1
|
Fernández-Arévalo U, Fuchs J, Boll M, Díaz E. Transcriptional regulation of the anaerobic 3-hydroxybenzoate degradation pathway in Aromatoleum sp. CIB. Microbiol Res 2024; 288:127882. [PMID: 39216330 DOI: 10.1016/j.micres.2024.127882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Phenolic compounds are commonly found in anoxic environments, where they serve as both carbon and energy sources for certain anaerobic bacteria. The anaerobic breakdown of m-cresol, catechol, and certain lignin-derived compounds yields the central intermediate 3-hydroxybenzoate/3-hydroxybenzoyl-CoA. In this study, we have characterized the transcription and regulation of the hbd genes responsible for the anaerobic degradation of 3-hydroxybenzoate in the β-proteobacterium Aromatoleum sp. CIB. The hbd cluster is organized in three catabolic operons and a regulatory hbdR gene that encodes a dimeric transcriptional regulator belonging to the TetR family. HbdR suppresses the activity of the three catabolic promoters (PhbdN, PhbdE and PhbdH) by binding to a conserved palindromic operator box (ATGAATGAN4TCATTCAT). 3-Hydroxybenzoyl-CoA, the initial intermediate of the 3-hydroxybenzoate degradation pathway, along with benzoyl-CoA, serve as effector molecules that bind to HbdR inducing the expression of the hbd genes. Moreover, the hbd genes are subject to additional regulation influenced by the presence of non-aromatic carbon sources (carbon catabolite repression), and their expression is induced in oxygen-deprived conditions by the AcpR transcriptional activator. The prevalence of the hbd cluster among members of the Aromatoleum/Thauera bacterial group, coupled with its association with mobile genetic elements, suggests acquisition through horizontal gene transfer. These findings significantly enhance our understanding of the regulatory mechanisms governing the hbd gene cluster in bacteria, paving the way for further exploration into the anaerobic utilization/valorization of phenolic compounds derived from lignin.
Collapse
Affiliation(s)
- Unai Fernández-Arévalo
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Jonathan Fuchs
- Faculty of Biology-Microbiology, University of Freiburg, Freiburg, Germany
| | - Matthias Boll
- Faculty of Biology-Microbiology, University of Freiburg, Freiburg, Germany
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain.
| |
Collapse
|
2
|
Guillén-Chable F, Valdez Iuit JO, Avila Castro LA, Rosas C, Merino E, Rodríguez-Escamilla Z, Martínez-Núñez MA. Geographical distribution of mobile genetic elements in microbial communities along the Yucatan coast. PLoS One 2024; 19:e0301642. [PMID: 38683832 PMCID: PMC11057721 DOI: 10.1371/journal.pone.0301642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024] Open
Abstract
Horizontal gene transfer (HGT) is a well-documented strategy used by bacteria to enhance their adaptability to challenging environmental conditions. Through HGT, a group of conserved genetic elements known as mobile genetic elements (MGEs) is disseminated within bacterial communities. MGEs offer numerous advantages to the host, increasing its fitness by acquiring new functions that help bacteria contend with adverse conditions, including exposure to heavy metal and antibiotics. This study explores MGEs within microbial communities along the Yucatan coast using a metatranscriptomics approach. Prior to this research, nothing was known about the coastal Yucatan's microbial environmental mobilome and HGT processes between these bacterial communities. This study reveals a positive correlation between MGEs and antibiotic resistance genes (ARGs) along the Yucatan coast, with higher MGEs abundance in more contaminated sites. The Proteobacteria and Firmicutes groups exhibited the highest number of MGEs. It's important to highlight that the most abundant classes of MGEs might not be the ones most strongly linked to ARGs, as observed for the recombination/repair class. This work presents the first geographical distribution of the environmental mobilome in Yucatan Peninsula mangroves.
Collapse
Affiliation(s)
- Francisco Guillén-Chable
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | - Johnny Omar Valdez Iuit
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | | | - Carlos Rosas
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Zuemy Rodríguez-Escamilla
- Facultad de Sistemas Biológicos e Innovación Tecnológica, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca de Juárez, Oaxaca, México
| | | |
Collapse
|
3
|
Gupta G, Chauhan PS, Jha PN, Verma RK, Singh S, Yadav VK, Sahoo DK, Patel A. Secretory molecules from secretion systems fine-tune the host-beneficial bacteria (PGPRs) interaction. Front Microbiol 2024; 15:1355750. [PMID: 38468848 PMCID: PMC10925705 DOI: 10.3389/fmicb.2024.1355750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Numerous bacterial species associate with plants through commensal, mutualistic, or parasitic association, affecting host physiology and health. The mechanism for such association is intricate and involves the secretion of multiple biochemical substances through dedicated protein systems called secretion systems SS. Eleven SS pathways deliver protein factors and enzymes in their immediate environment or host cells, as well as in competing microbial cells in a contact-dependent or independent fashion. These SS are instrumental in competition, initiation of infection, colonization, and establishment of association (positive or negative) with host organisms. The role of SS in infection and pathogenesis has been demonstrated for several phytopathogens, including Agrobacterium, Xanthomonas, Ralstonia, and Pseudomonas. Since there is overlap in mechanisms of establishing association with host plants, several studies have investigated the role of SSs in the interaction of plant and beneficial bacteria, including symbiotic rhizobia and plant growth bacteria (PGPB). Therefore, the present review updates the role of different SSs required for the colonization of beneficial bacteria such as rhizobia, Burkholderia, Pseudomonas, Herbaspirillum, etc., on or inside plants, which can lead to a long-term association. Most SS like T3SS, T4SS, T5SS, and T6SS are required for the antagonistic activity needed to prevent competing microbes, including phytopathogens, ameliorate biotic stress in plants, and produce substances for successful colonization. Others are required for chemotaxis, adherence, niche formation, and suppression of immune response to establish mutualistic association with host plants.
Collapse
Affiliation(s)
- Garima Gupta
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Rakesh Kumar Verma
- Department of Biosciences, SLAS Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
4
|
Wang Z, Song L, Liu X, Shen X, Li X. Bacterial second messenger c-di-GMP: Emerging functions in stress resistance. Microbiol Res 2023; 268:127302. [PMID: 36640720 DOI: 10.1016/j.micres.2023.127302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
In natural environments, bacteria constantly encounter various stressful conditions, including nutrient starvation, toxic chemicals, and oxidative stress. The ability to adapt to these adverse conditions is crucial for bacterial survival. Frequently, bacteria utilize nucleotide signaling molecules such as cyclic diguanylate (c-di-GMP) to regulate their behaviors when encounter stress conditions. c-di-GMP is a ubiquitous bacterial second messenger regulating the transition between the planktonic state and biofilm state. An essential feature of biofilms is the production of extracellular matrix that covers bacterial cells and offers a physical barrier protecting the cells from environmental assaults. Beyond that, accumulating evidences have demonstrated that changes in the environment, including stress stimuli, cause the alteration of intracellular levels of c-di-GMP in bacterial cells, which is immediately sensed by a variety of downstream effectors that induce an appropriate stress response. In this review, we summarize recent research on the role of c-di-GMP signaling in bacterial responses to diverse stress conditions.
Collapse
Affiliation(s)
- Zhuo Wang
- Yuncheng Key Laboratory of Halophiles Resources Utilization, College of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China
| | - Li Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiaozhen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xin Li
- Yuncheng Key Laboratory of Halophiles Resources Utilization, College of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China.
| |
Collapse
|
5
|
Fitness-Conditional Genes for Soil Adaptation in the Bioaugmentation Agent Pseudomonas veronii 1YdBTEX2. mSystems 2023; 8:e0117422. [PMID: 36786610 PMCID: PMC10134887 DOI: 10.1128/msystems.01174-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Strain inoculation (bioaugmentation) is a potentially useful technology to provide microbiomes with new functionalities. However, there is limited understanding of the genetic factors contributing to successful establishment of inoculants. This work aimed to characterize the genes implicated in proliferation of the monoaromatic compound-degrading Pseudomonas veronii 1YdBTEX2 in nonsterile polluted soils. We generated two independent mutant libraries by random minitransposon-delivered marker insertion followed by deep sequencing (Tn-seq) with a total of 5.0 × 105 unique insertions. Libraries were grown in multiple successive cycles for up to 50 generations either in batch liquid medium or in two types of soil microcosms with different resident microbial content (sand or silt) in the presence of toluene. Analysis of gene insertion abundances at different time points (passed generations of metapopulation growth), in comparison to proportions at start and to in silico generated randomized insertion distributions, allowed to define ~800 essential genes common to both libraries and ~2,700 genes with conditional fitness effects in either liquid or soil (195 of which resulted in fitness gain). Conditional fitness genes largely overlapped among all growth conditions but affected approximately twice as many functions in liquid than in soil. This indicates soil to be a more promiscuous environment for mutant growth, probably because of additional nutrient availability. Commonly depleted genes covered a wide range of biological functions and metabolic pathways, such as inorganic ion transport, fatty acid metabolism, amino acid biosynthesis, or nucleotide and cofactor metabolism. Only sparse gene sets were uncovered whose insertion caused fitness decrease exclusive for soils, which were different between silt and sand. Despite detectable higher resident bacteria and potential protist predatory counts in silt, we were, therefore, unable to detect any immediately obvious candidate genes affecting P. veronii biological competitiveness. In contrast to liquid growth conditions, mutants inactivating flagella biosynthesis and motility consistently gained strong fitness advantage in soils and displayed higher growth rates than wild type. In conclusion, although many gene functions were found to be important for growth in soils, most of these are not specific as they affect growth in liquid minimal medium more in general. This indicates that P. veronii does not need major metabolic reprogramming for proliferation in soil with accessible carbon and generally favorable growth conditions. IMPORTANCE Restoring damaged microbiomes is still a formidable challenge. Classical widely adopted approaches consist of augmenting communities with pure or mixed cultures in the hope that these display their intended selected properties under in situ conditions. Ecological theory, however, dictates that introduction of a nonresident microbe is unlikely to lead to its successful proliferation in a foreign system such as a soil microbiome. In an effort to study this systematically, we used random transposon insertion scanning to identify genes and possibly, metabolic subsystems, that are crucial for growth and survival of a bacterial inoculant (Pseudomonas veronii) for targeted degradation of monoaromatic compounds in contaminated nonsterile soils. Our results indicate that although many gene functions are important for proliferation in soil, they are general factors for growth and not exclusive for soil. In other words, P. veronii is a generalist that is not a priori hindered by the soil for its proliferation and would make a good bioaugmentation candidate.
Collapse
|
6
|
In situ electrosynthetic bacterial growth using electricity generated by a deep-sea hydrothermal vent. THE ISME JOURNAL 2023; 17:12-20. [PMID: 36151459 PMCID: PMC9751133 DOI: 10.1038/s41396-022-01316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022]
Abstract
Electroautotrophic microorganisms have attracted great attention since they exhibit a new type of primary production. Here, in situ electrochemical cultivation was conducted using the naturally occurring electromotive forces at a deep-sea hydrothermal vent. The voltage and current generation originating from the resulting microbial activity was observed for 12 days of deployment, with fluctuation in response to tidal cycles. A novel bacterium belonging to the genus Thiomicrorhabdus dominated the microbial community specifically enriched on the cathode. Metagenomic analysis provided the draft genome of the bacterium and the gene repertoire indicated that the bacterium has the potential for thio-autotrophic growth, which is a typical physiological feature of the members of the genus, while the bacterium had a unique gene cluster encoding multi-heme cytochrome c proteins responsible for extracellular electron transfer. Herein, we propose this bacterium as a new species, specifically enriched during electricity generation, as 'Candidatus Thiomicrorhabdus electrophagus'. This finding suggests the natural occurrence of electrosynthetic microbial populations using the geoelectricity in deep-sea hydrothermal environments.
