1
|
Stepanenko D, Wang Y, Simmerling C. Assessing pH-Dependent Conformational Changes in the Fusion Peptide Proximal Region of the SARS-CoV-2 Spike Glycoprotein. Viruses 2024; 16:1066. [PMID: 39066230 PMCID: PMC11281432 DOI: 10.3390/v16071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
One of the entry mechanisms of the SARS-CoV-2 coronavirus into host cells involves endosomal acidification. It has been proposed that under acidic conditions, the fusion peptide proximal region (FPPR) of the SARS-CoV-2 spike glycoprotein acts as a pH-dependent switch, modulating immune response accessibility by influencing the positioning of the receptor binding domain (RBD). This would provide indirect coupling of RBD opening to the environmental pH. Here, we explored this possible pH-dependent conformational equilibrium of the FPPR within the SARS-CoV-2 spike glycoprotein. We analyzed hundreds of experimentally determined spike structures from the Protein Data Bank and carried out pH-replica exchange molecular dynamics to explore the extent to which the FPPR conformation depends on pH and the positioning of the RBD. A meta-analysis of experimental structures identified alternate conformations of the FPPR among structures in which this flexible regions was resolved. However, the results did not support a correlation between the FPPR conformation and either RBD position or the reported pH of the cryo-EM experiment. We calculated pKa values for titratable side chains in the FPPR region using PDB structures, but these pKa values showed large differences between alternate PDB structures that otherwise adopt the same FPPR conformation type. This hampers the comparison of pKa values in different FPPR conformations to rationalize a pH-dependent conformational change. We supplemented these PDB-based analyses with all-atom simulations and used constant-pH replica exchange molecular dynamics to estimate pKa values in the context of flexibility and explicit water. The resulting titration curves show good reproducibility between simulations, but they also suggest that the titration curves of the different FPPR conformations are the same within the error bars. In summary, we were unable to find evidence supporting the previously published hypothesis of an FPPR pH-dependent equilibrium: neither from existing experimental data nor from constant-pH MD simulations. The study underscores the complexity of the spike system and opens avenues for further exploration into the interplay between pH and SARS-CoV-2 viral entry mechanisms.
Collapse
Affiliation(s)
- Darya Stepanenko
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; (D.S.); (Y.W.)
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yuzhang Wang
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; (D.S.); (Y.W.)
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Carlos Simmerling
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA; (D.S.); (Y.W.)
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Ghoula M, Deyawe Kongmeneck A, Eid R, Camproux AC, Moroy G. Comparative Study of the Mutations Observed in the SARS-CoV-2 RBD Variants of Concern and Their Impact on the Interaction with the ACE2 Protein. J Phys Chem B 2023; 127:8586-8602. [PMID: 37775095 PMCID: PMC10578311 DOI: 10.1021/acs.jpcb.3c01467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Indexed: 10/01/2023]
Abstract
SARS-CoV-2 strains have made an appearance across the globe, causing over 757 million cases and over 6.85 million deaths at the time of writing. The emergence of these variants shows the amplitude of genetic variation to which the wild-type strains have been subjected. The rise of the different SARS-CoV-2 variants resulting from such genetic modification has significantly affected COVD-19's major impact on proliferation, virulence, and clinics. With the emergence of the variants of concern, the spike protein has been identified as a possible therapeutic target due to its critical role in binding to human cells and pathogenesis. These mutations could be linked to functional heterogeneity and use a different infection strategy. For example, the Omicron variant's multiple mutations should be carefully examined, as they represent one of the most widely spread strains and hint to us that there may be more genetic changes in the virus. As a result, we applied a common protocol where we reconstructed SARS-CoV-2 variants of concern and performed molecular dynamics simulations to study the stability of the ACE2-RBD complex in each variant. We also carried out free energy calculations to compare the binding and biophysical properties of the different SARS-CoV-2 variants when they interact with ACE2. Therefore, we were able to obtain consistent results and uncover new crucial residues that were essential for preserving a balance between maintaining a high affinity for ACE2 and the capacity to evade RBD-targeted antibodies. Our detailed structural analysis showed that SARS-CoV-2 variants of concern show a higher affinity for ACE2 compared to the Wuhan strain. Additionally, residues K417N and E484K/A might play a crucial role in antibody evasion, whereas Q498R and N501Y are specifically mutated to strengthen RBD affinity to ACE2 and, thereby, increase the viral effect of the COVID-19 virus.
Collapse
Affiliation(s)
- Mariem Ghoula
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Audrey Deyawe Kongmeneck
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Rita Eid
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Anne-Claude Camproux
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Gautier Moroy
- Université de Paris, CNRS,
INSERM, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| |
Collapse
|
3
|
Wang L, Wang Y, Zhou H. Potent antibodies against immune invasive SARS-CoV-2 Omicron subvariants. Int J Biol Macromol 2023; 249:125997. [PMID: 37499711 DOI: 10.1016/j.ijbiomac.2023.125997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The development of neutralizing antibodies (nAbs) is an important strategy to tackle the Omicron variant. Omicron N-terminal domain (NTD) mutations including A67V, G142D, and N212I alter the antigenic structure, and mutations in the spike (S) receptor binding domain (RBD), such as N501Y, R346K, and T478K enhance affinity between the RBD and angiotensin-converting enzyme 2 (ACE2), thus conferring Omicron powerful immune evasion. Most nAbs (COV2-2130, ZCB11, REGN10933) and combinations of nAbs (COV2-2196 + COV2-2130, REGN10933 + REGN10987, Brii-196 + Brii-198) have either greatly reduced or lost their neutralizing ability against Omicron, but several nAbs such as SA55, SA58, S309, LY-CoV1404 are still effective in neutralizing most Omicron subvariants. This paper focuses on Omicron subvariants mutations and mechanisms of current therapeutic antibodies that remain efficacious against Omicron subvariants, which will guide us in exploring a new generation of broad nAbs as key therapeutics to tackle SARS-CoV-2 and accelerate the exploration of novel clinical antiviral reagents.
Collapse
Affiliation(s)
- Lidong Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China.
| |
Collapse
|
4
|
Zhou D, Ren J, Fry EE, Stuart DI. Broadly neutralizing antibodies against COVID-19. Curr Opin Virol 2023; 61:101332. [PMID: 37285620 PMCID: PMC10301462 DOI: 10.1016/j.coviro.2023.101332] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has led to hundreds of millions of infections and millions of deaths, however, human monoclonal antibodies (mAbs) can be an effective treatment. Since SARS-CoV-2 emerged, a variety of strains have acquired increasing numbers of mutations to gain increased transmissibility and escape from the immune response. Most reported neutralizing human mAbs, including all approved therapeutic ones, have been knocked down or out by these mutations. Broadly neutralizing mAbs are therefore of great value, to treat current and possible future variants. Here, we review four types of neutralizing mAbs against the spike protein with broad potency against previously and currently circulating variants. These mAbs target the receptor-binding domain, the subdomain 1, the stem helix, or the fusion peptide. Understanding how these mAbs retain potency in the face of mutational change could guide future development of therapeutic antibodies and vaccines.
Collapse
Affiliation(s)
- Daming Zhou
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7FZ, UK.
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, UK
| | - Elizabeth E Fry
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, UK
| | - David I Stuart
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7FZ, UK; Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK; Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
5
|
Burn Aschner C, Muthuraman K, Kucharska I, Cui H, Prieto K, Nair MS, Wang M, Huang Y, Christie-Holmes N, Poon B, Lam J, Sultana A, Kozak R, Mubareka S, Rubinstein JL, Rujas E, Treanor B, Ho DD, Jetha A, Julien JP. A multi-specific, multi-affinity antibody platform neutralizes sarbecoviruses and confers protection against SARS-CoV-2 in vivo. Sci Transl Med 2023; 15:eadf4549. [PMID: 37224226 DOI: 10.1126/scitranslmed.adf4549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has been responsible for a global pandemic. Monoclonal antibodies (mAbs) have been used as antiviral therapeutics; however, these therapeutics have been limited in efficacy by viral sequence variability in emerging variants of concern (VOCs) and in deployment by the need for high doses. In this study, we leveraged the multi-specific, multi-affinity antibody (Multabody, MB) platform, derived from the human apoferritin protomer, to enable the multimerization of antibody fragments. MBs were shown to be highly potent, neutralizing SARS-CoV-2 at lower concentrations than their corresponding mAb counterparts. In mice infected with SARS-CoV-2, a tri-specific MB targeting three regions within the SARS-CoV-2 receptor binding domain was protective at a 30-fold lower dose than a cocktail of the corresponding mAbs. Furthermore, we showed in vitro that mono-specific MBs potently neutralize SARS-CoV-2 VOCs by leveraging augmented avidity, even when corresponding mAbs lose their ability to neutralize potently, and that tri-specific MBs expanded the neutralization breadth beyond SARS-CoV-2 to other sarbecoviruses. Our work demonstrates how avidity and multi-specificity combined can be leveraged to confer protection and resilience against viral diversity that exceeds that of traditional monoclonal antibody therapies.
Collapse
Affiliation(s)
- Clare Burn Aschner
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Krithika Muthuraman
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Iga Kucharska
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Hong Cui
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Katherine Prieto
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Betty Poon
- Combined Containment Level 3 Unit, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessica Lam
- Combined Containment Level 3 Unit, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Azmiri Sultana
- Combined Containment Level 3 Unit, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert Kozak
- Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Samira Mubareka
- Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Division of Infectious Diseases, Sunnybrook Health Sciences Centre and Department of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - John L Rubinstein
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Edurne Rujas
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Pharmacokinetic, Nanotechnology and Gene Therapy Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria, Spain
| | - Bebhinn Treanor
- Department of Immunology, University of Toronto, ON M5S 1A8, Canada
- Department of Cell and Systems Biology, University of Toronto, ON M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Arif Jetha
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Immunology, University of Toronto, ON M5S 1A8, Canada
| |
Collapse
|
6
|
Zhang Y, Li Q, Luo L, Duan C, Shen J, Wang Z. Application of germline antibody features to vaccine development, antibody discovery, antibody optimization and disease diagnosis. Biotechnol Adv 2023; 65:108143. [PMID: 37023966 DOI: 10.1016/j.biotechadv.2023.108143] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Although the efficacy and commercial success of vaccines and therapeutic antibodies have been tremendous, designing and discovering new drug candidates remains a labor-, time- and cost-intensive endeavor with high risks. The main challenges of vaccine development are inducing a strong immune response in broad populations and providing effective prevention against a group of highly variable pathogens. Meanwhile, antibody discovery faces several great obstacles, especially the blindness in antibody screening and the unpredictability of the developability and druggability of antibody drugs. These challenges are largely due to poorly understanding of germline antibodies and the antibody responses to pathogen invasions. Thanks to the recent developments in high-throughput sequencing and structural biology, we have gained insight into the germline immunoglobulin (Ig) genes and germline antibodies and then the germline antibody features associated with antigens and disease manifestation. In this review, we firstly outline the broad associations between germline antibodies and antigens. Moreover, we comprehensively review the recent applications of antigen-specific germline antibody features, physicochemical properties-associated germline antibody features, and disease manifestation-associated germline antibody features on vaccine development, antibody discovery, antibody optimization, and disease diagnosis. Lastly, we discuss the bottlenecks and perspectives of current and potential applications of germline antibody features in the biotechnology field.
