth of gastric cancer cells. Further m6 A sequencing and m6 A-RNA immunoprecipitation assays show that MYC (c-myc proto-oncogene) mRNA is a target transcript of IGF2BP1 in gastric cancer cells. IGF2BP1 inhibits gastric cancer cell proliferation by reducing the mRNA and protein expression of MYC. Mechanistically, IGF2BP1 promotes the degradation of MYC mRNA and inhibits its translation efficiency. Taken together, these data suggest that IGF2BP1 plays a tumor-suppressive role in gastric carcinogenesis by downregulating MYC in an m6 A-dependent manner, thereby making the IGF2BP1-MYC axis a potential target for gastric cancer treatment.
Collapse
Affiliation(s)
- Ning Ding
- Department of GastroenterologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Zhejiang University Cancer CenterHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
| | - Guodong Cao
- Department of General SurgeryFirst Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Zhuo Wang
- Department of GastroenterologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Zhejiang University Cancer CenterHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryHangzhou First People's HospitalHangzhouChina
| | - Wenwen Chen
- Department of GastroenterologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Zhejiang University Cancer CenterHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
| |
Collapse
|
9
|
Sun M, Wang L, Ge L, Xu D, Zhang R. IGF2BP1 facilitates non-small cell lung cancer progression by regulating the KIF2A-mediated Wnt/β-catenin pathway. Funct Integr Genomics 2023; 24:4. [PMID: 38102458 DOI: 10.1007/s10142-023-01275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) are crucially implicated in the cancer progression. The current study intends to excavate and clarify the mechanisms of the key IGF2BPs in non-small cell lung cancer (NSCLC). The expression of IGF2BPs and kinesin family member 2A (KIF2A) was examined using immunohistochemistry, real-time quantitative polymerase chain reaction, and western blot in NSCLC tissue samples or cell lines. NSCLC cell viability was examined using a cell counting kit-8 assay. Cell apoptotic rate was assessed using flow cytometry analysis. The migration and invasion of H1299 cells were subject to scratch test and Transwell assays, respectively. Starbase 2.0 was used to detect the downstream factors of the IGF2BP1 protein. The binding of IGF2BP with KIF2A was detected using RNA binding protein immunoprecipitation assays. Ki-67 immunohistochemistry assay and TUNEL assays were applied for the evaluation of proliferation and apoptosis in vivo, respectively. IGF2BP1 was upregulated in NSCLC tissue samples and cells. Functionally, IGF2BP1 overexpression promoted the proliferative ability, migration, and invasiveness of H1299 cells, while inhibiting cell apoptosis in vitro. In vivo studies revealed that overexpression of IGF2BP1 promoted tumor growth of NSCLC. Mechanistically, IGF2BP1 was involved in KIF2A mRNA stabilization. KIF2A exerted the same functions as IGF2BP1 via the Wnt/β-catenin signaling. In conclusion, IGF2BP1 enhances NSCLC malignant progression by stabilizing KIF2A to modulate the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ming Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Thoracic Surgery, Hefei First People's Hospital, Hefei, 230001, Anhui, China
| | - Ling Wang
- Department of Thoracic Surgery, Hefei First People's Hospital, Hefei, 230001, Anhui, China
| | - Lei Ge
- Department of Oncology, Hefei First People's Hospital, Hefei, 230001, Anhui, China
| | - Daojun Xu
- Department of Pathology, Hefei First People's Hospital, Hefei, 230001, Anhui, China
| | - Renquan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
10
|
