1
|
Sülzen H, Klima M, Duchoslav V, Boura E. SPR is a fast and straightforward method to estimate the binding constants of cyclic dinucleotides to their binding partners, such as STING or poxin. Biophys Chem 2025; 319:107392. [PMID: 39847823 DOI: 10.1016/j.bpc.2025.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
The development of small molecule drugs that target protein binders is the central goal in medicinal chemistry. During the lead compound development process, hundreds or even thousands of compounds are synthesized, with the primary focus on their binding affinity to protein targets. Typically, IC50 or EC50 values are used to rank these compounds. While thermodynamic values, such as the dissociation constant (KD), would be more informative, they are experimentally less accessible. In this study, we compare isothermal calorimetry (ITC) with surface plasmon resonance (SPR) using human STING, a key protein of innate immunity, and several cyclic dinucleotides (CDNs) that serve as its ligands. We demonstrate that SPR, with recent technological advancements, provides KDs that are sufficiently accurate for drug development purposes. To illustrate the versatility of our approach, we also used SPR to estimate the KD of poxin binding to cyclic GMP-AMP (cGAMP) that serves as a second messenger in the innate immune system. In conclusion, SPR offers a high benefit-to-cost ratio, making it an effective tool in the drug design process.
Collapse
Affiliation(s)
- Hagen Sülzen
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Vojtech Duchoslav
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
2
|
Reste M, Ajazi K, Sayi-Yazgan A, Jankovic R, Bufan B, Brandau S, Bækkevold ES, Petitprez F, Lindstedt M, Adema GJ, Almeida CR. The role of dendritic cells in tertiary lymphoid structures: implications in cancer and autoimmune diseases. Front Immunol 2024; 15:1439413. [PMID: 39483484 PMCID: PMC11526390 DOI: 10.3389/fimmu.2024.1439413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Tertiary Lymphoid Structures (TLS) are organized aggregates of immune cells such as T cells, B cells, and Dendritic Cells (DCs), as well as fibroblasts, formed postnatally in response to signals from cytokines and chemokines. Central to the function of TLS are DCs, professional antigen-presenting cells (APCs) that coordinate the adaptive immune response, and which can be classified into different subsets, with specific functions, and markers. In this article, we review current data on the contribution of different DC subsets to TLS function in cancer and autoimmunity, two opposite sides of the immune response. Different DC subsets can be found in different tumor types, correlating with cancer prognosis. Moreover, DCs are also present in TLS found in autoimmune and inflammatory conditions, contributing to disease development. Broadly, the presence of DCs in TLS appears to be associated with favorable clinical outcomes in cancer while in autoimmune pathologies these cells are associated with unfavorable prognosis. Therefore, it is important to analyze the complex functions of DCs within TLS in order to enhance our fundamental understanding of immune regulation but also as a possible route to create innovative clinical interventions designed for the specific needs of patients with diverse pathological diseases.