Collapse
Affiliation(s)
- Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Changfei Duan
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China.
| |
Collapse
|
7
|
Guest PC, Kesharwani P, Butler AE, Sahebkar A. The COVID-19 Pandemic: SARS-CoV-2 Structure, Infection, Transmission, Symptomology, and Variants of Concern. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:3-26. [PMID: 37378759 DOI: 10.1007/978-3-031-28012-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Since it was first detected in December 2019, the COVID-19 pandemic has spread across the world and affected virtually every country and territory. The pathogen driving this pandemic is SARS-CoV-2, a positive-sense single-stranded RNA virus which is primarily transmissible though the air and can cause mild to severe respiratory infections in humans. Within the first year of the pandemic, the situation worsened with the emergence of several SARS-CoV-2 variants. Some of these were observed to be more virulent with varying capacities to escape the existing vaccines and were, therefore, denoted as variants of concern. This chapter provides a general overview of the course of the COVID-19 pandemic up to April 2022 with a focus on the structure, infection, transmission, and symptomology of the SARS-CoV-2 virus. The main objectives were to investigate the effects of the variants of concern on the trajectory of the virus and to highlight a potential pathway for coping with the current and future pandemics.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, WA, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged pathogenic human coronavirus that belongs to the sarbecovirus lineage of the genus Betacoronavirus. The ancestor strain has evolved into a number of variants of concern, with the Omicron variant of concern now having many distinct sublineages. The ongoing COVID-19 pandemic caused by SARS-CoV-2 has caused serious damage to public health and the global economy, and one strategy to combat COVID-19 has been the development of broadly neutralizing antibodies for prophylactic and therapeutic use. Many are in preclinical and clinical development, and a few have been approved for emergency use. Here we summarize neutralizing antibodies that target four key regions within the SARS-CoV-2 spike (S) protein, namely the N-terminal domain and the receptor-binding domain in the S1 subunit, and the stem helix region and the fusion peptide region in the S2 subunit. Understanding the characteristics of these broadly neutralizing antibodies will accelerate the development of new antibody therapeutics and provide guidance for the rational design of next-generation vaccines.
Collapse
|
9
|
Wang P, Casner RG, Nair MS, Yu J, Guo Y, Wang M, Chan JFW, Cerutti G, Iketani S, Liu L, Sheng Z, Chen Z, Yuen KY, Kwong PD, Huang Y, Shapiro L, Ho DD. A monoclonal antibody that neutralizes SARS-CoV-2 variants, SARS-CoV, and other sarbecoviruses. Emerg Microbes Infect 2022; 11:147-157. [PMID: 34836485 PMCID: PMC8725896 DOI: 10.1080/22221751.2021.2011623] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 01/16/2023]
Abstract
The repeated emergence of highly pathogenic human coronaviruses as well as their evolving variants highlight the need to develop potent and broad-spectrum antiviral therapeutics and vaccines. By screening monoclonal antibodies (mAbs) isolated from COVID-19-convalescent patients, we found one mAb, 2-36, with cross-neutralizing activity against SARS-CoV. We solved the cryo-EM structure of 2-36 in complex with SARS-CoV-2 or SARS-CoV spike, revealing a highly conserved epitope in the receptor-binding domain (RBD). Antibody 2-36 neutralized not only all current circulating SARS-CoV-2 variants and SARS-COV, but also a panel of bat and pangolin sarbecoviruses that can use human angiotensin-converting enzyme 2 (ACE2) as a receptor. We selected 2-36-escape viruses in vitro and confirmed that K378 T in SARS-CoV-2 RBD led to viral resistance. Taken together, 2-36 represents a strategic reserve drug candidate for the prevention and treatment of possible diseases caused by pre-emergent SARS-related coronaviruses. Its epitope defines a promising target for the development of a pan-sarbecovirus vaccine.
Collapse
Affiliation(s)
- Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Ryan G Casner
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jasper F-W Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Gabriele Cerutti
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zhiwei Chen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Peter D Kwong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Vaccine Research Center, National Institutes of Health, Bethesda, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lawrence Shapiro
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Internal Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
10
|
Yuan M, Wang Y, Lv H, Tan TJC, Wilson IA, Wu NC. Molecular analysis of a public cross-neutralizing antibody response to SARS-CoV-2. Cell Rep 2022; 41:111650. [PMID: 36335937 PMCID: PMC9606039 DOI: 10.1016/j.celrep.2022.111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/13/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concerns (VOCs) continue to emerge, cross-neutralizing antibody responses become key toward next-generation design of a more universal COVID-19 vaccine. By analyzing published data from the literature, we report here that the combination of germline genes IGHV2-5/IGLV2-14 represents a public antibody response to the receptor-binding domain (RBD) that potently cross-neutralizes a broad range of VOCs, including Omicron and its sub-lineages. Detailed molecular analysis shows that the complementarity-determining region H3 sequences of IGHV2-5/IGLV2-14-encoded RBD antibodies have a preferred length of 11 amino acids and a conserved HxIxxI motif. In addition, these antibodies have a strong allelic preference due to an allelic polymorphism at amino acid residue 54 of IGHV2-5, which is located at the paratope. These findings have important implications for understanding cross-neutralizing antibody responses to SARS-CoV-2 and its heterogenicity at the population level as well as the development of a universal COVID-19 vaccine.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
11
|
Beeraka NM, Sukocheva OA, Lukina E, Liu J, Fan R. Development of antibody resistance in emerging mutant strains of SARS CoV-2: Impediment for COVID-19 vaccines. Rev Med Virol 2022; 32:e2346. [PMID: 35416390 PMCID: PMC9111059 DOI: 10.1002/rmv.2346] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/28/2022] [Accepted: 03/06/2022] [Indexed: 02/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a highly infectious agent associated with unprecedented morbidity and mortality. A failure to stop growth of COVID-19-linked morbidity rates is caused by SARS-CoV-2 mutations and the emergence of new highly virulent SARS-CoV-2 strains. Several acquired SARS-CoV-2 mutations reflect viral adaptations to host immune defence. Mutations in the virus Spike-protein were associated with the lowered effectiveness of current preventive therapies, including vaccines. Recent in vitro studies detected diminished neutralisation capacity of vaccine-induced antibodies, which are targeted to bind Spike receptor-binding and N-terminal domains in the emerging strains. Lower than expected inhibitory activity of antibodies was reported against viruses with E484K Spike mutation, including B.1.1.7 (UK), P.1 (Brazil), B.1.351 (South African), and new Omicron variant (B.1.1.529) with E484A mutation. The vaccine effectiveness is yet to be examined against new mutant strains of SARS-CoV-2 originating in Europe, Nigeria, Brazil, South Africa, and India. To prevent the loss of anti-viral protection in vivo, often defined as antibody resistance, it is required to target highly conserved viral sequences (including Spike protein) and enhance the potency of antibody cocktails. In this review, we assess the reported mutation-acquiring potential of coronaviruses and compare efficacies of current COVID-19 vaccines against 'parent' and 'mutant' strains of SARS-CoV-2 (Kappa (B.1.617.1), Delta (B.1.617.2), and Omicron (B.1.1.529)).
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Department of Radiation OncologyCancer CenterThe First Affiliated Hospital of ZhengzhouZhengzhouChina
- Department of Human AnatomyI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussian Federation
| | - Olga A. Sukocheva
- Discipline of Health SciencesCollege of Nursing and Health SciencesFlinders University of South AustraliaBedford ParkAustralia
| | - Elena Lukina
- Discipline of BiologyCollege of SciencesFlinders University of South AustraliaBedford ParkAustralia
| | - Junqi Liu
- Department of Radiation OncologyCancer CenterThe First Affiliated Hospital of ZhengzhouZhengzhouChina
| | - Ruitai Fan
- Department of Radiation OncologyCancer CenterThe First Affiliated Hospital of ZhengzhouZhengzhouChina
| |
Collapse
|
12
|
Abstract
The COVID-19 pandemic has caused an unprecedented health crisis and economic burden worldwide. Its etiological agent SARS-CoV-2, a new virus in the coronavirus family, has infected hundreds of millions of people worldwide. SARS-CoV-2 has evolved over the past 2 years to increase its transmissibility as well as to evade the immunity established by previous infection and vaccination. Nevertheless, strong immune responses can be elicited by viral infection and vaccination, which have proved to be protective against the emergence of variants, particularly with respect to hospitalization or severe disease. Here, we review our current understanding of how the virus enters the host cell and how our immune system is able to defend against cell entry and infection. Neutralizing antibodies are a major component of our immune defense and have been extensively studied for SARS-CoV-2 and its variants. Structures of these neutralizing antibodies have provided valuable insights into epitopes that are protective against the original ancestral virus and the variants that have emerged. The molecular characterization of neutralizing epitopes as well as epitope conservation and resistance are important for design of next-generation vaccines and antibody therapeutics.
