1
|
Ban KY, Na YW, Song J, Kim JS, Kim J. Protein-RNA interaction dynamics reveal key regulators of oncogenic KRAS-driven cancers. Sci Rep 2024; 14:27119. [PMID: 39511334 PMCID: PMC11544019 DOI: 10.1038/s41598-024-78333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
KRAS is one of the most frequently mutated oncogenes across various cancers. Oncogenic KRAS mutations rewire cellular signaling, leading to significant alterations in gene expression. RNA-binding proteins (RBPs) play a pivotal role in gene expression regulation by post-transcriptionally controlling various aspects of RNA metabolism. It has become clear that interactions between RBPs and RNA are frequently dysregulated in numerous cancers. However, how oncogenic KRAS mutations reshape the post-transcriptional regulatory network mediated by RBPs remains poorly understood. In this study, we systematically dissected oncogenic KRAS-driven alterations of RNA-RBP networks. We identified 35 cancer-associated RBPs with either increased or decreased RNA binding upon oncogenic KRAS activation, including PDCD11, which is essential for the viability of KRAS mutant cancers, and ELAVL2, which regulates cell migration in KRAS mutant lung cancers. Our study serves as a crucial resource for elucidating RBP regulatory networks in KRAS mutant cancers and may provide new avenues for therapeutic strategies targeting KRAS mutant malignancies.
Collapse
Affiliation(s)
- Ka-Yun Ban
- Department of Health Science and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Incheon, 21999, Republic of Korea
| | - Yong-Woo Na
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Juhan Song
- Department of Health Science and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Incheon, 21999, Republic of Korea
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jimi Kim
- Department of Health Science and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Incheon, 21999, Republic of Korea.
- Department of Life Sciences, Gachon University, Seongnam, 13120, Korea.
| |
Collapse
|
2
|
Li Z, Tian Y, Zong H, Wang X, Li D, Keranmu A, Xin S, Ye B, Bai R, Chen W, Yang G, Ye L, Wang S. Deubiquitinating enzyme OTUD4 stabilizes RBM47 to induce ATF3 transcription: a novel mechanism underlying the restrained malignant properties of ccRCC cells. Apoptosis 2024; 29:1051-1069. [PMID: 38553613 DOI: 10.1007/s10495-024-01953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2024] [Indexed: 07/23/2024]
Abstract
Dysregulation of deubiquitination contributes to various diseases, including cancer, and aberrant expression of deubiquitinating enzymes is involved in carcinoma progression. As a member of the ovarian tumor (OTU) deubiquitinases, OTUD4 is considered a tumor suppressor in many kinds of malignancies. The biological characteristics and mechanisms of OTUD4 in clear cell renal cell carcinoma (ccRCC) remain unclear. The downregulation of OTUD4 in ccRCC was confirmed based on the TCGA database and a validation cohort of 30-paired ccRCC and para-carcinoma samples. Moreover, OTUD4 expression was detected by immunohistochemistry in 50 cases of ccRCC tissues, and patients with lower levels of OTUD4 showed larger tumor size (p = 0.015). TCGA data revealed that patients with high expression of OTUD4 had a longer overall survival rate. In vitro and in vivo studies revealed that downregulation of OTUD4 was essential for tumor cell growth and metastasis in ccRCC, and OTUD4 overexpression inhibited these malignant phenotypes. We further found that OTUD4 sensitized ccRCC cells to Erastin-induced ferroptosis, and ferrostain-1 inhibited OTUD4-induced ferroptotic cell death. Mechanistic studies indicated that OTUD4 functioned as an anti-proliferative and anti-metastasic factor through the regulation of RNA-binding protein 47 (RBM47)-mediated activating transcription factor 3 (ATF3). OTUD4 directly interacted with RBM47 and promoted its stability via deubiquitination events. RBM47 was critical in ccRCC progression by regulating ATF3 mRNA stability, thereby promoting ATF3-mediated ferroptosis. RBM47 interference abolished the suppressive role of OTUD4 overexpression in ccRCC. Our findings provide mechanistic insight into OTUD4 of ccRCC progression and indicate a novel critical pathway OTUD4/RBM47/ATF3 may serve as a potential therapeutic pathway for ccRCC.
Collapse
Affiliation(s)
- Ziyao Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Electrical Engineering of Zhengzhou University, Zhengzhou, China
- Center for Frontier Medical Engineering of Chiba University, Chiba, Japan
| | - Ye Tian
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Huafeng Zong
- Department of Pathology, Dalian Friendship Hospital, Dalian, China
| | - Xuelei Wang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongyang Li
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Adili Keranmu
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyong Xin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bowen Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rong Bai
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Chen
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Siyan Wang
- Health Management Center, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, China.
| |
Collapse
|
3
|
Xu X, Yang X, Tang J, Wu X, He X. Identification of Regulatory RNA-Binding Proteins Associated with Immune Infiltration in Laryngeal Squamous Cell Carcinoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:394-402. [PMID: 38912837 DOI: 10.4049/jimmunol.2300498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/27/2024] [Indexed: 06/25/2024]
Abstract
We analyzed bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) data to identify alternative splicing (AS) events and regulatory RNA-binding proteins (RBPs) associated with immune infiltration in human laryngeal squamous cell carcinoma (LSCC). Whole-transcriptome sequencing data of 20 human laryngeal cancer and paracancerous tissues were downloaded from the Gene Expression Omnibus public database, using newly published splicing-site usage variation analysis software to obtain highly conserved regulated AS (RAS) events, and scientific reverse convolution algorithm analysis was used to identify significantly different immune cells and perform a correlation analysis between the two. The software package edgeR was used to identify differentially expressed RBPs and the immune infiltration-related LSCC-RAS they may regulate. Finally, we present the expression profiles and survival curves of 117 human laryngeal cancer samples from The Cancer Genome Atlas dataset for the identified RBPs and LSCC-RAS. We also downloaded the gene set enrichment 150321 scRNA-seq data for two human LSCC tissue samples. The RBP expression pattern and the expression of prophase RBP genes were analyzed in different LSCC cell populations. RNA-binding motif protein 47 (RBM47) and filamin A, as well as the RBP-RAS events that were screened in both the fibulin 2 and fibronectin 1 genes, were all significantly associated with the prognosis, and the RBM47 gene was upregulated in myeloid cells. Because the prognosis was significantly associated with two RBP regulators and two LSCC-RAS events, they may be critical regulators of immune cell survival during laryngeal cancer progression, and RBM47 may regulate macrophage-associated AS and affect immunity.
Collapse
Affiliation(s)
- Xin Xu
- Department of Otolaryngology, Kunming Medical University, Kunming, China
| | - Xi Yang
- Department of Otolaryngology, Kunming Medical University, Kunming, China
| | - Jv Tang
- The Second Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoguang Wu
- The Second Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoguang He
- The Second Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, Zhang R, Wang X, Zhou S, Hesilaiti N, Xia Q, Du Z. Wnt/β-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med 2024; 22:565. [PMID: 38872189 PMCID: PMC11170811 DOI: 10.1186/s12967-024-05380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/β-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.