Collapse
Affiliation(s)
- Mariana Reste
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Kristi Ajazi
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ayca Sayi-Yazgan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Türkiye
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Radmila Jankovic
- Faculty of Medicine, Institute of Pathology, University of Belgrade, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Sven Brandau
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Espen S. Bækkevold
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Florent Petitprez
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Catarina R. Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Qian C, Zhu W, Wang J, Wang Z, Tang W, Liu X, Jin B, Xu Y, Zhang Y, Liang G, Wang Y. Cyclic-di-GMP induces inflammation and acute lung injury through direct binding to MD2. Clin Transl Med 2024; 14:e1744. [PMID: 39166890 PMCID: PMC11337466 DOI: 10.1002/ctm2.1744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Severe bacterial infections can trigger acute lung injury (ALI) and acute respiratory distress syndrome, with bacterial pathogen-associated molecular patterns (PAMPs) exacerbating the inflammatory response, particularly in COVID-19 patients. Cyclic-di-GMP (CDG), one of the PAMPs, is synthesized by various Gram-positve and Gram-negative bacteria. Previous studies mainly focused on the inflammatory responses triggered by intracellular bacteria-released CDG. However, how extracellular CDG, which is released by bacterial autolysis or rupture, activates the inflammatory response remains unclear. METHODS The interaction between extracellular CDG and myeloid differentiation protein 2 (MD2) was investigated using in vivo and in vitro models. MD2 blockade was achieved using specific inhibitor and genetic knockout mice. Site-directed mutagenesis, co-immunoprecipitation, SPR and Bis-ANS displacement assays were used to identify the potential binding sites of MD2 on CDG. RESULTS Our data show that extracellular CDG directly interacts with MD2, leading to activation of the TLR4 signalling pathway and lung injury. Specific inhibitors or genetic knockout of MD2 in mice significantly alleviated CDG-induced lung injury. Moreover, isoleucine residues at positions 80 and 94, along with phenylalanine at position 121, are essential for the binding of MD2 to CDG. CONCLUSION These results reveal that extracellular CDG induces lung injury through direct interaction with MD2 and activation of the TLR4 signalling pathway, providing valuable insights into bacteria-induced ALI mechanisms and new therapeutic approaches for the treatment of bacterial co-infection in COVID-19 patients.
Collapse
Affiliation(s)
- Chenchen Qian
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weiwei Zhu
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Jiong Wang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhe Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Weiyang Tang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Xin Liu
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Bo Jin
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yong Xu
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yuyang Zhang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Guang Liang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yi Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
4
|
Klima M, Dejmek M, Duchoslav V, Eisenreichova A, Sala M, Chalupsky K, Chalupska D, Novotná B, Birkuš G, Nencka R, Boura E. Fluorinated cGAMP analogs, which act as STING agonists and are not cleavable by poxins: Structural basis of their function. Structure 2024; 32:433-439.e4. [PMID: 38325369 DOI: 10.1016/j.str.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
The cGAS-STING pathway is a crucial part of innate immunity; it serves to detect DNA in the cytoplasm and to defend against certain cancers, viruses, and bacteria. We designed and synthesized fluorinated carbocyclic cGAMP analogs, MD1203 and MD1202D (MDs), to enhance their stability and their affinity for STING. These compounds demonstrated exceptional activity against STING. Despite their distinct chemical modifications relative to the canonical cyclic dinucleotides (CDNs), crystallographic analysis revealed a binding mode with STING that was consistent with the canonical CDNs. Importantly, MDs were resistant to cleavage by viral poxin nucleases and MDs-bound poxin adopted an unliganded-like conformation. Moreover, MDs complexed with poxin showed a conformation distinct from cGAMP bound to poxin, closely resembling their conformation when bound to STING. In conclusion, the development of MD1203 and MD1202D showcases their potential as potent STING activators with remarkable stability against poxin-mediated degradation-a crucial characteristic for future development of antivirals.
Collapse
Affiliation(s)
- Martin Klima
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Vojtech Duchoslav
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Andrea Eisenreichova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Michal Sala
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Karel Chalupsky
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Barbora Novotná
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Gabriel Birkuš
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic.
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic.