Collapse
Affiliation(s)
- Hejun Liu
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
13
|
Seephetdee C, Bhukhai K, Buasri N, Leelukkanaveera P, Lerdwattanasombat P, Manopwisedjaroen S, Phueakphud N, Kuhaudomlarp S, Olmedillas E, Saphire EO, Thitithanyanont A, Hongeng S, Wongtrakoongate P. A circular mRNA vaccine prototype producing VFLIP-X spike confers a broad neutralization of SARS-CoV-2 variants by mouse sera. Antiviral Res 2022; 204:105370. [PMID: 35772601 PMCID: PMC9235288 DOI: 10.1016/j.antiviral.2022.105370] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
Next-generation COVID-19 vaccines are critical due to the ongoing evolution of SARS-CoV-2 virus and rapid waning duration of the neutralizing antibody response against current vaccines. The mRNA vaccines mRNA-1273 and BNT162b2 were developed using linear transcripts encoding the prefusion-stabilized trimers (S-2P) of the wildtype spike, which have shown a reduced neutralizing activity against the variants of concern B.1.617.2 and B.1.1.529. Recently, a new version of spike trimer, termed VFLIP (five (V) prolines, Flexibly-Linked, Inter-Protomer disulfide) was developed. Based on the original amino acid sequence of the wildtype spike, VFLIP was genetically engineered by using five proline substitutions, a flexible cleavage site amino acid linker, and an inter-protomer disulfide bond. It has been suggested to possess native-like glycosylation, and greater pre-fusion trimeric stability as opposed to S-2P. Here, we report that the spike protein VFLIP-X, containing six rationally substituted amino acids to reflect emerging variants (K417N, L452R, T478K, E484K, N501Y and D614G), offers a promising candidate for a next-generation SARS-CoV-2 vaccine. Mice immunized by a circular mRNA (circRNA) vaccine prototype producing VFLIP-X had detectable neutralizing antibody titers for up to 7 weeks post-boost against SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs). In addition, a balance in TH1 and TH2 responses was achieved by immunization with VFLIP-X. Our results indicate that the VFLIP-X delivered by circRNA induces humoral and cellular immune responses, as well as broad neutralizing activity against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Chotiwat Seephetdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Nattawut Buasri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Puttipatch Leelukkanaveera
- International Program of Bioinnovation, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Pat Lerdwattanasombat
- International Program of Biomedical Science, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | | | - Nut Phueakphud
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Sakonwan Kuhaudomlarp
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | | | | | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
14
|
Wang Q, Guo Y, Iketani S, Nair MS, Li Z, Mohri H, Wang M, Yu J, Bowen AD, Chang JY, Shah JG, Nguyen N, Chen Z, Meyers K, Yin MT, Sobieszczyk ME, Sheng Z, Huang Y, Liu L, Ho DD. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature 2022; 608:603-608. [PMID: 35790190 PMCID: PMC9385487 DOI: 10.1038/s41586-022-05053-w] [Citation(s) in RCA: 497] [Impact Index Per Article: 248.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022]
Abstract
SARS-CoV-2 Omicron subvariants BA.2.12.1 and BA.4/5 have surged notably to become dominant in the United States and South Africa, respectively1,2. These new subvariants carrying further mutations in their spike proteins raise concerns that they may further evade neutralizing antibodies, thereby further compromising the efficacy of COVID-19 vaccines and therapeutic monoclonals. We now report findings from a systematic antigenic analysis of these surging Omicron subvariants. BA.2.12.1 is only modestly (1.8-fold) more resistant to sera from vaccinated and boosted individuals than BA.2. However, BA.4/5 is substantially (4.2-fold) more resistant and thus more likely to lead to vaccine breakthrough infections. Mutation at spike residue L452 found in both BA.2.12.1 and BA.4/5 facilitates escape from some antibodies directed to the so-called class 2 and 3 regions of the receptor-binding domain3. The F486V mutation found in BA.4/5 facilitates escape from certain class 1 and 2 antibodies but compromises the spike affinity for the viral receptor. The R493Q reversion mutation, however, restores receptor affinity and consequently the fitness of BA.4/5. Among therapeutic antibodies authorized for clinical use, only bebtelovimab retains full potency against both BA.2.12.1 and BA.4/5. The Omicron lineage of SARS-CoV-2 continues to evolve, successively yielding subvariants that are not only more transmissible but also more evasive to antibodies.
Collapse
Affiliation(s)
- Qian Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zhiteng Li
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Hiroshi Mohri
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Anthony D Bowen
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jennifer Y Chang
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jayesh G Shah
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Nadia Nguyen
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kathrine Meyers
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Michael T Yin
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Magdalena E Sobieszczyk
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
15
|
Chang MR, Ke H, Coherd CD, Wang Y, Mashima K, Kastrunes GM, Huang CY, Marasco WA. Analysis of a SARS-CoV-2 convalescent cohort identified a common strategy for escape of vaccine-induced anti-RBD antibodies by Beta and Omicron variants. EBioMedicine 2022; 80:104025. [PMID: 35533497 PMCID: PMC9073271 DOI: 10.1016/j.ebiom.2022.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Evolutionary pressure has led to the emergence of SARS-CoV-2 variants, with the most recent Omicron variant containing an unparalleled 30 mutations in the spike protein. Many of these mutations are expected to increase immune evasion, thus making breakthrough cases and re-infection more common. METHODS From June 2020 to December 2021 serial blood samples (initial post recovery, 6 months, 12 months) were collected from a COVID-19 convalescent cohort in Boston, MA. Plasma was isolated for use in Mesoscale Discovery based antibody binding assays. Unvaccinated donors or those vaccinated prior to the primary blood draw were excluded from this analysis, as were those who did not have at least two blood draws. Wilcoxon signed rank tests were used to compare pre- and post-vaccination titers and antibody response against different variants, while McNemar tests were used to compare the proportions of achieving ≥ 4 fold increases against different variants. FINDINGS Forty-eight COVID convalescent donors with post-infection vaccination (hybrid immunity) were studied to evaluate the levels of cross-reactive antibodies pre- and post- vaccination against various SARS-CoV-2 Spike and receptor binding domain (RBD) proteins. Vaccination with BNT162b2, mRNA-1273 or Ad26.COV2.S led to a 6·3 to 7·8 fold increase in anti-Spike antibody titers and a 7·0 to 7·4 fold increase in anti-WT, Alpha and Delta RBD antibody. However, a lower response was observed for Beta and Omicron RBDs with only 7/48 (15%) and 15/48 (31%) donors having a ≥4 fold increase in post-vaccination titers against Beta and Omicron RBDs. Structural analysis of the Beta and Omicron RBDs reveal a shared immune escape strategy involving residues K417-E484-N501 that is exploited by these variants of concern. INTERPRETATION Through mutations of the K417-E484-N501 triad, SARS-CoV-2 has evolved to evade neutralization by the class I/II anti-RBD antibody fraction of hybrid immunity plasma as the polyclonal antibody response post-vaccination shows limitations in the ability to solve the structural requirements to bind the mutant RBDs. FUNDING Massachusetts Consortium on Pathogen Readiness (280870.5116709.0016) and the National Institute of Allergy and Infectious Diseases (1R01AI161152-01A1).
Collapse
Affiliation(s)
- Matthew R Chang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Christian D Coherd
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Kiyomi Mashima
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Gabriella M Kastrunes
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Chiung-Yu Huang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, United States
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
16
|
Yuan M, Wang Y, Lv H, Wilson IA, Wu NC. Molecular analysis of a public cross-neutralizing antibody response to SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.17.492220. [PMID: 35611339 PMCID: PMC9128778 DOI: 10.1101/2022.05.17.492220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As SARS-CoV-2 variants of concerns (VOCs) continue to emerge, cross-neutralizing antibody responses become key towards next-generation design of a more universal COVID-19 vaccine. By analyzing published data from the literature, we report here that the combination of germline genes IGHV2-5/IGLV2-14 represents a public antibody response to the receptor-binding domain (RBD) that potently cross-neutralizes all VOCs to date, including Omicron and its sub-lineages. Detailed molecular analysis shows that the complementarity-determining region H3 sequences of IGHV2-5/IGLV2-14-encoded RBD antibodies have a preferred length of 11 amino acids and a conserved HxIxxI motif. In addition, these antibodies have a strong allelic preference due to an allelic polymorphism at amino-acid residue 54 of IGHV2-5, which locates at the paratope. These findings have important implications for understanding cross-neutralizing antibody responses to SARS-CoV-2 and its heterogenicity at the population level as well as the development of a universal COVID-19 vaccine.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C. Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Carcereny A, Garcia-Pedemonte D, Martínez-Velázquez A, Quer J, Garcia-Cehic D, Gregori J, Antón A, Andrés C, Pumarola T, Chacón-Villanueva C, Borrego CM, Bosch A, Guix S, Pintó RM. Dynamics of SARS-CoV-2 Alpha (B.1.1.7) variant spread: The wastewater surveillance approach. ENVIRONMENTAL RESEARCH 2022; 208:112720. [PMID: 35074352 PMCID: PMC8782736 DOI: 10.1016/j.envres.2022.112720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 05/25/2023]
Abstract
Wastewater based epidemiology (WBE) offers an overview of the SARS-CoV-2 variants circulating among the population thereby serving as a proper surveillance method. The variant of concern (VOC) Alpha was first identified in September 2020 in the United Kingdom, and rapidly became dominant across Europe. Our objective was to elucidate the Alpha VOC outcompetition rate and identify mutations in the spike glycoprotein (S) gene, indicative of the circulation of the Alpha VOC and/or other variants in the population through wastewater analysis. In the period covered by this study (November 2020-April 2021), forteen wastewater treatment plants (WWTPs) were weekly sampled. The total number of SARS-CoV-2 genome copies per L (GC/L) was determined with a Real-Time qPCR, targeting the N gene. Surveillance of the Alpha VOC circulation was ascertained using a duplex RT-qPCR, targeting and discriminating the S gene. Our results showed that in a period of 6 weeks the Alpha VOC was present in all the studied WWTPs, and became dominant in 11 weeks on average. The outcompetition rates of the Alpha VOC were estimated, and their relationship with different parameters statistically analyzed. The rapid spread of the Alpha VOC was influenced by its initial input and by the previous circulation of SARS-COV-2 in the population. This latter point could be explained by its higher transmissibility, particularly advantadgeous when a certain degree of herd immunity exists. Moreover, the presence of signature mutations of SARS-COV-2 variants were established by deep-sequencing of the complete S gene. The circulation of the Alpha VOC in the area under study was confirmed, and additionally two combinations of mutations in the S glycoprotein (T73A and D253N, and S477N and A522S) that could affect antibody binding were identified.
