1
|
Bera S, Mitra R, Singh J. Recent advancement in protected delivery methods for carotenoid: a smart choice in modern nutraceutical formulation concept. Biotechnol Genet Eng Rev 2024; 40:4532-4588. [PMID: 37198919 DOI: 10.1080/02648725.2023.2213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Carotenoids are fat-soluble bio pigments often responsible for red, orange, pink and yellow coloration of fruits and vegetables. They are commonly referred as nutraceutical which is an alternative to pharmaceutical drugs claiming to have numerous physiological benefits. However their activity often get disoriented by photonic exposure, temperature and aeration rate thus leading to low bioavailability and bio accessibility. Most of the market value for carotenoids revolves around food and cosmetic industries as supplement where they have been continuously exposed to rigorous physico-chemical treatment. Though several encapsulation techniques are now in practice to improve stability of carotenoids, the factors like shelf life during storage and controlled release from the delivery vehicle always appeared to be a bottleneck in this field. In this situation, different technologies in nanoscale is showing promising result for carotenoid encapsulation and delivery as they provide greater mass per surface area and protects most of their bioactivities. However, safety concerns related to carrier material and process must be evaluated crucially. Thus, the aim of this review was to collect and correlate technical information concerning the parameters playing pivotal role in characterization and stabilization of designed vehicles for carotenoids delivery. This comprehensive study predominantly focused on experiments carried out in past decade explaining how researchers have fabricated bioprocess engineering in amalgamation with nano techniques to improve the bioavailability for carotenoids. Furthermore, it will help the readers to understand the cognisance of carotenoids in nutraceutical market for their trendy application in food, feed and cosmeceutical industries in contemporary era.
Collapse
Affiliation(s)
- Surojit Bera
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ruchira Mitra
- International College, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Raza MA, Sharma MK, Nagori K, Jain P, Ghosh V, Gupta U, Ajazuddin. Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine. Int J Pharm 2024; 666:124734. [PMID: 39343332 DOI: 10.1016/j.ijpharm.2024.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
The unique properties-such as biocompatibility, biodegradability, bio-absorbability, low cost, easy fabrication, and high versatility-have made polycaprolactone (PCL) the center of attraction for researchers. The derived introduction in this manuscript gives a pretty detailed overview of PCL, so you can first brush up on it. Discussion on the various PCL-based derivatives involves, but is not limited to, poly(ε-caprolactone-co-lactide) (PCL-co-LA), PCL-g-PEG, PCL-g-PMMA, PCL-g-chitosan, PCL-b-PEO, and PCL-g-PU specific properties and their probable applications in biomedicine. This paper has considered examining the differences in the diverse disease subtypes and the therapeutic value of using PCL. Advanced strategies for PCL in delivery systems are also considered. In addition, this review discusses recently patented products to provide a snapshot of recent updates in this field. Furthermore, the text probes into recent advances in PCL-based DDS, for example, nanoparticles, liposomes, hydrogels, and microparticles, while giving special attention to comparing the esters in the delivery of bioactive compounds such as anticancer drugs. Finally, we review future perspectives on using PCL in biomedical applications and the hurdles of PCL-based drug delivery, including fine-tuning mechanical strength/degradation rate, biocompatibility, and long-term effects in living systems.
Collapse
Affiliation(s)
- Mohammad Adnan Raza
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Mukesh Kumar Sharma
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Kushagra Nagori
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Parag Jain
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Vijayalakshmi Ghosh
- Department of Biotechnology, GD Rungta College of Science & Technology, Bhilai 490024, Chhattisgarh, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India; Rungta College of Engineering and Technology, Bhilai 490024, Chhattisgarh, India.
| |
Collapse
|
3
|
Ralla T, Kluenter AM, Litta G, Müller MA, Bonrath W, Schäfer C. Over 100 years of vitamin E: An overview from synthesis and formulation to application in animal nutrition. J Anim Physiol Anim Nutr (Berl) 2024; 108:646-663. [PMID: 38205908 DOI: 10.1111/jpn.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
The groundbreaking discovery of vitamin E by Evans and Bishop in 1922 was an important milestone in vitamin research, inspiring further investigation into its crucial role in both human and animal nutrition. Supplementing vitamin E has been proved to enhance multiple key physiological systems such as the reproductive, circulatory, nervous and muscular systems. As the main antioxidant in the blood and on a cellular level, vitamin E maintains the integrity of both cellular and vascular membranes and thus modulates the immune system. This overview showcases important and innovative routes for synthesizing vitamin E on a commercial scale, provides cutting-edge insights into formulation concepts for successful product form development and emphasizes the importance and future of vitamin E in healthy and sustainable animal nutrition.