Collapse
|
7
|
Pacheco-Sánchez D, Marín P, Molina-Fuentes Á, Marqués S. Subtle sequence differences between two interacting σ 54 -dependent regulators lead to different activation mechanisms. FEBS J 2022; 289:7582-7604. [PMID: 35816183 PMCID: PMC10084136 DOI: 10.1111/febs.16576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/08/2022] [Accepted: 07/10/2022] [Indexed: 12/13/2022]
Abstract
In the strictly anaerobic nitrate reducing bacterium Aromatoleum anaerobium, degradation of 1,3-dihydroxybenzene (1,3-DHB, resorcinol) is controlled by two bacterial enhancer-binding proteins (bEBPs), RedR1 and RedR2, which regulate the transcription of three σ54 -dependent promoters controlling expression of the pathway. RedR1 and RedR2 are identical over their length except for their N-terminal tail which differ in sequence and length (six and eight residues, respectively), a single change in their N-terminal domain (NTD), and nine non-identical residues in their C-terminal domain (CTD). Their NTD is composed of a GAF and a PAS domain connected by a linker helix. We show that each regulator is controlled by a different mechanism: whilst RedR1 responds to the classical NTD-mediated negative regulation that is released by the presence of its effector, RedR2 activity is constitutive and controlled through interaction with BtdS, an integral membrane subunit of hydroxyhydroquinone dehydrogenase carrying out the second step in 1,3-DHB degradation. BtdS sequesters the RedR2 regulator to the membrane through its NTD, where a four-Ile track in the PAS domain, interrupted by a Thr in RedR1, and the N-terminal tail are involved. The presence of 1,3-DHB, which is metabolized to hydroxybenzoquinone, releases RedR2 from the membrane. Most bEBPs assemble into homohexamers to activate transcription; we show that hetero-oligomer formation between RedR1 and RedR2 is favoured over homo-oligomers. However, either an NTD-truncated version of RedR1 or a full-length RedR2 are capable of promoter activation on their own, suggesting they should assemble into homohexamers in vivo. We show that promoter DNA behaves as an allosteric effector through binding the CTD to control ΔNTD-RedR1 multimerization and activity. Overall, the regulation of the 1,3-DHB anaerobic degradation pathway can be described as a novel mode of bEBP activation and assembly.
Collapse
Affiliation(s)
- Daniel Pacheco-Sánchez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Patricia Marín
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Águeda Molina-Fuentes
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Silvia Marqués
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
8
|
Quach NT, Vu THN, Bui TL, Le TTX, Nguyen TTA, Ngo CC, Phi QT. Genomic and physiological traits provide insights into ecological niche adaptations of mangrove endophytic Streptomyces parvulus VCCM 22513. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Purpose
Endophytic Streptomyces parvulus VCCM 22513 isolated from Bruguiera gymnorrhiza in Quang Ninh mangrove forest, northern Vietnam showed abiotic stress tolerance consisting of antioxidant, salt-tolerant, and aromatic-compound degrading activities. The goal of this study was to shed light on genomic bases rendering mangrove endophytic S. parvulus more resilient to environmental stressors.
Methods
Phenotypic analysis including antioxidant activities, hydrogen peroxide and sodium chloride resistance, and aromatic compound utilization were evaluated. The genome of strain VCCM 22513 was sequenced using Illumina Miseq sequencing platform and assembled using SPAdes.
Results
Out of 15 endophytic actinomycetes associated with B. gymnorrhiza in Quang Ninh mangrove, northern Vietnam, VCCM 22513 extract showed remarkable antioxidant activities through (1,1-diphenyl-2-picrylhydrazyl) DPPH and superoxide radical scavenging assays of 72.1 ± 0.04% and 38.3 ± 0.16% at 1.6 mg/ml, respectively. The genome consists of a 7,688,855 bp linear chromosome, 6782 protein-coding sequences, and 68 tRNAs. Genomic analysis identified strain VCCM 22513 as Streptomyces parvulus and confirmed a highly conserved core genome and stability of S. parvulus under natural selection. Genome mining revealed the presence of genetic determinants involved in mycothiol and ergothioneine biosynthesis (26 genes), oxidative stress resistance (43 genes), osmoadaptation (87 genes), heat and cold stress (34 genes), aromatic compound degradation (55 genes). Further genome-wide comparison between S. parvulus VCCM 22513 and 11 Streptomyces genomes showed that VCCM 22513 possesses significantly higher copies of genes involved in mycothiol and ergothioneine biosynthesis. In support of this finding, the strain exhibited much resistance to 0.6–1.0 M H2O2 and 6% (w/v) NaCl as compared to Streptomyces cavourensis YBQ59 isolated from Cinnamomum cassia Prels. In addition, the complete pathways for degradation of aromatic compounds including protocatechuate, gentisate, 4-hydroxyphenylpyruvate, cinnamate, 3-phenylpropionate, and styrene were only identified in the genome of VCCM 22513.
Conclusions
The present study revealed for the first time adaptive responses of mangrove endophytic S. parvulus VCCM 22513 to survive in hostile environment. The information shown here provided better understanding of underlying mechanisms related to adaptation and partially plant-microbe interaction of Streptomyces associated with mangrove plants.
Collapse
|
9
|
Alonso‐Fernandes E, Fernández‐Llamosas H, Cano I, Serrano‐Pelejero C, Castro L, Díaz E, Carmona M. Enhancing tellurite and selenite bioconversions by overexpressing a methyltransferase from
Aromatoleum
sp. CIB. Microb Biotechnol 2022; 16:915-930. [PMID: 36366868 PMCID: PMC10128142 DOI: 10.1111/1751-7915.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Pollution by metalloids, e.g., tellurite and selenite, is of serious environmental concern and, therefore, there is an increasing interest in searching for ecologically friendly solutions for their elimination. Some microorganisms are able to reduce toxic tellurite/selenite into less toxic elemental tellurium (Te) and selenium (Se). Here, we describe the use of the environmentally relevant β-proteobacterium Aromatoleum sp. CIB as a platform for tellurite elimination. Aromatoleum sp. CIB was shown to tolerate 0.2 and 0.5 mM tellurite at aerobic and anaerobic conditions, respectively. Furthermore, the CIB strain was able to reduce tellurite into elemental Te producing rod-shaped Te nanoparticles (TeNPs) of around 200 nm length. A search in the genome of Aromatoleum sp. CIB revealed the presence of a gene, AzCIB_0135, which encodes a new methyltransferase that methylates tellurite and also selenite. AzCIB_0135 orthologs are widely distributed in bacterial genomes. The overexpression of the AzCIB_0135 gene both in Escherichia coli and Aromatoleum sp. CIB speeds up tellurite and selenite removal, and it enhances the production of rod-shaped TeNPs and spherical Se nanoparticles (SeNPs), respectively. Thus, the overexpression of a methylase becomes a new genetic strategy to optimize bacterial catalysts for tellurite/selenite bioremediation and for the programmed biosynthesis of metallic nanoparticles of biotechnological interest.
Collapse
Affiliation(s)
- Elena Alonso‐Fernandes
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Helga Fernández‐Llamosas
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Irene Cano
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Cristina Serrano‐Pelejero
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Laura Castro
- Department of Material Science and Metallurgical Engineering, Facultad de Químicas Universidad Complutense de Madrid Madrid Spain
| | - Eduardo Díaz
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Manuel Carmona
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| |
Collapse
|
10
|
Sanz D, Díaz E. Genetic characterization of the cyclohexane carboxylate degradation pathway in the denitrifying bacterium Aromatoleum sp. CIB. Environ Microbiol 2022; 24:4987-5004. [PMID: 35768954 PMCID: PMC9795900 DOI: 10.1111/1462-2920.16093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022]
Abstract
The alicyclic compound cyclohexane carboxylate (CHC) is anaerobically degraded through a peripheral pathway that converges with the central benzoyl-CoA degradation pathway of aromatic compounds in Rhodopseudomonas palustris (bad pathway) and some strictly anaerobic bacteria. Here we show that in denitrifying bacteria, e.g. Aromatoleum sp. CIB strain, CHC is degraded through a bad-ali pathway similar to that reported in R. palustris but that does not share common intermediates with the benzoyl-CoA degradation pathway (bzd pathway) of this bacterium. The bad-ali genes are also involved in the aerobic degradation of CHC in strain CIB, and orthologous bad-ali clusters have been identified in the genomes of a wide variety of bacteria. Expression of bad-ali genes in strain CIB is under control of the BadR transcriptional repressor, which was shown to recognize CHC-CoA, the first intermediate of the pathway, as effector, and whose operator region (CAAN4 TTG) was conserved in bad-ali clusters from Gram-negative bacteria. The bad-ali and bzd pathways generate pimelyl-CoA and 3-hydroxypimelyl-CoA, respectively, that are metabolized through a common aab pathway whose genetic determinants form a supraoperonic clustering with the bad-ali genes. A synthetic bad-ali-aab catabolic module was engineered and it was shown to confer CHC degradation abilities to different bacterial hosts.
Collapse
Affiliation(s)
- David Sanz
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| | - Eduardo Díaz
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| |
Collapse
|
11
|
Zhang Z, Zhang H, Al-Gabr HM, Jin H, Zhang K. Performances and enhanced mechanisms of nitrogen removal in a submerged membrane bioreactor coupled sponge iron system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115505. [PMID: 35753132 DOI: 10.1016/j.jenvman.2022.115505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Sponge iron is a potential material for nitrogen removal, but lack of a study about nitrogen removal in a membrane bioreactor (MBR) coupled with sponge iron. The performances and mechanisms of nitrogen removal of SI-MBR were investigated and compared it with that in GAC-MBR. The results showed that the average rate of organic matter removal in the SI-MBR was 92.74%, which was higher than that in the GAC-MBR (87.48%). And the average effluent NO2--N and NO3--N concentration in the SI-MBR (0.02 mg/L and 3.73 mg/L) was lower than that in the GAC-MBR (0.05 mg/L and 7.51 mg/L). Meanwhile, the highest nitrification rate and denitrification rate was respectively 3.544 ± 0.25 mg/(g VSS·h) and 6.643 ± 0.2 mg/(g VSS·h) in the SI-MBR, which was higher than that (3.094 ± 0.25 mg/(g VSS·h) and (6.376 ± 0.2 mg/(g VSS·h)) in the GAC-MBR. Additionally, the bacterial activities (e.g., DHA activity and respiratory activity) were obviously enhanced through the iron ion from sponge iron. The bacterial community in the SI-MBR system was more richness and diverse than that in the GAC-MBR. Ultimately, the mechanisms of enhanced biological nitrogen removal with sponge iron in MBR were analyzed. On the surface of sponge iron, the DIRB and FOB could use the iron ion from sponge iron as the electron transfer to improve the nitrogen and organic removal. With sponge iron, there is not only the nitrification bacteria and heterotrophic denitrifying microorganism enriched, but also the autotrophic denitrifying bacteria abounded obviously. The autotrophic denitrifying bacteria could use Fe(II) as an electron donor to achieve denitrification and enhance the nitrogen removal.