Collapse
Affiliation(s)
- Zixu Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - David Westover
- High-Throughput Analytics, Analytical Research and Development, Merck & Co. Inc., Rahway, NJ, USA
| | - Zhantong Tang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Yue Liu
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Jinghan Sun
- School of Life Science and Technology, Southeast University, Nanjing, 210018, China
| | - Yunxi Sun
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Runqing Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Xingyue Wang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Shihui Zhou
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Nigaerayi Hesilaiti
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Qi Xia
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Zhenfang Du
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China.
| |
Collapse
|
5
|
Zhang P, Chen Z, Li J, Mao H, Hu Y. TRIM34 suppresses non-small-cell lung carcinoma via inducing mTORC1-dependent glucose utilization and promoting cellular death. Arch Biochem Biophys 2024; 754:109925. [PMID: 38336254 DOI: 10.1016/j.abb.2024.109925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Non-small-cell lung carcinoma (NSCLC) is a type of pernicious tumor, which owns high morbidity and mortality. TRIM34 has a stimulative role in cell apoptosis and a suppressive role in inflammation. However, no studies were focused on the regulatory impacts of TRIM34 in NSCLC. This study aimed to examine the underlying regulatory effects of TRIM34 in NSCLC. TRIM34 exhibited lower expression in NSCLC. TRIM34 facilitated mitochondrial damage and apoptosis in NSCLC. TRIM34 induced the increased activity of mTORC1 and accelerated glycolysis in NSCLC. Enhanced mitochondrial damage induced by TRIM34 overexpression was reversed after rapamycin (mTORC1 inhibitor) treatment in NSCLC. The strengthened cell apoptosis stimulated by TRIM34 overexpression was rescued after rapamycin treatment. TRIM34 activated mTORC1 to suppress NSCLC progression in vivo. TRIM34 suppressed NSCLC via inducing mTORC1-dependent glucose utilization and promoting cellular death. The results suggest that TRIM34 can be a useful therapeutic biomarker for NSCLC patients.
Collapse
Affiliation(s)
- Pengfei Zhang
- Chinese PLA Medical School, Beijing, 100853, China; Department of Oncology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhida Chen
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Juan Li
- Department of Oncology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Hui Mao
- Department of Oncology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yi Hu
- Department of Oncology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Li C, Ding L, Wang X, Shu P, Shi X, Zheng Z, Liu J, Zhu J. A RBM47 and IGF2BP1 mediated circular FNDC3B-FNDC3B mRNA imbalance is involved in the malignant processes of osteosarcoma. Cancer Cell Int 2023; 23:334. [PMID: 38129874 PMCID: PMC10740216 DOI: 10.1186/s12935-023-03175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a class of noncoding RNAs that are involved in the progression of many human cancers. The precise gene locus and the roles of circular RNA from Fibronectin type III domain containing 3B (FNDC3B) in OS and its mechanisms of action have not been fully explored. MATERIALS AND METHODS qRT-qPCR assay was used to determine gene expressions. CCK8 Assay, EdU assay, wound-healing assay, transwell invasion assay and in vivo xenograft assay were used to perform functional investigations. RNA-FISH, immunofluorescence, RIP assay, RNA stability analysis were applied in mechanistic studies. RESULTS We found that circFNDC3B downregulated and FNDC3B mRNA upregulated in OS, and might be potential biomarkers for indicating disease progression and prognosis of OS patients. CircFNDC3B acted as a tumor suppressor gene to restrain OS progression and FNDC3B functioned as an oncogene to promote OS progression in vitro and in vivo. RNA binding protein RNA binding motif protein 47 (RBM47) could bind to the flanking introns of circFNDC3B to facilitate the generation of circFNDC3B, resulting in the reduction of FNDC3B mRNA and the circFNDC3B-FNDC3B mRNA imbalance. CircFNDC3B also inhibited FNDC3B mRNA expression by reducing its stability via competitively binding to Insulin-like growth-factor-2 mRNA binding protein (IGF2BP1). CONCLUSION This study demonstrated that RBM47 and IGF2BP1 mediated circular FNDC3B/FNDC3B mRNA imbalance was involved in the malignant processes of OS.
Collapse
Affiliation(s)
- Congya Li
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, No.1288 of Lushan Road, Beilun District, Ningbo, 315800, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315021, Zhejiang, China
| | - Linchao Ding
- Department of Scientific Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Road, Jinhua, 321000, Zhejiang, China
| | - Xuyao Wang
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, No.1288 of Lushan Road, Beilun District, Ningbo, 315800, Zhejiang, China
| | - Peng Shu
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, No.1288 of Lushan Road, Beilun District, Ningbo, 315800, Zhejiang, China
| | - Xuchao Shi
- Department of Orthopaedics Surgery, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Zhijian Zheng
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Jian Liu
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, No.1288 of Lushan Road, Beilun District, Ningbo, 315800, Zhejiang, China.
| | - Junlan Zhu
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, No.1288 of Lushan Road, Beilun District, Ningbo, 315800, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo, 315021, Zhejiang, China.
| |
Collapse
|
7
|
Ding S, Pang X, Luo S, Gao H, Li B, Yue J, Chen J, Hu S, Tu Z, He D, Kuang Y, Dong Z, Zhang M. Dynamic RBM47 ISGylation confers broad immunoprotection against lung injury and tumorigenesis via TSC22D3 downregulation. Cell Death Discov 2023; 9:430. [PMID: 38036512 PMCID: PMC10689852 DOI: 10.1038/s41420-023-01736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
ISGylation is a well-established antiviral mechanism, but its specific function in immune and tissue homeostasis regulation remains elusive. Here, we reveal that the RNA-binding protein RBM47 undergoes phosphorylation-dependent ISGylation at lysine 329 to regulate immune activation and maintain lung homeostasis. K329R knockin (KI) mice with defective RBM47-ISGylation display heightened susceptibility to LPS-induced acute lung injury and lung tumorigenesis, accompanied with multifaceted immunosuppression characterized by elevated pro-inflammatory factors, reduced IFNs/related chemokines, increased myeloid-derived suppressor cells, and impaired tertiary lymphoid structures. Mechanistically, RBM47-ISGylation regulation of the expression of TSC22D3 mRNA, a glucocorticoid-inducible transcription factor, partially accounts for the effects of RBM47-ISGylation deficiency due to its broad immunosuppressive activity. We further demonstrate the direct inhibitory effect of RBM47-ISGylation on TSC22D3 expression in human cells using a nanobody-targeted E3 ligase to induce site-specific ISGylation. Furthermore, epinephrine-induced S309 phosphorylation primes RBM47-ISGylation, with epinephrine treatment exacerbating dysregulated cytokine expression and ALI induction in K329R KI mice. Our findings provide mechanistic insights into the dynamic regulation of RBM47-ISGylation in supporting immune activation and maintaining lung homeostasis.