Xu Y, Xu L, Kong Y, Li K, Li J, Xu F, Liang S, Chen B. IGF2BP1 enhances the stability of SIK2 mRNA through m 6A modification to promote non-small cell lung cancer progression. Biochem Biophys Res Commun 2023; 684:149113. [PMID: 37866243 DOI: 10.1016/j.bbrc.2023.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a significant public health concern globally. Evidence suggests that Salt-inducible kinase 2 (SIK2) is differentially expressed across various cancers and is also implicated in cancer progression. Despite this, the precise function of SIK2 in NSCLC is yet to be elucidated and requires further investigation. METHODS SIK2 expression was evaluated in both HBEC and NSCLC cells, utilizing quantitative real-time PCR (qRT-PCR) and Western blot (WB) analyses. Furthermore, to identify the influence of SIK2 on cell proliferation, migration, invasion, and apoptosis, a range of techniques were employed. To evaluate N6-methyladenosine (m6A) modification levels of total RNA and SIK2 within cells, RNA m6A colorimetry and methylated RNA immunoprecipitation (MeRIP) techniques were employed. Additionally, to confirm the interaction between SIK2 and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), bioinformatics analysis was executed, and the results were validated through RIP. The stability of SIK2 mRNA was determined using actinomycin D experiment. Furthermore, to validate the in vivo functionality of SIK2, a subcutaneous transplantation tumor model was established in nude mice. RESULTS In this study, upregulation of SIK2 in NSCLC cells was observed. Overexpression of SIK2 was found to lead to promotion of cell proliferation, migration, invasion, and suppression of the Hippo/yes-associated protein (YAP) pathway, while inhibiting apoptosis. RIP analysis showed that IGF2BP1 protein interacted with SIK2 mRNA. Knockdown of IGF2BP1 decreased mRNA stability and m6A modification levels of SIK2. Additionally, knockdown of IGF2BP1 resulted in inhibition of cell proliferation, migration, invasion, suppression of the Hippo/YAP pathway, and promoting apoptosis. Overexpression of SIK2 overturned the impact of IGF2BP1 on NSCLC cells, which was then confirmed through in vivo experiments. CONCLUSION IGF2BP1 stabilized SIK2 mRNA through m6A modification to promote NSCLC progression, potentially offering new diagnostic and therapeutic insights for NSCLC.
Collapse
Affiliation(s)
- Yan Xu
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Li Xu
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yi Kong
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Kang Li
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Jia Li
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Fang Xu
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Shuzhi Liang
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Bolin Chen
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, PR China.
| |
Collapse
|
11
|
He C, Teng X, Wang L, Ni M, Zhu L, Liu J, Lv W, Hu J. The implications of N6-methyladenosine (m6A) modification in esophageal carcinoma. Mol Biol Rep 2023; 50:8691-8703. [PMID: 37598390 PMCID: PMC10520198 DOI: 10.1007/s11033-023-08575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/01/2023] [Indexed: 08/22/2023]
Abstract
Esophageal carcinoma (EC) is always diagnosed at advanced stage and its the mortality rate remains high. The patients usually miss the best opportunity for treatment because of non-specific symptoms and the survival rates are low. N6-methyladenosine (m6A) the predominant modification in eukaryotic messenger RNA(mRNA), serves vital roles in numerous bioprocess. This chemical modification is dynamic, reversible and consists of three regulators: m6A methyltransferases (writers), demethylases (erasers) and m6A-binding proteins (readers). Recently, a growing number of evidences have indicated relationships between m6A and EC. Whereas, lacking of cognition about the molecular mechanism of m6A modification in esophageal carcinoma. We will focus on the biological function roles of m6A modification in the tumorigenesis and development of EC. Recent studies showed that immunotherapy had a positive impact on EC. The relationship between m6A and immunotherapy in EC deserves further research and discussion. We will also discuss the potential clinical applications regarding diagnosis, treatment and prognosis of m6A modification for EC and provide perspectives for further studies.