Collapse
Affiliation(s)
- Theo Ralla
- dsm-firmenich AG, Kaiseraugst, Switzerland
| | | | | | | | | | | |
Collapse
|
4
|
Zhou Y, Wang P, Wan F, Zhu L, Wang Z, Fan G, Wang P, Luo H, Liao S, Yang Y, Chen S, Zhang J. Further Improvement Based on Traditional Nanocapsule Preparation Methods: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3125. [PMID: 38133022 PMCID: PMC10745493 DOI: 10.3390/nano13243125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Nanocapsule preparation technology, as an emerging technology with great development prospects, has uniqueness and superiority in various industries. In this paper, the preparation technology of nanocapsules was systematically divided into three categories: physical methods, chemical methods, and physicochemical methods. The technological innovation of different methods in recent years was reviewed, and the mechanisms of nanocapsules prepared via emulsion polymerization, interface polymerization, layer-by-layer self-assembly technology, nanoprecipitation, supercritical fluid, and nano spray drying was summarized in detail. Different from previous reviews, the renewal iteration of core-shell structural materials was highlighted, and relevant illustrations of their representative and latest research results were reviewed. With the continuous progress of nanocapsule technology, especially the continuous development of new wall materials and catalysts, new preparation technology, and new production equipment, nanocapsule technology will be used more widely in medicine, food, cosmetics, pesticides, petroleum products, and many other fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shangxing Chen
- National Forestry and Grassland Bureau Woody Spice (East China) Engineering Technology Research Center, The Institute of Plant Natural Products and Forest Products Chemical Engineering, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (P.W.); (F.W.); (L.Z.); (Z.W.); (G.F.); (P.W.); (H.L.); (S.L.); (Y.Y.)
| | - Ji Zhang
- National Forestry and Grassland Bureau Woody Spice (East China) Engineering Technology Research Center, The Institute of Plant Natural Products and Forest Products Chemical Engineering, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (P.W.); (F.W.); (L.Z.); (Z.W.); (G.F.); (P.W.); (H.L.); (S.L.); (Y.Y.)
| |
Collapse
|
5
|
Ramzan N, Azeem M, Mahmood K, Shah S, Chughtai FRS, Hanif M, Ameer N, Bashir Z, Siddique F, Qaisar M. Cellular and Non-cellular Antioxidant Properties of Vitamin E-Loaded Metallic-Quercetin/Polycaprolactone Nanoparticles for the Treatment of Melanogenesis. AAPS PharmSciTech 2023; 24:141. [PMID: 37349629 DOI: 10.1208/s12249-023-02588-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Inhibition of melanogenesis by quercetin and vitamin E is extensively reported in the literature, independently, with limitations in antioxidant potential owing to less permeation, solubility, decreased bioavailability, and reduced stability. Thus, the aim of the present study was to synthesize a novel complex of metal ions (copper and zinc) with quercetin to enhance antioxidant properties which were confirmed by docking studies. Polycaprolactone-based nanoparticles of the synthesized complex (PCL-NPs, Q-PCL-NPs, Zn-Q-PCL-NPs, Cu-Q-PCL-NPs) were made later loaded with vitamin E which made the study more interesting in enhancing antioxidant profile. Nanoparticles were characterized for zeta size, charge, and polydispersity index, while physiochemical analysis of nanoparticles was strengthened by FTIR. Cu-Q-PCL-NPs-E showed maximum in vitro release of vitamin E, i.e., 80 ± 0.54%. Non-cellular antioxidant effect by 2,2-diphenyl-1-picrylhydrazyl was observed at 93 ± 0.23% in Cu-Q-PCL-NPs-E which was twofold as compared to Zn-Q-PCL-NPs-E. Michigan Cancer Foundation-7 (MCF-7) cancer cell lines were used to investigate the anticancer and cellular antioxidant profile of loaded and unloaded nanoparticles. Results revealed reactive oxygen species activity of 90 ± 0.32% with the addition of 89 ± 0.64% of its anticancer behavior shown by Cu-Q-PCL-NPs-E after 6 and 24h. Similarly, 80 ± 0.53% inhibition of melanocyte cells and 95 ± 0.54% increase of keratinocyte cells were also shown by Cu-Q-PCL-NPs-E that confirmed the tyrosinase enzyme inhibitory effect. Conclusively, the use of zinc and copper complex in unloaded and vitamin E-loaded nanoparticles can provide enhanced antioxidant properties with inhibition of melanin, which can be used for treating diseases of melanogenesis.