| |
Collapse
|
5
|
Štěpánová S, Andris E, Gutten O, Buděšínský M, Dejmek M, Břehová P, Rulíšek L, Kašička V. Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy. Electrophoresis 2024; 45:687-705. [PMID: 38059733 DOI: 10.1002/elps.202300232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
Cyclic dinucleotides (CDNs) are important second messengers in bacteria and eukaryotes. Detailed characterization of their physicochemical properties is a prerequisite for understanding their biological functions. Herein, we examine acid-base and electromigration properties of selected CDNs employing capillary electrophoresis (CE), density functional theory (DFT), and nuclear magnetic resonance (NMR) spectroscopy to provide benchmark pKa values, as well as to unambiguously determine the protonation sites. Acidity constants (pKa) of the NH+ moieties of adenine and guanine bases and actual and limiting ionic mobilities of CDNs were determined by nonlinear regression analysis of the pH dependence of their effective electrophoretic mobilities measured by CE in aqueous background electrolytes in a wide pH range (0.98-11.48), at constant temperature (25°C), and constant ionic strength (25 mM). The thermodynamic pKa values were found to be in the range 3.31-4.56 for adenine and 2.28-3.61 for guanine bases, whereas the pKa of enol group of guanine base was in the range 10.21-10.40. Except for systematic shifts of ∼2 pKa, the pKa values calculated by the DFT-D3//COSMO-RS composite protocol that included large-scale conformational sampling and "cross-morphing" were in a relatively good agreement with the pKas determined by CE and predict N1 atom of adenine and N7 atom of guanine as the protonation sites. The protonation of the N1 atom of adenine and N7 atom of guanine in acidic background electrolytes (BGEs) and the dissociation of the enol group of guanine in alkaline BGEs was confirmed also by NMR spectroscopy.
Collapse
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Erik Andris
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Gutten
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Břehová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Chen X, Xu Z, Li T, Thakur A, Wen Y, Zhang K, Liu Y, Liang Q, Liu W, Qin JJ, Yan Y. Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy. Biomark Res 2024; 12:2. [PMID: 38185685 PMCID: PMC10773049 DOI: 10.1186/s40364-023-00551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
The cGAS-STING signaling pathway has emerged as a critical mediator of innate immune responses, playing a crucial role in improving antitumor immunity through immune effector responses. Targeting the cGAS-STING pathway holds promise for overcoming immunosuppressive tumor microenvironments (TME) and promoting effective tumor elimination. However, systemic administration of current STING agonists faces challenges related to low bioavailability and potential adverse effects, thus limiting their clinical applicability. Recently, nanotechnology-based strategies have been developed to modulate TMEs for robust immunotherapeutic responses. The encapsulation and delivery of STING agonists within nanoparticles (STING-NPs) present an attractive avenue for antitumor immunotherapy. This review explores a range of nanoparticles designed to encapsulate STING agonists, highlighting their benefits, including favorable biocompatibility, improved tumor penetration, and efficient intracellular delivery of STING agonists. The review also summarizes the immunomodulatory impacts of STING-NPs on the TME, including enhanced secretion of pro-inflammatory cytokines and chemokines, dendritic cell activation, cytotoxic T cell priming, macrophage re-education, and vasculature normalization. Furthermore, the review offers insights into co-delivered nanoplatforms involving STING agonists alongside antitumor agents such as chemotherapeutic compounds, immune checkpoint inhibitors, antigen peptides, and other immune adjuvants. These platforms demonstrate remarkable versatility in inducing immunogenic responses within the TME, ultimately amplifying the potential for antitumor immunotherapy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Yu Wen
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Furong Laboratory, Central South University, 410008, Changsha, Hunan, China
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
7
|
Xuan C, Hu R. Chemical Biology Perspectives on STING Agonists as Tumor Immunotherapy. ChemMedChem 2023; 18:e202300405. [PMID: 37794702 DOI: 10.1002/cmdc.202300405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Stimulator of interferon genes (STING) is a crucial adaptor protein in the innate immune response. STING activation triggers cytokine secretion, including type I interferon and initiates T cell-mediated adaptive immunity. The activated immune system converts "cold tumors" into "hot tumors" that are highly responsive to T cells by recruiting them to the tumor microenvironment, ultimately leading to potent and long-lasting antitumor effects. Unlike most immune checkpoint inhibitors, STING agonists represent a groundbreaking class of innate immune agonists that hold great potential for effectively targeting various cancer populations and are poised to become a blockbuster in tumor immunotherapy. This review will focus on the correlation between the STING signaling pathway and tumor immunity, as well as explore the impact of STING activation on other biological processes. Ultimately, we will summarize the development and optimization of STING agonists from a medicinal chemistry perspective, evaluate their potential in cancer therapy, and identify possible challenges for future advancement.