Collapse
Affiliation(s)
- Cheng He
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Teng
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luming Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miaoqi Ni
- Echocardiography and Vascular Ultrasound Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiacong Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
12
|
Nicastro G, Abis G, Klein P, Esteban-Serna S, Gallagher C, Chaves-Arquero B, Cai Y, Figueiredo AM, Martin SR, Patani R, Taylor IA, Ramos A. Direct m6A recognition by IMP1 underlays an alternative model of target selection for non-canonical methyl-readers. Nucleic Acids Res 2023; 51:8774-8786. [PMID: 37377445 PMCID: PMC10484666 DOI: 10.1093/nar/gkad534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
m6A methylation provides an essential layer of regulation in organismal development, and is aberrant in a range of cancers and neuro-pathologies. The information encoded by m6A methylation is integrated into existing RNA regulatory networks by RNA binding proteins that recognise methylated sites, the m6A readers. m6A readers include a well-characterised class of dedicated proteins, the YTH proteins, as well as a broader group of multi-functional regulators where recognition of m6A is only partially understood. Molecular insight in this recognition is essential to build a mechanistic understanding of global m6A regulation. In this study, we show that the reader IMP1 recognises the m6A using a dedicated hydrophobic platform that assembles on the methyl moiety, creating a stable high-affinity interaction. This recognition is conserved across evolution and independent from the underlying sequence context but is layered upon the strong sequence specificity of IMP1 for GGAC RNA. This leads us to propose a concept for m6A regulation where methylation plays a context-dependent role in the recognition of selected IMP1 targets that is dependent on the cellular concentration of available IMP1, differing from that observed for the YTH proteins.
Collapse
Affiliation(s)
- Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Giancarlo Abis
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Pierre Klein
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Sofia Esteban-Serna
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Christopher Gallagher
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Belen Chaves-Arquero
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Yuyang Cai
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Angelo Miguel Figueiredo
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Stephen R Martin
- Structural Biology Technology Platform, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Rickie Patani
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andres Ramos
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
13
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
14
|
Nuthalapati SS, Ulshöfer CJ, Bindereif A. CircRNP complexes: from nature to design. J Mol Cell Biol 2023; 15:mjad006. [PMID: 36722152 PMCID: PMC10234438 DOI: 10.1093/jmcb/mjad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 02/02/2023] Open
Affiliation(s)
| | | | - Albrecht Bindereif
- Institute of Biochemistry, Justus Liebig University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
15
|
Novel roles of RNA-binding proteins in drug resistance of breast cancer: from molecular biology to targeting therapeutics. Cell Death Discov 2023; 9:52. [PMID: 36759501 PMCID: PMC9911762 DOI: 10.1038/s41420-023-01352-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Therapy resistance remains a huge challenge for current breast cancer treatments. Exploring molecular mechanisms of therapy resistance might provide therapeutic targets for patients with advanced breast cancer and improve their prognosis. RNA-binding proteins (RBPs) play an important role in regulating therapy resistance. Here we summarize the functions of RBPs, highlight their tremendously important roles in regulating therapy sensitivity and resistance and we also reveal current therapeutic approaches reversing abnormal functions of RBPs in breast cancer.
Collapse
|
16
|
Korn SM, Von Ehr J, Dhamotharan K, Tants JN, Abele R, Schlundt A. Insight into the Structural Basis for Dual Nucleic Acid-Recognition by the Scaffold Attachment Factor B2 Protein. Int J Mol Sci 2023; 24:ijms24043286. [PMID: 36834708 PMCID: PMC9958909 DOI: 10.3390/ijms24043286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The family of scaffold attachment factor B (SAFB) proteins comprises three members and was first identified as binders of the nuclear matrix/scaffold. Over the past two decades, SAFBs were shown to act in DNA repair, mRNA/(l)ncRNA processing and as part of protein complexes with chromatin-modifying enzymes. SAFB proteins are approximately 100 kDa-sized dual nucleic acid-binding proteins with dedicated domains in an otherwise largely unstructured context, but whether and how they discriminate DNA and RNA binding has remained enigmatic. We here provide the SAFB2 DNA- and RNA-binding SAP and RRM domains in their functional boundaries and use solution NMR spectroscopy to ascribe DNA- and RNA-binding functions. We give insight into their target nucleic acid preferences and map the interfaces with respective nucleic acids on sparse data-derived SAP and RRM domain structures. Further, we provide evidence that the SAP domain exhibits intra-domain dynamics and a potential tendency to dimerize, which may expand its specifically targeted DNA sequence range. Our data provide a first molecular basis of and a starting point towards deciphering DNA- and RNA-binding functions of SAFB2 on the molecular level and serve a basis for understanding its localization to specific regions of chromatin and its involvement in the processing of specific RNA species.