Collapse
Affiliation(s)
- Albert Carcereny
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona Diagonal 643, 08028, Barcelona, Spain; Enteric Virus Laboratory, Institute of Nutrition and Food Safety (INSA), University of Barcelona, Spain
| | - David Garcia-Pedemonte
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona Diagonal 643, 08028, Barcelona, Spain; Enteric Virus Laboratory, Institute of Nutrition and Food Safety (INSA), University of Barcelona, Spain
| | - Adán Martínez-Velázquez
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona Diagonal 643, 08028, Barcelona, Spain; Enteric Virus Laboratory, Institute of Nutrition and Food Safety (INSA), University of Barcelona, Spain
| | - Josep Quer
- Liver Unit, Liver Diseases - Viral Hepatitis, Vall D'Hebron Institut de Recerca (VHIR), Vall D'Hebron Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Damir Garcia-Cehic
- Liver Unit, Liver Diseases - Viral Hepatitis, Vall D'Hebron Institut de Recerca (VHIR), Vall D'Hebron Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Gregori
- Liver Unit, Liver Diseases - Viral Hepatitis, Vall D'Hebron Institut de Recerca (VHIR), Vall D'Hebron Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrés Antón
- Microbiology Department, Vall D'Hebron Institut de Recerca (VHIR), Vall D'Hebron Hospital Campus, Barcelona, Spain
| | - Cristina Andrés
- Microbiology Department, Vall D'Hebron Institut de Recerca (VHIR), Vall D'Hebron Hospital Campus, Barcelona, Spain
| | - Tomàs Pumarola
- Microbiology Department, Vall D'Hebron Institut de Recerca (VHIR), Vall D'Hebron Hospital Campus, Barcelona, Spain
| | | | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Girona, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona Diagonal 643, 08028, Barcelona, Spain; Enteric Virus Laboratory, Institute of Nutrition and Food Safety (INSA), University of Barcelona, Spain.
| | - Susana Guix
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona Diagonal 643, 08028, Barcelona, Spain; Enteric Virus Laboratory, Institute of Nutrition and Food Safety (INSA), University of Barcelona, Spain.
| | - Rosa M Pintó
- Enteric Virus Laboratory, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona Diagonal 643, 08028, Barcelona, Spain; Enteric Virus Laboratory, Institute of Nutrition and Food Safety (INSA), University of Barcelona, Spain.
| |
Collapse
|
18
|
Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022; 36:231-323. [PMID: 35476216 PMCID: PMC9043892 DOI: 10.1007/s40259-022-00529-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.
Collapse
Affiliation(s)
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | | | | | | |
Collapse
|
19
|
Ren X, Zhou J, Guo J, Hao C, Zheng M, Zhang R, Huang Q, Yao X, Li R, Jin Y. Reinfection in patients with COVID-19: a systematic review. Glob Health Res Policy 2022; 7:12. [PMID: 35488305 PMCID: PMC9051013 DOI: 10.1186/s41256-022-00245-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/03/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND With the continuation of the COVID-19 pandemic, some COVID-19 patients have become reinfected with the virus. Viral gene sequencing has found that some of these patients were reinfected by the different and others by same strains. This has raised concerns about the effectiveness of immunity after infection and the reliability of vaccines. To this end, we conducted a systematic review to assess the characteristics of patients with reinfection and possible causes. METHODS A systematic search was conducted across eight databases: PubMed, Embase, Web of Science, The Cochrane Library, CNKI, WanFang, VIP and SinoMed from December 1, 2019 to September 1, 2021. The quality of included studies were assessed using JBI critical appraisal tools and Newcastle-Ottawa Scale. RESULTS This study included 50 studies from 20 countries. There were 118 cases of reinfection. Twenty-five patients were reported to have at least one complication. The shortest duration between the first infection and reinfection was 19 days and the longest was 293 days. During the first infection and reinfection, cough (51.6% and 43.9%) and fever (50% and 30.3%) were the most common symptoms respectively. Nine patients recovered, seven patients died, and five patients were hospitalized, but 97 patients' prognosis were unknown. B.1 is the most common variant strain at the first infection. B.1.1.7, B.1.128 and B.1.351 were the most common variant strains at reinfection. Thirty-three patients were infected by different strains and 9 patients were reported as being infected with the same strain. CONCLUSIONS Our research shows that it is possible for rehabilitated patients to be reinfected by SARS-COV-2. To date, the causes and risk factors of COVID-19 reinfection are not fully understood. For patients with reinfection, the diagnosis and management should be consistent with the treatment of the first infection. The public, including rehabilitated patients, should be fully vaccinated, wear masks in public places, and pay attention to maintaining social distance to avoid reinfection with the virus.
Collapse
Affiliation(s)
- Xiangying Ren
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Nursing and Health, Henan University, Kaifeng, Henan China
| | - Jie Zhou
- School of Nursing, Wuhan University, Wuhan, China
| | - Jing Guo
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunmei Hao
- The First Clinical College of Wuhan University, Wuhan, Hubei China
| | - Mengxue Zheng
- The First Clinical College of Wuhan University, Wuhan, Hubei China
| | - Rong Zhang
- Department of Neurotumor Disease Diagnosis and Treatment Center, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qiao Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaomei Yao
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON Canada
- Center for Clinical Practice Guideline Conduction and Evaluation, Children’s Hospital of Fudan University, Shanghai, China
| | - Ruiling Li
- College of Nursing and Health, Henan University, Kaifeng, Henan China
| | - Yinghui Jin
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Taglauer ES, Wachman EM, Juttukonda L, Klouda T, Kim J, Wang Q, Ishiyama A, Hackam DJ, Yuan K, Jia H. Acute Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Pregnancy Is Associated with Placental Angiotensin-Converting Enzyme 2 Shedding. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:595-603. [PMID: 35090860 PMCID: PMC8789383 DOI: 10.1016/j.ajpath.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/23/2022]
Abstract
While the human placenta may be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the rate of fetal transmission is low, suggesting a barrier at the maternal-fetal interface. Angiotensin-converting enzyme (ACE)2, the main receptor for SARS-CoV-2, is regulated by a metalloprotease cleavage enzyme, a disintegrin and metalloprotease domain 17 (ADAM17). ACE2 is expressed in the human placenta, but its regulation in relation to maternal SARS-CoV-2 infection in pregnancy is not well understood. This study evaluated ACE2 expression, ADAM17 activity, and serum ACE2 abundance in a cohort of matched villous placental and maternal serum samples from control pregnancies (SARS-CoV-2 negative, n = 8) and pregnancies affected by symptomatic maternal SARS-CoV-2 infections in the second trimester [2nd Tri coronavirus disease (COVID), n = 8] and third trimester (3rd Tri COVID, n = 8). In 3rd Tri COVID compared with control and 2nd Tri COVID villous placental tissues, ACE2 mRNA expression was remarkably elevated; however, ACE2 protein expression was significantly decreased with a parallel increase in ADAM17 activity. Soluble ACE2 was also significantly increased in the maternal serum from 3rd Tri COVID infections compared with control and 2nd Tri COVID pregnancies. These data suggest that in acute maternal SARS-CoV-2 infections, decreased placental ACE2 protein may be the result of ACE2 shedding and highlights the importance of ACE2 for studies on SARS-CoV-2 responses at the maternal-fetal interface.
Collapse
Affiliation(s)
| | - Elisha M Wachman
- Department of Pediatrics, Boston Medical Center, Boston, Massachusetts
| | - Lillian Juttukonda
- Boston Combined Residency Program, Boston Children's Hospital, Boston Massachusetts
| | - Timothy Klouda
- Department of Pediatrics, Boston Children's Hospital, Boston Massachusetts
| | - Jiwon Kim
- Department of Pediatrics, Boston Children's Hospital, Boston Massachusetts
| | - Qiong Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Asuka Ishiyama
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David J Hackam
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ke Yuan
- Department of Pediatrics, Boston Children's Hospital, Boston Massachusetts
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
21
|
Cheng MH, Krieger JM, Banerjee A, Xiang Y, Kaynak B, Shi Y, Arditi M, Bahar I. Impact of new variants on SARS-CoV-2 infectivity and neutralization: A molecular assessment of the alterations in the spike-host protein interactions. iScience 2022; 25:103939. [PMID: 35194576 PMCID: PMC8851820 DOI: 10.1016/j.isci.2022.103939] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
The emergence of SARS-CoV-2 variants necessitates rational assessment of their impact on the recognition and neutralization of the virus by the host cell. We present a comparative analysis of the interactions of Alpha, Beta, Gamma, and Delta variants with cognate molecules (ACE2 and/or furin), neutralizing nanobodies (Nbs), and monoclonal antibodies (mAbs) using in silico methods, in addition to Nb-binding assays. Our study elucidates the molecular origin of the ability of Beta and Delta variants to evade selected antibodies, such as REGN10933, LY-CoV555, B38, C105, or H11-H4, while being insensitive to others including REGN10987. Experiments confirm that nanobody Nb20 retains neutralizing activity against the Delta variant. The substitutions T478K and L452R in the Delta variant enhance associations with ACE2, whereas P681R promotes recognition by proteases, thus facilitating viral entry. The Ab-specific responses of variants highlight how full-atomic structure and dynamics analyses are required for assessing the response to newly emerging variants.
Collapse
Affiliation(s)
- Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - James M. Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anupam Banerjee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yufei Xiang
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Burak Kaynak
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yi Shi
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Moshe Arditi
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, and Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Cerutti G, Guo Y, Liu L, Liu L, Zhang Z, Luo Y, Huang Y, Wang HH, Ho DD, Sheng Z, Shapiro L. Cryo-EM structure of the SARS-CoV-2 Omicron spike. Cell Rep 2022; 38:110428. [PMID: 35172173 PMCID: PMC8818377 DOI: 10.1016/j.celrep.2022.110428] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
The recently reported B.1.1.529 Omicron variant of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) includes 34 mutations in the spike protein relative to the Wuhan strain, including 15 mutations in the receptor-binding domain (RBD). Functional studies have shown Omicron to substantially escape the activity of many SARS-CoV-2-neutralizing antibodies. Here, we report a 3.1 Å-resolution cryoelectron microscopy (cryo-EM) structure of the Omicron spike protein ectodomain. The structure depicts a spike that is exclusively in the 1-RBD-up conformation with high mobility of RBD. Many mutations cause steric clashes and/or altered interactions at antibody-binding surfaces, whereas others mediate changes of the spike structure in local regions to interfere with antibody recognition. Overall, the structure of the Omicron spike reveals how mutations alter its conformation and explains its extraordinary ability to evade neutralizing antibodies.
Collapse
Affiliation(s)
- Gabriele Cerutti
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Yicheng Guo
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Liyuan Liu
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zhening Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yang Luo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yiming Huang
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
23
|
Kalnin KV, Plitnik T, Kishko M, Huang D, Raillard A, Piolat J, Anosova NG, Tibbitts T, DiNapoli J, Karve S, Goldman R, Gopani H, Dias A, Tran K, Zacharia M, Gu X, Boeglin L, Abysalh J, Vargas J, Beaulieu A, Shah M, Jeannotte T, Gillis K, Chivukula S, Swearingen R, Landolfi V, Fu TM, DeRosa F, Casimiro D. Pan-SARS neutralizing responses after third boost vaccination in non-human primate immunogenicity model. Vaccine 2022; 40:1289-1298. [PMID: 35101265 PMCID: PMC8801978 DOI: 10.1016/j.vaccine.2022.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/08/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
Abstract
The emergence of SARS-CoV-2 variants, especially Beta and Delta, has raised concerns about the reduced protection from previous infection or vaccination based on the original Wuhan-Hu-1 (D614) virus. To identify promising regimens for inducing neutralizing titers towards new variants, we evaluated monovalent and bivalent mRNA vaccines either as primary vaccination or as a booster in nonhuman primates (NHPs). Two mRNA vaccines, D614-based MRT5500 and Beta-based MRT5500β, tested in sequential regimens or as a bivalent combination in naïve NHPs produced modest neutralizing titers to heterologous variants. However, when mRNA vaccines were administered as a booster to pre-immune NHPs, we observed a robust increase in neutralizing titers with expanded breadth towards all tested variants, and notably SARS-CoV-1. The breadth of the neutralizing response was independent of vaccine sequence or modality, as we further showed either MRT5500 or recombinant subunit Spike protein (with adjuvant) can serve as boosters to induce broadly neutralizing antibodies in the NHPs primed with MRT5500. The data support the notion that a third vaccination is key to boosting existing titers and improving the breadth of antibodies to address variants of concern, including those with an E484K mutation in the Receptor Binding Domain (RBD) (Beta, Gamma).