Collapse
Affiliation(s)
- Shihui Ding
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiquan Pang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Huili Gao
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Li
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junqiu Yue
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, 430079, Wuhan, China
| | - Jian Chen
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Head and Neck Surgery, Hubei Cancer Hospital, Tongji Medical College, 430079, Wuhan, China
| | - Sheng Hu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Wuhan, 430079, China
| | - Zepeng Tu
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dong He
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youyi Kuang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, No. 232, Hesong Street, Daoli District, Harbin, 150070, China
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Min Zhang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Zhou J, Xu Y, Wang L, Cong Y, Huang K, Pan X, Liu G, Li W, Dai C, Xu P, Jia X. LncRNA IDH1-AS1 sponges miR-518c-5p to suppress proliferation of epithelial ovarian cancer cell by targeting RMB47. J Biomed Res 2023; 38:51-65. [PMID: 37981573 PMCID: PMC10818171 DOI: 10.7555/jbr.37.20230097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 11/21/2023] Open
Abstract
Long noncoding RNA (lncRNA) IDH1 antisense RNA 1 ( IDH1-AS1) is involved in the progression of multiple cancers, but its role in epithelial ovarian cancer (EOC) is unknown. Therefore, we investigated the expression levels of IDH1-AS1 in EOC cells and normal ovarian epithelial cells by quantitative real-time PCR (qPCR). We first evaluated the effects of IDH1-AS1 on the proliferation, migration, and invasion of EOC cells through cell counting kit-8, colony formation, EdU, transwell, wound-healing, and xenograft assays. We then explored the downstream targets of IDH1-AS1 and verified the results by a dual-luciferase reporter, qPCR, rescue experiments, and Western blotting. We found that the expression levels of IDH1-AS1 were lower in EOC cells than in normal ovarian epithelial cells. High IDH1-AS1 expression of EOC patients from the Gene Expression Profiling Interactive Analysis database indicated a favorable prognosis, because IDH1-AS1 inhibited cell proliferation and xenograft tumor growth of EOC. IDH1-AS1 sponged miR-518c-5p whose overexpression promoted EOC cell proliferation. The miR-518c-5p mimic also reversed the proliferation-inhibiting effect induced by IDH1-AS1 overexpression. Furthermore, we found that RNA binding motif protein 47 (RBM47) was the downstream target of miR-518c-5p, that upregulation of RBM47 inhibited EOC cell proliferation, and that RBM47 overexpressing plasmid counteracted the proliferation-promoting effect caused by the IDH1-AS1 knockdown. Taken together, IDH1-AS1 may suppress EOC cell proliferation and tumor growth via the miR-518c-5p/RBM47 axis.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Yiran Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Luyao Wang
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Yu Cong
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Ke Huang
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Xinxing Pan
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Guangquan Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Wenqu Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Chenchen Dai
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| |
Collapse
|
9
|
Wang C, Li W, Meng X, Yuan H, Yu T, Yang W, Ni D, Liu L, Xiao W. Downregulation of RNA binding protein 47 predicts low survival in patients and promotes the development of renal cell malignancies through RNA stability modification. MOLECULAR BIOMEDICINE 2023; 4:41. [PMID: 37962768 PMCID: PMC10645769 DOI: 10.1186/s43556-023-00148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
RNA binding proteins (RBPs) are crucial for cell function, tissue growth, and disease development in disease or normal physiological processes. RNA binding motif protein 47 (RBM47) has been proven to have anti-tumor effects on many cancers, but its effect is not yet clear in renal cancer. Here, we demonstrated the expression and the prognostic role of RBM47 in public databases and clinical samples of clear cell renal carcinoma (ccRCC) with bioinformatics analysis. The possible mechanism of RBM47 in renal cancer was verified by gene function prediction and in vitro experiments. The results showed that RBM47 was downregulated in renal cancers when compared with control groups. Low RBM47 expression indicated poor prognosis in ccRCC. RBM47 expression in renal cancer cell lines was reduced significantly when compared to normal renal tubular epithelial cells. Epithelial-mesenchymal transition (EMT) and transforming growth factor-β signaling pathway was associated with RBM47 in ccRCC by Gene set enrichment analysis. RBM47 expression had a positive correlation with e-cadherin, but a negative correlation with snail and vimentin. RBM47 overexpression could repress the migration, invasion activity, and proliferation capacity of renal cancer cells, while RBM47 inhibition could promote the development of the malignant features through EMT signaling by RNA stability modification. Therefore, our results suggest that RBM47, as a new molecular biomarker, may play a key role in the cancer development of ccRCC.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiquan Li
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangui Meng
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongwei Yuan
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tiexi Yu
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Yang
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dong Ni
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lei Liu
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wen Xiao
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
10
|
Jiang L, Yu H, Guo Y. Modeling the relationship between gene expression and mutational signature. QUANTITATIVE BIOLOGY 2023; 11:31-43. [PMID: 37032811 PMCID: PMC10078980 DOI: 10.15302/j-qb-022-0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Background Mutational signatures computed from somatic mutations, allow an in-depth understanding of tumorigenesis and may illuminate early prevention strategies. Many studies have shown the regulation effects between somatic mutation and gene expression dysregulation. Methods We hypothesized that there are potential associations between mutational signature and gene expression. We capitalized upon RNA-seq data to model 49 established mutational signatures in 33 cancer types. Both accuracy and area under the curve were used as performance measures in five-fold cross-validation. Results A total of 475 models using unconstrained genes, and 112 models using protein-coding genes were selected for future inference purposes. An independent gene expression dataset on lung cancer smoking status was used for validation which achieved over 80% for both accuracy and area under the curve. Conclusion These results demonstrate that the associations between gene expression and somatic mutations can translate into the associations between gene expression and mutational signatures.
Collapse
|
11
|
Liu M, Xue G, Liu R, Wang Y, Sheng X, Sun W. Saponin from Platycodi radix inactivates PI3K/AKT signaling pathway to hinder colorectal cancer cell proliferation, invasion, and migration through miR-181c/d-5p/RBM47. Mol Carcinog 2023; 62:174-184. [PMID: 36321407 DOI: 10.1002/mc.23474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) is the third frequent cancer and second leading reason of cancer-related mortality all over the globe. Saponins from Platycodi radix (SPR) and microRNAs (miRNAs) have been reported to regulate CRC cell progression. Real-time quantitative polymerase chain reaction (RT-qPCR) detected miR-181c-5p, miR-181d-5p, and RBM47 expression level. Cell counting kit-8 (CCK-8), 5-ethynyl-20-deoxyuridine (EdU), colony formation, transwell, and wound healing assays validated that miR-181c-5p and miR-181d-5p promote CRC cell proliferation, migration and invasion and SPR exerts opposite effects. Cignal Finder Reporter Array and western blot proved that the activity of PI3K/AKT pathway was decreased by RBM47 overexpression. RNA pulldown, luciferase reporter, and RNA-binding protein immunoprecipitation (RIP) assays proved the interaction between miR-181c/d-5p and RBM47, and RBM47 and PTEN. Rescue experiments were carried out to validate that RBM47 reverses the influence of miR-181c/d-5p on the progression of CRC cells. The stability of PTEN was probed by real-time quantitative polymerase chain reaction in CRC cells treated with Actinomycin D (Act D). To be concluded, SPR inactivates PI3K/AKT signaling pathway to suppress CRC cell proliferation, invasion, and migration via miR-181c/d-5p/RBM47. Elucidating the mechanisms of SPR underlying CRC may offer novel insight into CRC treatment.