Collapse
Affiliation(s)
- Sophie M. Korn
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Julian Von Ehr
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- IMPRS on Cellular Biophysics, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Karthikeyan Dhamotharan
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Jan-Niklas Tants
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Rupert Abele
- Institute for Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
17
|
Petri BJ, Klinge CM. m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer. J Mol Endocrinol 2023; 70:JME-22-0110. [PMID: 36367225 PMCID: PMC9790079 DOI: 10.1530/jme-22-0110] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
Epitranscriptomic modification of RNA regulates human development, health, and disease. The true diversity of the transcriptome in breast cancer including chemical modification of transcribed RNA (epitranscriptomics) is not well understood due to limitations of technology and bioinformatic analysis. N-6-methyladenosine (m6A) is the most abundant epitranscriptomic modification of mRNA and regulates splicing, stability, translation, and intracellular localization of transcripts depending on m6A association with reader RNA-binding proteins. m6A methylation is catalyzed by the METTL3 complex and removed by specific m6A demethylase ALKBH5, with the role of FTO as an 'eraser' uncertain. In this review, we provide an overview of epitranscriptomics related to mRNA and focus on m6A in mRNA and its detection. We summarize current knowledge on altered levels of writers, readers, and erasers of m6A and their roles in breast cancer and their association with prognosis. We summarize studies identifying m6A peaks and sites in genes in breast cancer cells.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS)
| |
Collapse
|
18
|
Papanikolaou NA, Nikolaidis M, Amoutzias GD, Fouza A, Papaioannou M, Pandey A, Papavassiliou AG. The Dynamic and Crucial Role of the Arginine Methylproteome in Myoblast Cell Differentiation. Int J Mol Sci 2023; 24:2124. [PMID: 36768448 PMCID: PMC9916730 DOI: 10.3390/ijms24032124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Protein arginine methylation is an extensive and functionally significant post-translational modification. However, little is known about its role in differentiation at the systems level. Using stable isotope labeling by amino acids in cell culture (SILAC) proteomics of whole proteome analysis in proliferating or five-day differentiated mouse C2C12 myoblasts, followed by high-resolution mass spectrometry, biochemical assays, and specific immunoprecipitation of mono- or dimethylated arginine peptides, we identified several protein families that were differentially methylated on arginine. Our study is the first to reveal global changes in the arginine mono- or dimethylation of proteins in proliferating myoblasts and differentiated myocytes and to identify enriched protein domains and novel short linear motifs (SLiMs). Our data may be crucial for dissecting the links between differentiation and cancer growth.
Collapse
Affiliation(s)
- Nikolaos A. Papanikolaou
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larisa, Greece
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larisa, Greece
| | - Ariadni Fouza
- Fifth Surgical Department, Ippokrateio General Hospital, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Macedonia, Greece
| | - Maria Papaioannou
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
19
|
Silencing of circCRIM1 Drives IGF2BP1-Mediated NSCLC Immune Evasion. Cells 2023; 12:cells12020273. [PMID: 36672208 PMCID: PMC9856323 DOI: 10.3390/cells12020273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/17/2022] [Accepted: 12/25/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Circular RNAs (circRNAs) have been found to have significant impacts on non-small cell lung cancer (NSCLC) progression through various mechanisms. However, the mechanism of circRNAs modulating tumor immune evasion in NSCLC has yet to be well-revealed. MATERIALS AND METHODS Through analyzing the expression profiles of circRNAs in NSCLC tissues, RNA FISH, pull-down assay, mass spectrometry analysis, and RIP, circCRIM1 was identified, and its interaction with IGF2BP1 was confirmed. The effects of circCRIM1 on modulating tumor immune evasion were explored via co-culture in vitro and in tumor xenograft models. Subsequently, we evaluated the regulatory effects of circCRIM1 on IGF2BP1 and screened its target genes through RNA sequencing. Finally, we explored the underlying molecular mechanisms that circCRIM1 could regulate the stability of target mRNA. RESULTS circCRIM1 was downregulated in NSCLC, and its expression was positively correlated with favorable prognoses. Furthermore, circCRIM1 was more stable than its linear transcript and was mainly localized in the cytoplasm. Mechanistically, circCRIM1 destabilized HLA-F mRNA via competitive binding to IGF2BP1. Importantly, the overexpression of circCRIM1 suppressed the immune evasion of NSCLC and promoted the expressions of Granzyme B, IFN-γ, and TNF-α of CD8+ T and NK cell in vitro co-culture assays and tumor xenograft models. CONCLUSIONS This study identifies circCRIM1 as a new tumor suppressor that inhibits tumor immune evasion through a competitive combination with IGF2BP1 to destabilize HLA-F mRNA.