Collapse
Affiliation(s)
- Nasreen Ramzan
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Multan, Pakistan
- Institute of Chemical Science, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Muhammad Azeem
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Multan, Pakistan
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University Islamabad Campus, Islamabad, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Science, Bahauddin Zakariya University Multan, Multan, Pakistan.
| | - Shahid Shah
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Multan, Pakistan.
| | - Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Multan, Pakistan
| | - Zakia Bashir
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Multan, Pakistan
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Muhammad Qaisar
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Multan, Pakistan
| |
Collapse
|
6
|
Tirado DF, Cabañas A, Calvo L. Modelling and Scaling-Up of a Supercritical Fluid Extraction of Emulsions Process. Processes (Basel) 2023. [DOI: 10.3390/pr11041063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Supercritical CO2 (scCO2) is utilized in the supercritical fluid extraction of emulsions (SFEE) to swiftly extract the organic phase (O) from an O/W emulsion. The dissolved substances in the organic phase precipitate into small particles and remain suspended in the water (W) with the aid of a surfactant. The process can be continuously conducted using a packed column in a counter-current flow of the emulsion and scCO2, at moderate pressure (8–10 MPa) and temperature (37–40 °C). To ensure the commercial viability of this technique, the organic solvent must be separated from the CO2 to facilitate the recirculation of both streams within the process while minimizing environmental impact. Thus, the aim of this work was to design a plant to produce submicron materials using SFEE, integrating the recovery of both solvents. First, experimental equilibrium data of the ternary system involved (CO2/ethyl acetate/water) were fitted with a proper thermodynamic model. Then, simulations of the whole integrated process at different scales were carried out using Aspen Plus®, along with economical evaluations. This work proposes the organic solvent separation with a distillation column. Thus, the two solvents can be recovered and recycled to the process in almost their entirety. Furthermore, the particles in the aqueous raffinate are produced free of solvents and sterilized for further safe use. The costs showed an important economy scale-up. This work could ease the transfer of the SFEE technology to the industry.
Collapse
Affiliation(s)
- Diego F. Tirado
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Albertina Cabañas
- Department of Physical Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Lourdes Calvo
- Department of Chemical and Materials Engineering, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
7
|
Tan M, Zhang X, Sun S, Cui G. Nanostructured steady-state nanocarriers for nutrients preservation and delivery. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:31-93. [PMID: 37722776 DOI: 10.1016/bs.afnr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food bioactives possess specific physiological benefits of preventing certain diet-related chronic diseases or maintain human health. However, the limitations of the bioactives are their poor stability, lower water solubility and unacceptable bioaccessibility. Structure damage or degradation is often found for the bioactives under certain environmental conditions like high temperature, strong light, extreme pH or high oxygen concentration during food processing, packaging, storage and absorption. Nanostructured steady-state nanocarriers have shown great potential in overcoming the drawbacks for food bioactives. Various delivery systems including solid form delivery system, liquid form delivery system and encapsulation technology have been developed. The embedded food nutrients can largely decrease the loss and degradation during food processing, packaging and storage. The design and application of stimulus and targeted delivery systems can improve the stability, bioavailability and efficacy of the food bioactives upon oral consumption due to enzymatic degradation in the gastrointestinal tract. The food nutrients encapsulated in the smart delivery system can be well protected against degradation during oral administration, thus improving the bioavailability and releazing controlled or targeted release for food nutrients. The encapsulated food bioactives show great potential in nutrition therapy for sub-health status and disease. Much effort is required to design and prepare more biocompatible nanostructured steady-state nanocarriers using food-grade protein or polysaccharides as wall materials, which can be used in food industry and maintain the human health.
Collapse
Affiliation(s)
- Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China.