Collapse
Affiliation(s)
- Mingkai Liu
- Department of Clinical Laboratory, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| | - Guiyang Xue
- Department of Clinical Laboratory, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| | - Rixu Liu
- Department of Clinical Laboratory, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| | - Yi Wang
- Department of Clinical Laboratory, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| | - Xiaoqian Sheng
- Department of Clinical Laboratory, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| | - Wei Sun
- Department of General Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| |
Collapse
|
12
|
The mechanism of BUD13 m6A methylation mediated MBNL1-phosphorylation by CDK12 regulating the vasculogenic mimicry in glioblastoma cells. Cell Death Dis 2022; 13:1017. [PMID: 36463205 PMCID: PMC9719550 DOI: 10.1038/s41419-022-05426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022]
Abstract
Vasculogenic mimicry (VM) is an endothelium-independent tumor microcirculation that provides adequate blood supply for tumor growth. The presence of VM greatly hinders the treatment of glioblastoma (GBM) with anti-angiogenic drugs. Therefore, targeting VM formation may be a feasible therapeutic strategy for GBM. The research aimed to evaluate the roles of BUD13, CDK12, MBNL1 in regulating VM formation of GBM. BUD13 and CDK12 were upregulated and MBNL1 was downregulated in GBM tissues and cells. Knockdown of BUD13, CDK12, or overexpression of MBNL1 inhibited GBM VM formation. METTL3 enhanced the stability of BUD13 mRNA and upregulated its expression through m6A methylation. BUD13 enhanced the stability of CDK12 mRNA and upregulated its expression. CDK12 phosphorylated MBNL1, thereby regulating VM formation of GBM. The simultaneous knockdown of BUD13, CDK12, and overexpression of MBNL1 reduced the volume of subcutaneously transplanted tumors in nude mice and prolonged the survival period. Thus, the BUD13/CDK12/MBNL1 axis plays a crucial role in regulating VM formation of GBM and provides a potential target for GBM therapy.
Collapse
|
13
|
Gong S, Wang S, Shao M. Mechanism of METTL14-mediated m 6A modification in non-small cell lung cancer cell resistance to cisplatin. J Mol Med (Berl) 2022; 100:1771-1785. [PMID: 36352154 DOI: 10.1007/s00109-022-02268-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Methyltransferase-like 14 (METTL14) mediates N6-methyladenosine (m6A) modification to influence cancer progression. This study aims to determine the mechanism of METTL14-mediated m6A in non-small cell lung cancer (NSCLC) cell resistance to cisplatin (DDP). METTL14, miR-19a-5p, RBM24, and AXIN1 expressions in NSCLC tissues/cells were determined. DDP-resistant cell line was obtained, followed by the interference of METTL14 expression. NSCLC cells were treated with DDP to establish a drug-resistant cell line, and METTL14 expression in cells was intervened. The IC50 of NSCLC cells to DDP was measured by CCK-8 assay. NSCLC cell proliferation and apoptosis were observed by clone formation assay and flow cytometry. The content of m6A in total RNA in tissues and cells of NSCLC patients was detected using m6A Methylation Quantification Kit. The expressions of DGCR8-bound pri-miR-19a and m6A-modified pri-miR-19a were detected. The binding relationships between miR-19a-5p and RBM24 and RBM24 and AXIN1 were validated using dual-luciferase assay and RNA immunoprecipitation. Finally, mouse xenograft tumor model was established to verify the role of METTL14 in vivo. METTL14 was highly expressed in NSCLC. METTL14 silencing diminished IC50 to DDP, repressed NSCLC cell proliferation, and enhanced apoptosis. METTL14-mediated m6A induced recognition and processing of pri-miR-19a by DGCR8, thus promoting the transition of pri-miR-19a to miR-19a-5p, repressing RBM24 expression, reducing the binding of RBM24 and AXIN1, and suppressing AXIN1 transcription. miR-19a-5p overexpression or RBM24/AXIN1 silencing abolished the effect of METTL14 silencing on NSCLC cell resistance to DDP. METTL14 silencing in vivo enhanced the suppressive role of DDP to tumor growth. Collectively, METTL14-mediated m6A modification facilitated NSCLC cell resistance to DDP via miR-19a-5p/RBM24/AXIN1 axis. KEY MESSAGES: • METTL14 is highly expressed NSCLC and further increased in DDP-resistant cells. • METTL14 silencing attenuates DDP resistance of NSCLC cells. • METTL14 promotes the nature of pri-miR-19a by upregulating pri-miR-19a m6A level. • miR-19a-5p targets RBM24, thus reducing the binding of RBM24 and AXIN1 and inhibiting AXIN1 transcription. • METTL14 silencing in vivo enhances the suppressive role of DDP to tumor growth.
Collapse
Affiliation(s)
- Shulei Gong
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang, 110001, People's Republic of China
| | - Shiyang Wang
- Department of Geriatric Surgery, First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang, 110001, People's Republic of China
| | - Mingrui Shao
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
14
|
Kim DS, Camacho CV, Setlem R, Kim K, Malladi S, Hou TY, Nandu T, Gadad SS, Kraus WL. Functional Characterization of lncRNA152 as an Angiogenesis-Inhibiting Tumor Suppressor in Triple-Negative Breast Cancers. Mol Cancer Res 2022; 20:1623-1635. [PMID: 35997635 PMCID: PMC9633386 DOI: 10.1158/1541-7786.mcr-22-0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/04/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs have been implicated in many of the hallmarks of cancer. Herein, we found that the expression of lncRNA152 (lnc152; a.k.a. DRAIC), which we annotated previously, is highly upregulated in luminal breast cancer (LBC) and downregulated in triple-negative breast cancer (TNBC). Knockdown of lnc152 promotes cell migration and invasion in LBC cell lines. In contrast, ectopic expression of lnc152 inhibits growth, migration, invasion, and angiogenesis in TNBC cell lines. In mice, lnc152 inhibited the growth of TNBC cell xenografts, as well as metastasis of TNBC cells in an intracardiac injection model. Transcriptome analysis of the xenografts indicated that lnc152 downregulates genes controlling angiogenesis. Using pull down assays followed by LC/MS-MS, we identified RBM47, a known tumor suppressor in breast cancer, as a lnc152-interacting protein. The effects of lnc152 in TNBC cells are mediated, in part, by regulating the expression of RBM47. Collectively, our results demonstrate that lnc152 is an angiogenesis-inhibiting tumor suppressor that attenuates the aggressive cancer-related phenotypes found in TNBC. IMPLICATIONS This study identifies lncRNA152 as an angiogenesis-inhibiting tumor suppressor that attenuates the aggressive cancer-related phenotypes found in TNBC by upregulating the expression of the tumor suppressor RBM47. As such, lncRNA152 may serve as a biomarker to track aggressiveness of breast cancer, as well as therapeutic target for treating TNBC.
Collapse
Affiliation(s)
- Dae-Seok Kim
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Current address: Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- These authors contributed equally to this work
| | - Cristel V. Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- These authors contributed equally to this work
| | - Rohit Setlem
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kangsan Kim
- Department of Pathology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Srinivas Malladi
- Department of Pathology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tim Y. Hou
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shrikanth S. Gadad
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX 79905, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
15
|
He C, Zhang G, Lu Y, Zhou J, Ren Z. DDX17 modulates the expression and alternative splicing of genes involved in apoptosis and proliferation in lung adenocarcinoma cells. PeerJ 2022; 10:e13895. [PMID: 36164607 PMCID: PMC9508879 DOI: 10.7717/peerj.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/22/2022] [Indexed: 01/19/2023] Open
Abstract
Background The DEAD-box RNA-binding protein (RBP) DDX17 has been found to be involved in the tumorigenesis of many types of cancers. However, the role of DDX17 in lung adenocarcinoma (LUAD) remains unclear. Methods We silenced DDX17 expression in A549 LUAD cells by small interfering RNA (siRNA). Cell proliferation and apoptosis assays were performed to explore the functions of DDX17. Knockdown of DDX17 by siRNA significantly inhibited proliferation and induced apoptosis in A549 cells. We used high-throughput RNA sequencing (RNA-seq) to identify differentially expressed genes (DEGs) and alternative splicing (AS) events in DDX17 knockdown LUAD cells. Results DDX17 knockdown increased the expression levels of proapoptotic genes and decreased those of proproliferative genes. Moreover, the DDX17-regulated AS events in A549 cells revealed by computational analysis using ABLas software were strongly validated by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and were also validated by analysis of The Cancer Genome Atlas (TCGA)-LUAD dataset. These findings suggest that DDX17 may function as an oncogene by regulating both the expression and AS of proliferation- and apoptosis-associated genes in LUAD cells. Our findings may offer new insights into understanding the molecular mechanisms of LUAD and provide a new therapeutic direction for LUAD.
