1
|
Wang W, Shui L, Liu Y, Zheng M. C-Kit, a Double-Edged Sword in Liver Regeneration and Diseases. Front Genet 2021; 12:598855. [PMID: 33603771 PMCID: PMC7884772 DOI: 10.3389/fgene.2021.598855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Previous studies have reported an important role of c-kit in embryogenesis and adulthood. Activation of the SCF/KIT signal transduction pathway is customarily linked to cell proliferation, migration and survival thus influence hematopoiesis, pigmentation, and spermatogenesis. The role of c-kit in the liver is controversial, it is however argued that it is a double-edged sword in liver regeneration and diseases. First, liver c-kit+ cells, including oval cells, bile epithelial cells, and part of hepatocytes, participate in liver tissue repair by regenerating target cells according to the type of liver injury. At the same time, c-kit+ mast cells, act as immature progenitors in circulation, playing a critical role in liver fibrosis. Furthermore, c-kit is also a proto-oncogene. Notably, c-kit overexpression regulates gastrointestinal stromal tumors. Various studies have explored on c-kit and hepatocellular carcinoma, nevertheless, the intricate roles of c-kit in the liver are largely understudied. Herein, we extensively summarize previous studies geared toward providing hints for future clinical and basic research.
Collapse
Affiliation(s)
- Weina Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liyan Shui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Role of interleukin 6 in liver cell regeneration after hemi-hepatectomy, correlation with liver enzymes and flow cytometric study. Clin Exp Hepatol 2020; 6:42-48. [PMID: 32166123 PMCID: PMC7062121 DOI: 10.5114/ceh.2020.93055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Aim of the study Liver regeneration after hemi-hepatectomy may be affected by several growth factors and cytokines. The aim is to evaluate the importance of interleukin 6 (IL-6) in the induction of liver cell regeneration and find correlations with other parameters such as liver enzymes, and DNA analysis by flow cytometric studies. Material and methods 80 adult male Sprague-Dawley rats were obtained and divided into two equal groups (n = 40 rats) to undergo 70% partial hepatectomy: group 1 - untreated (control) group; 40 rats not treated; and group 2 - treated group, 40 rats treated with IL-6 35 μg/100 gm body weight according to a lethality study for a period of 4 days, then hepatic resection was carried out according to the steps of Higgins and Anderson. Assessment of liver enzymes and bilirubin level was done. Flow cytometric study was done using a flow cytometer (FACSCalibur; Becton Dickinson) and DNA content was estimated with CellQuest software (Becton Dickinson). Results The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were significantly higher in the untreated group of rats with liver resection. A higher value of bilirubin was observed in the treated group. Rat weight at sacrification was significantly lower in the group of rats treated with IL-6 than those without treatment, p < 0.001. Liver weight at sacrification was significantly higher in the group of rats treated with IL-6 (p < 0.001). The percentage of apoptotic cells with hypodiploid DNA content was determined from DNA histograms. Untreated rat resected liver showed a peak pattern that represented liver damage with high damage of 73.4%. Conclusions Interleukin 6 is of value in induction of liver cell regeneration after seventy percent hemi-hepatectomy as evident by increased liver cell mass, liver enzymes and flow cytometric analysis.
Collapse
|
3
|
El-Houseini ME, Ismail A, Abdelaal AA, El-Habashy AH, Abdallah ZF, Mohamed MZ, El-Hadidi M, Cho WCS, Ahmed H, Al-Shafie TA. Role of TGF-β1 and C-Kit Mutations in the Development of Hepatocellular Carcinoma in Hepatitis C Virus-Infected Patients: in vitro Study. BIOCHEMISTRY (MOSCOW) 2019; 84:941-953. [PMID: 31522676 DOI: 10.1134/s0006297919080108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transforming growth factor beta (TGF-β) acts as a tumor-suppressing cytokine in healthy tissues and non-malignant tumors. Yet, in malignancy, TGF-β can exert the opposite effects that can promote proliferation of cancer cells. C-Kit plays a prominent role in stem cell activation and liver regeneration after injury. However, little is known about the cross-talk between TGF-β and C-Kit and its role in the progression of hepatocellular carcinoma (HCC). Here, we studied the effect of increasing doses of TGF-β1 on CD44+CD90+ liver stem cells (LSCs) and C-Kit gene expression in malignant and adjacent non-malignant liver tissues excised from 32 HCC patients. The percentage of LSCs in malignant tumors was two times higher compared to their counterparts from the non-malignant tissues. When treated with increasing doses of TGF-β1, proliferation of both malignant and non-malignant LSCs was progressively suppressed, but low TGF-β1 dose failed to suppress the growth of malignant LSCs. Moreover, C-Kit exons 9 and 11 were expressed in malignant LSCs, but not in their non-malignant counterparts. Analysis of C-Kit detected mutations in exon 9 (but not in exon 11) in some malignant liver cells resulting in the changes in the amino acid sequence and dysregulation of protein structure and function. Interestingly, in malignant liver cells, mutations in exon 9 were associated with high-viremia hepatitis C virus (HCV), and expression of this exon was not suppressed by the TGF-β1 treatment at all doses. To our knowledge, this is the first report that mutations in the C-Kit gene in HCC patients are associated with high- viremia HCV. Our study emphasizes the need for investigation of the TGF-β1 level and C-Kit mutations in patients with chronic HCV for HCC prevention and better therapy management.