Collapse
Affiliation(s)
- Kirill V Kalnin
- Emergent BioSolutions, 3985-A Sorrento Valley Blvd, San Diego, CA 92121, United States
| | - Timothy Plitnik
- Yoh Services LLC, 38 Sidney Street, Cambridge, MA 02139, United States
| | - Michael Kishko
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, United States
| | - Dean Huang
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, United States
| | - Alice Raillard
- Sanofi Pasteur, 1541 AV Marcel Mérieux, 69280 Marcy l'Etoile, France
| | - Julie Piolat
- Sanofi Pasteur, 1541 AV Marcel Mérieux, 69280 Marcy l'Etoile, France
| | - Natalie G Anosova
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, United States.
| | - Timothy Tibbitts
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, United States
| | - Joshua DiNapoli
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, United States
| | - Shrirang Karve
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Rebecca Goldman
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Hardip Gopani
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Anusha Dias
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Khang Tran
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Minnie Zacharia
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Xiaobo Gu
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Lianne Boeglin
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Jonathan Abysalh
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Jorel Vargas
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Angela Beaulieu
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Monic Shah
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Travis Jeannotte
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Kimberly Gillis
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Sudha Chivukula
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, United States
| | - Ron Swearingen
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | | | - Tong-Ming Fu
- UT Health Science Center at Houston, 7000 Fannin St #1200, Houston, TX 77030, United States
| | - Frank DeRosa
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Danilo Casimiro
- Sanofi Pasteur, 1541 AV Marcel Mérieux, 69280 Marcy l'Etoile, France
| |
Collapse
|
24
|
Wang Y, Liu C, Zhang C, Wang Y, Hong Q, Xu S, Li Z, Yang Y, Huang Z, Cong Y. Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies. Nat Commun 2022; 13:871. [PMID: 35169135 PMCID: PMC8847413 DOI: 10.1038/s41467-022-28528-w] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 Delta variant is currently the dominant circulating strain in the world. Uncovering the structural basis of the enhanced transmission and altered immune sensitivity of Delta is particularly important. Here we present cryo-EM structures revealing two conformational states of Delta spike and S/ACE2 complex in four states. Our cryo-EM analysis suggests that RBD destabilizations lead to population shift towards the more RBD-up and S1 destabilized fusion-prone state, beneficial for engagement with ACE2 and shedding of S1. Noteworthy, we find the Delta T478K substitution plays a vital role in stabilizing and reshaping the RBM loop473-490, enhancing interaction with ACE2. Collectively, increased propensity for more RBD-up states and the affinity-enhancing T478K substitution together contribute to increased ACE2 binding, providing structural basis of rapid spread of Delta. Moreover, we identify a previously generated MAb 8D3 as a cross-variant broadly neutralizing antibody and reveal that 8D3 binding induces a large K478 side-chain orientation change, suggesting 8D3 may use an “induced-fit” mechanism to tolerate Delta T478K mutation. We also find that all five RBD-targeting MAbs tested remain effective on Delta, suggesting that Delta well preserves the neutralizing antigenic landscape in RBD. Our findings shed new lights on the pathogenicity and antibody neutralization of Delta. Here the authors reveal conformational dynamics of SARS-CoV-2 Delta spike and its complex with ACE2 receptor or broadly neutralizing Mab 8D3 by cryo-EM, shedding new insights into mechanisms of receptor recognition and antibody neutralization for the Delta variant.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Caixuan Liu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yanxing Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Qin Hong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zuyang Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Yang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhong Huang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Rapp M, Shapiro L, Frank J. Contributions of single-particle cryoelectron microscopy toward fighting COVID-19. Trends Biochem Sci 2022; 47:117-123. [PMID: 34799235 PMCID: PMC8556535 DOI: 10.1016/j.tibs.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
Single-particle cryoelectron microscopy (cryo-EM), whose full capabilities have been realized only within the past decade, has had a pivotal role in the fight against COVID-19. This is due to the technique's intrinsic power to depict both structural and dynamic features of molecules; in this case, of the spike protein of SARS-CoV-2. By now, numerous cryo-EM studies have furthered our understanding of spike protein-angiotensin-converting enzyme 2 (ACE2) receptor interactions, which has informed the design of effective vaccines, and have enabled the characterization of neutralizing antibody binding sites, which will lead to the design of novel therapeutics as the virus evolves.
Collapse
Affiliation(s)
- Micah Rapp
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, USA.
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, USA; Department of Biological Sciences, Columbia University, New York, USA.
| |
Collapse
|
26
|
Abstract
The spike protein (S-protein) of SARS-CoV-2, the protein that enables the virus to infect human cells, is the basis for many vaccines and a hotspot of concerning virus evolution. Here, we discuss the outstanding progress in structural characterization of the S-protein and how these structures facilitate analysis of virus function and evolution. We emphasize the differences in reported structures and that analysis of structure-function relationships is sensitive to the structure used. We show that the average residue solvent exposure in nearly complete structures is a good descriptor of open vs closed conformation states. Because of structural heterogeneity of functionally important surface-exposed residues, we recommend using averages of a group of high-quality protein structures rather than a single structure before reaching conclusions on specific structure-function relationships. To illustrate these points, we analyze some significant chemical tendencies of prominent S-protein mutations in the context of the available structures. In the discussion of new variants, we emphasize the selectivity of binding to ACE2 vs prominent antibodies rather than simply the antibody escape or ACE2 affinity separately. We note that larger chemical changes, in particular increased electrostatic charge or side-chain volume of exposed surface residues, are recurring in mutations of concern, plausibly related to adaptation to the negative surface potential of human ACE2. We also find indications that the fixated mutations of the S-protein in the main variants are less destabilizing than would be expected on average, possibly pointing toward a selection pressure on the S-protein. The richness of available structures for all of these situations provides an enormously valuable basis for future research into these structure-function relationships.
Collapse
Affiliation(s)
- Rukmankesh Mehra
- Department of Chemistry, Indian Institute
of Technology Bhilai, Sejbahar, Raipur 492015, Chhattisgarh,
India
| | - Kasper P. Kepp
- DTU Chemistry, Technical University of
Denmark, Building 206, 2800 Kongens Lyngby,
Denmark
| |
Collapse
|
27
|
Li G, Zhang L, Xue P. Codon usage divergence in Delta variants (B.1.617.2) of SARS-CoV-2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105175. [PMID: 34871776 PMCID: PMC8641433 DOI: 10.1016/j.meegid.2021.105175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 01/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads all over the world and brings great harm to humans in many countries. Many new SARS-CoV-2 variants appeared during its transmission. In the present study, the Delta variants (B.1.617.2) of SARS-CoV-2, which have appeared in many countries, were considered for analysis. In order to evaluate the evolutionary divergence of the Delta variants(B.1.617.2), the codon usage divergence in Delta variants (B.1.617.2) of SARS-CoV-2 was compared to that of the SARS-CoV-2 genomes emerged before June 2020. All Delta variants (B.1.617.2) and 350 early genomes of SARS-CoV-2 in the NCBI database were downloaded. Codon usage pattern including the basic composition, the GC ratio of the third position (GC3) and the first two positions (GC12) in codons, overall GC contents, the effective number of codons (ENC), the codon bias index (CBI), the relative synonymous codon usage (RSCU) values, etc., of all concerned important gene sequences were all calculated. Codon usage divergence of them was calculated via summing their standard deviations. The results suggested that base compositions in both Delta variants (B.1.617.2) of SARS-CoV-2 and the early SARS-CoV-2 genomes were similar to each other. However, the internal codon usage divergence for most genes in Delta variants (B.1.617.2) was significantly wider than that of SARS-CoV-2. The RSCU values were further used to explore the synonymous and non-synonymous mutations in the sequences of the Delta variants (B.1.617.2), and the results showed the synonymous mutations are more obvious than the non-synonymous in the concerned sequences. The related codon usage divergence analysis is helpful for further study on the adaptability and disease prognosis of the SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Gun Li
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, China.
| | - Liang Zhang
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, China
| | - Pei Xue
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, China
| |
Collapse
|
28
|
McKimm-Breschkin JL, Hay AJ, Cao B, Cox RJ, Dunning J, Moen AC, Olson D, Pizzorno A, Hayden FG. COVID-19, Influenza and RSV: Surveillance-informed prevention and treatment - Meeting report from an isirv-WHO virtual conference. Antiviral Res 2021; 197:105227. [PMID: 34933044 PMCID: PMC8684224 DOI: 10.1016/j.antiviral.2021.105227] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
The International Society for Influenza and other Respiratory Virus Diseases (isirv) and the WHO held a joint virtual conference from 19th-21st October 2021. While there was a major focus on the global response to the SARS-CoV-2 pandemic, including antivirals, vaccines and surveillance strategies, papers were also presented on treatment and prevention of influenza and respiratory syncytial virus (RSV). Potential therapeutics for SARS-CoV-2 included host-targeted therapies baricitinib, a JAK inhibitor, tocilizumab, an IL-6R inhibitor, verdinexor and direct acting antivirals ensovibep, S-217622, AT-527, and monoclonal antibodies casirivimab and imdevimab, directed against the spike protein. Data from trials of nirsevimab, a monoclonal antibody with a prolonged half-life which binds to the RSV F-protein, and an Ad26.RSV pre-F vaccine were also presented. The expanded role of the WHO Global Influenza Surveillance and Response System to address the SARS-CoV-2 pandemic was also discussed. This report summarizes the oral presentations given at this meeting for the benefit of the broader medical and scientific community involved in surveillance, treatment and prevention of respiratory virus diseases.
Collapse
Affiliation(s)
- Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| | - Alan J Hay
- The Francis Crick Institute, London, UK.
| | - Bin Cao
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.
| | - Rebecca J Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Jake Dunning
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | - Ann C Moen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Daniel Olson
- University of Colorado School of Medicine and Colorado School of Public Health, Anschutz Medical Campus, Aurora, CO, USA.
| | - Andrés Pizzorno
- International Center for Research in Infectious Diseases, University of Lyon, Lyon, France.