Collapse
Affiliation(s)
- Zhuowei Zhang
- NingboTech University, 315000, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | | | | | | | | |
Collapse
|
12
|
Becker P, Döhmann A, Wöhlbrand L, Thies D, Hinrichs C, Buschen R, Wünsch D, Neumann-Schaal M, Schomburg D, Winklhofer M, Reinhardt R, Rabus R. Complex and flexible catabolism in Aromatoleum aromaticum pCyN1. Environ Microbiol 2022; 24:3195-3211. [PMID: 35590445 DOI: 10.1111/1462-2920.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022]
Abstract
Large quantities of organic matter are continuously deposited, and (a)biotic gradients intersect in the soil-rhizosphere, where biodegradation contributes to the global cycles of elements. The betaproteobacterial genus Aromatoleum comprises cosmopolitan, facultative denitrifying degradation specialists. A. aromaticum pCyN1 stands out for anaerobically decomposing plant-derived monoterpenes in addition to monoaromatic hydrocarbons, polar aromatics and aliphatics. The catabolic network's structure and flexibility in A. aromaticum pCyN1 was studied across 34 growth conditions by superimposing proteome profiles onto the manually annotated 4.37 Mbp genome. Strain pCyN1 employs three fundamentally different enzymes for C-H-bond cleavage at the methyl groups of p-cymene/4-ethyltoluene, toluene and p-cresol, respectively. Regulation of degradation modules displayed substrate specificities ranging from narrow (toluene and cyclohexane carboxylate) via medium-wide (one module shared by p-cymene, 4-ethyltoluene, α-phellandrene, α-terpinene, γ-terpinene and limonene) to broad (central benzoyl-CoA pathway serving 16 aromatic substrates). Remarkably, three variants of ATP-dependent (class I) benzoyl-CoA reductase and four different β-oxidation routes establish a degradation hub that accommodates the substrate diversity. The respiratory system displayed several conspicuous profiles, e.g., the presence of nitrous oxide reductase under oxic and of low-affinity oxidase under anoxic conditions. Overall, nutritional versatility in conjunction with network regulation endow A. aromaticum pCyN1 with broad adaptability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Patrick Becker
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Annemieke Döhmann
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Daniela Thies
- Department of Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Christina Hinrichs
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ramona Buschen
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Daniel Wünsch
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Meina Neumann-Schaal
- Research Group Bacterial Metabolism, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, Germany.,Department of Analytics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Dietmar Schomburg
- Research Group Bacterial Metabolism, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, Germany.,Department of Bioinformatics and Biochemistry, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, Germany
| | - Michael Winklhofer
- Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Sensory Biology of Animals, Institute of Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Richard Reinhardt
- Max-Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
13
|
Reyes-Umana V, Kretschmer J, Coates JD. Isolation of a Dissimilatory Iodate-Reducing Aromatoleum sp. From a Freshwater Creek in the San Francisco Bay Area. Front Microbiol 2022; 12:804181. [PMID: 35111143 PMCID: PMC8801600 DOI: 10.3389/fmicb.2021.804181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/28/2021] [Indexed: 11/26/2022] Open
Abstract
Recent reports of dissimilatory iodate-reducing microorganisms (DIRM) have arisen from studies of bacteria in marine environments. These studies described the physiology and distribution of DIRM while also demonstrating their presence in iodine-rich marine environments. We posited that despite lower iodine concentrations, terrestrial and freshwater ecosystems should also harbor DIRM. We established numerous enrichments from coastal and freshwater environments that actively remove amended iodate. We describe the physiology and genome of a new DIRM isolate, Aromatoleum toluclasticum sp. TC-10, emerging from a freshwater creek microcosm. Like other DIRM, A. toluclasticum sp. TC-10 couples acetate oxidation to iodate reduction with a concomitant increase in the OD600. Our results indicate that A. toluclasticum sp. TC-10 performs dissimilatory iodate reduction (DIR) using the recently described iodate reductase (Idr). We provide further evidence of horizontal gene transfer of the idr genes by demonstrating the lack of Idr in the closely related (99.93% 16S rDNA sequence identity) A. toluclasticum sp. MF63 and describe the heterogeneity of the accessory proteins associated with the iodate reduction island (IRI). These observations provide additional evidence that DIR is a horizontally acquired metabolism with broad environmental distribution beyond exclusively marine environments.
Collapse
|
14
|
Cai Z, Li H, Pu S, Ke J, Wang D, Liu Y, Chen J, Guo R. Development of autotrophic and heterotrophic consortia via immobilized microbial beads for chemical wastewater treatment, using PTA wastewater as an approach. CHEMOSPHERE 2021; 281:131001. [PMID: 34289638 DOI: 10.1016/j.chemosphere.2021.131001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
Studies on the symbiosis of microalgae-bacteria have been accelerating as a mean for wastewater remediation. However, there were few reports about the microalgae-bacteria consortia for chemical wastewater treatment. The aim of the present study is to develop an autotrophic and heterotrophic consortium for chemical wastewater treatment and probe whether and how bacteria could benefit from the microalgae during the treatment process, using PTA wastewater as an approach. A process-dependent strategy was applied. First of all, the results showed that the sludge beads with the sludge concentration of 30 g/L were the optimal one with the COD removal rate at 84.8% but the ceiling effect occurred (COD removal rate < 90%) even several common reinforcement methods were applied. Additionally, by adding the microalgae Chlorella vulgaris, a microalgae-activated sludge consortium was formed inside the immobilized beads, which provided better performance to shatter the ceiling effect. The COD remove rate was higher than 90%, regardless of the activated sludge was pre-culture or not. COD removal capacity could also be improved (COD removal rate > 92%) when LEDs light belt was offered as an advanced light condition. Biochemical assay and DNA analysis indicated that the microalgae could form an internal circulation of substances within the activated sludge and drove the microbial community to success and the corresponding gene functions, like metabolism and.
Collapse
Affiliation(s)
- Zhibin Cai
- China Pharmaceutical University, Nanjing, 211198, China
| | - Haitao Li
- Research Institute of Nanjing Chemical Industry Group, Nanjing, 210048, China
| | - Shaochen Pu
- China Pharmaceutical University, Nanjing, 211198, China
| | - Jian Ke
- China Pharmaceutical University, Nanjing, 211198, China
| | - Dong Wang
- Research Institute of Nanjing Chemical Industry Group, Nanjing, 210048, China
| | - Yanhua Liu
- China Pharmaceutical University, Nanjing, 211198, China
| | - Jianqiu Chen
- China Pharmaceutical University, Nanjing, 211198, China.
| | - Ruixin Guo
- China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
15
|
Fernández-Llamosas H, Díaz E, Carmona M. Motility, Adhesion and c-di-GMP Influence the Endophytic Colonization of Rice by Azoarcus sp. CIB. Microorganisms 2021; 9:microorganisms9030554. [PMID: 33800326 PMCID: PMC7998248 DOI: 10.3390/microorganisms9030554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 01/26/2023] Open
Abstract
Proficient crop production is needed to ensure the feeding of a growing global population. The association of bacteria with plants plays an important role in the health state of the plants contributing to the increase of agricultural production. Endophytic bacteria are ubiquitous in most plant species providing, in most cases, plant promotion properties. However, the knowledge on the genetic determinants involved in the colonization of plants by endophytic bacteria is still poorly understood. In this work we have used a genetic approach based on the construction of fliM, pilX and eps knockout mutants to show that the motility mediated by a functional flagellum and the pili type IV, and the adhesion modulated by exopolysaccarides are required for the efficient colonization of rice roots by the endophyte Azoarcus sp. CIB. Moreover, we have demonstrated that expression of an exogenous diguanylate cyclase or phophodiesterase, which causes either an increase or decrease of the intracellular levels of the second messenger cyclic di-GMP (c-di-GMP), respectively, leads to a reduction of the ability of Azoarcus sp. CIB to colonize rice plants. Here we present results demonstrating the unprecedented role of the universal second messenger cyclic-di-GMP in plant colonization by an endophytic bacterium, Azoarcus sp. CIB. These studies pave the way to further strategies to modulate the interaction of endophytes with their target plant hosts.
Collapse
|
16
|
Salii I, Szaleniec M, Zein AA, Seyhan D, Sekuła A, Schühle K, Kaplieva-Dudek I, Linne U, Meckenstock RU, Heider J. Determinants for Substrate Recognition in the Glycyl Radical Enzyme Benzylsuccinate Synthase Revealed by Targeted Mutagenesis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Iryna Salii
- Department of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, 35043 Marburg, Germany
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science, 30-239 Kraków, Poland
| | - Ammar Alhaj Zein
- Department of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, 35043 Marburg, Germany
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Deniz Seyhan
- Department of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, 35043 Marburg, Germany
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Anna Sekuła
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science, 30-239 Kraków, Poland
| | - Karola Schühle
- Department of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, 35043 Marburg, Germany
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | | | - Uwe Linne
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
- Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany
| | | | - Johann Heider
- Department of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, 35043 Marburg, Germany
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
17
|
Weiten A, Kalvelage K, Becker P, Reinhardt R, Hurek T, Reinhold-Hurek B, Rabus R. Complete Genomes of the Anaerobic Degradation Specialists Aromatoleum petrolei ToN1T and Aromatoleum bremense PbN1T. Microb Physiol 2021; 31:16-35. [PMID: 33477134 DOI: 10.1159/000513167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022]
Abstract
The betaproteobacterial genus Aromatoleum comprises facultative denitrifiers specialized in the anaerobic degradation of recalcitrant organic compounds (aromatic and terpenoid). This study reports on the complete and manually annotated genomes of Ar. petrolei ToN1T (5.41 Mbp) and Ar. bremense PbN1T (4.38 Mbp), which cover the phylogenetic breadth of the genus Aromatoleum together with previously genome sequenced Ar. aromaticum EbN1T [Rabus et al., Arch Microbiol. 2005 Jan;183(1):27-36]. The gene clusters for the anaerobic degradation of aromatic and terpenoid (strain ToN1T only) compounds are scattered across the genomes of strains ToN1T and PbN1T. The richness in mobile genetic elements is shared with other Aromatoleum spp., substantiating that horizontal gene transfer should have been a major driver in shaping the genomes of this genus. The composite catabolic network of strains ToN1T and PbN1T comprises 88 proteins, the coding genes of which occupy 86.1 and 76.4 kbp (1.59 and 1.75%) of the respective genome. The strain-specific gene clusters for anaerobic degradation of ethyl-/propylbenzene (strain PbN1T) and toluene/monoterpenes (strain ToN1T) share high similarity with their counterparts in Ar. aromaticum strains EbN1T and pCyN1, respectively. Glucose is degraded via the ED-pathway in strain ToN1T, while gluconeogenesis proceeds via the reverse EMP-pathway in strains ToN1T, PbN1T, and EbN1T. The diazotrophic, endophytic lifestyle of closest related genus Azoarcus is known to be associated with nitrogenase and type-6 secretion system (T6SS). By contrast, strains ToN1T, PbN1T, and EbN1T lack nif genes for nitrogenase (including cofactor synthesis and enzyme maturation). Moreover, strains PbN1T and EbN1T do not possess tss genes for T6SS, while strain ToN1T does and facultative endophytic "Aromatoleum" sp. CIB is known to even have both. These findings underpin the functional heterogeneity among Aromatoleum members, correlating with the high plasticity of their genomes.