Collapse
Affiliation(s)
- M E El-Houseini
- Cairo University, National Cancer Institute, Department of Cancer Biology, Cairo, 11796, Egypt
| | - A Ismail
- Ain Shams University, Faculty of Medicine, Department of Surgery, Cairo, 11566, Egypt
| | - A A Abdelaal
- Ain Shams University, Faculty of Medicine, Department of Surgery, Cairo, 11566, Egypt
| | - A H El-Habashy
- Cairo University, National Cancer Institute, Department of Pathology, Cairo, 11796, Egypt
| | - Z F Abdallah
- Cairo University, National Cancer Institute, Department of Cancer Biology, Cairo, 11796, Egypt
| | - M Z Mohamed
- Medical Center of Egyptian Railways, Department of Medical Laboratory, Cairo, 11669, Egypt
| | - M El-Hadidi
- Nile University, Center of Informatics Science, Giza, 12525, Egypt
| | - W C S Cho
- Queen Elizabeth Hospital, Department of Clinical Oncology, Kowloon, Hong Kong, China
| | - H Ahmed
- GlycoMantra, Inc., Baltimore, MD 21227, USA
| | - T A Al-Shafie
- Cairo University, National Cancer Institute, Department of Cancer Biology, Cairo, 11796, Egypt. .,Pharos University in Alexandria, Faculty of Pharmacy and Drug Manufacturing, Department of Pharmacology and Therapeutics, Alexandria, 21311, Egypt
| |
Collapse
|
4
|
Wang X, Dong J, Jia L, Zhao T, Lang M, Li Z, Lan C, Li X, Hao J, Wang H, Qin T, Huang C, Yang S, Yu M, Ren H. HIF-2-dependent expression of stem cell factor promotes metastasis in hepatocellular carcinoma. Cancer Lett 2017; 393:113-124. [DOI: 10.1016/j.canlet.2017.01.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
|
5
|
Norozi F, Ahmadzadeh A, Shahrabi S, Vosoughi T, Saki N. Mesenchymal stem cells as a double-edged sword in suppression or progression of solid tumor cells. Tumour Biol 2016; 37:11679-11689. [PMID: 27440203 DOI: 10.1007/s13277-016-5187-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Tumor cells are able to attract mesenchymal stem cells (MSCs) to primary tumor site. On the other hand, MSCs secrete various factors to attract tumor cells towards BM. In this review, in addition to assessment of MSCs function at tumor sites and their impact on growth and metastasis of tumor cells, the importance of MSC in attraction of malignant cells to BM and their involvement in drug resistance of tumor cells have also been studied. Relevant literature was identified by a PubMed search (2000-2015) of English-language literature using the terms mesenchymal stem cells, cancer cell, metastasis, and tumor microenvironment. MSCs migrate towards tumor microenvironment and are involved in both pro-tumorigenic and antitumorigenic functions. The dual function of MSCs at tumor sites is dependent upon a variety of factors, including the type and origin of MSCs, the cancer cell line under study, in vivo or in vitro conditions, the factors secreted by MSCs and interactions between MSCs, host immune cells and cancer cells. Therefore, MSCs can be regarded both as friends and enemies of cancer cells. Although the role of a number of pathways, including IL-6/STAT3 pathway, has been indicated in controlling the interaction between MSCs and tumor cells, other mechanisms by which MSCs can control the tumor cells are not clear yet. A better understanding of these mechanisms through further studies can determine the exact role of MSCs in cancer progression and identify them as important therapeutic agents or targets.
Collapse
Affiliation(s)
- Fatemeh Norozi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Ahmadzadeh
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of biochemistry and hematology, Faculty of Medicine, Semnan University of medical sciences, Semnan, Iran
| | - Tina Vosoughi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Katselis C, Apostolou K, Feretis T, Papanikolaou IG, Zografos GC, Toutouzas K, Papalois A. Role of Stem Cells Transplantation in Tissue Regeneration After Acute or Chronic Acetaminophen Induced Liver Injury. J INVEST SURG 2015; 29:112-20. [PMID: 26650889 DOI: 10.3109/08941939.2015.1086040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Acetaminophen-induced liver injury (APAP) is recognized as a frequent etiologic factor responsible for hepatic damage in the developed world. Management remains still elusive as treatment options are limited and their results are inconclusive. Consequently new strategies are explored at the experimental level. Mesenchymal stem cells (MSCs) present a promising modality as they can promote liver regeneration (LG) and compensate acute liver injury (ALI). MATERIALS AND METHODS Our research was focused on articles related to drug-induced liver injury, mechanisms of liver regeneration (LG) after Acute Liver Injury (ALI) and recent experimental protocols of Mesenchymal Stem Cells (MSCs) transplantation after chemical insult. All these studies are cited on Pubmed and MedLine. RESULTS This review has three distinct sections. First recent developments in ALI pathogenesis are presented. The second section covers cellular pathways and histological findings relevant to liver regeneration. The final chapter analyzes MSCs transplantation protocols after ALI and interrelation between liver regeneration and hepatic differentiation of MSCs. CONCLUSION Adipose tissue stem cells (ADSCs) and (MSCs) transplantation represents a promising modality in severe ALI management although many aspects remain to be clarified.