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
29
|
Hashemi ZS, Zarei M, Mubarak SMH, Hessami A, Mard-Soltani M, Khalesi B, Zakeri A, Rahbar MR, Jahangiri A, Pourzardosht N, Khalili S. Pierce into Structural Changes of Interactions Between Mutated Spike Glycoproteins and ACE2 to Evaluate Its Potential Biological and Therapeutic Consequences. Int J Pept Res Ther 2021; 28:33. [PMID: 34931119 PMCID: PMC8674523 DOI: 10.1007/s10989-021-10346-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/27/2022]
Abstract
The structural consequences of ongoing mutations on the SARS-CoV-2 spike-protein remains to be fully elucidated. These mutations could change the binding affinity between the virus and its target cell. Moreover, obtaining new mutations would also change the therapeutic efficacy of the designed drug candidates. To evaluate these consequences, 3D structure of a mutant spike protein was predicted and checked for stability, cavity sites, and residue depth. The docking analyses were performed between the 3D model of the mutated spike protein and the ACE2 protein and an engineered therapeutic ACE2 against COVID-19. The obtained results revealed that the N501Y substitution has altered the interaction orientation, augmented the number of interface bonds, and increased the affinity against the ACE2. On the other hand, the P681H mutation contributed to the increased cavity size and relatively higher residue depth. The binding affinity between the engineered therapeutic ACE2 and the mutant spike was significantly higher with a distinguished binding orientation. It could be concluded that the mutant spike protein increased the affinity, preserved the location, changed the orientation, and altered the interface amino acids of its interaction with both the ACE2 and its therapeutic engineered version. The obtained results corroborate the more aggressive nature of mutated SARS-CoV-2 due to their higher binding affinity. Moreover, designed ACe2-baased therapeutics would be still highly effective against covid-19, which could be the result of conserved nature of cellular ACE2. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10989-021-10346-1.
Collapse
Affiliation(s)
- Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaden M. H. Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
| | - Anahita Hessami
- School of Pharmacy, Shiraz University of medical sciences, Shiraz, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
30
|
Perez-Gomez R. The Development of SARS-CoV-2 Variants: The Gene Makes the Disease. J Dev Biol 2021; 9:58. [PMID: 34940505 PMCID: PMC8705434 DOI: 10.3390/jdb9040058] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
A novel coronavirus (SARS-CoV-2) emerged towards the end of 2019 that caused a severe respiratory disease in humans called COVID-19. It led to a pandemic with a high rate of morbidity and mortality that is ongoing and threatening humankind. Most of the mutations occurring in SARS-CoV-2 are synonymous or deleterious, but a few of them produce improved viral functions. The first known mutation associated with higher transmissibility, D614G, was detected in early 2020. Since then, the virus has evolved; new mutations have occurred, and many variants have been described. Depending on the genes affected and the location of the mutations, they could provide altered infectivity, transmissibility, or immune escape. To date, mutations that cause variations in the SARS-CoV-2 spike protein have been among the most studied because of the protein's role in the initial virus-cell contact and because it is the most variable region in the virus genome. Some concerning mutations associated with an impact on viral fitness have been described in the Spike protein, such as D614G, N501Y, E484K, K417N/T, L452R, and P681R, among others. To understand the impact of the infectivity and antigenicity of the virus, the mutation landscape of SARS-CoV-2 has been under constant global scrutiny. The virus variants are defined according to their origin, their genetic profile (some characteristic mutations prevalent in the lineage), and the severity of the disease they produce, which determines the level of concern. If they increase fitness, new variants can outcompete others in the population. The Alpha variant was more transmissible than previous versions and quickly spread globally. The Beta and Gamma variants accumulated mutations that partially escape the immune defenses and affect the effectiveness of vaccines. Nowadays, the Delta variant, identified around March 2021, has spread and displaced the other variants, becoming the most concerning of all lineages that have emerged. The Delta variant has a particular genetic profile, bearing unique mutations, such as T478K in the spike protein and M203R in the nucleocapsid. This review summarizes the current knowledge of the different mutations that have appeared in SARS-CoV-2, mainly on the spike protein. It analyzes their impact on the protein function and, subsequently, on the level of concern of different variants and their importance in the ongoing pandemic.
Collapse
Affiliation(s)
- Raquel Perez-Gomez
- Translational Genomics Group, Institut Universitari de Biotecnologia y Biomedicina BIOTECMED, Universitat de Valencia, 46100 Valencia, Spain
| |
Collapse
|
31
|
Vanhove B, Marot S, So RT, Gaborit B, Evanno G, Malet I, Lafrogne G, Mevel E, Ciron C, Royer PJ, Lheriteau E, Raffi F, Bruzzone R, Mok CKP, Duvaux O, Marcelin AG, Calvez V. XAV-19, a Swine Glyco-Humanized Polyclonal Antibody Against SARS-CoV-2 Spike Receptor-Binding Domain, Targets Multiple Epitopes and Broadly Neutralizes Variants. Front Immunol 2021; 12:761250. [PMID: 34868003 PMCID: PMC8634597 DOI: 10.3389/fimmu.2021.761250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Amino acid substitutions and deletions in the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can reduce the effectiveness of monoclonal antibodies (mAbs). In contrast, heterologous polyclonal antibodies raised against S protein, through the recognition of multiple target epitopes, have the potential to maintain neutralization capacities. XAV-19 is a swine glyco-humanized polyclonal neutralizing antibody raised against the receptor binding domain (RBD) of the Wuhan-Hu-1 Spike protein of SARS-CoV-2. XAV-19 target epitopes were found distributed all over the RBD and particularly cover the receptor binding motives (RBMs), in direct contact sites with the angiotensin converting enzyme-2 (ACE-2). Therefore, in Spike/ACE-2 interaction assays, XAV-19 showed potent neutralization capacities of the original Wuhan Spike and of the United Kingdom (Alpha/B.1.1.7) and South African (Beta/B.1.351) variants. These results were confirmed by cytopathogenic assays using Vero E6 and live virus variants including the Brazil (Gamma/P.1) and the Indian (Delta/B.1.617.2) variants. In a selective pressure study on Vero E6 cells conducted over 1 month, no mutation was associated with the addition of increasing doses of XAV-19. The potential to reduce viral load in lungs was confirmed in a human ACE-2 transduced mouse model. XAV-19 is currently evaluated in patients hospitalized for COVID-19-induced moderate pneumonia in phase 2a-2b (NCT04453384) where safety was already demonstrated and in an ongoing 2/3 trial (NCT04928430) to evaluate the efficacy and safety of XAV-19 in patients with moderate-to-severe COVID-19. Owing to its polyclonal nature and its glyco-humanization, XAV-19 may provide a novel safe and effective therapeutic tool to mitigate the severity of coronavirus disease 2019 (COVID-19) including the different variants of concern identified so far.
Collapse
Affiliation(s)
| | - Stéphane Marot
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| | - Ray T So
- Hong Kong University (HKU)-Pasteur Research Pole, School of Public Health, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Benjamin Gaborit
- Department of Infectious Disease, Nantes University Hospital, Nantes, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) CIC1413, Nantes University Hospital, Nantes, France
| | | | - Isabelle Malet
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| | | | | | | | | | | | - François Raffi
- Department of Infectious Disease, Nantes University Hospital, Nantes, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) CIC1413, Nantes University Hospital, Nantes, France
| | - Roberto Bruzzone
- Hong Kong University (HKU)-Pasteur Research Pole, School of Public Health, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Chris Ka Pun Mok
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.,The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Anne-Geneviève Marcelin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| | - Vincent Calvez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| |
Collapse
|
32
|
Hardenbrook NJ, Zhang P. A structural view of the SARS-CoV-2 virus and its assembly. Curr Opin Virol 2021; 52:123-134. [PMID: 34915287 PMCID: PMC8642146 DOI: 10.1016/j.coviro.2021.11.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022]
Abstract
Structural biology plays a vital role in SARS-CoV-2 vaccine and treatment. High-resolution structures of SARS-CoV-2 proteins and complexes have been obtained. In situ structures of SARS-CoV-2 virus and its assembly are visualized by cryoET.
The SARS-CoV-2 pandemic that struck in 2019 has left the world crippled with hundreds of millions of cases and millions of people dead. During this time, we have seen unprecedented support and collaboration amongst scientists to respond to this deadly disease. Advances in the field of structural biology, in particular cryoEM and cryo-electron tomography, have allowed unprecedented structural analysis of SARS-CoV-2. Here, we review the structural work on the SARS-CoV-2 virus and viral components, as well as its cellular assembly process, highlighting some important structural findings that have made significant impact on the protection from and treatment of emerging viral infections.
Collapse
Affiliation(s)
- Nathan J Hardenbrook
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK; Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
33
|
Liang KH, Chiang PY, Ko SH, Chou YC, Lu RM, Lin HT, Chen WY, Lin YL, Tao MH, Jan JT, Wu HC. Antibody cocktail effective against variants of SARS-CoV-2. J Biomed Sci 2021; 28:80. [PMID: 34814920 PMCID: PMC8609252 DOI: 10.1186/s12929-021-00777-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/12/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus with a high mutation rate. Importantly, several currently circulating SARS-CoV-2 variants are associated with loss of efficacy for both vaccines and neutralizing antibodies. METHODS We analyzed the binding activity of six highly potent antibodies to the spike proteins of SARS-CoV-2 variants, assessed their neutralizing abilities with pseudovirus and authentic SARS-CoV-2 variants and evaluate efficacy of antibody cocktail in Delta SARS-CoV-2-infected hamster models as prophylactic and post-infection treatments. RESULTS The tested RBD-chAbs, except RBD-chAb-25, maintained binding ability to spike proteins from SARS-CoV-2 variants. However, only RBD-chAb-45 and -51 retained neutralizing activities; RBD-chAb-1, -15, -25 and -28 exhibited diminished neutralization for all SARS-CoV-2 variants. Notably, several cocktails of our antibodies showed low IC50 values (3.35-27.06 ng/ml) against the SARS-CoV-2 variant pseudoviruses including United Kingdom variant B.1.1.7 (Alpha), South Africa variant B.1.351 (Beta), Brazil variant P1 (Gamma), California variant B.1.429 (Epsilon), New York variant B.1.526 (Iota), and India variants, B.1.617.1 (Kappa) and B.1.617.2 (Delta). RBD-chAb-45, and -51 showed PRNT50 values 4.93-37.54 ng/ml when used as single treatments or in combination with RBD-chAb-15 or -28, according to plaque assays with authentic Alpha, Gamma and Delta SARS-CoV-2 variants. Furthermore, the antibody cocktail of RBD-chAb-15 and -45 exhibited potent prophylactic and therapeutic effects in Delta SARS-CoV-2 variant-infected hamsters. CONCLUSIONS The cocktail of RBD-chAbs exhibited potent neutralizing activities against SARS-CoV-2 variants. These antibody cocktails are highly promising candidate tools for controlling new SARS-CoV-2 variants, including Delta.