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Shan Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| |
Collapse
|
8
|
Sodeifian G, Usefi MMB. Solubility, Extraction, and Nanoparticles Production in Supercritical Carbon Dioxide: A Mini‐Review. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gholamhossein Sodeifian
- University of Kashan Faculty of Engineering, Department of Chemical Engineering 87317-53153 Kashan Iran
- University of Kashan Laboratory of Supercritical Fluids and Nanotechnology 87317-53153 Kashan Iran
| | - Mohammad Mahdi Behvand Usefi
- University of Kashan Faculty of Engineering, Department of Chemical Engineering 87317-53153 Kashan Iran
- University of Kashan Laboratory of Supercritical Fluids and Nanotechnology 87317-53153 Kashan Iran
| |
Collapse
|
9
|
Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers (Basel) 2022; 14:polym14194194. [PMID: 36236142 PMCID: PMC9571964 DOI: 10.3390/polym14194194] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
This review presents an updated scenario of findings and evolutions of encapsulation of bioactive compounds for food and agricultural applications. Many polymers have been reported as encapsulated agents, such as sodium alginate, gum Arabic, chitosan, cellulose and carboxymethylcellulose, pectin, Shellac, xanthan gum, zein, pullulan, maltodextrin, whey protein, galactomannan, modified starch, polycaprolactone, and sodium caseinate. The main encapsulation methods investigated in the study include both physical and chemical ones, such as freeze-drying, spray-drying, extrusion, coacervation, complexation, and supercritical anti-solvent drying. Consequently, in the food area, bioactive peptides, vitamins, essential oils, caffeine, plant extracts, fatty acids, flavonoids, carotenoids, and terpenes are the main compounds encapsulated. In the agricultural area, essential oils, lipids, phytotoxins, medicines, vaccines, hemoglobin, and microbial metabolites are the main compounds encapsulated. Most scientific investigations have one or more objectives, such as to improve the stability of formulated systems, increase the release time, retain and protect active properties, reduce lipid oxidation, maintain organoleptic properties, and present bioactivities even in extreme thermal, radiation, and pH conditions. Considering the increasing worldwide interest for biomolecules in modern and sustainable agriculture, encapsulation can be efficient for the formulation of biofungicides, biopesticides, bioherbicides, and biofertilizers. With this review, it is inferred that the current scenario indicates evolutions in the production methods by increasing the scales and the techno-economic feasibilities. The Technology Readiness Level (TRL) for most of the encapsulation methods is going beyond TRL 6, in which the knowledge gathered allows for having a functional prototype or a representative model of the encapsulation technologies presented in this review.
Collapse
|
10
|
Review on the Scale-Up Methods for the Preparation of Solid Lipid Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14091886. [PMID: 36145632 PMCID: PMC9503303 DOI: 10.3390/pharmaceutics14091886] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022] Open
Abstract
Solid lipid nanoparticles (SLNs) are an alternate carrier system to liposomes, polymeric nanoparticles, and inorganic carriers. SLNs have attracted increasing attention in recent years for delivering drugs, nucleic acids, proteins, peptides, nutraceuticals, and cosmetics. These nanocarriers have attracted industrial attention due to their ease of preparation, physicochemical stability, and scalability. These characteristics make SLNs attractive for manufacture on a large scale. Currently, several products with SLNs are in clinical trials, and there is a high possibility that SLN carriers will quickly increase their presence in the market. A large-scale manufacturing unit is required for commercial applications to prepare enough formulations for clinical studies. Furthermore, continuous processing is becoming more popular in the pharmaceutical sector to reduce product batch-to-batch differences. This review paper discusses some conventional methods and the rationale for large-scale production. It further covers recent progress in scale-up methods for the synthesis of SLNs, including high-pressure homogenization (HPH), hot melt extrusion coupled with HPH, microchannels, nanoprecipitation using static mixers, and microemulsion-based methods. These scale-up technologies enable the possibility of commercialization of SLNs. Furthermore, ongoing studies indicate that these technologies will eventually reach the pharmaceutical market.
Collapse
|
11
|
Samy M, Abdallah HM, Awad HM, Ayoub MMH. In vitro release and cytotoxicity activity of 5-fluorouracil entrapped polycaprolactone nanoparticles. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03804-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Recent Developments and Applications of Nanosystems in the Preservation of Meat and Meat Products. Foods 2022; 11:foods11142150. [PMID: 35885393 PMCID: PMC9317627 DOI: 10.3390/foods11142150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Due to their high water, lipid, and protein content, meat and meat products are highly perishable. The principal spoilage mechanisms involved are protein and lipid oxidation and deterioration caused by microbial growth. Therefore, efforts are ongoing to ensure food safety and increase shelf life. The development of low-cost, innovative, eco-friendly approaches, such as nanotechnology, using non-toxic, inexpensive, FDA-approved ingredients is reducing the incorporation of chemical additives while enhancing effectiveness and functionality. This review focuses on advances in the incorporation of natural additives that increase the shelf life of meat and meat products through the application of nanosystems. The main solvent-free preparation methods are reviewed, including those that involve mixing organic–inorganic or organic–organic compounds with such natural substances as essential oils and plant extracts. The performance of these additives is analyzed in terms of their antioxidant effect when applied directly to meat as edible coatings or marinades, and during manufacturing processes. The review concludes that nanotechnology represents an excellent option for the efficient design of new meat products with enhanced characteristics.