Collapse
Affiliation(s)
- Arne Weiten
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Kristin Kalvelage
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Patrick Becker
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Richard Reinhardt
- Max-Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,
| |
Collapse
|
18
|
Comparative Genomics Provides Insights into the Taxonomy of Azoarcus and Reveals Separate Origins of Nif Genes in the Proposed Azoarcus and Aromatoleum Genera. Genes (Basel) 2021; 12:genes12010071. [PMID: 33430351 PMCID: PMC7825797 DOI: 10.3390/genes12010071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Among other attributes, the Betaproteobacterial genus Azoarcus has biotechnological importance for plant growth-promotion and remediation of petroleum waste-polluted water and soils. It comprises at least two phylogenetically distinct groups. The "plant-associated" group includes strains that are isolated from the rhizosphere or root interior of the C4 plant Kallar Grass, but also strains from soil and/or water; all are considered to be obligate aerobes and all are diazotrophic. The other group (now partly incorporated into the new genus Aromatoleum) comprises a diverse range of species and strains that live in water or soil that is contaminated with petroleum and/or aromatic compounds; all are facultative or obligate anaerobes. Some are diazotrophs. A comparative genome analysis of 32 genomes from 30 Azoarcus-Aromatoleum strains was performed in order to delineate generic boundaries more precisely than the single gene, 16S rRNA, that has been commonly used in bacterial taxonomy. The origin of diazotrophy in Azoarcus-Aromatoleum was also investigated by comparing full-length sequences of nif genes, and by physiological measurements of nitrogenase activity using the acetylene reduction assay. Based on average nucleotide identity (ANI) and whole genome analyses, three major groups could be discerned: (i) Azoarcus comprising Az. communis, Az. indigens and Az. olearius, and two unnamed species complexes, (ii) Aromatoleum Group 1 comprising Ar. anaerobium, Ar. aromaticum, Ar. bremense, and Ar. buckelii, and (iii) Aromatoleum Group 2 comprising Ar. diolicum, Ar. evansii, Ar. petrolei, Ar. toluclasticum, Ar. tolulyticum, Ar. toluolicum, and Ar. toluvorans. Single strain lineages such as Azoarcus sp. KH32C, Az. pumilus, and Az. taiwanensis were also revealed. Full length sequences of nif-cluster genes revealed two groups of diazotrophs in Azoarcus-Aromatoleum with nif being derived from Dechloromonas in Azoarcus sensu stricto (and two Thauera strains) and from Azospira in Aromatoleum Group 2. Diazotrophy was confirmed in several strains, and for the first time in Az. communis LMG5514, Azoarcus sp. TTM-91 and Ar. toluolicum TT. In terms of ecology, with the exception of a few plant-associated strains in Azoarcus (s.s.), across the group, most strains/species are found in soil and water (often contaminated with petroleum or related aromatic compounds), sewage sludge, and seawater. The possession of nar, nap, nir, nor, and nos genes by most Azoarcus-Aromatoleum strains suggests that they have the potential to derive energy through anaerobic nitrate respiration, so this ability cannot be usefully used as a phenotypic marker to distinguish genera. However, the possession of bzd genes indicating the ability to degrade benzoate anaerobically plus the type of diazotrophy (aerobic vs. anaerobic) could, after confirmation of their functionality, be considered as distinguishing phenotypes in any new generic delineations. The taxonomy of the Azoarcus-Aromatoleum group should be revisited; retaining the generic name Azoarcus for its entirety, or creating additional genera are both possible outcomes.
Collapse
|
19
|
Laczi K, Erdeiné Kis Á, Szilágyi Á, Bounedjoum N, Bodor A, Vincze GE, Kovács T, Rákhely G, Perei K. New Frontiers of Anaerobic Hydrocarbon Biodegradation in the Multi-Omics Era. Front Microbiol 2020; 11:590049. [PMID: 33304336 PMCID: PMC7701123 DOI: 10.3389/fmicb.2020.590049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
The accumulation of petroleum hydrocarbons in the environment substantially endangers terrestrial and aquatic ecosystems. Many microbial strains have been recognized to utilize aliphatic and aromatic hydrocarbons under aerobic conditions. Nevertheless, most of these pollutants are transferred by natural processes, including rain, into the underground anaerobic zones where their degradation is much more problematic. In oxic zones, anaerobic microenvironments can be formed as a consequence of the intensive respiratory activities of (facultative) aerobic microbes. Even though aerobic bioremediation has been well-characterized over the past few decades, ample research is yet to be done in the field of anaerobic hydrocarbon biodegradation. With the emergence of high-throughput techniques, known as omics (e.g., genomics and metagenomics), the individual biodegraders, hydrocarbon-degrading microbial communities and metabolic pathways, interactions can be described at a contaminated site. Omics approaches provide the opportunity to examine single microorganisms or microbial communities at the system level and elucidate the metabolic networks, interspecies interactions during hydrocarbon mineralization. Metatranscriptomics and metaproteomics, for example, can shed light on the active genes and proteins and functional importance of the less abundant species. Moreover, novel unculturable hydrocarbon-degrading strains and enzymes can be discovered and fit into the metabolic networks of the community. Our objective is to review the anaerobic hydrocarbon biodegradation processes, the most important hydrocarbon degraders and their diverse metabolic pathways, including the use of various terminal electron acceptors and various electron transfer processes. The review primarily focuses on the achievements obtained by the current high-throughput (multi-omics) techniques which opened new perspectives in understanding the processes at the system level including the metabolic routes of individual strains, metabolic/electric interaction of the members of microbial communities. Based on the multi-omics techniques, novel metabolic blocks can be designed and used for the construction of microbial strains/consortia for efficient removal of hydrocarbons in anaerobic zones.
Collapse
Affiliation(s)
- Krisztián Laczi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Ágnes Erdeiné Kis
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Árpád Szilágyi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Naila Bounedjoum
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | - Attila Bodor
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | | | - Tamás Kovács
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Pécs, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| |
Collapse
|
20
|
Performance and Microbial Community of Different Biofilm Membrane Bioreactors Treating Antibiotic-Containing Synthetic Mariculture Wastewater. MEMBRANES 2020; 10:membranes10100282. [PMID: 33066341 PMCID: PMC7602114 DOI: 10.3390/membranes10100282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022]
Abstract
The performance of pollutant removals, tetracycline (TC) and norfloxacin (NOR) removals, membrane fouling mitigation and the microbial community of three Anoxic/Oxic membrane bioreactors (AO-MBRs), including a moving bed biofilm MBR (MBRa), a fixed biofilm MBR (MBRb) and an AO-MBR (MBRc) for control, were compared in treating antibiotic-containing synthetic mariculture wastewater. The results showed that MBRb had the best effect on antibiotic removal and membrane fouling mitigation compared to the other two bioreactors. The maximum removal rate of TC reached 91.65% and the maximum removal rate of NOR reached 45.46% in MBRb. The addition of antibiotics had little effect on the removal of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N)—both maintained more than 90% removal rate during the entire operation. High-throughput sequencing demonstrated that TC and NOR resulted in a significant decrease in the microbial diversity and the microbial richness MBRs. Flavobacteriia, Firmicutes and Azoarcus, regarded as drug-resistant bacteria, might play a crucial part in the removal of antibiotics. In addition, the dynamics of microbial community had a great change, which included the accumulation of resistant microorganisms and the gradual reduction or disappearance of other microorganisms under antibiotic pressure. The research provides an insight into the antibiotic-containing mariculture wastewater treatment and has certain reference value.
Collapse
|
21
|
Elmaadawy K, Hu J, Guo S, Hou H, Xu J, Wang D, Liang T, Yang J, Liang S, Xiao K, Liu B. Enhanced treatment of landfill leachate with cathodic algal biofilm and oxygen-consuming unit in a hybrid microbial fuel cell system. BIORESOURCE TECHNOLOGY 2020; 310:123420. [PMID: 32339889 DOI: 10.1016/j.biortech.2020.123420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
An innovative cathodic algal biofilm microbial fuel cell equipped with a bioactive oxygen consuming unit (AB-OCU-MFC) was proposed for enhancing the leachate treatment containing biorefractory organic matters and high strength of ammonium nitrogen. The proposed AB-OCU-MFC performed better with regard to COD, NH4+-N, TN removals and algal biomass yield than standalone algal biofilm-MFC and control reactors. AB-OCU-MFC with OCU of 2 cm thickness removed more than 86% of COD, 89.4% of NH4+-N, 76.7% of TN and produced a maximum voltage of 0.39 V and biomass productivity of 1.23 g·L-1·d-1. The High-throughput sequencing of DNA showed a significant change in microbial community of reactors implemented with OCU, in which the ratio of exoelectrogenic bacteria of anode and denitrifying bacteria on cathode were significantly increased. The results obtained by cathodic algal biofilm MFC with low cost and bioactive barrier of OCU, would provide a new sight for practical application of MFC.
Collapse
Affiliation(s)
- Khaled Elmaadawy
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037, Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037, Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Shengxia Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037, Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China
| | - Jikun Xu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Dongliang Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037, Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Ting Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037, Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037, Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037, Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037, Luoyu Road, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
22
|
Sanz D, García JL, Díaz E. Expanding the current knowledge and biotechnological applications of the oxygen-independent ortho-phthalate degradation pathway. Environ Microbiol 2020; 22:3478-3493. [PMID: 32510798 DOI: 10.1111/1462-2920.15119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022]
Abstract
ortho-Phthalate derives from industrially produced phthalate esters, which are massively used as plasticizers and constitute major emerging environmental pollutants. The pht pathway for the anaerobic bacterial biodegradation of o-phthalate involves its activation to phthaloyl-CoA followed by decarboxylation to benzoyl-CoA. Here, we have explored further the pht peripheral pathway in denitrifying bacteria and shown that it requires also an active transport system for o-phthalate uptake that belongs to the poorly characterized class of TAXI-TRAP transporters. The construction of a fully functional pht cassette combining both catabolic and transport genes allowed to expand the o-phthalate degradation ecological trait to heterologous hosts. Unexpectedly, the pht cassette also allowed the aerobic conversion of o-phthalate to benzoyl-CoA when coupled to a functional box central pathway. Hence, the pht pathway may constitute an evolutionary acquisition for o-phthalate degradation by bacteria that thrive either in anoxic environments or in environments that face oxygen limitations and that rely on benzoyl-CoA, rather than on catecholic central intermediates, for the aerobic catabolism of aromatic compounds. Finally, the recombinant pht cassette was used both to screen for functional aerobic box pathways in bacteria and to engineer recombinant biocatalysts for o-phthalate bioconversion into sustainable bioplastics, e.g., polyhydroxybutyrate, in plastic recycling industrial processes.