Collapse
Affiliation(s)
- Cheng He
- Department of Thoracic Oncology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China,Department of Thoracic Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Gan Zhang
- Department of Thoracic Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Yanhong Lu
- Department of Thoracic Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Jingyue Zhou
- Department of Thoracic Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Zixue Ren
- Department of Thoracic Surgery, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| |
Collapse
|
16
|
Wang W, Huo P, Zhang L, Lv G, Xia Z. Decoding competitive endogenous RNA regulatory network in postoperative cognitive dysfunction. Front Neurosci 2022; 16:972918. [PMID: 36203795 PMCID: PMC9530360 DOI: 10.3389/fnins.2022.972918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common postoperative neurological complication in elderly patients. Circular RNAs (circRNAs) are abundant in the mammalian brain and can probably regulate cognitive function. However, the competitive endogenous RNA (ceRNA) regulatory network in POCD remains illiterate. Transcriptomic signatures in the hippocampus of POCD mice derived from the Gene Expression Omnibus (GEO) dataset GSE190880, GSE95070, and GSE115440 were used to identify the circRNA, miRNA, and mRNA expression profiles of POCD mice compared with controls, respectively. A set of differentially expressed RNAs, including 119 circRNAs, 33 miRNAs, and 49 mRNAs were identified. Transcript validation showed the enhanced expression of circ_0001634, circ_0001345, and circ_0001493. A ceRNA regulatory network composed of three circRNAs, three miRNAs, and six mRNAs was established. The hub mRNAs in the ceRNA network were further found to be involved in the hormone catabolic process and regulation of canonical Wnt signaling pathway, revealing their crucial role in POCD. Finally, three miRNAs and four mRNAs were verified by qRT-PCR. These results based on bioinformatics and PCR array suggest that circ_0001634/miR-490-5p/Rbm47, circ_0001634/miR-490-5p/Sostdc1, circ_0001634/miR-7001-5p/Sostdc1, circ_0001345/miR-7001-5p/Sostdc1, and circ_0001493/miR-7001-5p/Sostdc1 may be novel diagnostic biomarkers and therapeutic targets for POCD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengwei Huo
- Department of Anesthesiology, Yulin No.2 Hospital, Yulin, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Lv
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Gang Lv,
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
- Zhongyuan Xia,
| |
Collapse
|
17
|
Miao TW, Chen FY, Du LY, Xiao W, Fu JJ. Signature based on RNA-binding protein-related genes for predicting prognosis and guiding therapy in non-small cell lung cancer. Front Genet 2022; 13:930826. [PMID: 36118863 PMCID: PMC9479344 DOI: 10.3389/fgene.2022.930826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Studies have reported that RNA-binding proteins (RBPs) are dysregulated in multiple cancers and are correlated with the progression and prognosis of disease. However, the functions of RBPs in non-small cell lung cancer (NSCLC) remain unclear. The present study aimed to explore the function of RBPs in NSCLC and their prognostic and therapeutic value.Methods: The mRNA expression profiles, DNA methylation data, gene mutation data, copy number variation data, and corresponding clinical information on NSCLC were downloaded from The Cancer Genome Atlas, Gene Expression Omnibus, and the University of California Santa Cruz Xena databases. The differentially expressed RBPs were identified between tumor and control tissues, and the expression and prognostic value of these RBPs were systemically investigated by bioinformatics analysis. A quantitative polymerase chain reaction (qPCR) was performed to validate the dysregulated genes in the prognostic signature.Results: A prognostic RBP-related signature was successfully constructed based on eight RBPs represented as a risk score using least absolute shrinkage and selection operator (LASSO) regression analysis. The high-risk group had a worse overall survival (OS) probability than the low-risk group (p < 0.001) with 1-, 3-, and 5-year area under the receiver operator characteristic curve values of 0.671, 0.638, and 0.637, respectively. The risk score was associated with the stage of disease (p < 0.05) and was an independent prognostic factor for NSCLC when adjusted for age and UICC stage (p < 0.001, hazard ratio (HR): 1.888). The constructed nomogram showed a good predictive value. The P53, focal adhesion, and NOD-like receptor signaling pathways were the primary pathways in the high-risk group (adjusted p value <0.05). The high-risk group was correlated with increased immune infiltration (p < 0.05), upregulated relative expression levels of programmed cell death 1 (PD1) (p = 0.015), cytotoxic T-lymphocyte-associated protein 4 (CTLA4) (p = 0.042), higher gene mutation frequency, higher tumor mutational burden (p = 0.034), and better chemotherapy response (p < 0.001). The signature was successfully validated using the GSE26939, GSE31210, GSE30219, and GSE157009 datasets. Dysregulation of these genes in patients with NSCLC was confirmed using the qPCR in an independent cohort (p < 0.05).Conclusion: An RBP-related signature was successfully constructed to predict prognosis in NSCLC, functioning as a reference for individualized therapy, including immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Ti-Wei Miao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Fang-Ying Chen
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Long-Yi Du
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Xiao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Juan-Juan Fu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Juan-Juan Fu,
| |
Collapse
|
18
|
Ma H, Liu G, Yu B, Wang J, Qi Y, Kou Y, Hu Y, Wang S, Wang F, Chen D. RNA-binding protein CELF6 modulates transcription and splicing levels of genes associated with tumorigenesis in lung cancer A549 cells. PeerJ 2022; 10:e13800. [PMID: 35910766 PMCID: PMC9336609 DOI: 10.7717/peerj.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
CELF6 (CUGBP Elav-Like Family Member 6), a canonical RNA binding protein (RBP), plays important roles in post-transcriptional regulation of pre-mRNAs. However, the underlying mechanism of lower expressed CELF6 in lung cancer tissues is still unclear. In this study, we increased CELF6 manually in lung cancer cell line (A549) and utilized transcriptome sequencing (RNA-seq) technology to screen out differentially expressed genes (DEGs) and alternative splicing events (ASEs) after CELF6 over-expression (CELF6-OE). We found that CELF6-OE induced 417 up-regulated and 1,351 down-regulated DEGs. Functional analysis of down-regulated DEGs showed that they were highly enriched in immune/inflammation response- related pathways and cell adhesion molecules (CAMs). We also found that CELF6 inhibited the expression of many immune-related genes, including TNFSF10, CCL5, JUNB, BIRC3, MLKL, PIK3R2, CCL20, STAT1, MYD88, and CFS1, which mainly promote tumorigenesis in lung cancer. The dysregulated DEGs were also validated by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) experiment. In addition, CELF6 regulates the splicing pattern of large number of genes that are enriched in p53 signaling pathway and apoptosis, including TP53 and CD44. In summary, we made an extensive analysis of the transcriptome profile of gene expression and alternative splicing by CELF6-OE, providing a global understanding of the target genes and underlying regulation mechanisms mediated by CELF6 in the pathogenesis and development of lung cancer.