Collapse
|
13
|
Wijakmatee T, Shimoyama Y, Orita Y. Integrated Micro-flow Process of Emulsification and Supercritical Fluid Emulsion Extraction for Stearic Acid Nanoparticle Production. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thossaporn Wijakmatee
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, S1-33, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yusuke Shimoyama
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, S1-33, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yasuhiko Orita
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, S1-33, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
14
|
Islam T, Al Ragib A, Ferdosh S, Uddin ABMH, Haque Akanda MJ, Mia MAR, D. M RP, Kamaruzzaman BY, Islam Sarker MZ. Development of nanoparticles for pharmaceutical preparations using supercritical techniques. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2021.1983545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tariqul Islam
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Abdullah Al Ragib
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Sahena Ferdosh
- Faculty of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - A. B. M. Helal Uddin
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | | | - Md. Abdur Rashid Mia
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Reddy Prasad D. M
- Petroleum and Chemical Engineering Programme area, Universiti Technology Brunei, Gadong, Brunei Darussalam
| | - Bin Yunus Kamaruzzaman
- Faculty of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Md. Zaidul Islam Sarker
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Food Science Program, Cooperative Research, Education and Extension Services, Northern Marianas College, Saipan, MP, USA
| |
Collapse
|
15
|
Park H, Kim JS, Kim S, Ha ES, Kim MS, Hwang SJ. Pharmaceutical Applications of Supercritical Fluid Extraction of Emulsions for Micro-/Nanoparticle Formation. Pharmaceutics 2021; 13:pharmaceutics13111928. [PMID: 34834343 PMCID: PMC8625501 DOI: 10.3390/pharmaceutics13111928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022] Open
Abstract
Micro-/nanoparticle formulations containing drugs with or without various biocompatible excipients are widely used in the pharmaceutical field to improve the physicochemical and clinical properties of the final drug product. Among the various micro-/nanoparticle production technologies, emulsion-based particle formation is the most widely used because of its unique advantages such as uniform generation of spherical small particles and higher encapsulation efficiency (EE). For this emulsion-based micro-/nanoparticle technology, one of the most important factors is the extraction efficiency associated with the fast removal of the organic solvent. In consideration of this, a technology called supercritical fluid extraction of emulsions (SFEE) that uses the unique mass transfer mechanism and solvent power of a supercritical fluid (SCF) has been proposed to overcome the shortcomings of several conventional technologies such as solvent evaporation, extraction, and spray drying. This review article presents the main aspects of SFEE technology for the preparation of micro-/nanoparticles by focusing on its pharmaceutical applications, which have been organized and classified according to several types of drug delivery systems and active pharmaceutical ingredients. It was definitely confirmed that SFEE can be applied in a variety of drugs from water-soluble to poorly water-soluble. In addition, it has advantages such as low organic solvent residual, high EE, desirable release control, better particle size control, and agglomeration prevention through efficient and fast solvent removal compared to conventional micro-/nanoparticle technologies. Therefore, this review will be a good resource for determining the applicability of SFEE to obtain better pharmaceutical quality when researchers in related fields want to select a suitable manufacturing process for preparing desired micro-/nanoparticle drug delivery systems containing their active material.
Collapse
Affiliation(s)
- Heejun Park
- College of Pharmacy, Duksung Women’s University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Korea; (H.P.); (S.K.)
| | - Jeong-Soo Kim
- Dong-A ST Co. Ltd., 21, Geumhwa-ro 105beon-gil, Giheung-gu, Yongin-si 17073, Korea;
| | - Sebin Kim
- College of Pharmacy, Duksung Women’s University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Korea; (H.P.); (S.K.)
| | - Eun-Sol Ha
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea;
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea;
- Correspondence: (M.-S.K.); (S.-J.H.); Tel.: +82-51-510-2813 (M.-S.K.)
| | - Sung-Joo Hwang
- Yonsei Institute of Pharmaceutical Sciences & College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
- Correspondence: (M.-S.K.); (S.-J.H.); Tel.: +82-51-510-2813 (M.-S.K.)