Collapse
Affiliation(s)
- David Sanz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - José L García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| |
Collapse
|
23
|
Li X, Qiao J, Li S, Häggblom MM, Li F, Hu M. Bacterial Communities and Functional Genes Stimulated During Anaerobic Arsenite Oxidation and Nitrate Reduction in a Paddy Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2172-2181. [PMID: 31773946 DOI: 10.1021/acs.est.9b04308] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial arsenite (As(III)) oxidation associated with nitrate (NO3-) reduction might be an important process in diminishing arsenic bioavailability and toxicity to rice when paddy soils are contaminated by arsenic. In a noncontaminated soil, however, the responses of bacterial communities and functional genes to As(III) under nitrate-reducing conditions are poorly understood. In this study, anaerobic paddy soil microcosms were established with As(III) and/or NO3- to investigate how the bacterial communities and their functional genes were stimulated during As(III) oxidation and nitrate reduction. Microbial oxidation of As(III) to As(V) was substantially accelerated by nitrate addition, while nitrate reduction was not affected by As(III) addition. Metagenomic analysis revealed that nitrate-reducing bacteria were principally affiliated with Pseudogulbenkiania, with narG, nirS, and norBC genes. Putative As(III)-oxidizing bacteria were dominated by an Azoarcus sp. with As(III) oxidase genes aioA and aioB detected in its draft genome, which also had complete sets of denitrification genes (mainly, napA, nirK, and nosZ). Quantitive PCR analysis confirmed that the abundance of Azoarcus spp., aioA, and nosZ genes was enhanced by As(III) addition. These findings suggest the importance of Azoarcus- and Pseudogulbenkiania-related spp., both of which showed various physio-ecological characteristics for arsenic and nitrogen biogeochemistry, in coupling As(III) oxidation and nitrate reduction in flooded paddy soil.
Collapse
Affiliation(s)
| | - Jiangtao Qiao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management , Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650 , China
| | - Shuang Li
- Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute) , Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery , Guangzhou 510316 , China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management , Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650 , China
| | - Min Hu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management , Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650 , China
| |
Collapse
|
24
|
Two Different Quinohemoprotein Amine Dehydrogenases Initiate Anaerobic Degradation of Aromatic Amines in Aromatoleum aromaticum EbN1. J Bacteriol 2019; 201:JB.00281-19. [PMID: 31138631 DOI: 10.1128/jb.00281-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/23/2019] [Indexed: 11/20/2022] Open
Abstract
Aromatic amines like 2-phenylethylamine (2-PEA) and benzylamine (BAm) have been identified as novel growth substrates of the betaproteobacterium Aromatoleum aromaticum EbN1, which degrades a wide variety of aromatic compounds in the absence of oxygen under denitrifying growth conditions. The catabolic pathway of these amines was identified, starting with their oxidative deamination to the corresponding aldehydes, which are then further degraded via the enzymes of the phenylalanine or benzyl alcohol metabolic pathways. Two different periplasmic quinohemoprotein amine dehydrogenases involved in 2-PEA or BAm metabolism were identified and characterized. Both enzymes consist of three subunits, contain two heme c cofactors in their α-subunits, and exhibit extensive processing of their γ-subunits, generating four intramolecular thioether bonds and a cysteine tryptophylquinone (CTQ) cofactor. One of the enzymes was present in cells grown with 2-PEA or other substrates, showed an α2β2γ2 composition, and had a rather broad substrate spectrum, which included 2-PEA, BAm, tyramine, and 1-butylamine. In contrast, the other enzyme was specifically induced in BAm-grown cells, showing an αβγ composition and activity only with BAm and 2-PEA. Since the former enzyme showed the highest catalytic efficiency with 2-PEA and the latter with BAm, they were designated 2-PEADH and benzylamine dehydrogenase (BAmDH). The catalytic properties and inhibition patterns of 2-PEADH and BAmDH showed considerable differences and were compared to previously characterized quinohemoproteins of the same enzyme family.IMPORTANCE The known substrate spectrum of A. aromaticum EbN1 is expanded toward aromatic amines, which are metabolized as sole substrates coupled to denitrification. The characterization of the two quinohemoprotein isoenzymes involved in degrading either 2-PEA or BAm expands the knowledge of this enzyme family and establishes for the first time that the necessary maturation of their quinoid CTQ cofactors does not require the presence of molecular oxygen. Moreover, the study revealed a highly interesting regulatory phenomenon, suggesting that growth with BAm leads to a complete replacement of 2-PEADH by BAmDH, which has considerably different catalytic and inhibition properties.
Collapse
|
25
|
Durante-Rodríguez G, Fernández-Llamosas H, Alonso-Fernandes E, Fernández-Muñiz MN, Muñoz-Olivas R, Díaz E, Carmona M. ArxA From Azoarcus sp. CIB, an Anaerobic Arsenite Oxidase From an Obligate Heterotrophic and Mesophilic Bacterium. Front Microbiol 2019; 10:1699. [PMID: 31417512 PMCID: PMC6683785 DOI: 10.3389/fmicb.2019.01699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/10/2019] [Indexed: 11/13/2022] Open
Abstract
Arsenic is a toxic element widely distributed in nature, but numerous bacteria are able to resist its toxicity mainly through the ars genes encoding an arsenate reductase and an arsenite efflux pump. Some “arsenotrophic” bacteria are also able to use arsenite as energy supplier during autotrophic growth by coupling anaerobic arsenite oxidation via the arx gene products to nitrate respiration or photosynthesis. Here, we have demonstrated that Azoarcus sp. CIB, a facultative anaerobic β-proteobacterium, is able to resist arsenic oxyanions both under aerobic and anaerobic conditions. Genome mining, gene expression, and mutagenesis studies revealed the presence of a genomic island that harbors the ars and arx clusters involved in arsenic resistance in strain CIB. Orthologous ars clusters are widely distributed in the genomes of sequenced Azoarcus strains. Interestingly, genetic and metabolic approaches showed that the arx cluster of the CIB strain encodes an anaerobic arsenite oxidase also involved in the use of arsenite as energy source. Hence, Azoarcus sp. CIB represents the prototype of an obligate heterotrophic bacterium able to use arsenite as an extra-energy source for anaerobic cell growth. The arsenic island of strain CIB supports the notion that metabolic and energetic skills can be gained by genetic mobile elements.
Collapse
Affiliation(s)
| | | | - Elena Alonso-Fernandes
- Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | | - Riansares Muñoz-Olivas
- Departamento de Química Analítica, Facultad de Químicas, Universidad Complutense Madrid, Madrid, Spain
| | - Eduardo Díaz
- Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Manuel Carmona
- Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| |
Collapse
|
26
|
Ospino MC, Kojima H, Fukui M. Arsenite Oxidation by a Newly Isolated Betaproteobacterium Possessing arx Genes and Diversity of the arx Gene Cluster in Bacterial Genomes. Front Microbiol 2019; 10:1210. [PMID: 31191509 PMCID: PMC6549141 DOI: 10.3389/fmicb.2019.01210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Microbes play essential roles in arsenic transformation in the environment. Microbial arsenite oxidation is catalyzed by either of two distantly related arsenite oxidases, referred to as AIO and ARX. The arx genes encoding ARX and its regulatory proteins were originally defined in the genomes of gammaproteobacteria isolated from an alkaline soda lake. The arx gene cluster has been identified in a limited number of bacteria, predominantly in gammaproteobacteria isolated from lakes characterized by high pH and high salinity. In the present study, a novel arsenite-oxidizing betaproteobacterium, strain M52, was isolated from a hot spring microbial mat. The strain oxidized arsenite under both microaerophilic and nitrate-reducing conditions at nearly neutral pH. Genome analysis revealed that the strain possesses the arx gene cluster in its genome and lacks genes encoding AIO. Inspection of the bacterial genomes available in the GenBank database revealed that the presence of this gene cluster is restricted to genomes of Proteobacteria, mainly in the classes Gammaproteobacteria and Betaproteobacteria. In these genomes, the structure of the gene cluster was generally well-conserved, but genes for regulatory proteins were lacking in genomes of strains belonging to a specific lineage. Phylogenetic analysis suggested that ARX encoded in the genomes can be divided into three groups, and strain M52 belongs to a group specific for organisms living in low-salt environments. The ArxA protein encoded in the genome of strain M52 was characterized by the presence of a long insertion, which was specifically observed in the same group of ARX. In clone library analyses with a newly designed primer pair, a diverse ArxA sequence with a long insertion was detected in samples of lake water and hot spring microbial mat, characterized by low salinity and a nearly neutral pH. Among the isolated bacterial strains whose arsenite oxidation has been demonstrated, strain M52 is the first betaproteobacterium that possesses the arx genes, the first strain encoding ARX of the group specific for low-salt environments, and the first organism possessing the gene encoding ArxA with a long insertion.
Collapse
Affiliation(s)
| | - Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
27
|
Qiao J, Li X, Li F, Liu T, Young LY, Huang W, Sun K, Tong H, Hu M. Humic Substances Facilitate Arsenic Reduction and Release in Flooded Paddy Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5034-5042. [PMID: 30942579 DOI: 10.1021/acs.est.8b06333] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Organic matter is important for controlling arsenic reduction and release under anoxic conditions. Humic substances (HS) represent an important fraction of natural organic matter, yet the manner in which HS affect arsenic transformation in flooded paddy soil has not been thoroughly elucidated. In this study, anaerobic microcosms were established with arsenic-contaminated paddy soil and amended with three extracted humic fractions (fulvic acid, FA; humic acid, HA; and humin, HM). The HS substantially enhanced the extent of arsenic reduction and release in the order FA > HA > HM. It was confirmed that microbially reduced HS acted as an electron shuttle to promote arsenate reduction. HS, particularly FA, provided labile carbon to stimulate microbial activity and increase the relative abundances of Azoarcus, Anaeromyxobacter, and Pseudomonas, all of which may be involved in the reduction of HS, Fe(III), and arsenate. HS also increased the abundance of transcripts for an arsenate-respiring gene ( arrA) and overall transcription in arsenate-respiring Geobacter spp. The increase in both abundances lagged behind the increases in dissolved arsenate levels. These results help to elucidate the pathways of arsenic reduction and release in the presence of HS in flooded paddy soil.
Collapse
Affiliation(s)
- Jiangtao Qiao
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management , Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650 , P. R. China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry , South China Normal University , Guangzhou 510006 , P. R. China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management , Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650 , P. R. China
| | - Tongxu Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management , Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650 , P. R. China
| | - Lily Y Young
- Department of Environmental Sciences , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | - Weilin Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management , Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650 , P. R. China
- Department of Environmental Sciences , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment , Beijing Normal University , Beijing 100875 , P. R. China
| | - Hui Tong
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management , Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650 , P. R. China
| | - Min Hu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management , Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650 , P. R. China
| |
Collapse
|
28
|
Defining the Genetic Basis of Plant⁻Endophytic Bacteria Interactions. Int J Mol Sci 2019; 20:ijms20081947. [PMID: 31010043 PMCID: PMC6515357 DOI: 10.3390/ijms20081947] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/17/2023] Open
Abstract
Endophytic bacteria, which interact closely with their host, are an essential part of the plant microbiome. These interactions enhance plant tolerance to environmental changes as well as promote plant growth, thus they have become attractive targets for increasing crop production. Numerous studies have aimed to characterise how endophytic bacteria infect and colonise their hosts as well as conferring important traits to the plant. In this review, we summarise the current knowledge regarding endophytic colonisation and focus on the insights that have been obtained from the mutants of bacteria and plants as well as ‘omic analyses. These show how endophytic bacteria produce various molecules and have a range of activities related to chemotaxis, motility, adhesion, bacterial cell wall properties, secretion, regulating transcription and utilising a substrate in order to establish a successful interaction. Colonisation is mediated by plant receptors and is regulated by the signalling that is connected with phytohormones such as auxin and jasmonic (JA) and salicylic acids (SA). We also highlight changes in the expression of small RNAs and modifications of the cell wall properties. Moreover, in order to exploit the beneficial plant-endophytic bacteria interactions in agriculture successfully, we show that the key aspects that govern successful interactions remain to be defined.