Collapse
Affiliation(s)
- Charalampos Katselis
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece.,b Experimental - Research Center , ELPEN Pharmaceuticals , Pikermi , Attica
| | - Konstantinos Apostolou
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece.,b Experimental - Research Center , ELPEN Pharmaceuticals , Pikermi , Attica
| | - Themistoklis Feretis
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece.,b Experimental - Research Center , ELPEN Pharmaceuticals , Pikermi , Attica
| | - Ioannis G Papanikolaou
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece.,b Experimental - Research Center , ELPEN Pharmaceuticals , Pikermi , Attica
| | - George C Zografos
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece
| | - Konstantinos Toutouzas
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece
| | - Apostolos Papalois
- a Department of Propaedeutic Surgery , University of Athens, School of Medicine, General Hospital of Athens "Hippocration" , Athens , Greece.,b Experimental - Research Center , ELPEN Pharmaceuticals , Pikermi , Attica
| |
Collapse
|
7
|
Stem Cell Factor and Thymic Stromal Lymphopoietin Overexpression With Correlation to Mast Cells in Superior Limbic Keratoconjunctivitis. Cornea 2015; 34:1487-92. [DOI: 10.1097/ico.0000000000000624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Jung J, Moon JW, Choi JH, Lee YW, Park SH, Kim GJ. Epigenetic Alterations of IL-6/STAT3 Signaling by Placental Stem Cells Promote Hepatic Regeneration in a Rat Model with CCl4-induced Liver Injury. Int J Stem Cells 2015; 8:79-89. [PMID: 26019757 PMCID: PMC4445712 DOI: 10.15283/ijsc.2015.8.1.79] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 05/04/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human chorionic plate-derived mesenchymal stem cells (CP-MSCs) isolated from the placenta have been reported to demonstrate therapeutic effects in animal models of liver injury; however, the underlying epigenetic mechanism of this effect has not been elucidated. Thus, we investigated whether CP-MSCs influence epigenetic processes during regeneration of the injured liver. METHODS CP-MSCs were engrafted into a carbon tetrachloride (CCl4)-injured rat model through direct transplantation into the liver (DTX), intrasplenic transplantation (STX), and intravenous transplantation via the tail vein (TTX). Non-transplanted (NTX) rats were maintained as sham controls. Liver tissues were analyzed after transplantation using immunohistochemistry, western blot analysis, and quantitative methylation-specific polymerase chain reaction. Proliferation and human interleukin-6 (hIL-6) enzyme-linked immunosorbent assays were performed using CCl4-treated hepatic cells that were co-cultured with CP-MSCs. RESULTS The Ki67 labeling index, cell cyclins, albumin, IL-6, and gp130 levels were elevated in the CP-MSC transplantation groups. The concentration of hIL-6 in supernatants and the proliferation of CCl4-treated rat hepatic cells were enhanced by co-culturing with CP-MSCs (p<0.05), while the methylation of IL-6/IL-6R and STAT3 by CP-MSC transplantation decreased. CONCLUSION These results suggest that administration of CP-MSCs promotes IL-6/STAT3 signaling by decreasing the methylation of the IL-6/SATA3 promoters and thus inducing the proliferation of hepatic cells in a CCl4-injured liver rat model. These data advance our understanding of the therapeutic mechanisms in injured livers, and can facilitate the development of cell-based therapies using placenta-derived stem cells.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Biomedical Science, CHA University, Seongnam, Korea ; Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
| | - Ji Wook Moon
- Institute of Human Genetics, Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - Jong-Ho Choi
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Yong Woo Lee
- Institute of Human Genetics, Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - Sun-Hwa Park
- Institute of Human Genetics, Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| |
Collapse
|
9
|
Saadi T, Nayshool O, Carmel J, Ariche A, Bramnik Z, Mironi-Harpaz I, Seliktar D, Baruch Y. Cellularized biosynthetic microhydrogel polymers for intravascular liver tissue regeneration therapy. Tissue Eng Part A 2014; 20:2850-9. [PMID: 24797901 PMCID: PMC4229865 DOI: 10.1089/ten.tea.2013.0494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 04/16/2014] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION The liver is the natural microenvironment for hepatocytes transplantation but unfortunately engraftment efficiency is low. Cell-laden microhydrogels made of fibrinogen attached to poly(ethylene glycol) (PEG)-diacrylate side chains, were used as a cell carrier, for intravascular transplantation. This approach may reduce shear stress and immediate immunological pressure after intravascular transplantation and provide biomatrix for environmental support. AIMS In vitro assessment of HuH-7 viability and function after polymerization within PEGylated fibrinogen-hydrogel. In vivo assessment of intraportal transplantation of cell-laden microhydrogels with rat adult parenchymal cells. METHODS (1) In vitro assessment of HuH-7 cell viability and function, after cell-laden hydrogel (hydrogel volume 30 μL) fabrication, by propidium iodide (PI)/fluorescein diacetate (FDA), and MTT assays, albumin concentration and CYP1A activity. (2) Fabrication of cell-laden microhydrogels and their intraportal transplantion. Engraftment efficiency in vivo was evaluated by real-time qPCR of Y chromosome (SRY gene) and histology. RESULTS The viability of cells in hydrogels in culture was comparable to viability of not embedded cells during the first 48 h. However, the viability of cells in hydrogels was reduced after 72 h compared with not embedded cells. Activity of CYP1A in hydrogel was comparable to that of not embedded cells (4.33±1 pmole/μg DNA/4 h vs. 5.13±1 pmole/μg DNA/4 h, respectively). Albumin concentration increased at day 3 in hydrogels to 1.4±0.6 μg/10(4)/24 h and was greater to that of free cells, 0.3±0.1 μg/10(4)/24 h. Cell-laden microhydrogels at a size of 150-150-600 μm (6×10(6) cells/rat) showed better engraftment efficiency at 21 days post-transplantation, compared with isolated cell transplantation (54.6%±5% vs. 1.8%±1.2%, p<0.001). CONCLUSIONS The in vitro HuH-7 viability and function after polymerization in PEGylated fibrinogen hydrogel was comparable to cells without the hydrogel. Long-term survival and engraftment efficiency of intravascular transplanted adult hepatocytes is much better in within cell-laden microhydrogels compared with isolated cells. The overall efficiency of the procedure needs to be improved.