Collapse
Affiliation(s)
- Kang-Hao Liang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Pao-Yin Chiang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Hsiu-Ting Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Wan-Yu Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Yi-Ling Lin
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Mi-Hua Tao
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
34
|
Cerutti G, Guo Y, Wang P, Nair MS, Wang M, Huang Y, Yu J, Liu L, Katsamba PS, Bahna F, Reddem ER, Kwong PD, Ho DD, Sheng Z, Shapiro L. Neutralizing antibody 5-7 defines a distinct site of vulnerability in SARS-CoV-2 spike N-terminal domain. Cell Rep 2021; 37:109928. [PMID: 34706271 PMCID: PMC8519878 DOI: 10.1016/j.celrep.2021.109928] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/27/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Antibodies that potently neutralize SARS-CoV-2 target mainly the receptor-binding domain or the N-terminal domain (NTD). Over a dozen potently neutralizing NTD-directed antibodies have been studied structurally, and all target a single antigenic supersite in NTD (site 1). Here, we report the cryo-EM structure of a potent NTD-directed neutralizing antibody 5-7, which recognizes a site distinct from other potently neutralizing antibodies, inserting a binding loop into an exposed hydrophobic pocket between the two sheets of the NTD β sandwich. Interestingly, this pocket was previously identified as the binding site for hydrophobic molecules, including heme metabolites, but we observe that their presence does not substantially impede 5-7 recognition. Mirroring its distinctive binding, antibody 5-7 retains neutralization potency with many variants of concern (VOCs). Overall, we reveal that a hydrophobic pocket in NTD proposed for immune evasion can be used by the immune system for recognition.
Collapse
Affiliation(s)
- Gabriele Cerutti
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Fabiana Bahna
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Eswar R Reddem
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Peter D Kwong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Kleanthous H, Silverman JM, Makar KW, Yoon IK, Jackson N, Vaughn DW. Scientific rationale for developing potent RBD-based vaccines targeting COVID-19. NPJ Vaccines 2021; 6:128. [PMID: 34711846 PMCID: PMC8553742 DOI: 10.1038/s41541-021-00393-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/01/2021] [Indexed: 12/31/2022] Open
Abstract
Vaccination of the global population against COVID-19 is a great scientific, logistical, and moral challenge. Despite the rapid development and authorization of several full-length Spike (S) protein vaccines, the global demand outweighs the current supply and there is a need for safe, potent, high-volume, affordable vaccines that can fill this gap, especially in low- and middle-income countries. Whether SARS-CoV-2 S-protein receptor-binding domain (RBD)-based vaccines could fill this gap has been debated, especially with regards to its suitability to protect against emerging viral variants of concern. Given a predominance for elicitation of neutralizing antibodies (nAbs) that target RBD following natural infection or vaccination, a key biomarker of protection, there is merit for selection of RBD as a sole vaccine immunogen. With its high-yielding production and manufacturing potential, RBD-based vaccines offer an abundance of temperature-stable doses at an affordable cost. In addition, as the RBD preferentially focuses the immune response to potent and recently recognized cross-protective determinants, this domain may be central to the development of future pan-sarbecovirus vaccines. In this study, we review the data supporting the non-inferiority of RBD as a vaccine immunogen compared to full-length S-protein vaccines with respect to humoral and cellular immune responses against both the prototype pandemic SARS-CoV-2 isolate and emerging variants of concern.
Collapse
Affiliation(s)
| | | | | | - In-Kyu Yoon
- Coalition for Epidemic Preparedness Innovations, Greater London, UK
| | - Nicholas Jackson
- Coalition for Epidemic Preparedness Innovations, Greater London, UK.
| | | |
Collapse
|
36
|
Wang P, Casner RG, Nair MS, Yu J, Guo Y, Wang M, Chan JFW, Cerutti G, Iketani S, Liu L, Sheng Z, Chen Z, Yuen KY, Kwong PD, Huang Y, Shapiro L, Ho DD. A monoclonal antibody that neutralizes SARS-CoV-2 variants, SARS-CoV, and other sarbecoviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.10.13.464307. [PMID: 34671769 PMCID: PMC8528075 DOI: 10.1101/2021.10.13.464307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The repeated emergence of highly pathogenic human coronaviruses as well as their evolving variants highlight the need to develop potent and broad-spectrum antiviral therapeutics and vaccines. By screening monoclonal antibodies (mAbs) isolated from COVID-19-convalescent patients, we found one mAb, 2-36, with cross-neutralizing activity against SARS-CoV. We solved the cryo-EM structure of 2-36 in complex with SARS-CoV-2 or SARS-CoV spike, revealing a highly conserved epitope in the receptor-binding domain (RBD). Antibody 2-36 neutralized not only all current circulating SARS-CoV-2 variants and SARS-COV, but also a panel of bat and pangolin sarbecoviruses that can use human angiotensin-converting enzyme 2 (ACE2) as a receptor. We selected 2-36-escape viruses in vitro and confirmed that K378T in SARS-CoV-2 RBD led to viral resistance. Taken together, 2-36 represents a strategic reserve drug candidate for the prevention and treatment of possible diseases caused by pre-emergent SARS-related coronaviruses. Its epitope defines a promising target for the development of a pan-sarbecovirus vaccine.
Collapse
Affiliation(s)
- Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ryan G. Casner
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Manoj S. Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jasper F.-W. Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Gabriele Cerutti
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zhiwei Chen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Peter D. Kwong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lawrence Shapiro
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Internal Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
37
|
VanBlargan LA, Adams LJ, Liu Z, Chen RE, Gilchuk P, Raju S, Smith BK, Zhao H, Case JB, Winkler ES, Whitener BM, Droit L, Aziati ID, Bricker TL, Joshi A, Shi PY, Creanga A, Pegu A, Handley SA, Wang D, Boon ACM, Crowe JE, Whelan SPJ, Fremont DH, Diamond MS. A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity 2021; 54:2399-2416.e6. [PMID: 34481543 PMCID: PMC8373659 DOI: 10.1016/j.immuni.2021.08.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/08/2021] [Accepted: 08/13/2021] [Indexed: 02/09/2023]
Abstract
With the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility and potential resistance, antibodies and vaccines with broadly inhibitory activity are needed. Here, we developed a panel of neutralizing anti-SARS-CoV-2 monoclonal antibodies (mAbs) that bound the receptor binding domain of the spike protein at distinct epitopes and blocked virus attachment to its host receptor, human angiotensin converting enzyme-2 (hACE2). Although several potently neutralizing mAbs protected K18-hACE2 transgenic mice against infection caused by ancestral SARS-CoV-2 strains, others induced escape variants in vivo or lost neutralizing activity against emerging strains. One mAb, SARS2-38, potently neutralized all tested SARS-CoV-2 variants of concern and protected mice against challenge by multiple SARS-CoV-2 strains. Structural analysis showed that SARS2-38 engaged a conserved epitope proximal to the receptor binding motif. Thus, treatment with or induction of neutralizing antibodies that bind conserved spike epitopes may limit the loss of potency of therapies or vaccines against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Saravanan Raju
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brittany K Smith
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Haiyan Zhao
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bradley M Whitener
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lindsay Droit
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ishmael D Aziati
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Traci L Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott A Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
38
|
Ahmad J, Jiang J, Boyd LF, Zeher A, Huang R, Xia D, Natarajan K, Margulies DH. Structures of synthetic nanobody-SARS-CoV-2 receptor-binding domain complexes reveal distinct sites of interaction. J Biol Chem 2021; 297:101202. [PMID: 34537245 PMCID: PMC8444450 DOI: 10.1016/j.jbc.2021.101202] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/15/2022] Open
Abstract
Combating the worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of new variants demands understanding of the structural basis of the interaction of antibodies with the SARS-CoV-2 receptor-binding domain (RBD). Here, we report five X-ray crystal structures of sybodies (synthetic nanobodies) including those of binary and ternary complexes of Sb16-RBD, Sb45-RBD, Sb14-RBD-Sb68, and Sb45-RBD-Sb68, as well as unliganded Sb16. These structures reveal that Sb14, Sb16, and Sb45 bind the RBD at the angiotensin-converting enzyme 2 interface and that the Sb16 interaction is accompanied by a large conformational adjustment of complementarity-determining region 2. In contrast, Sb68 interacts at the periphery of the SARS-CoV-2 RBD-angiotensin-converting enzyme 2 interface. We also determined cryo-EM structures of Sb45 bound to the SARS-CoV-2 spike protein. Superposition of the X-ray structures of sybodies onto the trimeric spike protein cryo-EM map indicates that some sybodies may bind in both "up" and "down" configurations, but others may not. Differences in sybody recognition of several recently identified RBD variants are explained by these structures.
Collapse
Affiliation(s)
- Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Allison Zeher
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rick Huang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
39
|
Shrestha LB, Tedla N, Bull RA. Broadly-Neutralizing Antibodies Against Emerging SARS-CoV-2 Variants. Front Immunol 2021; 12:752003. [PMID: 34646276 PMCID: PMC8502962 DOI: 10.3389/fimmu.2021.752003] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have become a major concern in the containment of current pandemic. The variants, including B.1.1.7 (Alpha), B.1.351 (Beta), P1 (Gamma) and B.1.617.2 (Delta) have shown reduced sensitivity to monoclonal antibodies, plasma and/or sera obtained from convalescent patients and vaccinated individuals. Development of potent therapeutic monoclonal antibodies (mAbs) with broad neutralizing breadth have become a priority for alleviating the devastating effects of this pandemic. Here, we review some of the most promising broadly neutralizing antibodies obtained from plasma of patients that recovered from early variants of SARS-CoV-2 that may be effective against emerging new variants of the virus. This review summarizes several mAbs, that have been discovered to cross-neutralize across Sarbecoviruses and SARS-CoV-2 escape mutants. Understanding the characteristics that confer this broad and cross-neutralization functions of these mAbs would inform on the development of therapeutic antibodies and guide the discovery of second-generation vaccines.