Collapse
|
29
|
A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB. mBio 2019; 10:mBio.00059-19. [PMID: 30967457 PMCID: PMC6456745 DOI: 10.1128/mbio.00059-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified and characterized the AccS multidomain sensor kinase that mediates the activation of the AccR master regulator involved in carbon catabolite repression (CCR) of the anaerobic catabolism of aromatic compounds in Azoarcus sp. CIB. A truncated AccS protein that contains only the soluble C-terminal autokinase module (AccS') accounts for the succinate-dependent CCR control. In vitro assays with purified AccS' revealed its autophosphorylation, phosphotransfer from AccS'∼P to the Asp60 residue of AccR, and the phosphatase activity toward its phosphorylated response regulator, indicating that the equilibrium between the kinase and phosphatase activities of AccS' may control the phosphorylation state of the AccR transcriptional regulator. Oxidized quinones, e.g., ubiquinone 0 and menadione, switched the AccS' autokinase activity off, and three conserved Cys residues, which are not essential for catalysis, are involved in such inhibition. Thiol oxidation by quinones caused a change in the oligomeric state of the AccS' dimer resulting in the formation of an inactive monomer. This thiol-based redox switch is tuned by the cellular energy state, which can change depending on the carbon source that the cells are using. This work expands the functional diversity of redox-sensitive sensor kinases, showing that they can control new bacterial processes such as CCR of the anaerobic catabolism of aromatic compounds. The AccSR two-component system is conserved in the genomes of some betaproteobacteria, where it might play a more general role in controlling the global metabolic state according to carbon availability.IMPORTANCE Two-component signal transduction systems comprise a sensor histidine kinase and its cognate response regulator, and some have evolved to sense and convert redox signals into regulatory outputs that allow bacteria to adapt to the altered redox environment. The work presented here expands knowledge of the functional diversity of redox-sensing kinases to control carbon catabolite repression (CCR), a phenomenon that allows the selective assimilation of a preferred compound among a mixture of several carbon sources. The newly characterized AccS sensor kinase is responsible for the phosphorylation and activation of the AccR master regulator involved in CCR of the anaerobic degradation of aromatic compounds in the betaproteobacterium Azoarcus sp. CIB. AccS seems to have a thiol-based redox switch that is modulated by the redox state of the quinone pool. The AccSR system is conserved in several betaproteobacteria, where it might play a more general role controlling their global metabolic state.
Collapse
|
30
|
Rabus R, Wöhlbrand L, Thies D, Meyer M, Reinhold-Hurek B, Kämpfer P. Aromatoleum gen. nov., a novel genus accommodating the phylogenetic lineage including Azoarcus evansii and related species, and proposal of Aromatoleum aromaticum sp. nov., Aromatoleum petrolei sp. nov., Aromatoleum bremense sp. nov., Aromatoleum toluolicum sp. nov. and Aromatoleum diolicum sp. nov. Int J Syst Evol Microbiol 2019; 69:982-997. [DOI: 10.1099/ijsem.0.003244] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Comparative 16S rRNA gene sequence analysis and major physiological differences indicate two distinct sublineages within the genus
Azoarcus
: the
Azoarcus evansii
lineage, comprising
Azoarcus
evansii
(type strain KB740T=DSM 6898T=CIP 109473T=NBRC 107771T),
Azoarcus
buckelii
(type strain U120T=DSM 14744T=LMG 26916T),
Azoarcus
anaerobius
(type strain LuFRes1T=DSM 12081T=LMG 30943T),
Azoarcus
tolulyticus
(type strain Tol-4T=ATCC 51758T=CIP 109470T),
Azoarcus
toluvorans
(type strain Td21T=ATCC 700604T=DSM 15124T) and
Azoarcus
toluclasticus
(type strain MF63T=ATCC 700605T), and the
Azoarcus indigens
lineage, comprising
Azoarcus
indigens
(type strain VB32T=ATCC 51398T=LMG 9092T),
Azoarcus communis
(type strain SWub3T=ATCC 51397T=LMG 9095T) and
Azoarcus
olearius
(type strain DQS-4T=BCRC 80407T=KCTC 23918T=LMG 26893T).
Az. evansii
lineage members have remarkable anaerobic degradation capacities encompassing a multitude of alkylbenzenes, aromatic compounds and monoterpenes, often involving novel biochemical reactions. In contrast,
Az. indigens
lineage members are diazotrophic endophytes lacking these catabolic capacities. It is proposed that species of the
Az. evansii
lineage should be classified in a novel genus, Aromatoleum gen. nov. Finally, based on the literature and new growth, DNA–DNA hybridization and proteomic data, the following five new species are proposed: Aromatoleum aromaticum sp. nov. (type strain EbN1T=DSM 19018T=LMG 30748T and strain pCyN1=DSM 19016=LMG 31004), Aromatoleum petrolei sp. nov. (type strain ToN1T=DSM 19019T=LMG 30746T), Aromatoleumbremense sp. nov. (type strain PbN1T=DSM 19017T=LMG 31005T), Aromatoleum toluolicum sp. nov. (type strain TT=DSM 19020T=LMG 30751T) and Aromatoleum diolicum sp. nov. (type strain 22LinT=DSM 15408T=LMG 30750T).
Collapse
Affiliation(s)
- Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky Str. 9-11, D-26111 Oldenburg, Germany
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky Str. 9-11, D-26111 Oldenburg, Germany
| | - Daniela Thies
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, D-28359 Bremen, Germany
| | - Markus Meyer
- Bruker Daltonik GmbH, Fahrenheitstr. 4, D-28359 Bremen, Germany
| | - Barbara Reinhold-Hurek
- Laboratory for General Microbiology, University Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Peter Kämpfer
- Department for Applied Microbiology, Justus Liebig University, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
31
|
Biosensor libraries harness large classes of binding domains for construction of allosteric transcriptional regulators. Nat Commun 2018; 9:3101. [PMID: 30082754 PMCID: PMC6079105 DOI: 10.1038/s41467-018-05525-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/11/2018] [Indexed: 12/15/2022] Open
Abstract
The ability of bacteria to sense specific molecules within their environment and trigger metabolic responses in accordance is an invaluable biotechnological resource. While many transcription factors (TFs) mediating such processes have been studied, only a handful have been leveraged for molecular biology applications. To expand the repertoire of biotechnologically relevant sensors we present a strategy for the construction and testing of chimeric TF libraries, based on the fusion of highly soluble periplasmic binding proteins (PBPs) with DNA-binding domains (DBDs). We validate this concept by constructing and functionally testing two unique sense-and-respond regulators for benzoate, an environmentally and industrially relevant metabolite. This work will enable the development of tailored biosensors for novel synthetic regulatory circuits. Bacterially encoded environmental sensor proteins are potentially a rich source of transcriptional control but only a few have been harnessed for biotechnological applications. Here the authors develop a general strategy for designing custom-made monogenic synthetic sensors and validate the approach by designing two sense-and-respond regulators for benzoate.
Collapse
|
32
|
Four Molybdenum-Dependent Steroid C-25 Hydroxylases: Heterologous Overproduction, Role in Steroid Degradation, and Application for 25-Hydroxyvitamin D 3 Synthesis. mBio 2018; 9:mBio.00694-18. [PMID: 29921665 PMCID: PMC6016249 DOI: 10.1128/mbio.00694-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Side chain-containing steroids are ubiquitous constituents of biological membranes that are persistent to biodegradation. Aerobic, steroid-degrading bacteria employ oxygenases for isoprenoid side chain and tetracyclic steran ring cleavage. In contrast, a Mo-containing steroid C-25 dehydrogenase (S25DH) of the dimethyl sulfoxide (DMSO) reductase family catalyzes the oxygen-independent hydroxylation of tertiary C-25 in the anaerobic, cholesterol-degrading bacterium Sterolibacterium denitrificans Its genome contains eight paralogous genes encoding active site α-subunits of putative S25DH-like proteins. The difficult enrichment of labile, oxygen-sensitive S25DH from the wild-type bacteria and the inability of its active heterologous production have largely hampered the study of S25DH-like gene products. Here we established a heterologous expression platform for the three structural genes of S25DH subunits together with an essential chaperone in the denitrifying betaproteobacterium Thauera aromatica K172. Using this system, S25DH1 and three isoenzymes (S25DH2, S25DH3, and S25DH4) were overproduced in a soluble, active form allowing a straightforward purification of nontagged αβγ complexes. All S25DHs contained molybdenum, four [4Fe-4S] clusters, one [3Fe-4S] cluster, and heme B and catalyzed the specific, water-dependent C-25 hydroxylations of various 4-en-3-one forms of phytosterols and zoosterols. Crude extracts from T. aromatica expressing genes encoding S25DH1 catalyzed the hydroxylation of vitamin D3 (VD3) to the clinically relevant 25-OH-VD3 with >95% yield at a rate 6.5-fold higher than that of wild-type bacterial extracts; the specific activity of recombinant S25DH1 was twofold higher than that of wild-type enzyme. These results demonstrate the potential application of the established expression platform for 25-OH-VD3 synthesis and pave the way for the characterization of previously genetically inaccessible S25DH-like Mo enzymes of the DMSO reductase family.IMPORTANCE Steroids are ubiquitous bioactive compounds, some of which are considered an emerging class of micropollutants. Their degradation by microorganisms is the major process of steroid elimination from the environment. While oxygenase-dependent steroid degradation in aerobes has been studied for more than 40 years, initial insights into the anoxic steroid degradation have only recently been obtained. Molybdenum-dependent steroid C25 dehydrogenases (S25DHs) have been proposed to catalyze oxygen-independent side chain hydroxylations of globally abundant zoo-, phyto-, and mycosterols; however, so far, their lability has allowed only the initial characterization of a single S25DH. Here we report on a heterologous gene expression platform that allowed for easy isolation and characterization of four highly active S25DH isoenzymes. The results obtained demonstrate the key role of S25DHs during anoxic degradation of various steroids. Moreover, the platform is valuable for the efficient enzymatic hydroxylation of vitamin D3 to its clinically relevant C-25-OH form.