Collapse
Affiliation(s)
- Tarek Saadi
- Liver Unit, Rambam—Health Care Campus, Haifa, Israel
| | - Omri Nayshool
- Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Julie Carmel
- Liver Unit, Rambam—Health Care Campus, Haifa, Israel
| | - Arie Ariche
- Department of Surgery B, Rambam—Health Care Campus, Haifa, Israel
| | - Zakhar Bramnik
- Department of Surgery B, Rambam—Health Care Campus, Haifa, Israel
| | - Iris Mironi-Harpaz
- Department of Biomedical Engineering, Technion- Israel Institute of Technology, Haifa, Israel
| | - Dror Seliktar
- Department of Biomedical Engineering, Technion- Israel Institute of Technology, Haifa, Israel
| | - Yaacov Baruch
- Liver Unit, Rambam—Health Care Campus, Haifa, Israel
- Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Modulation of Macrophages and Response of CD117+ Cells of Different Localization after Liver Damage in Mice. Bull Exp Biol Med 2014; 157:357-9. [DOI: 10.1007/s10517-014-2565-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Indexed: 10/25/2022]
|
11
|
Abstract
Liver regeneration is perhaps the most studied example of compensatory growth aimed to replace loss of tissue in an organ. Hepatocytes, the main functional cells of the liver, manage to proliferate to restore mass and to simultaneously deliver all functions hepatic functions necessary to maintain body homeostasis. They are the first cells to respond to regenerative stimuli triggered by mitogenic growth factor receptors MET (the hepatocyte growth factor receptor] and epidermal growth factor receptor and complemented by auxiliary mitogenic signals induced by other cytokines. Termination of liver regeneration is a complex process affected by integrin mediated signaling and it restores the organ to its original mass as determined by the needs of the body (hepatostat function). When hepatocytes cannot proliferate, progenitor cells derived from the biliary epithelium transdifferentiate to restore the hepatocyte compartment. In a reverse situation, hepatocytes can also transdifferentiate to restore the biliary compartment. Several hormones and xenobiotics alter the hepatostat directly and induce an increase in liver to body weight ratio (augmentative hepatomegaly). The complex challenges of the liver toward body homeostasis are thus always preserved by complex but unfailing responses involving orchestrated signaling and affecting growth and differentiation of all hepatic cell types.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
12
|
Haruki K, Shiba H, Fujiwara Y, Furukawa K, Wakiyama S, Ogawa M, Ishida Y, Misawa T, Yanaga K. Postoperative peripheral blood monocyte count correlates with postoperative bile leakage in patients with colorectal liver metastases after hepatic resection. Langenbecks Arch Surg 2013; 398:851-5. [PMID: 23640608 DOI: 10.1007/s00423-013-1083-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/21/2013] [Indexed: 12/28/2022]
Abstract
PURPOSE Postoperative bile leakage is one of the most common complications after hepatic surgery. The relationship between the inflammatory response and postoperative bile leakage has not been fully investigated. Therefore, we retrospectively investigated the relation between postoperative peripheral blood monocyte count and bile leakage in patients with colorectal liver metastases (CRLM) after elective hepatic resection. METHODS The study comprised 105 patients who had undergone hepatic resection for CRLM between January 2000 and March 2012. Perioperative risk factors pertinent to development of bile leakage were investigated using univariate and multivariate analyses. RESULTS Bile leakage developed in 9 (8.6 %) of 105 patients. In multivariate analysis, intraoperative fresh frozen plasma (FFP) transfusion (p = 0.009) and lower monocyte count of the peripheral blood on postoperative day 1 (p = 0.038) were found as independent risk factors of bile leakage. CONCLUSIONS Postoperative lower monocyte count and intraoperative FFP transfusion were associated with the development of postoperative bile leakage after elective hepatic resection in patients with CRLM.
Collapse
Affiliation(s)
- Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Efficacy of chorionic plate-derived mesenchymal stem cells isolated from placenta in CCl4-injured rat liver depends on transplantation routes. Tissue Eng Regen Med 2013. [DOI: 10.1007/s13770-013-0364-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
14
|
Abidov MT, Danilova IG, Brykina IA, Yushkov BG, Pashnina IA. Reaction of CD117+ cells to renal lesion under conditions of phagocytic mononuclear system stimulation. Bull Exp Biol Med 2012; 153:61-3. [PMID: 22808495 DOI: 10.1007/s10517-012-1643-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The content of CD117(+)cells in the kidneys and CD45(low)CD117(+)cells in the bone marrow and blood of mice were studied after partial nephrectomy and under conditions of macrophage stimulation with 3-aminophthalhydrazide. The counts of tubular CD117(+)epitheliocytes sharply increased and the content of CD45(low)CD117(+)cells in the bone marrow decreased after renal damage. Injection of 3-aminophthalhydrazide stimulated the expression of CD117 by renal epitheliocytes and led to reduction of CD45(low)CD117(+)cell counts in the bone marrow and blood. Macrophages stimulated proliferative processes in the kidney and differentiation of stem cells in the bone marrow due to synergic effects of their cytokines and stem cell factor.