| |
Collapse
|
16
|
Huang K, Yuan Y, Baojun X. A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1963978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kehao Huang
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
- Department Of Food Science And Agricultural Chemistry, McGill University, Quebec, Canada
| | - Yingzhi Yuan
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
- Department Of Biochemistry, University College London, London, UK
| | - Xu Baojun
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
| |
Collapse
|
17
|
Tutek K, Masek A, Kosmalska A, Cichosz S. Application of Fluids in Supercritical Conditions in the Polymer Industry. Polymers (Basel) 2021; 13:729. [PMID: 33673482 PMCID: PMC7956827 DOI: 10.3390/polym13050729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
This article reviews the use of fluids under supercritical conditions in processes related to the modern and innovative polymer industry. The most important processes using supercritical fluids are: extraction, particle formation, micronization, encapsulation, impregnation, polymerization and foaming. This review article briefly describes and characterizes the individual processes, with a focus on extraction, micronization, particle formation and encapsulation. The methods mentioned focus on modifications in the scope of conducting processes in a more ecological manner and showing higher quality efficiency. Nowadays, due to the growing trend of ecological solutions in the chemical industry, we see more and more advanced technological solutions. Less toxic fluids under supercritical conditions can be used as an ecological alternative to organic solvents widely used in the polymer industry. The use of supercritical conditions to conduct these processes creates new opportunities for obtaining materials and products with specialized applications, in particular in the medical, pharmacological, cosmetic and food industries, based on substances of natural sources. The considerations contained in this article are intended to increase the awareness of the need to change the existing techniques. In particular, the importance of using supercritical fluids in more industrial methods and for the development of already known processes, as well as creating new solutions with their use, should be emphasized.
Collapse
Affiliation(s)
- Karol Tutek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland
| | - Anna Kosmalska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland
| | - Stefan Cichosz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland
| |
Collapse
|
18
|
Nanoparticles and Nanocrystals by Supercritical CO2-Assisted Techniques for Pharmaceutical Applications: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041476] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many active ingredients currently prescribed show limited therapeutic efficacy, mainly due to their dissolution rate inadequate to treat the pathology of interest. A large drug particle size creates an additional problem if a specific site of action in the human body has to be reached. For this reason, active ingredient size reduction using micronization/nanonization techniques is a valid approach to improve the efficacy of active compounds. Supercritical carbon-dioxide-assisted technologies enable the production of different morphologies of different sizes, including nanoparticles and nanocrystals, by modulating operating conditions. Supercritical fluid-based processes have numerous advantages over techniques conventionally employed to produce nanosized particles or crystals, such as reduced use of toxic solvents, which are completely removed from the final product, ensuring safety for patients. Active compounds can be processed alone by supercritical techniques, although polymeric carriers are often added as stabilizers, to control the drug release on the basis of the desired therapeutic effect, as well as to improve drug processability with the chosen technology. This updated review on the application of supercritical micronization/nanonization techniques in the pharmaceutical field aims at highlighting the most effective current results, operating conditions, advantages, and limitations, providing future perspectives.
Collapse
|
19
|
The encapsulation of hydroxytyrosol-rich olive oil in Eudraguard® protect via supercritical fluid extraction of emulsions. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Micellar Carriers Based on Amphiphilic PEG/PCL Graft Copolymers for Delivery of Active Substances. Polymers (Basel) 2020; 12:polym12122876. [PMID: 33266207 PMCID: PMC7760728 DOI: 10.3390/polym12122876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022] Open
Abstract
Amphiphilic copolymers of alkyne functionalized 2-hydroxyethyl methacrylate (AlHEMA) and poly(ethylene glycol) methyl ether methacrylate (MPEGMA) with graft or V-shaped graft topologies were synthesized. The functionalization of poly(ε-caprolactone) (PCL) with azide group enabled attachment to P(AlHEMA-co-MPEGMA) copolymers via a "click" alkyne-azide reaction. The introduction of PCL as a second side chain type in addition to PEG resulted in heterografted copolymers with modified properties such as biodegradability. "Click" reactions were carried out with efficiencies between 17-70% or 32-50% (for lower molecular weight PCL, 4000 g/mol, or higher molecular weight PCL, 9000 g/mol, respectively) depending on the PEG grafting density. The graft copolymers were self-assembled into micellar superstructures with the ability to encapsulate active substances, such as vitamin C (VitC), arbutin (ARB) or 4-n-butylresorcinol (4nBRE). Drug loading contents (DLC) were obtained in the range of 5-55% (VitC), 39-91% (ARB) and 42-98% (4nBRE). In vitro studies carried out in a phosphate buffer saline (PBS) solution (at pH 7.4 or 5.5) gave the maximum release levels of active substances after 10-240 min depending on the polymer system. Permeation tests in Franz chambers indicated that the bioactive substances after release by micellar systems penetrated through the artificial skin membrane in small amounts, and a majority of the bioactive substances remained inside the membrane, which is satisfactory for most cosmetic applications.