Collapse
|
20
|
Zhou Z, Chen S, Wu T, Chen Y, Cao Y, Huang Y, Liu D. IGF2BP2, an RNA-binding protein regulates cell proliferation and osteogenic differentiation by stabilizing SRF mRNA. J Cell Physiol 2023; 238:195-209. [PMID: 36436184 DOI: 10.1002/jcp.30919] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022]
Abstract
Osteoblast proliferation and osteogenic differentiation (OGD) are regulated by complex mechanisms. The roles in cell proliferation and OGD of RNA-binding proteins in the insulin-like growth factor 2 mRNA-binding protein (IGF2BP) family remain unclear. To elucidate this, we examined the differential expression of IGF2BP2 in OGD and osteoporosis, and the expression profile of IGF2BP2-binding RNA in vitro. We screened the GEO database for differential expression of IGF2BP in OGD and osteoporosis, and verified the RNAs interacting with IGF2BP2 via RNA immunoprecipitation sequencing assays. The proliferation and OGD of IGF2BP2- and serum response factor (SRF)-treated cells, and their regulatory mechanisms, were examined. IGF2BP2 was differentially expressed in OGD and osteoporosis. The RNA immunoprecipitation sequencing assay identified all of the RNAs that bind with IGF2BP2, and revealed SRF as a target of IGF2BP2. IGF2BP2 and SRF inhibition impaired MC3T3-E1 cell growth but promoted OGD. The mRNA stability analysis revealed that IGF2BP2 enhanced SRF mRNA stability against degradation. In summary, IGF2BP2 is a potential biomarker and therapeutic target for osteoporosis and OGD.
Collapse
Affiliation(s)
- Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Senxiang Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tong Wu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yifeng Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuxiao Cao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Huang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
21
|
Ramesh-Kumar D, Guil S. The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Semin Cancer Biol 2022; 86:18-31. [PMID: 35643219 DOI: 10.1016/j.semcancer.2022.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
Abstract
RNA binding proteins that act at the post-transcriptional level display a richness of mechanisms to modulate the transcriptional output and respond to changing cellular conditions. The family of IGF2BP proteins recognize mRNAs modified by methylation and lengthen their lifecycle in the context of stable ribonucleoprotein particles to promote cancer progression. They are emerging as key 'reader' proteins in the epitranscriptomic field, driving the fate of bound substrates under physiological and disease conditions. Recent developments in the field include the recognition that noncoding substrates play crucial roles in mediating the pro-growth features of IGF2BP family, not only as regulated targets, but also as modulators of IGF2BP function themselves. In this review, we summarize the regulatory roles of IGF2BP proteins and link their molecular role as m6A modification readers to the cellular phenotype, thus providing a comprehensive insight into IGF2BP function.