Collapse
Affiliation(s)
- HuSai Ma
- Department of thoracic Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China,Department of Thoracic Surgery, Qinghai Red Cross Hospital, Xining, Qinghai Province, P. R. China
| | - GuoWei Liu
- Department of thoracic Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China
| | - Bin Yu
- Department of thoracic Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China
| | - Joshua Wang
- Wuhan Ruixing Biotechnology Co. Ltd., Wuhan, Hubei Province, China
| | - YaLi Qi
- Department of Respiratory Medicine, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China
| | - YiYing Kou
- Qinghai University School of Medicine, Qinghai University School of Medicine, Xining, Qinghai Province, China
| | - Ying Hu
- Qinghai University School of Medicine, Qinghai University School of Medicine, Xining, Qinghai Province, China
| | - ShunJun Wang
- Department of thoracic Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China
| | - Fei Wang
- Qinghai University, Xining, Qinghai Province, China
| | - Dong Chen
- Wuhan Ruixing Biotechnology Co. Ltd., Wuhan, Hubei Province, China
| |
Collapse
|
19
|
Guo T, You K, Chen X, Sun Y, Wu Y, Wu P, Jiang Y. RBM47 inhibits hepatocellular carcinoma progression by targeting UPF1 as a DNA/RNA regulator. Cell Death Dis 2022; 8:320. [PMID: 35831298 PMCID: PMC9279423 DOI: 10.1038/s41420-022-01112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
The mechanisms by which the tumor behaviors of hepatocellular carcinoma (HCC) support growth and metastasis remain largely unknown, and it has become increasingly apparent that molecular dysregulation is of considerable importance for cellular signaling pathways. Recently, RNA-binding motif protein 47 (RBM47) has been suggested to function as a tumor regulator by acting as an RNA binding protein (RBP), but its role in HCC remains ambiguous. Here, in HCC, we identified that RBM47 had an inhibitory influence on tumor behaviors in vitro and accordingly suppressed the growth and metastasis of xenograft tumors in vivo. Additionally, RBM47 was verified to positively regulate Upframeshift 1 (UPF1), which is a crucial protein involved in the nonsense-mediated RNA decay (NMD) process and was previously determined to be an HCC suppressor. Mechanistically, the stability of UPF1 mRNA was demonstrated to be enhanced with its 3’UTR bound by RBM47, which acted as an RNA binding protein. Meanwhile, RBM47 was also proven to promote the transcription of UPF1 as a transcription factor. Taken together, we concluded that RBM47 functioned as a tumor suppressor by upregulating UPF1, acting as a DNA/RNA binding protein at the transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Tao Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Ke You
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xi Chen
- School of Stomatology, Weifang Medical University, Weifang, 261053, China
| | - Yuqi Sun
- School of Clinical Medicine, Weifang Medical University, Weifang, 261031, China
| | - Ying Wu
- Liuzhou Key Laboratory of Infectious Disease Immunity Research, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, 545006, China
| | - Ping Wu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, China
| | - Yingying Jiang
- School of Stomatology, Weifang Medical University, Weifang, 261053, China. .,Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang, 261035, China.
| |
Collapse
|
20
|
RNA-binding protein MEX3D promotes cervical carcinoma tumorigenesis by destabilizing TSC22D1 mRNA. Cell Death Dis 2022; 8:250. [PMID: 35513372 PMCID: PMC9072549 DOI: 10.1038/s41420-022-01049-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
RNA-binding proteins (RBPs) have been related to cancer development. Their functions in cervical cancer, however, are virtually unknown. One of these proteins, Mex-3 RNA-binding family member D (MEX3D), has been recently found to exhibit oncogenic properties in a variety of cancer types. In this present study, the functional roles and the regulatory mechanisms underlying MEX3D were examined in cervical cancer. The detection of MEX3D mRNA expression levels in cervical tissues was performed using reverse transcription-quantitative PCR. For functional analysis, for detecting apoptosis and cell proliferation in cervical cancer cells, the Cell Counting Kit-8, colony formation, and flow cytometry were utilized (SiHa and CaSki). The potential mechanisms of MEX3D were assessed and elucidated utilizing western blot analysis, RNA pull-down, RNA immunoprecipitation, and mRNA stability assays. For verification of MEX3D role in vivo, mouse xenograft models were established. When compared to normal cervical tissues, MEX3D expression was observed to be higher in cervical cancer tissues. MEX3D expression was increased in human papillomavirus (HPV) 16 positive cervical cancer tissues and positively regulated by HPV16 E7. When MEX3D expression was knocked down in cervical cancer cells, cell proliferation was decreased, colony formation was inhibited, and apoptosis was promoted. Furthermore, in a mouse xenograft model, knocking down MEX3D expression reduced cervical cancer tumor growth. In addition, MEX3D acted as an RBP to reduce TSC22 domain family protein 1 (TSC22D1) mRNA stability by directly binding to TSC22D1 mRNA. The findings revealed that MEX3D is upregulated by HPV16 E7 and has a crucial oncogenic in cervical cancer development via sponging TSC22D1 for destabilizing its mRNA levels. According to the findings of this study, MEX3D may be a potential therapeutic target for treating cervical cancer patients.
Collapse
|
21
|
RBM47/SNHG5/FOXO3 axis activates autophagy and inhibits cell proliferation in papillary thyroid carcinoma. Cell Death Dis 2022; 13:270. [PMID: 35338124 PMCID: PMC8956740 DOI: 10.1038/s41419-022-04728-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 02/08/2023]
Abstract
Papillary thyroid carcinoma (PTC) is the main type of thyroid carcinoma. Despite the good prognosis, some PTC patients may deteriorate into more aggressive diseases, leading to poor survival. Molecular technology has been increasingly used in the diagnosis and treatment of thyroid carcinoma. In this study, we identified that RNA Binding Motif Protein 47 (RBM47) was downregulated in PTC tissues and cells, and overexpression of RBM47 could activate autophagy and inhibit proliferation in PTC cells. RBM47 promotes but can not bind directly to Forkhead Box O3 (FOXO3). FOXO3 activates Autophagy Related Gene 3 (ATG3), ATG5, and RBM47 to form a loop and promote autophagy. RBM47 can bind directly to and stabilized lncRNA Small Nucleolar RNA Host Gene 5 (SNHG5) to inhibit PTC cells proliferation and activate autophagy in vitro and in vivo. SNHG5 inhibits ubiquitination and degradation of FOXO3 by recruiting Ubiquitin Specific Peptidase 21 (USP21), then promotes the translocation of FOXO3 from cytoplasm to nucleus. Our study revealed the regulatory mechanism of RBM47/SNHG5/FOXO3 axis on cell proliferation and autophagy in PTC, which may provide valuable insight for the treatment of PTC.