Collapse
Affiliation(s)
- M T Abidov
- Institute of Immunology and Physiology, Ural Division of Russian Academy of Sciences, Ekaterinburg, Russia
| | | | | | | | | |
Collapse
|
15
|
Miyamoto K, Kobayashi T, Hayashi Y, Zhang Y, Hara Y, Higashine M, Shiraishi A, Ohashi Y. Involvement of stem cell factor and c-kit in corneal wound healing in mice. Mol Vis 2012; 18:1505-15. [PMID: 22736941 PMCID: PMC3381705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/04/2012] [Indexed: 11/14/2022] Open
Abstract
PURPOSE To study the roles played by stem cell factor (SCF) and SCF receptor c-kit in wound healing of corneal epithelial cells. METHODS A 2 mm corneal epithelial wound was made in control (WBB6F1(+/+)), SCF (Sl/Sl(d))-, and c-kit (W/W(v)) mutant mice, and the speed of wound healing, 5-bromo-2'-deoxyuridine (BrdU) incorporation, and scanning electron microscopic (SEM) morphology of the corneas were examined. The incorporation of BrdU and the degree of cell attachment in cultured mouse corneal epithelial cells (MCECs) isolated from WBB6F1(+/+), Sl/Sl(d), and W/W(v) mice were examined. Cultured immortalized human corneal epithelial cells (HCECs) were examined by a cell attachment assay after their exposure to anti-SCF antibodies, tyrosine kinase inhibitor (genistein), and competitive Arg-Gly-Asp (RGD) peptide, as well as on cultures treated with extracellular matrix. RESULTS The speed of corneal wound healing was slower in Sl/Sl(d) and W/W(v) mice than in controls (p<0.01) and the speed of healing in Sl/Sl(d) mice recovered after topical application of SCF (8 ng/ml). No significant difference was found in the BrdU incorporation assay either in vivo or in vitro. Loosened epithelial cells were detected at wound margins in W/W(v) mice by SEM. The cell attachment rate was increased by 157% in cells from WBB6F1(+/+) and 252% in Sl/Sl(d) MCECs by recombinant mouse SCF; however, no significant difference was found in W/W(v) MCECs. Anti-SCF antibodies (Ab), genistein, and RGD peptide reduced the percentage of attached HCECs. Anti-SCF Ab inhibited the attachment of HCECs on fibronectin, laminin, or type IV collagen coated dishes. CONCLUSIONS These findings indicate that the SCF/c-kit system may play a role in corneal wound healing through epithelial cell attachment.
Collapse
Affiliation(s)
- Kazuhisa Miyamoto
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Takeshi Kobayashi
- Department of Ophthalmology and Regenerative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
- Department of Stem Cell Biology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yasuhito Hayashi
- Department of Ophthalmology and Regenerative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuan Zhang
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuko Hara
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Masakatsu Higashine
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Atsushi Shiraishi
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
- Department of Stem Cell Biology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuichi Ohashi
- Department of Ophthalmology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
- Department of Infectious Diseases, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
16
|
Nakano T, Lai CY, Goto S, Hsu LW, Kawamoto S, Ono K, Chen KD, Lin CC, Chiu KW, Wang CC, Cheng YF, Chen CL. Immunological and regenerative aspects of hepatic mast cells in liver allograft rejection and tolerance. PLoS One 2012; 7:e37202. [PMID: 22615941 PMCID: PMC3352886 DOI: 10.1371/journal.pone.0037202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/15/2012] [Indexed: 01/10/2023] Open
Abstract
The precise roles of mast cells in liver allograft rejection and tolerance are still unknown. This study aimed to explore the roles of mast cells in immune regulation and liver regeneration for tolerance induction by using rat models of orthotopic liver transplantation (OLT). Stem cell factor (SCF) and its receptor c-Kit, which are critical to the migration and development of not only stem cells but also mast cells, significantly increased in the tolerogenic livers as compared with rejected livers. The significant elevation of mast cell tryptase, high-affinity IgE receptor, and histamine suggested the activation of mast cells in liver allografts at the tolerogenic phase after OLT. Immunohistochemical analysis using confocal microscope clearly showed colocalization of mast cells, Foxp3+ Tregs, γδ T cells, and recipient-derived hepatic progenitor cells with higher expression of SCF, IL-9, IL-10, TGF-β1, and IL-17 related to immunoregulation and liver regeneration in the donor grafts of a tolerogenic OLT model. Cross-talk among mast cells and other cells was evaluated by in vitro studies demonstrating that syngeneic bone marrow-derived mast cells (BMMCs) co-cultured with naïve splenocytes or primary hepatocytes significantly increased the population of splenic γδ T cells by mitogen stimulation or by mast cell degranulation, and also significantly induced the hepatocyte proliferation, respectively. Our results suggested that mast cells in the donor grafts may play important roles in the induction/maintenance of immune tolerance and liver regeneration resulting in the replacement of hepatic cells from donor to recipient.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Niao-Sung, Taiwan
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Niao-Sung, Kaohsiung, Taiwan
- Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung, Kaohsiung, Taiwan
- * E-mail: (TN); (CLC)
| | - Chia-Yun Lai
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Niao-Sung, Kaohsiung, Taiwan
- Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung, Kaohsiung, Taiwan
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Shigeru Goto
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Niao-Sung, Kaohsiung, Taiwan
- Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung, Kaohsiung, Taiwan
- Iwao Hospital, Kawakami, Yufu, Oita, Japan
| | - Li-Wen Hsu
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Niao-Sung, Kaohsiung, Taiwan
- Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung, Kaohsiung, Taiwan
| | - Seiji Kawamoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Kazuhisa Ono
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Kuang-Den Chen
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Niao-Sung, Kaohsiung, Taiwan
- Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung, Kaohsiung, Taiwan
| | - Chih-Che Lin
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Niao-Sung, Kaohsiung, Taiwan
- Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung, Kaohsiung, Taiwan
| | - King-Wah Chiu
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Niao-Sung, Kaohsiung, Taiwan
- Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung, Kaohsiung, Taiwan
| | - Chih-Chi Wang
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Niao-Sung, Kaohsiung, Taiwan
- Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung, Kaohsiung, Taiwan
| | - Yu-Fan Cheng
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Niao-Sung, Kaohsiung, Taiwan
- Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung, Kaohsiung, Taiwan
| | - Chao-Long Chen
- Liver Transplantation Program, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Niao-Sung, Kaohsiung, Taiwan
- Division of Transplant Immunology, Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Niao-Sung, Kaohsiung, Taiwan
- * E-mail: (TN); (CLC)
| |
Collapse
|
17
|
Carmel J, Arish A, Shoshany G, Baruch Y. Heparanase accelerates the proliferation of both hepatocytes and endothelial cells early after partial hepatectomy. Exp Mol Pathol 2012; 92:202-9. [PMID: 22305926 DOI: 10.1016/j.yexmp.2012.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/17/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Heparanase (HPSE) is an endo-β-D-glucuronidase, which cleaves heparan sulfate in the extracellular matrix (ECM) and has pro-angiogenic and pro-proliferative properties. The aim of this investigation was to study the effect of HPSE on hepatocytes and endothelial cells (EC) during liver regeneration. METHODS Following 70% hepatectomy (PHP), rats were injected daily with 1-50μg HPSE/rat. Liver samples were stained with H&E and anti-bromodeoxyuridine (BrdU) antibody. mRNAs of hepatocyte growth factor (HGF), stem cell factor, tumor necrosis factor (TNF)-α, interleukin(IL)-6, and cyclinD1 were tested by real-time qPCR. Matrix metalloproteinases (MMPs) were tested by gel zymography. RESULTS Compared to the saline control, HPSE increased hepatocyte proliferation 24h, 48h and 72h after PHP, with the maximal effect found at 24h with 50μg HPSE (40.9±2.5% vs. 8.6±4.3%, p<0.01 for BrdU staining; 5.5±0.9% vs. 0.8±0.5%, p<0.05 for mitosis). Proliferation of the sinusoidal and the portal vein radical ECs was also increased (p<0.05). HPSE caused a twofold increase in cyclinD1 mRNA (p<0.05) and in pro-MMP-9 levels (p<0.05). HPSE at all doses also caused significant reductions of TNF-α mRNA (p<0.05) and IL-6 mRNA, and no change in HGF mRNA. CONCLUSIONS HPSE enhances liver regeneration by inducing proliferation of hepatocytes and both sinusoidal and vascular ECs. Since the effect of HPSE on hepatocytes occurred earlier than that observed in ECs, this effect is not related to HPSE's effect on ECs. The mechanism of HPSE action is probably indirect and is mediated by HPSE-dependent ECM cleavage and the release of pre-existing enzymes.