Collapse
|
21
|
Dhakal SP, He J. Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A review. Food Res Int 2020; 137:109326. [DOI: 10.1016/j.foodres.2020.109326] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 01/29/2023]
|
22
|
Klettenhammer S, Ferrentino G, Morozova K, Scampicchio M. Novel Technologies Based on Supercritical Fluids for the Encapsulation of Food Grade Bioactive Compounds. Foods 2020; 9:E1395. [PMID: 33023107 PMCID: PMC7601192 DOI: 10.3390/foods9101395] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, the demand for nutritive, functional and healthy foods has increased. This trend has induced the food industry to investigate novel technologies able to produce ingredients with enhanced functional and physicochemical properties. Among these technologies, one of the most promising is the encapsulation based on supercritical fluids. Thanks to the inherent absence of organic solvent, the low temperature of the process to reach a supercritical state and the capacity to dissolve lipid soluble bioactives, the encapsulation with supercritical carbon dioxide represents a green technology to produce several functional ingredients, with enhanced stability, high load and tailored protection from environmental factors. Furthermore, from the fine-tuning of the process parameters like temperature, pressure and flow rate, the resulting functional ingredient can be easily designed to tailor the controlled release of the bioactive, or to reach specific levels of taste, odor and color. Accordingly, the aim of the present review is to summarize the state of the art of the techniques based on supercritical carbon dioxide for the encapsulation of bioactive compounds of food interest. Pros and cons of such techniques will be highlighted, giving emphasis to their innovative aspects that could be of interest to the food industry.
Collapse
Affiliation(s)
| | - Giovanna Ferrentino
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (S.K.); (K.M.); (M.S.)
| | | | | |
Collapse
|
23
|
Okajima I, Kanie T, Sako T. Silicone Resin Coating of Micro-Sized Ferrite Particles Using Supercritical Carbon Dioxide. Polymers (Basel) 2020; 12:polym12092012. [PMID: 32899281 PMCID: PMC7565151 DOI: 10.3390/polym12092012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022] Open
Abstract
An environmentally friendly and efficient polymer coating method for micro-sized particles was developed using supercritical CO2. Because this method used supercritical CO2 as the solvent to dissolve the coating material, we avoided environmental pollution from organic solvents, saved the energy required to evaporate/remove organic solvents, realized a uniform coating film on the fine particles, and prevented agglomeration of the coating particles. The solubilities of the five silicone resins used as coating materials were measured using the flow method, and the data were well correlated by Chrastil’s equation with an average deviation of 5.7%. Resins comprising numerous methyl-group side chains exhibited high solubilities and were suitable coating materials. A new semi-flow-type coating method using supercritical CO2 was also developed, which deposited a film with a uniform thickness of 0.2–1.3 μm on whole fine particles. Notably, in this method, the film thickness was easily controlled. A simple and rapid technique was developed for measuring the coating thickness using X-ray fluorescence analysis. The model for calculating the coating film thickness was based on the material balance of the coating material. This model satisfactorily predicted the thickness with an average error of 0.085 μm by measuring the solubility of the coating material in supercritical CO2, integrated flow volume of supercritical CO2, particle diameter, density and charged weight of the fine particle, and coating material density.
Collapse
Affiliation(s)
- Idzumi Okajima
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan; (I.O.); (T.K.)
| | - Tatsuya Kanie
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan; (I.O.); (T.K.)