Collapse
|
22
|
Soubise B, Jiang Y, Douet-Guilbert N, Troadec MB. RBM22, a Key Player of Pre-mRNA Splicing and Gene Expression Regulation, Is Altered in Cancer. Cancers (Basel) 2022; 14:cancers14030643. [PMID: 35158909 PMCID: PMC8833553 DOI: 10.3390/cancers14030643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023] Open
Abstract
RNA-Binding Proteins (RBP) are very diverse and cover a large number of functions in the cells. This review focuses on RBM22, a gene encoding an RBP and belonging to the RNA-Binding Motif (RBM) family of genes. RBM22 presents a Zinc Finger like and a Zinc Finger domain, an RNA-Recognition Motif (RRM), and a Proline-Rich domain with a general structure suggesting a fusion of two yeast genes during evolution: Cwc2 and Ecm2. RBM22 is mainly involved in pre-mRNA splicing, playing the essential role of maintaining the conformation of the catalytic core of the spliceosome and acting as a bridge between the catalytic core and other essential protein components of the spliceosome. RBM22 is also involved in gene regulation, and is able to bind DNA, acting as a bona fide transcription factor on a large number of target genes. Undoubtedly due to its wide scope in the regulation of gene expression, RBM22 has been associated with several pathologies and, notably, with the aggressiveness of cancer cells and with the phenotype of a myelodysplastic syndrome. Mutations, enforced expression level, and haploinsufficiency of RBM22 gene are observed in those diseases. RBM22 could represent a potential therapeutic target in specific diseases, and, notably, in cancer.
Collapse
Affiliation(s)
- Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
| | - Yan Jiang
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- Correspondence: ; Tel.: +33-2-98-01-64-55
| |
Collapse
|
23
|
Raguraman R, Shanmugarama S, Mehta M, Elle Peterson J, Zhao YD, Munshi A, Ramesh R. Drug delivery approaches for HuR-targeted therapy for lung cancer. Adv Drug Deliv Rev 2022; 180:114068. [PMID: 34822926 PMCID: PMC8724414 DOI: 10.1016/j.addr.2021.114068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is often diagnosed at an advanced stage and conventional treatments for disease management have limitations associated with them. Novel therapeutic targets are thus avidly sought for the effective management of LC. RNA binding proteins (RBPs) have been convincingly established as key players in tumorigenesis, and their dysregulation is linked to multiple cancers, including LC. In this context, we review the role of Human antigen R (HuR), an RBP that is overexpressed in LC, and further associated with various aspects of LC tumor growth and response to therapy. Herein, we describe the role of HuR in LC progression and outline the evidences supporting various pharmacologic and biologic approaches for inhibiting HuR expression and function. These approaches, including use of small molecule inhibitors, siRNAs and shRNAs, have demonstrated favorable results in reducing tumor cell growth, invasion and migration, angiogenesis and metastasis. Hence, HuR has significant potential as a key therapeutic target in LC. Use of siRNA-based approaches, however, have certain limitations that prevent their maximal exploitation as cancer therapies. To address this, in the conclusion of this review, we provide a list of nanomedicine-based HuR targeting approaches currently being employed for siRNA and shRNA delivery, and provide a rationale for the immense potential therapeutic benefits offered by nanocarrier-based HuR targeting and its promise for treating patients with LC.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Meghna Mehta
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yan D Zhao
- Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
24
|
Li Z, Guo Q, Zhang J, Fu Z, Wang Y, Wang T, Tang J. The RNA-Binding Motif Protein Family in Cancer: Friend or Foe? Front Oncol 2021; 11:757135. [PMID: 34804951 PMCID: PMC8600070 DOI: 10.3389/fonc.2021.757135] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023] Open
Abstract
The RNA-binding motif (RBM) proteins are a class of RNA-binding proteins named, containing RNA-recognition motifs (RRMs), RNA-binding domains, and ribonucleoprotein motifs. RBM proteins are involved in RNA metabolism, including splicing, transport, translation, and stability. Many studies have found that aberrant expression and dysregulated function of RBM proteins family members are closely related to the occurrence and development of cancers. This review summarizes the role of RBM proteins family genes in cancers, including their roles in cancer occurrence and cell proliferation, migration, and apoptosis. It is essential to understand the mechanisms of these proteins in tumorigenesis and development, and to identify new therapeutic targets and prognostic markers.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Qingyu Guo
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jiaxin Zhang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Zitong Fu
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yifei Wang
- Department of Urology, Hainan General Hospital, Hainan, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Ding D, Hong L, Shu C. MicroRNA-5100 Modulates Lung Cancer Cell Proliferation and Apoptosis via Inhibiting X-Linked Inhibitor of Apoptosis Protein (XIAP) Expression. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assesses the miR-5100 expression and its function in human lung cancer. The expression of miR-5100 was analyzed by miScript miRNA method. Cancer cells were transfected with miR-5100 mimics (miR-5100), miR-5100 inhibitors (ASO-miR-5100), XIAP inhibitors (si-XIAP), negative
controls (NC) followed by analysis of cell proliferation by MTT and apoptosis by flow cytometry, the expression of XIAP related proteins by Western blot. miR-5100’ target was predicted by bioinformatics website and verified by dual luciferase assay. Finally, a xenogeneic tumor inhibition
model was established to detect tumor progression after treatments. Lung cancer cells and tissues exhibited significantly reduced miR-5100 level. Dual luciferase assay showed that miR-5100 bound XIAP 3′-UTR and reduced XIAP mRNA and protein level. Further, miR-5100 inhibited cell proliferation,
increased apoptosis and the expression of cleaved-capsase-3 and cleaved-capsase-9, the XIAP downstream factor. Finally, miR-5100 inhibited tumor growth, decreased cellular proliferation and promoted apoptosis, accompanied by reduced XIAP expression in vivo. miR-5100 inhibits lung cancer
cell proliferation and enhances apoptosis through inhibiting XIAP expression in vitro and in vivo.
Collapse
Affiliation(s)
- Dongshen Ding
- Department of Oncology Medicine, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, 435000, China
| | - Liang Hong
- Department of Oncology Medicine, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, 435000, China
| | - Chang Shu
- Department of Oncology Medicine, Huangshi Central Hospital of Edong Healthcare Group, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, 435000, China
| |
Collapse
|
26
|
RNA binding motif 47 (RBM47): emerging roles in vertebrate development, RNA editing and cancer. Mol Cell Biochem 2021; 476:4493-4505. [PMID: 34499322 DOI: 10.1007/s11010-021-04256-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
RNA-binding proteins (RBPs) are critical players in the post-transcriptional regulation of gene expression and are associated with each event in RNA metabolism. The term 'RNA-binding motif' (RBM) is assigned to novel RBPs with one or more RNA recognition motif (RRM) domains that are mainly involved in the nuclear processing of RNAs. RBM47 is a novel RBP conserved in vertebrates with three RRM domains whose contributions to various aspects of cellular functions are as yet emerging. Loss of RBM47 function affects head morphogenesis in zebrafish embryos and leads to perinatal lethality in mouse embryos, thereby assigning it to be an essential gene in early development of vertebrates. Its function as an essential cofactor for APOBEC1 in C to U RNA editing of several targets through substitution for A1CF in the A1CF-APOBEC1 editosome, established a new paradigm in the field. Recent advances in the understanding of its involvement in cancer progression assigned RBM47 to be a tumor suppressor that acts by inhibiting EMT and Wnt/[Formula: see text]-catenin signaling through post-transcriptional regulation. RBM47 is also required to maintain immune homeostasis, which adds another facet to its regulatory role in cellular functions. Here, we review the emerging roles of RBM47 in various biological contexts and discuss the current gaps in our knowledge alongside future perspectives for the field.