Collapse
Affiliation(s)
- Julie Carmel
- Liver Unit, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
18
|
Meng F, Francis H, Glaser S, Han Y, DeMorrow S, Stokes A, Staloch D, Venter J, White M, Ueno Y, Reid LM, Alpini G. Role of stem cell factor and granulocyte colony-stimulating factor in remodeling during liver regeneration. Hepatology 2012; 55:209-21. [PMID: 21932404 PMCID: PMC3245374 DOI: 10.1002/hep.24673] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Functional pluripotent characteristics have been observed in specific subpopulations of hepatic cells that express some of the known cholangiocyte markers. Although evidence indicates that specific cytokines, granulocyte macrophage colony-stimulating factors (GM-CSFs), and stem cell factors (SCFs) may be candidate treatments for liver injury, the role of these cytokines in intrahepatic biliary epithelium remodeling is unknown. Thus, our aim was to characterize the specific cytokines that regulate the remodeling potentials of cholangiocytes after 70% partial hepatectomy (PH). The expression of the cytokines and their downstream signaling molecules was studied in rats after 70% PH by immunoblotting and in small and large murine cholangiocyte cultures (SMCCs and LMCCs) by immunocytochemistry and real-time polymerase chain reaction (PCR). There was a significant, stable increase in SCF and GM-CSF levels until 7 days after PH. Real-time PCR analysis revealed significant increases of key remodeling molecules, such as S100 calcium-binding protein A4 (S100A4) and miR-181b, after SCF plus GM-CSF administration in SMCCs. SMCCs produced significant amounts of soluble and bound SCFs and GM-CSFs in response to transforming growth factor-beta (TGF-β). When SMCCs were incubated with TGF-β plus anti-SCF+GM-CSF antibodies, there was a significant decrease in S100A4 expression. Furthermore, treatment of SMCCs with SCF+GM-CSF significantly increased matrix metalloproteinases (MMP-2 and MMP-9) messenger RNA as well as miR-181b expression, along with a reduction of metalloproteinase inhibitor 3. Levels of MMP-2, MMP-9, and miR-181b were also up-regulated in rat liver and isolated cholangiocytes after PH. CONCLUSION Our data suggest that altered expression of SCF+GM-CSF after PH can contribute to biliary remodeling (e.g., post-transplantation) by functional deregulation of the activity of key signaling intermediates involved in cell expansion and multipotent differentiation.
Collapse
Affiliation(s)
- Fanyin Meng
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M HSC COM and Scott & White Hospital, Temple, TX, USA,Research & Education, Scott & White Hospital, Temple, TX, USA,Research, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Heather Francis
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M HSC COM and Scott & White Hospital, Temple, TX, USA,Research & Education, Scott & White Hospital, Temple, TX, USA,Research, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Shannon Glaser
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M HSC COM and Scott & White Hospital, Temple, TX, USA,Research, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Yuyan Han
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M HSC COM and Scott & White Hospital, Temple, TX, USA
| | - Sharon DeMorrow
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M HSC COM and Scott & White Hospital, Temple, TX, USA
| | - Allison Stokes
- Research & Education, Scott & White Hospital, Temple, TX, USA
| | - Dustin Staloch
- Research & Education, Scott & White Hospital, Temple, TX, USA
| | - Julie Venter
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M HSC COM and Scott & White Hospital, Temple, TX, USA
| | - Melanie White
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M HSC COM and Scott & White Hospital, Temple, TX, USA
| | - Yoshiyuki Ueno
- Division Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Lola M. Reid
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Gianfranco Alpini
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M HSC COM and Scott & White Hospital, Temple, TX, USA,Research, Central Texas Veterans Health Care System, Temple, TX, USA
| |
Collapse
|
19
|
Intrahepatic transplantation of CD34+ cord blood stem cells into newborn and adult NOD/SCID mice induce differential organ engraftment. Tissue Cell 2011; 44:80-6. [PMID: 22197619 DOI: 10.1016/j.tice.2011.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 11/15/2011] [Accepted: 11/17/2011] [Indexed: 11/21/2022]
Abstract
In vivo studies concerning the function of human hematopoietic stem cells (HSC) are limited by relatively low levels of engraftment and the failure of the engrafted HSC preparations to differentiate into functional immune cells after systemic application. In the present paper we describe the effect of intrahepatically transplanted CD34(+) cells from cord blood into the liver of newborn or adult NOD/SCID mice on organ engraftment and differentiation. Analyzing the short and long term time dependency of human cell recruitment into mouse organs after cell transplantation in the liver of newborn and adult NOD/SCID mice by RT-PCR and FACS analysis, a significantly high engraftment was found after transplantation into liver of newborn NOD/SCID mice compared to adult mice, with the highest level of 35% human cells in bone marrow and 4.9% human cells in spleen at day 70. These human cells showed CD19 B-cell, CD34 and CD38 hematopoietic and CD33 myeloid cell differentiation, but lacked any T-cell differentiation. HSC transplantation into liver of adult NOD/SCID mice resulted in minor recruitment of human cells from mouse liver to other mouse organs. The results indicate the usefulness of the intrahepatic application route into the liver of newborn NOD/SCID mice for the investigation of hematopoietic differentiation potential of CD34(+) cord blood stem cell preparations.