| | - Takeshi Sako
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan
- Correspondence: ; Tel./Fax: +81-53-478-1165
| |
Collapse
|
24
|
Tsai WC, Wang Y. Progress of supercritical fluid technology in polymerization and its applications in biomedical engineering. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Dong C, Li Z, Liu F, Wei W, Wang X, Liu Z. Effects of supercritical fluid parameters and emulsion formulation on the production of quercetin nanocapsules by supercritical fluid extraction of emulsion. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.03.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
β-Carotene, α-tocoferol and rosmarinic acid encapsulated within PLA/PLGA microcarriers by supercritical emulsion extraction: Encapsulation efficiency, drugs shelf-life and antioxidant activity. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Soh SH, Lee LY. Microencapsulation and Nanoencapsulation Using Supercritical Fluid (SCF) Techniques. Pharmaceutics 2019; 11:pharmaceutics11010021. [PMID: 30621309 PMCID: PMC6359585 DOI: 10.3390/pharmaceutics11010021] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
Abstract
The unique properties of supercritical fluids, in particular supercritical carbon dioxide (CO2), provide numerous opportunities for the development of processes for pharmaceutical applications. One of the potential applications for pharmaceuticals includes microencapsulation and nanoencapsulation for drug delivery purposes. Supercritical CO2 processes allow the design and control of particle size, as well as drug loading by utilizing the tunable properties of supercritical CO2 at different operating conditions (flow ratio, temperature, pressures, etc.). This review aims to provide a comprehensive overview of the processes and techniques using supercritical fluid processing based on the supercritical properties, the role of supercritical carbon dioxide during the process, and the mechanism of formulation production for each process discussed. The considerations for equipment configurations to achieve the various processes described and the mechanisms behind the representative processes such as RESS (rapid expansion of supercritical solutions), SAS (supercritical antisolvent), SFEE (supercritical fluid extraction of emulsions), PGSS (particles from gas-saturated solutions), drying, and polymer foaming will be explained via schematic representation. More recent developments such as fluidized bed coating using supercritical CO2 as the fluidizing and drying medium, the supercritical CO2 spray drying of aqueous solutions, as well as the production of microporous drug releasing devices via foaming, will be highlighted in this review. Development and strategies to control and optimize the particle morphology, drug loading, and yield from the major processes will also be discussed.
Collapse
Affiliation(s)
- Soon Hong Soh
- Newcastle Research and Innovation Institute, 80 Jurong East Street 21, #05-04 Devan Nair Institute for Employment & Employability, Singapore 609607, Singapore.
| | - Lai Yeng Lee
- Newcastle Research and Innovation Institute, 80 Jurong East Street 21, #05-04 Devan Nair Institute for Employment & Employability, Singapore 609607, Singapore.
- Newcastle University in Singapore, 537 Clementi Road, #06-01 SIT Building@Ngee Ann Polytechnic, Singapore 599493, Singapore.
| |
Collapse
|
28
|
Assadpour E, Mahdi Jafari S. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit Rev Food Sci Nutr 2018; 59:3129-3151. [PMID: 29883187 DOI: 10.1080/10408398.2018.1484687] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Today, there is an ever-growing interest on natural food ingredients both by consumers and producers in the food industry. In fact, people are looking for those products in the market which are free from artificial and synthetic additives and can promote their health. These food bioactive ingredients should be formulated in such a way that protects them against harsh process and environmental conditions and safely could be delivered to the target organs and cells. Nanoencapsulation is a perfect strategy for this situation and there have been many studies in recent years for nanoencapsulation of food components and nutraceuticals by different technologies. In this review paper, our main goal is firstly to have an overview of nanoencapsulation techniques applicable to food ingredients in a systematic classification, i.e., lipid-based nanocarriers, nature-inspired nanocarriers, special-equipment-based nanocarriers, biopolymer nanocarriers, and other miscellaneous nanocarriers. Then, application of these cutting-edge nanocarriers for different nutraceuticals including phenolic compounds and antioxidants, natural food colorants, antimicrobial agents and essential oils, vitamins, minerals, flavors, fish oils and essential fatty acids will be discussed along with presenting some examples in each field.
Collapse
Affiliation(s)
- Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
29
|
Pisoschi AM, Pop A, Cimpeanu C, Turcuş V, Predoi G, Iordache F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view. Eur J Med Chem 2018; 157:1326-1345. [DOI: 10.1016/j.ejmech.2018.08.076] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
|
30
|
|
31
|
Amin A, Samy M, Abd El-Alim SH, Rabia AEG, Ayoub MMH. Assessment of formulation parameters needed for successful vitamin C entrapped polycaprolactone nanoparticles. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1393816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Amal Amin
- Polymers and Pigments Department, National Research Centre, Giza, Egypt
| | - Moshera Samy
- Polymers and Pigments Department, National Research Centre, Giza, Egypt
| | | | - Abd El Gawad Rabia
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Magdy M. H. Ayoub
- Polymers and Pigments Department, National Research Centre, Giza, Egypt
| |
Collapse
|
32
|
Prieto C, Calvo L. The encapsulation of low viscosity omega-3 rich fish oil in polycaprolactone by supercritical fluid extraction of emulsions. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Prieto C, Calvo L, Duarte CM. Continuous supercritical fluid extraction of emulsions to produce nanocapsules of vitamin E in polycaprolactone. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Prieto C, Duarte CM, Calvo L. Performance comparison of different supercritical fluid extraction equipments for the production of vitamin E in polycaprolactone nanocapsules by supercritical fluid extraction of emulsionsc. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|