Collapse
Affiliation(s)
- Deepthi Ramesh-Kumar
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia 08916, Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia 08916, Spain.
| |
Collapse
|
22
|
Chen J, Sun M, Huang L, Fang Y. The Long noncoding RNA LINC00200 Promotes the Malignant Progression of MYCN-Amplified Neuroblastoma via Binding to Insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) to Enhance the Stability of of Zic family member 2 (ZIC2) mRNA. Pathol Res Pract 2022; 237:154059. [DOI: 10.1016/j.prp.2022.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 12/09/2022]
|
23
|
Zhang C, Liu N. N6-methyladenosine (m6A) modification in gynecological malignancies. J Cell Physiol 2022; 237:3465-3479. [PMID: 35802474 DOI: 10.1002/jcp.30828] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/27/2022]
Abstract
N6-methyladenosine (m6A) modification is one of the most abundant modifications in eukaryotic mRNA, regulated by m6A methyltransferase and demethylase. m6A modified RNA is specifically recognized and bound by m6A recognition proteins, which mediate splicing, maturation, exonucleation, degradation, and translation. In gynecologic malignancies, m6A RNA modification-related molecules are expressed aberrantly, significantly altering the posttranscriptional methylation level of the target genes and their stability. The m6A modification also regulates related metabolic pathways, thereby controlling tumor development. This review analyzes the composition and mode of action of m6A modification-related proteins and their biological functions in the malignant progression of gynecologic malignancies, which provide new ideas for the early clinical diagnosis and targeted therapy of gynecologic malignancies.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
24
|
Chen X, Wu J, Li Z, Han J, Xia P, Shen Y, Ma J, Liu X, Zhang J, Yu P. Advances in The Study of RNA-binding Proteins in Diabetic Complications. Mol Metab 2022; 62:101515. [PMID: 35597446 PMCID: PMC9168169 DOI: 10.1016/j.molmet.2022.101515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Background It has been reported that diabetes mellitus affects 435 million people globally as a primary health care problem. Despite many therapies available, many diabetes remains uncontrolled, giving rise to irreversible diabetic complications that pose significant risks to patients’ wellbeing and survival. Scope of Review In recent years, as much effort is put into elucidating the posttranscriptional gene regulation network of diabetes and diabetic complications; RNA binding proteins (RBPs) are found to be vital. RBPs regulate gene expression through various post-transcriptional mechanisms, including alternative splicing, RNA export, messenger RNA translation, RNA degradation, and RNA stabilization. Major Conclusions Here, we summarized recent studies on the roles and mechanisms of RBPs in mediating abnormal gene expression in diabetes and its complications. Moreover, we discussed the potential and theoretical basis of RBPs to treat diabetes and its complications. • Mechanisms of action of RBPs involved in diabetic complications are summarized and elucidated. • We discuss the theoretical basis and potential of RBPs for the treatment of diabetes and its complications. • We summarize the possible effective drugs for diabetes based on RBPs promoting the development of future therapeutic drugs.
Collapse
Affiliation(s)
- Xinyue Chen
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiashu Han
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Shen
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, USA
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China; Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
25
|
Olejniczak M, Jiang X, Basczok MM, Storz G. KH domain proteins: Another family of bacterial RNA matchmakers? Mol Microbiol 2022; 117:10-19. [PMID: 34748246 PMCID: PMC8766902 DOI: 10.1111/mmi.14842] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
In many bacteria, the stabilities and functions of small regulatory RNAs (sRNAs) that act by base pairing with target RNAs most often are dependent on Hfq or ProQ/FinO-domain proteins, two classes of RNA chaperone proteins. However, while all bacteria appear to have sRNAs, many have neither Hfq nor ProQ/FinO-domain proteins raising the question of whether another factor might act as an sRNA chaperone in these organisms. Several recent studies have reported that KH domain proteins, such as KhpA and KhpB, bind sRNAs. Here we describe what is known about the distribution, structures, RNA-binding properties, and physiologic roles of KhpA and KhpB and discuss evidence for and against these proteins serving as sRNAs chaperones.
Collapse
Affiliation(s)
- Mikolaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Xiaofang Jiang
- Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Maciej M. Basczok
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| |
Collapse
|