Collapse
|
33
|
Blázquez B, Carmona M, Díaz E. Transcriptional Regulation of the Peripheral Pathway for the Anaerobic Catabolism of Toluene and m-Xylene in Azoarcus sp. CIB. Front Microbiol 2018; 9:506. [PMID: 29623071 PMCID: PMC5874301 DOI: 10.3389/fmicb.2018.00506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 11/17/2022] Open
Abstract
Alkylbenzenes, such as toluene and m-xylene, are an important class of contaminant hydrocarbons that are widespread and tend to accumulate in subsurface anoxic environments. The peripheral pathway for the anaerobic oxidation of toluene in bacteria consists of an initial activation catalyzed by a benzylsuccinate synthase (encoded by bss genes), and a subsequent modified β-oxidation of benzylsuccinate to benzoyl-CoA and succinyl-CoA (encoded by bbs genes). We have shown here that the bss and bbs genes, which are located within an integrative and conjugative element, are essential for anaerobic degradation of toluene but also for m-xylene oxidation in the denitrifying beta-proteobacterium Azoarcus sp. CIB. New insights into the transcriptional organization and regulation of a complete gene cluster for anaerobic catabolism of toluene/m-xylene in a single bacterial strain are presented. The bss and bbs genes are transcriptionally coupled into two large convergent catabolic operons driven by the PbssD and PbbsA promoters, respectively, whose expression is inducible when cells grow anaerobically in toluene or m-xylene. An adjacent tdiSR operon driven by the PtdiS promoter encodes a putative two-component regulatory system. TdiR behaves as a transcriptional activator of the PbssD, PbbsA, and PtdiS promoters, being benzylsuccinate/(3-methyl)benzylsuccinate, rather than toluene/m-xylene, the inducers that may trigger the TdiS-mediated activation of TdiR. In addition to the TdiSR-based specific control, the expression of the bss and bbs genes in Azoarcus sp. CIB is under an overimposed regulation that depends on certain environmental factors, such as the presence/absence of oxygen or the availability of preferred carbon sources (catabolite repression). This work paves the way for future strategies toward the reliable assessment of microbial activity in toluene/m-xylene contaminated environments.
Collapse
Affiliation(s)
- Blas Blázquez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel Carmona
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
34
|
Kou S, Vincent G, Gonzalez E, Pitre FE, Labrecque M, Brereton NJB. The Response of a 16S Ribosomal RNA Gene Fragment Amplified Community to Lead, Zinc, and Copper Pollution in a Shanghai Field Trial. Front Microbiol 2018; 9:366. [PMID: 29545788 PMCID: PMC5838024 DOI: 10.3389/fmicb.2018.00366] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/16/2018] [Indexed: 11/27/2022] Open
Abstract
Industrial and agricultural activities have caused extensive metal contamination of land throughout China and across the globe. The pervasive nature of metal pollution can be harmful to human health and can potentially cause substantial negative impact to the biosphere. To investigate the impact of anthropogenic metal pollution found in high concentrations in industrial, agricultural, and urban environments, 16S ribosomal RNA gene amplicon sequencing was used to track change in the amplified microbial community after metal contamination in a large-scale field experiment in Shanghai. A total of 1,566 operational taxonomic units (OTUs) identified from 448,108 sequences gathered from 20 plots treated as controls or with lead, zinc, copper, or all three metals. Constrained Analysis of Principal Coordinates ordination did not separate control and lead treatment but could separate control/lead, zinc, copper, and three metal treatment. DESeq2 was applied to identify 93 significantly differentially abundant OTUs varying in 211 pairwise instances between the treatments. Differentially abundant OTUs representing genera or species belonging to the phyla Chloroflexi, Cyanobacteria, Firmicutes, Latescibacteria, and Planctomycetes were almost universally reduced in abundance due to zinc, copper, or three metal treatment; with three metal treatment abolishing the detection of some OTUs, such as Leptolyngbya, Desmonostoc muscorum, and Microcoleus steenstrupii. The greatest increases due to metal treatment were observed in Bacteroidetes, Actinobacteria, Chlamydiae, Nitrospirae, and Proteobacteria (α, β, δ, and γ); the most (relative) abundant being uncharacterized species within the genera Methylobacillus, Solirubrobacter, and Ohtaekwangia. Three metal treatment alone resulted in identification of 22 OTUs (genera or species) which were not detected in control soil, notably including Yonghaparkia alkaliphila, Pedobacter steynii, Pseudolabrys taiwanensis, Methylophilus methylotrophus, Nitrosospira, and Lysobacter mobilis. The capacity to track alterations of an amplified microbial community at high taxonomic resolution using modern bioinformatic approaches, as well as identifying where that resolution is lost for technical or biological reasons, provides an insight into the complexity of the microbial world resisting anthropogenic pollution. While functional assessment of uncharacterized organisms within environmental samples is technically challenging, an important step is observing those organisms able to tolerate extreme stress and to recognize the extent to which important amplifiable community members still require characterization.
Collapse
Affiliation(s)
- Shumeng Kou
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Gilles Vincent
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill University and Genome Quebec Innovation Centre, Montréal, QC, Canada
| | - Frederic E. Pitre
- Institut de Recherche en Biologie Végétale, Montreal Botanical Garden, Montréal, QC, Canada
| | - Michel Labrecque
- Institut de Recherche en Biologie Végétale, Montreal Botanical Garden, Montréal, QC, Canada
| | | |
Collapse
|
35
|
Qiao JT, Li XM, Li FB. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:958-967. [PMID: 29197791 DOI: 10.1016/j.jhazmat.2017.11.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/23/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Although biochar has great potential for heavy metal removal from sediments or soils, its impact on arsenic biogeochemistry in contaminated paddy fields remains poorly characterized. In this study, anaerobic microcosms were established with arsenic-contaminated paddy soil to investigate arsenic transformation as well as the potentially active microbial community and their transcriptional activities in the presence of biochar. The results demonstrated that biochar can simultaneously stimulate microbial reduction of As(V) and Fe(III), releasing high levels of As(III) into the soil solution relative to the control. Total RNAs were extracted to profile the potentially active microbial communities, which suggested that biochar increased the abundance of arsenic- and iron-related bacteria, such as Geobacter, Anaeromyxobacter and Clostridium compared to the control. Reverse transcription, quantitative PCR (RT-qPCR) showed that the abundance of Geobacter transcripts were significantly stimulated by biochar throughout the incubation. Furthermore, significant positive correlations were observed between the abundance of Geobacter transcripts and As(V) concentrations, and between that of Clostridium transcripts and Fe(III) concentrations in biochar-amended microcosms. Our findings suggest that biochar can stimulate the activity of metal-reducing bacteria to promote arsenic mobility. The Geobacter may contribute to As(V) reduction in the presence of biochar, while Clostridium has a role in Fe(III) reduction.
Collapse
Affiliation(s)
- Jiang-Tao Qiao
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-Min Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, PR China
| | - Fang-Bai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, PR China.
| |
Collapse
|
36
|
Marasco R, Rolli E, Fusi M, Michoud G, Daffonchio D. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. MICROBIOME 2018; 6:3. [PMID: 29298729 PMCID: PMC5751889 DOI: 10.1186/s40168-017-0391-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/18/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND The plant compartments of Vitis vinifera, including the rhizosphere, rhizoplane, root endosphere, phyllosphere and carposphere, provide unique niches that drive specific bacterial microbiome associations. The majority of phyllosphere endophytes originate from the soil and migrate up to the aerial compartments through the root endosphere. Thus, the soil and root endosphere partially define the aerial endosphere in the leaves and berries, contributing to the terroir of the fruit. However, V. vinifera cultivars are invariably grafted onto the rootstocks of other Vitis species and hybrids. It has been hypothesized that the plant species determines the microbiome of the root endosphere and, as a consequence, the aerial endosphere. In this work, we test the first part of this hypothesis. We investigate whether different rootstocks influence the bacteria selected from the surrounding soil, affecting the bacterial diversity and potential functionality of the rhizosphere and root endosphere. METHODS Bacterial microbiomes from both the root tissues and the rhizosphere of Barbera cultivars, both ungrafted and grafted on four different rootstocks, cultivated in the same soil from the same vineyard, were characterized by 16S rRNA high-throughput sequencing. To assess the influence of the root genotype on the bacterial communities' recruitment in the root system, (i) the phylogenetic diversity coupled with the predicted functional profiles and (ii) the co-occurrence bacterial networks were determined. Cultivation-dependent approaches were used to reveal the plant-growth promoting (PGP) potential associated with the grafted and ungrafted root systems. RESULTS Richness, diversity and bacterial community networking in the root compartments were significantly influenced by the rootstocks. Complementary to a shared bacterial microbiome, different subsets of soil bacteria, including those endowed with PGP traits, were selected by the root system compartments of different rootstocks. The interaction between the root compartments and the rootstock exerted a unique selective pressure that enhanced niche differentiation, but rootstock-specific bacterial communities were still recruited with conserved PGP traits. CONCLUSION While the rootstock significantly influences the taxonomy, structure and network properties of the bacterial community in grapevine roots, a homeostatic effect on the distribution of the predicted and potential functional PGP traits was found.
Collapse
Affiliation(s)
- Ramona Marasco
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| | - Eleonora Rolli
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milano, Italy
| | - Marco Fusi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Grégoire Michoud
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
- Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133, Milano, Italy.
| |
Collapse
|
37
|
Qiao JT, Li XM, Hu M, Li FB, Young LY, Sun WM, Huang W, Cui JH. Transcriptional Activity of Arsenic-Reducing Bacteria and Genes Regulated by Lactate and Biochar during Arsenic Transformation in Flooded Paddy Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:61-70. [PMID: 29188998 DOI: 10.1021/acs.est.7b03771] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Organic substrates and biochar are important in controlling arsenic release from sediments and soils; however, little is known about their impact on arsenic-reducing bacteria and genes during arsenic transformation in flooded paddy soils. In this study, microcosm experiments were established to profile transcriptional activity of As(V)-respiring gene (arrA) and arsenic resistance gene (arsC) as well as the associated bacteria regulated by lactate and/or biochar in anaerobic arsenic-contaminated paddy soils. Chemical analyses revealed that lactate as the organic substrate stimulated microbial reduction of As(V) and Fe(III), which was simultaneously promoted by lactate+biochar, due to biochar's electron shuttle function that facilitates electron transfer from bacteria to As(V)/Fe(III). Sequencing and phylogenetic analyses demonstrated that both arrA closely associated with Geobacter (>60%, number of identical sequences/number of the total sequences) and arsC related to Enterobacteriaceae (>99%) were selected by lactate and lactate+biochar. Compared with the lactate microcosms, transcriptions of the bacterial 16S rRNA gene, Geobacter spp., and Geobacter arrA and arsC genes were increased in the lactate+biochar microcosms, where transcript abundances of Geobacter and Geobacter arrA closely tracked with dissolved As(V) concentrations. Our findings indicated that lactate and biochar in flooded paddy soils can stimulate the active As(V)-respiring bacteria Geobacter species for arsenic reduction and release, which probably increases arsenic bioavailability to rice plants.
Collapse
Affiliation(s)
- Jiang-Tao Qiao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, P. R. China
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Min Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, P. R. China
| | - Min Hu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, P. R. China
| | - Fang-Bai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, P. R. China
| | - Lily Y Young
- Department of Environmental Sciences, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Wei-Min Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, P. R. China
| | - Weilin Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, P. R. China
- Department of Environmental Sciences, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Jiang-Hu Cui
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, P. R. China
| |
Collapse
|
38
|
|
39
|
Zamarro MT, Barragán MJL, Carmona M, García JL, Díaz E. Engineering a bzd cassette for the anaerobic bioconversion of aromatic compounds. Microb Biotechnol 2017; 10:1418-1425. [PMID: 28736925 PMCID: PMC5658619 DOI: 10.1111/1751-7915.12746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 01/26/2023] Open
Abstract
Microorganisms able to degrade aromatic contaminants constitute potential valuable biocatalysts to deal with a significant reusable carbon fraction suitable for eco‐efficient valorization processes. Metabolic engineering of anaerobic pathways for degradation and recycling of aromatic compounds is an almost unexplored field. In this work, we present the construction of a functional bzd cassette encoding the benzoyl‐CoA central pathway for the anaerobic degradation of benzoate. The bzd cassette has been used to expand the ability of some denitrifying bacteria to use benzoate as sole carbon source under anaerobic conditions, and it paves the way for future pathway engineering of efficient anaerobic biodegraders of aromatic compounds whose degradation generates benzoyl‐CoA as central intermediate. Moreover, a recombinant Azoarcus sp. CIB strain harbouring the bzd cassette was shown to behave as a valuable biocatalyst for anaerobic toluene valorization towards the synthesis of poly‐3‐hydroxybutyrate (PHB), a biodegradable and biocompatible polyester of increasing biotechnological interest as a sustainable alternative to classical oil‐derived polymers.