Collapse
Affiliation(s)
- Chenyuan Xuan
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| | - Rong Hu
- Department of Pharmacology, China Pharmaceutical University, No 24, TongJiaXiang, Gulou District, Nanjing, 210009, P. R. China
| |
Collapse
|
8
|
Dejmek M, Brazdova A, Otava T, Polidarova MP, Klíma M, Smola M, Vavrina Z, Buděšínský M, Dračínský M, Liboska R, Boura E, Birkuš G, Nencka R. Vinylphosphonate-based cyclic dinucleotides enhance STING-mediated cancer immunotherapy. Eur J Med Chem 2023; 259:115685. [PMID: 37567057 DOI: 10.1016/j.ejmech.2023.115685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Cyclic dinucleotides (CDNs) trigger the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, which plays a key role in cytosolic DNA sensing and thus in immunomodulation against infections, cell damage and cancer. However, cancer immunotherapy trials with CDNs have shown immune activation, but not complete tumor regression. Nevertheless, we designed a novel class of CDNs containing vinylphosphonate based on a STING-affinity screening assay. In vitro, acyloxymethyl phosphate/phosphonate prodrugs of these vinylphosphonate CDNs were up to 1000-fold more potent than the clinical candidate ADU-S100. In vivo, the lead prodrug induced tumor-specific T cell priming and facilitated tumor regression in the 4T1 syngeneic mouse model of breast cancer. Moreover, we solved the crystal structure of this ligand bound to the STING protein. Therefore, our findings not only validate the therapeutic potential of vinylphosphonate CDNs but also open up opportunities for drug development in cancer immunotherapy bridging innate and adaptive immunity.
Collapse
Affiliation(s)
- Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Andrea Brazdova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Průmyslová 595, Vestec, 128 44, Prague, Czech Republic
| | - Tomáš Otava
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 166 28, Prague 6, Czech Republic
| | - Marketa Pimkova Polidarova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Průmyslová 595, Vestec, 128 44, Prague, Czech Republic
| | - Martin Klíma
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Miroslav Smola
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Zdenek Vavrina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic; Faculty of Science, Charles University, Albertov 6, Prague 2, 128 00, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Radek Liboska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic
| | - Gabriel Birkuš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic.
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, Prague 6, 166 10, Czech Republic.
| |
Collapse
|
9
|
Duchoslav V, Boura E. Structure of monkeypox virus poxin: implications for drug design. Arch Virol 2023; 168:192. [PMID: 37378908 DOI: 10.1007/s00705-023-05824-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
Monkeypox, or mpox, is a disease that has recently resurfaced and spread across the globe. Despite the availability of an FDA-approved vaccine (JYNNEOS) and an effective drug (tecovirimat), concerns remain over the possible recurrence of a viral pandemic. Like any other virus, mpox virus must overcome the immune system to replicate. Viruses have evolved various strategies to overcome both innate and adaptive immunity. Poxviruses possess an unusual nuclease, poxin, which cleaves 2'-3'-cGAMP, a cyclic dinucleotide, which is an important second messenger in the cGAS-STING signaling pathway. Here, we present the crystal structure of mpox poxin. The structure reveals a conserved, predominantly β-sheet fold and highlights the high conservation of the cGAMP binding site and of the catalytic residues His17, Tyr138, and Lys142. This research suggests that poxin inhibitors could be effective against multiple poxviruses.