Collapse
|
20
|
Yushkov BG, Danilova IG, Ponezheva ZB, Brykina IA, Abidov MT, Kalyuzhin OV. Modulation of reparative regeneration and CD117 expression by liver cells after partial hepatectomy in mice. Bull Exp Biol Med 2011; 150:352-4. [PMID: 21240352 DOI: 10.1007/s10517-011-1140-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effects of 3-aminophthalhydrazide and carrageenan on reparative regeneration and expression of CD117 by liver cells after partial hepatectomy were studied in mice. 3-Aminophthalhydrazide stimulated regeneration of the liver and increased the count of CD117(+) hepatocytes. By contrast, carrageenan inhibited liver reparation and CD117 expression.
Collapse
Affiliation(s)
- B G Yushkov
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, Ekaterinburg, Russia
| | | | | | | | | | | |
Collapse
|
21
|
Bahde R, Kebschull L, Stöppeler S, Zibert A, Siaj R, Hölzen JP, Minin E, Schmidt HHJ, Spiegel HU, Palmes D. Role of angiotensin-1 receptor blockade in cirrhotic liver resection. Liver Int 2011; 31:642-55. [PMID: 21457437 DOI: 10.1111/j.1478-3231.2011.02493.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The regeneration capacity of cirrhotic livers might be affected by angiotensin-1 (AT1) receptors located on hepatic stellate cells (HSC). The effect of AT1 receptor blockade on microcirculation, fibrosis and liver regeneration was investigated. MATERIALS AND METHODS In 112 Lewis rats, cirrhosis was induced by repetitive intraperitoneal injections of CCl(4) . Six hours, 3, 7 and 14 days after partial hepatectomy or sham operation, rats were sacrificed for analysis. Animals were treated with either vehicle or 5 mg/kg body weight losartan pre-operatively and once daily after surgery by gavage. Microcirculation and portal vein flow were investigated at 6 h. The degree of cirrhosis was assessed by Azan Heidenhein staining, activation of HSC by desmin staining, apoptosis by ssDNA detection and liver regeneration by Ki-67 staining. Changes in expression of various genes important for liver regeneration and fibrosis were analysed at 6 h and 3 days. Haemodynamic parameters and liver enzymes were monitored. RESULTS Losartan treatment increased sinusoidal diameter, sinusoidal blood flow and portal vein flow after partial hepatectomy (P<0.05), but not after sham operation. AT1 receptor blockade resulted in increased apoptosis early after resection. HSC activation was reduced and after 7 days, a significantly lower degree of cirrhosis in resected animals was observed. Losartan increased the proliferation of hepatocytes at late time-points and of non-parenchymal cells early after partial hepatectomy (P<0.05). Tumour necrosis factor (TNF)-α was significantly upregulated at 6 h and stem cell growth factor (SCF) was downregulated at 3 days (P<0.05). CONCLUSION Losartan increased hepatic blood flow, reduced HSC activation and liver fibrosis, but interfered with hepatocyte proliferation after partial hepatectomy in cirrhotic livers.
Collapse
Affiliation(s)
- Ralf Bahde
- Department of General and Visceral Surgery, Division of Surgical Research, Muenster University Hospital, Muenster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ren X, Hu B, Colletti LM. IL-22 is involved in liver regeneration after hepatectomy. Am J Physiol Gastrointest Liver Physiol 2010; 298:G74-80. [PMID: 19875704 PMCID: PMC2806105 DOI: 10.1152/ajpgi.00075.2009] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 10/20/2009] [Indexed: 02/07/2023]
Abstract
Hepatocyte proliferation following partial hepatectomy is an important component of liver regeneration, and recent in vitro studies have shown that IL-22 is involved in cellular proliferation in a variety of cell types, including hepatocytes. IL-22 functions through IL-10Rbeta and IL-22Ralpha. The goal of this study was to investigate the potential role of IL-22 in liver regeneration after 70% hepatectomy. Following 70% hepatectomy, done under general anesthesia in mice, serum IL-22 and hepatic IL-22Ralpha mRNA were significantly increased. Although administration of exogenous IL-22 prior to hepatectomy did not increase hepatocyte proliferation, administration of anti-IL-22 antibody before hepatectomy did significantly decrease hepatocyte proliferation. Furthermore, IL-22 treatment prior to 70% hepatectomy induced stat-3 activation; no significant changes were seen in ERK1/2 activation, stat-1 activation, or stat-5 activation. IL-22 pretreatment also significantly increased hepatic and serum IL-6 levels. In addition, animals treated with anti-IL-22 antibody also expressed less TGF-alpha. In conclusion, these data suggest that IL-22 is involved in liver regeneration and this may be due to interaction with IL-6 and TGF-alpha cascades.