Collapse
Affiliation(s)
- Lok Bahadur Shrestha
- School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- The Kirby Institute, Faculty of Medicine, Sydney, NSW, Australia
| | - Nicodemus Tedla
- School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
| | - Rowena A. Bull
- School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- The Kirby Institute, Faculty of Medicine, Sydney, NSW, Australia
| |
Collapse
|
40
|
Liu Z, Xu W, Chen Z, Fu W, Zhan W, Gao Y, Zhou J, Zhou Y, Wu J, Wang Q, Zhang X, Hao A, Wu W, Zhang Q, Li Y, Fan K, Chen R, Jiang Q, Mayer CT, Schoofs T, Xie Y, Jiang S, Wen Y, Yuan Z, Wang K, Lu L, Sun L, Wang Q. An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope. Protein Cell 2021; 13:655-675. [PMID: 34554412 PMCID: PMC8458794 DOI: 10.1007/s13238-021-00871-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/02/2021] [Indexed: 01/09/2023] Open
Abstract
New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design. Here, we identified a receptor-binding domain (RBD)-binding antibody, XG014, which potently neutralizes β-coronavirus lineage B (β-CoV-B), including SARS-CoV-2, its circulating variants, SARS-CoV and bat SARSr-CoV WIV1. Interestingly, antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibody-dependent SARS-CoV-2 spike (S) protein-mediated cell-cell fusion, suggesting a unique mode of recognition by XG014. Structural analyses reveal that XG014 recognizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional "down" conformation, while its family member XG005 directly competes with ACE2 binding and position the RBD "up". Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo. Our findings suggest the potential to develop XG014 as pan-β-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines against β-CoV-B and newly emerging SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Zezhong Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhenguo Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wangjun Fu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wuqiang Zhan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yidan Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jie Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yunjiao Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianbo Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiang Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Aihua Hao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qianqian Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Kaiyue Fan
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruihong Chen
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiaochu Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Christian T Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Kang Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Lei Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences; Shanghai Institute of Infectious Disease and Biosecurity; the Fifth People's Hospital of Shanghai; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Institutes of Biomedical Sciences; Biosafety Level 3 Laboratory, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
41
|
Yuan M, Huang D, Lee CCD, Wu NC, Jackson AM, Zhu X, Liu H, Peng L, van Gils MJ, Sanders RW, Burton DR, Reincke SM, Prüss H, Kreye J, Nemazee D, Ward AB, Wilson IA. Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Science 2021; 373:818-823. [PMID: 34016740 PMCID: PMC8284396 DOI: 10.1126/science.abh1139] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Neutralizing antibodies (nAbs) elicited against the receptor binding site (RBS) of the spike protein of wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are generally less effective against recent variants of concern. RBS residues Glu484, Lys417, and Asn501 are mutated in variants first described in South Africa (B.1.351) and Brazil (P.1). We analyzed their effects on angiotensin-converting enzyme 2 binding, as well as the effects of two of these mutations (K417N and E484K) on nAbs isolated from COVID-19 patients. Binding and neutralization of the two most frequently elicited antibody families (IGHV3-53/3-66 and IGHV1-2), which can both bind the RBS in alternative binding modes, are abrogated by K417N, E484K, or both. These effects can be structurally explained by their extensive interactions with RBS nAbs. However, nAbs to the more conserved, cross-neutralizing CR3022 and S309 sites were largely unaffected. The results have implications for next-generation vaccines and antibody therapies.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antigenic Variation
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Binding Sites
- Binding Sites, Antibody
- COVID-19/immunology
- COVID-19/virology
- Epitopes
- Humans
- Immune Evasion
- Mutation
- Protein Binding
- Protein Domains
- Receptors, Coronavirus/metabolism
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chang-Chun D Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Abigail M Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - S Momsen Reincke
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
42
|
Abstract
The rapid and remarkably successful development, manufacture, and deployment of several effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is now tempered by three key challenges. First, reducing virus transmission will require prevention of asymptomatic and mild infections in addition to severe symptomatic infections. Second, the emergence of variants of concern with mutations in the S protein's receptor binding domain increases the likelihood that vaccines will have to be updated because some of these mutations render variants less optimally targeted by current vaccines. This will require coordinated global SARS-CoV-2 surveillance to link genotypes to phenotypes, potentially using the WHO's global influenza surveillance program as a guide. Third, concerns about the longevity of vaccine-induced immunity highlight the potential need for re-vaccination, depending on the extent to which the virus has been controlled and whether re-vaccination can target those at greatest risk of severe illness. Fortunately, as I discuss in this review, these challenges can be addressed.
Collapse
Affiliation(s)
- Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
43
|
Salleh MZ, Derrick JP, Deris ZZ. Structural Evaluation of the Spike Glycoprotein Variants on SARS-CoV-2 Transmission and Immune Evasion. Int J Mol Sci 2021; 22:7425. [PMID: 34299045 PMCID: PMC8306177 DOI: 10.3390/ijms22147425] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents significant social, economic and political challenges worldwide. SARS-CoV-2 has caused over 3.5 million deaths since late 2019. Mutations in the spike (S) glycoprotein are of particular concern because it harbours the domain which recognises the angiotensin-converting enzyme 2 (ACE2) receptor and is the target for neutralising antibodies. Mutations in the S protein may induce alterations in the surface spike structures, changing the conformational B-cell epitopes and leading to a potential reduction in vaccine efficacy. Here, we summarise how the more important variants of SARS-CoV-2, which include cluster 5, lineages B.1.1.7 (Alpha variant), B.1.351 (Beta), P.1 (B.1.1.28/Gamma), B.1.427/B.1.429 (Epsilon), B.1.526 (Iota) and B.1.617.2 (Delta) confer mutations in their respective spike proteins which enhance viral fitness by improving binding affinity to the ACE2 receptor and lead to an increase in infectivity and transmission. We further discuss how these spike protein mutations provide resistance against immune responses, either acquired naturally or induced by vaccination. This information will be valuable in guiding the development of vaccines and other therapeutics for protection against the ongoing coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Mohd Zulkifli Salleh
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Malaysia;
| | - Jeremy P. Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Zakuan Zainy Deris
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Malaysia;
| |
Collapse
|
44
|
Ahmad J, Jiang J, Boyd LF, Zeher A, Huang R, Xia D, Natarajan K, Margulies DH. Structures of synthetic nanobody-SARS-CoV-2-RBD complexes reveal distinct sites of interaction and recognition of variants. RESEARCH SQUARE 2021:rs.3.rs-625642. [PMID: 34159326 PMCID: PMC8219104 DOI: 10.21203/rs.3.rs-625642/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and emergence of new variants demands understanding the structural basis of the interaction of antibodies with the SARS-CoV-2 receptor-binding domain (RBD). Here we report five X-ray crystal structures of sybodies (synthetic nanobodies) including binary and ternary complexes of Sb16-RBD, Sb45-RBD, Sb14-RBD-Sb68, and Sb45-RBD-Sb68; and Sb16 unliganded. These reveal that Sb14, Sb16, and Sb45 bind the RBD at the ACE2 interface and that the Sb16 interaction is accompanied by a large CDR2 shift. In contrast, Sb68 interacts at the periphery of the interface. We also determined cryo-EM structures of Sb45 bound to spike (S). Superposition of the X-ray structures of sybodies onto the trimeric S protein cryo-EM map indicates some may bind both "up" and "down" configurations, but others may not. Sensitivity of sybody binding to several recently identified RBD mutants is consistent with these structures.
Collapse
Affiliation(s)
- Javeed Ahmad
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allison Zeher
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rick Huang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
45
|
Cimolai N. Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clin Hematol Int 2021; 3:47-68. [PMID: 34595467 PMCID: PMC8432400 DOI: 10.2991/chi.k.210328.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
In the absence of effective antiviral chemotherapy and still in the context of emerging vaccines for severe acute respiratory syndrome-CoV-2 infections, passive immunotherapy remains a key treatment and possible prevention strategy. What might initially be conceived as a simplified donor-recipient process, the intricacies of donor plasma, IV immunoglobulins, and monoclonal antibody modality applications are becoming more apparent. Key targets of such treatment have largely focused on virus neutralization and the specific viral components of the attachment Spike protein and its constituents (e.g., receptor binding domain, N-terminal domain). The cumulative laboratory and clinical experience suggests that beneficial protective and treatment outcomes are possible. Both a dose- and a time-dependency emerge. Lesser understood are the concepts of bioavailability and distribution. Apart from direct antigen binding from protective immunoglobulins, antibody effector functions have potential roles in outcome. In attempting to mimic the natural but variable response to infection or vaccination, a strong functional polyclonal approach attracts the potential benefits of attacking antigen diversity, high antibody avidity, antibody persistence, and protection against escape viral mutation. The availability and ease of administration for any passive immunotherapy product must be considered in the current climate of need. There is never a perfect product, but yet there is considerable room for improving patient outcomes. Given the variability of human genetics, immunity, and disease, and given the nuances of the virus and its potential for change, passive immunotherapy can be developed that will be effective for some but not all patients. An understanding of such patient variability and limitations is just as important as the understanding of the direct interactions between immunotherapy and virus.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Children’s and Women’s Health Centre of British Columbia, 4480 Oak Street, Vancouver, BC, Canada V6H 3V4
| |
Collapse
|
46
|
Mukherjee R, Satardekar R. Why are some coronavirus variants more infectious? J Biosci 2021; 46:101. [PMID: 34785628 PMCID: PMC8594289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/28/2021] [Indexed: 09/22/2023]
Abstract
Since the start of the pandemic, SARS-CoV-2 has infected almost 200 million human hosts and is set to encounter and gain entry in many more in the coming months. As the coronavirus flourish, the evolutionary pressure selects those variants that can complete the infection cycle faster and reproduce in large numbers compared to others. This increase in infectivity and transmissibility coupled with the immune response from high viral load may cause moderate to severe disease. Whether this leads to enhanced virulence in the prevalent Alpha and Delta variants is still not clear. This review describes the different types of SARS-CoV-2 variants that are now prevalent, their emergence, the mutations responsible for their growth advantages, and how they affect vaccine efficacy and increase chances of reinfection. Finally, we have also summarized the efforts made to recognize and predict the mutations, which can cause immune escape and track their emergence through impactful genomic surveillance.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Binding Sites
- COVID-19/epidemiology
- COVID-19/pathology
- COVID-19/transmission
- COVID-19/virology
- COVID-19 Vaccines
- Genome, Viral
- Humans
- Immune Evasion/genetics
- Models, Molecular
- Mutation
- Phylogeny
- Protein Binding
- Protein Interaction Domains and Motifs
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- SARS-CoV-2/classification
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- Serine Endopeptidases/chemistry
- Serine Endopeptidases/genetics
- Serine Endopeptidases/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Virulence
Collapse
Affiliation(s)
- Raju Mukherjee
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Rohit Satardekar
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| |
Collapse
|