Collapse
|
27
|
RNA-Binding Motif Protein 11 (RBM11) Serves as a Prognostic Biomarker and Promotes Ovarian Cancer Progression. DISEASE MARKERS 2021; 2021:3037337. [PMID: 34434291 PMCID: PMC8382552 DOI: 10.1155/2021/3037337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 01/14/2023]
Abstract
Ovarian cancer is one of the most lethal gynecologic malignancies for women. Due to the lack of efficient target therapy, the overall survival rate for patients with advanced ovarian cancer is still low. Illustrating the molecular mechanisms dictating ovarian cancer progression is critically important to develop novel therapeutic agents. Here, we found that RNA-binding motif protein 11 (RBM11) was highly elevated in ovarian cancer tissues compared with normal ovary, while RBM11 depletion in ovarian cancer cells resulted in impaired cell growth and invasion. Moreover, knockdown of RBM11 also retarded tumor growth in the A2780 ovarian cancer xenograft model. Mechanically, we found that RBM11 positively regulated Akt/mTOR signaling pathway activation in ovarian cancer cells. Thus, these results identify RBM11 is a novel oncogenic protein and prognostic biomarker for ovarian cancers.
Collapse
|
28
|
Shen D, Li J, Tao K, Jiang Y. Long non-coding RNA MCM3AP antisense RNA 1 promotes non-small cell lung cancer progression through targeting microRNA-195-5p. Bioengineered 2021; 12:3525-3538. [PMID: 34346845 PMCID: PMC8806479 DOI: 10.1080/21655979.2021.1950282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Lung cancer (LC) ranks first among all causes of cancer-related death, with non-small cell lung cancer (NSCLC) taking up 85% of lung cancer cases. Although lncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) has been reported to be an oncogenic factor in NSCLC, its detailed mechanism in NSCLC is unknown. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine MCM3AP-AS1, microRNA (miR)-195-5p and E2F transcription factor 3 (E2F3) mRNA expressions in NSCLC tissues and cells. Western blot was utilized to determine the expression levels of E2F3, BCL2-associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), E-cadherin and N-cadherin. CCK-8 and Transwell assays were conducted to examine cell proliferation, migration and invasion, respectively. Dual-luciferase reporter assay and RNA immunoprecipitation experiments were used to determine the regulatory relationships between MCM3AP-AS1 and miR-195-5p, and miR-195-5p and E2F3. We demonstrated that MCM3AP-AS1 was overexpressed in NSCLC tissues and cells, and MCM3AP-AS1 overexpression accelerated the proliferation, migration and invasion of NSCLC cells. In addition, MCM3AP-AS1 overexpression markedly up-modulated Bcl-2 expression and repressed Bax expression; MCM3AP-AS1 overexpression also significantly up-regulated N-cadherin expression and suppressed E-cadherin expression in NSCLC cells. What is more, in NSCLC cells, miR-195-5p was a target of MCM3AP-AS1, and the latter worked as a molecular sponge for miR-195-5p to regulate E2F3 expression. Collectively, MCM3AP-AS1, serving as a competitive endogenous RNA (ceRNA) to regulate miR-195-5p/E2F3 axis, promotes NSCLC progression, which is a promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Dijian Shen
- Department of Thoracic Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Science, Hangzhou, China
| | - Jianqiang Li
- Department of Thoracic Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Science, Hangzhou, China
| | - Kaiyi Tao
- Department of Thoracic Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Science, Hangzhou, China
| | - Youhua Jiang
- Department of Thoracic Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Science, Hangzhou, China
| |
Collapse
|
29
|
Wang Y, Chen Y, Xiao S, Fu K. Integrated Analysis of the Functions and Prognostic Values of RNA-Binding Proteins in Colorectal Cancer. Front Cell Dev Biol 2020; 8:595605. [PMID: 33224957 PMCID: PMC7674310 DOI: 10.3389/fcell.2020.595605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. Selecting effective treatment for CRC patients, especially in the early stages, remains a challenge because of the lack of adequate biomarkers. Recent evidence suggests that RNA-binding proteins (RBPs) play a vital role in development and progression of carcinogenesis. However, their mechanisms in cancer progression are still limited. The role of RBPs in CRC has been poorly understood. There were 1,542 reported RBPs analyzed between CRC tissues and normal tissues using the Wilcoxon test to identify differentially expressed RBPs (DE RBPs). Then, the potential functions and the prognostic value of these DE RBPs were explored through systematic bioinformatics analysis. There were 177 DE RBPs identified between CRC tissues and normal tissues. A protein–protein interaction network was constructed based on DE RBPs, and critical modules were screened. A regulatory network between prognostic DE RBPs and differentially expressed transcription factors was constructed. Besides, a risk signature was built based on prognostic DE RBPs, which is able to predict overall survival of CRC patients with high accuracy. In conclusion, the results provided a comprehensive understanding of the functions of RBPs in CRC, as well as an RBP-related prognostic signature.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqiao Chen
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Xiao
- Department of Gastrointestinal Surgery and Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| |
Collapse
|
30
|
Wu TC, Hong YH, Tsai YH, Hsieh SL, Huang RH, Kuo CH, Huang CY. Degradation of Sargassum crassifolium Fucoidan by Ascorbic Acid and Hydrogen Peroxide, and Compositional, Structural, and In Vitro Anti-Lung Cancer Analyses of the Degradation Products. Mar Drugs 2020; 18:E334. [PMID: 32604764 PMCID: PMC7345171 DOI: 10.3390/md18060334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoidans possess multiple biological functions including anti-cancer activity. Moreover, low-molecular-weight fucoidans are reported to possess more bioactivities than native fucoidans. In the present study, a native fucoidan (SC) was extracted from Sargassum crassifolium pretreated by single-screw extrusion, and three degraded fucoidans, namely, SCA (degradation of SC by ascorbic acid), SCH (degradation of SC by hydrogen peroxide), and SCAH (degradation of SC by ascorbic acid + hydrogen peroxide), were produced. The extrusion pretreatment can increase the extraction yield of fucoidan by approximately 4.2-fold as compared to the non-extruded sample. Among SC, SCA, SCH, and SCAH, the chemical compositions varied but structural features were similar. SC, SCA, SCH, and SCAH showed apoptotic effects on human lung carcinoma A-549 cells, as illustrated by loss of mitochondrial membrane potential (MMP), decreased B-cell leukemia-2 (Bcl-2) expression, increased cytochrome c release, increased active caspase-9 and -3, and increased late apoptosis of A-549 cells. In general, SCA was found to exhibit high cytotoxicity to A-549 cells and a strong ability to suppress Bcl-2 expression. SCA also showed high efficacy to induce cytochrome c release, activate caspase-9 and -3, and promote late apoptosis of A-549 cells. Therefore, our data suggest that SCA could have an adjuvant therapeutic potential in the treatment of lung cancer. Additionally, we explored that the Akt/mammalian target of rapamycin (mTOR) signaling pathway is involved in SC-, SCA-, SCH-, and SCAH-induced apoptosis of A-549 cells.
Collapse
Affiliation(s)
- Tien-Chiu Wu
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Rd., Sanmin District, Kaohsiung City 80708, Taiwan;
| | - Yong-Han Hong
- Department of Nutrition, I-Shou University (Yanchao Campus), No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan;
| | - Yung-Hsiang Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan; (Y.-H.T.); (S.-L.H.)
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan; (Y.-H.T.); (S.-L.H.)
| | - Ren-Han Huang
- Department of Nursing, Mackay Medical College, No. 46, Sec. 3, Zhongzheng Rd., Sanzhi District, New Taipei City 25245, Taiwan;
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan; (Y.-H.T.); (S.-L.H.)
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan; (Y.-H.T.); (S.-L.H.)
| |
Collapse
|