Collapse
Affiliation(s)
- Vojtech Duchoslav
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
10
|
Wu Y, Yang Z, Cheng K, Bi H, Chen J. Small molecule-based immunomodulators for cancer therapy. Acta Pharm Sin B 2022; 12:4287-4308. [PMID: 36562003 PMCID: PMC9764074 DOI: 10.1016/j.apsb.2022.11.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has led to a paradigm shift in the treatment of cancer. Current cancer immunotherapies are mostly antibody-based, thus possessing advantages in regard to pharmacodynamics (e.g., specificity and efficacy). However, they have limitations in terms of pharmacokinetics including long half-lives, poor tissue/tumor penetration, and little/no oral bioavailability. In addition, therapeutic antibodies are immunogenic, thus may cause unwanted adverse effects. Therefore, researchers have shifted their efforts towards the development of small molecule-based cancer immunotherapy, as small molecules may overcome the above disadvantages associated with antibodies. Further, small molecule-based immunomodulators and therapeutic antibodies are complementary modalities for cancer treatment, and may be combined to elicit synergistic effects. Recent years have witnessed the rapid development of small molecule-based cancer immunotherapy. In this review, we describe the current progress in small molecule-based immunomodulators (inhibitors/agonists/degraders) for cancer therapy, including those targeting PD-1/PD-L1, chemokine receptors, stimulator of interferon genes (STING), Toll-like receptor (TLR), etc. The tumorigenesis mechanism of various targets and their respective modulators that have entered clinical trials are also summarized.
Collapse
Affiliation(s)
| | | | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Vavřina Z, Perlíková P, Milisavljević N, Chevrier F, Smola M, Smith J, Dejmek M, Havlíček V, Buděšínský M, Liboska R, Vaneková L, Brynda J, Boura E, Řezáčová P, Hocek M, Birkuš G. Design, Synthesis, and Biochemical and Biological Evaluation of Novel 7-Deazapurine Cyclic Dinucleotide Analogues as STING Receptor Agonists. J Med Chem 2022; 65:14082-14103. [PMID: 36201304 PMCID: PMC9620234 DOI: 10.1021/acs.jmedchem.2c01305] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/28/2022]
Abstract
Cyclic dinucleotides (CDNs) are second messengers that activate stimulator of interferon genes (STING). The cGAS-STING pathway plays a promising role in cancer immunotherapy. Here, we describe the synthesis of CDNs containing 7-substituted 7-deazapurine moiety. We used mouse cyclic GMP-AMP synthase and bacterial dinucleotide synthases for the enzymatic synthesis of CDNs. Alternatively, 7-(het)aryl 7-deazapurine CDNs were prepared by Suzuki-Miyaura cross-couplings. New CDNs were tested in biochemical and cell-based assays for their affinity to human STING. Eight CDNs showed better activity than 2'3'-cGAMP, the natural ligand of STING. The effect on cytokine and chemokine induction was also evaluated. The best activities were observed for CDNs bearing large aromatic substituents that point above the CDN molecule. We solved four X-ray structures of complexes of new CDNs with human STING. We observed π-π stacking interactions between the aromatic substituents and Tyr240 that are involved in the stabilization of CDN-STING complexes.
Collapse
Affiliation(s)
- Zdeněk Vavřina
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles
University, Hlavova 2030/8, Prague 128 00, Czech Republic
| | - Pavla Perlíková
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
- Department
of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| | - Nemanja Milisavljević
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 00, Czech Republic
| | - Florian Chevrier
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Miroslav Smola
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Joshua Smith
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
- First
Faculty of Medicine, Charles University, Katerinska 1660/32, Prague 121 08, Czech Republic
| | - Milan Dejmek
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Vojtěch Havlíček
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 00, Czech Republic
| | - Miloš Buděšínský
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Radek Liboska
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Lenka Vaneková
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
- Department
of Cell Biology, Faculty of Science, Charles
University, Vinicna 1594/7, Prague 128 43, Czech Republic
| | - Jiří Brynda
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Evzen Boura
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Pavlína Řezáčová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Michal Hocek
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| | - Gabriel Birkuš
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo Namesti 542, Prague 166 10, Czech Republic
| |
Collapse
|