Collapse
Affiliation(s)
- Xiaodan Ren
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
23
|
Wang W, Li Y, Zhang W, Zhang F, Li J. Changes of plasma glutamine concentration and hepatocyte membrane system N transporters expression in early endotoxemia. J Surg Res 2009; 166:290-7. [PMID: 20036385 DOI: 10.1016/j.jss.2009.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 08/05/2009] [Accepted: 08/28/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Glutamine plays important roles in health and critical illness. During endotoxemia, glutamine metabolism, including its plasma level and transport, changes markedly. Previous studies have demonstrated that system N transporters in hepatocytes play a major role in hepatic glutamine transport. However, little is known about the changes of mRNA and protein expression of system N transporters in hepatocyte plasma membrane. Furthermore, the alteration of plasma glutamine concentration during endotoxemia is still controversial. In this study, we investigated the changes in early endotoxemic rats by intraperitoneal injection of lipopolysaccharide (LPS). MATERIALS AND METHODS Three, 6, 12 mg/kg body weight doses of LPS were injected intraperitoneally to establish the endotoxemic rat model; equal volume of 0.9% saline was used as the control. Before and 2, 4, 6, 12, 24h after injections, plasma glutamine concentration, mRNA, and protein expression of SNAT3 and SNAT5 transporters in hepatocyte plasma membrane were detected by high performance liquid chromatography, real-time PCR, and Western blot, respectively. RESULTS LPS injection resulted in a marked increase of the plasma glutamine concentration from 4 to 12h (3mg/kg) and 2 to 6h (6 mg/kg, 12 mg/kg) after the injection compared with its physiologic level, and a significant decrease in 6, 12 mg/kg groups at 24h. Both the mRNA and protein expression of SNAT3 and SNAT5 were enhanced by LPS in a time- and dose-dependent manner. CONCLUSIONS The plasma glutamine concentration in endotoxemic rat increased transiently during early endotoxemia but subsequently decreased over time. The effect of LPS on system N expression occurs not only at the protein level, but also at the mRNA level. It is reasonable to supplement glutamine for patients with sepsis or endotoxemia begin at 6 to 12h after the development of disease.
Collapse
Affiliation(s)
- Weiya Wang
- Department of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province, PR China
| | | | | | | | | |
Collapse
|
24
|
Gómez-Aristizábal A, Keating A, Davies JE. Mesenchymal stromal cells as supportive cells for hepatocytes. Mol Ther 2009; 17:1504-8. [PMID: 19584815 PMCID: PMC2835270 DOI: 10.1038/mt.2009.158] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 06/16/2009] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes and hematopoietic stem cells (HSCs) appear to share many of the same requirements for their survival, functionality, and proliferation. This may be due to a shared location during fetal development. Moreover, hepatocytes and HSCs are unable to function, or even survive, without stromal cell support. Bone marrow-derived mesenchymal stromal cells (MSCs) support the proliferation and functionality, not only of HSCs, but also of hepatocytes. Although knowledge of the mechanisms underlying HSCs' support is far more advanced than for hepatocytes, data suggest that many agents important for HSCs also maintain the normal hepatocyte phenotype in vitro. Thus, it is possible that new techniques for the maintenance and expansion of HSCs may also be useful for hepatocytes. Bone marrow-derived MSCs are easily cultured and expanded in vitro, and some data suggest that they are immunoregulatory as well as relatively nonimmunogenic. These observations suggest that allogeneic MSCs may be useful not only in supporting hepatocyte growth and proliferation but also in modulating immune responses such as stellate cell activation.
Collapse
|
25
|
Expression of stem cell factor and its receptor c-Kit during the development of intrahepatic cholangiocarcinoma. J Transl Med 2009; 89:562-74. [PMID: 19255573 DOI: 10.1038/labinvest.2009.15] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Stem cell factor (SCF) and its receptor, c-Kit, constitute an important signal transduction system with proliferative and anti-apoptotic functions. Besides regulating hemopoietic stem cell proliferation and liver regeneration, it has been implicated in the regulation of human malignancies. However, the cellular expression of the SCF-c-Kit gene system in the liver during cholangiocarcinogenesis has not been studied to date. The protein- and mRNA-expression levels of SCF and c-Kit genes were examined in normal rat liver, in isolated normal rat liver cells and in a thioacetamide-induced rat model of intrahepatic cholangiocarcinoma (CC). Immunohistochemical analysis of the normal liver showed that SCF is expressed in the wall of the hepatic artery and in some cells, which were located along the sinusoids, although it was absent from hepatocytes and biliary epithelial cells. The mRNA analysis of isolated normal liver cell populations revealed a co-expression of SCF- and c-Kit-mRNA in sinusoidal endothelial cells and in Kupffer cells, whereas passaged and cultured liver myofibroblasts (MFs) expressed only SCF. Low levels of the SCF- and c-Kit-mRNA expression could be detected in isolated hepatocytes of the normal liver. Immunohistochemical analysis of the CC tissue showed SCF positivity in proliferating biliary cells (CK-19(+)), in macrophages (ED-1(+)) and in MFs (alpha-smooth-muscle-actin, alpha-SMA(+)) of the tumoral microenvironment. c-Kit-positivity could be detected on hepatocytes of the regenerating nodules and on the proliferating bile ducts of CC. Compared with the normal liver tissue, SCF-mRNA from the CC tissue was upregulated up to 20-fold, whereas c-Kit-mRNA was upregulated up to fivefold. These data indicate that several cell populations may become able to express SCF and/or c-Kit during cholangiocarcinogenesis. Therefore, the SCF-c-Kit system may contribute to tumor development, for instance, by inducing proliferation of hepatocytes and of biliary cells and by acting as a surviving factor for CC cells.
Collapse
|