Collapse
Affiliation(s)
- María Teresa Zamarro
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - María J L Barragán
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Manuel Carmona
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - José Luis García
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Eduardo Díaz
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
40
|
Faoro H, Rene Menegazzo R, Battistoni F, Gyaneshwar P, do Amaral FP, Taulé C, Rausch S, Gonçalves Galvão P, de Los Santos C, Mitra S, Heijo G, Sheu SY, Chen WM, Mareque C, Zibetti Tadra-Sfeir M, Ivo Baldani J, Maluk M, Paula Guimarães A, Stacey G, de Souza EM, Pedrosa FO, Magalhães Cruz L, James EK. The oil-contaminated soil diazotroph Azoarcus olearius DQS-4 T is genetically and phenotypically similar to the model grass endophyte Azoarcus sp. BH72. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:223-238. [PMID: 27893193 DOI: 10.1111/1758-2229.12502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/24/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
The genome of Azoarcus olearius DQS-4T , a N2 -fixing Betaproteobacterium isolated from oil-contaminated soil in Taiwan, was sequenced and compared with other Azoarcus strains. The genome sequence showed high synteny with Azoarcus sp. BH72, a model endophytic diazotroph, but low synteny with five non-plant-associated strains (Azoarcus CIB, Azoarcus EBN1, Azoarcus KH32C, A. toluclasticus MF63T and Azoarcus PA01). Average Nucleotide Identity (ANI) revealed that DQS-4T shares 98.98% identity with Azoarcus BH72, which should now be included in the species A. olearius. The genome of DQS-4T contained several genes related to plant colonization and plant growth promotion, such as nitrogen fixation, plant adhesion and root surface colonization. In accordance with the presence of these genes, DQS-4T colonized rice (Oryza sativa) and Setaria viridis, where it was observed within the intercellular spaces and aerenchyma mainly of the roots. Although they promote the growth of grasses, the mechanism(s) of plant growth promotion by A. olearius strains is unknown, as the genomes of DQS-4T and BH72 do not contain genes for indole acetic acid (IAA) synthesis nor phosphate solubilization. In spite of its original source, both the genome and behaviour of DQS-4T suggest that it has the capacity to be an endophytic, nitrogen-fixing plant growth-promoting bacterium.
Collapse
Affiliation(s)
- Helisson Faoro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
- Laboratory of Gene Expression Regulation, Instituto Carlos Chagas, Fiocruz-PR, Curitiba, Paraná, 81350-010, Brazil
| | - Rodrigo Rene Menegazzo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
| | - Federico Battistoni
- Department of Microbial Biochemistry and Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, 11600, Uruguay
| | - Prasad Gyaneshwar
- Department of Biological Sciences, University of Wisconsin - Milwaukee, WI, 53211, USA
| | - Fernanda P do Amaral
- Division of Plant Science and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Cecilia Taulé
- Department of Microbial Biochemistry and Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, 11600, Uruguay
| | - Sydnee Rausch
- Department of Biological Sciences, University of Wisconsin - Milwaukee, WI, 53211, USA
| | | | - Cecilia de Los Santos
- Department of Microbial Biochemistry and Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, 11600, Uruguay
| | - Shubhajit Mitra
- Department of Biological Sciences, University of Wisconsin - Milwaukee, WI, 53211, USA
| | - Gabriela Heijo
- Department of Microbial Biochemistry and Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, 11600, Uruguay
| | - Shih-Yi Sheu
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung City, 811, Taiwan
| | - Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung City, 811, Taiwan
| | - Cintia Mareque
- Department of Microbial Biochemistry and Genomics, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, 11600, Uruguay
| | - Michelle Zibetti Tadra-Sfeir
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
| | - J Ivo Baldani
- Embrapa Agrobiologia, Seropédica, Rio de Janeiro, 23891-000, Brazil
| | - Marta Maluk
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | - Gary Stacey
- Division of Plant Science and Biochemistry, C. S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | - Emanuel M de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
| | - Fabio O Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
| | - Leonardo Magalhães Cruz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Parana, Curitiba, Parana, 81531-980, Brazil
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
41
|
The Azoarcus anaerobius 1,3-Dihydroxybenzene (Resorcinol) Anaerobic Degradation Pathway Is Controlled by the Coordinated Activity of Two Enhancer-Binding Proteins. Appl Environ Microbiol 2017; 83:AEM.03042-16. [PMID: 28258136 DOI: 10.1128/aem.03042-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/22/2017] [Indexed: 11/20/2022] Open
Abstract
The anaerobic resorcinol degradation pathway in Azoarcus anaerobius is unique in that it uses an oxidative rather than a reductive strategy to overcome the aromatic ring stability in degradation of this compound, in a process that is dependent on nitrate respiration. We show that the pathway is organized in five transcriptional units, three of which are inducible by the presence of the substrate. Three σ54-dependent promoters located upstream from the three operons coding for the main pathway enzymes were identified, which shared a similar structure with conserved upstream activating sequences (UASs) located at 103 to 111 bp from the transcription start site. Expression of the pathway is controlled by the bacterial enhancer-binding proteins (bEBPs) RedR1 and RedR2, two homologous regulators that, despite their high sequence identity (97%), have nonredundant functions: RedR2, the master regulator which also controls RedR1 expression, is itself able to promote transcription from two of the promoters, while RedR1 activity is strictly dependent on the presence of RedR2. The two regulators were shown to interact with each other, suggesting that the natural mode of activation is by forming heterodimers, which become active in the presence of the substrate after its metabolization to hydroxybenzoquinone through the pathway enzymes. The model structure of the N-terminal domain of the proteins is composed of tandem GAF and PAS motifs; the possible mechanisms controlling the activity of the regulators are discussed.IMPORTANCEAzoarcus anaerobius is a strict anaerobe that is able to use 1,3-dihydroxybenzene as the sole carbon source in a process that is dependent on nitrate respiration. We have shown that expression of the pathway is controlled by two regulators of almost identical sequences: the bEBPs RedR1 and RedR2, which share 97% identity. These regulators control three promoters with similar structure. Despite their sequence identity, the two bEBPs are not redundant and are both required for maximum pathway expression. In fact, the two proteins function as heterodimers and require activation by the pathway intermediate hydroxyhydroquinone. The structure of the domain sensing the activation signal resembles that of regulators that are known to interact with other proteins.
Collapse
|
42
|
Lueders T. The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers. FEMS Microbiol Ecol 2016; 93:fiw220. [PMID: 27810873 PMCID: PMC5400083 DOI: 10.1093/femsec/fiw220] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/10/2016] [Indexed: 12/24/2022] Open
Abstract
The degradation of benzene, toluene, ethylbenzene and xylene (BTEX) contaminants in groundwater relies largely on anaerobic processes. While the physiology and biochemistry of selected relevant microbes have been intensively studied, research has now started to take the generated knowledge back to the field, in order to trace the populations truly responsible for the anaerobic degradation of BTEX hydrocarbons in situ and to unravel their ecology in contaminated aquifers. Here, recent advances in our knowledge of the identity, diversity and ecology of microbes involved in these important ecosystem services are discussed. At several sites, distinct lineages within the Desulfobulbaceae, the Rhodocyclaceae and the Gram-positive Peptococcaceae have been shown to dominate the degradation of different BTEX hydrocarbons. Especially for the functional guild of anaerobic toluene degraders, specific molecular detection systems have been developed, allowing researchers to trace their diversity and distribution in contaminated aquifers. Their populations appear enriched in hot spots of biodegradation in situ. 13C-labelling experiments have revealed unexpected pathways of carbon sharing and obligate syntrophic interactions to be relevant in degradation. Together with feedback mechanisms between abiotic and biotic habitat components, this promotes an enhanced ecological perspective of the anaerobic degradation of BTEX hydrocarbons, as well as its incorporation into updated concepts for site monitoring and bioremediation.
Collapse
Affiliation(s)
- Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
43
|
Degradation of cyclic diguanosine monophosphate by a hybrid two-component protein protects Azoarcus sp. strain CIB from toluene toxicity. Proc Natl Acad Sci U S A 2016; 113:13174-13179. [PMID: 27799551 DOI: 10.1073/pnas.1615981113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger that controls diverse functions in bacteria, including transitions from planktonic to biofilm lifestyles, virulence, motility, and cell cycle. Here we describe TolR, a hybrid two-component system (HTCS), from the β-proteobacterium Azoarcus sp. strain CIB that degrades c-di-GMP in response to aromatic hydrocarbons, including toluene. This response protects cells from toluene toxicity during anaerobic growth. Whereas wild-type cells tolerated a sudden exposure to a toxic concentration of toluene, a tolR mutant strain or a strain overexpressing a diguanylate cyclase gene lost viability upon toluene shock. TolR comprises an N-terminal aromatic hydrocarbon-sensing Per-Arnt-Sim (PAS) domain, followed by an autokinase domain, a response regulator domain, and a C-terminal c-di-GMP phosphodiesterase (PDE) domain. Autophosphorylation of TolR in response to toluene exposure initiated an intramolecular phosphotransfer to the response regulator domain that resulted in c-di-GMP degradation. The TolR protein was engineered as a functional sensor histidine kinase (TolRSK) and an independent response regulator (TolRRR). This classic two-component system (CTCS) operated less efficiently than TolR, suggesting that TolR was evolved as a HTCS to optimize signal transduction. Our results suggest that TolR enables Azoarcus sp. CIB to adapt to toxic aromatic hydrocarbons under anaerobic conditions by modulating cellular levels of c-di-GMP. This is an additional role for c-di-GMP in bacterial physiology.
Collapse
|
44
|
Zamarro MT, Martín-Moldes Z, Díaz E. The ICE XTD of Azoarcus sp. CIB, an integrative and conjugative element with aerobic and anaerobic catabolic properties. Environ Microbiol 2016; 18:5018-5031. [PMID: 27450529 DOI: 10.1111/1462-2920.13465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 11/28/2022]
Abstract
Integrative and conjugative elements (ICE) play a major role in aerobic degradation of aromatic compounds, but they have not yet been shown to be involved in anaerobic degradation. We have characterized here the ICEXTD element which endows to the beta-proteobacterium Azoarcus sp. CIB with the ability to utilize aromatic hydrocarbons. The core region of ICEXTD , which shows a remarkable synteny with that of ICEclc-like elements, allows its own intracellular and intercellular mobility. ICEXTD integrates at the tRNAGly of the host chromosome, but it can also excise to produce a ready to transfer circular form. The adaptation modules of ICEXTD represent a unique combination of gene clusters for aerobic (tod genes) and anaerobic (bss-bbs and mbd genes) degradation of certain aromatic hydrocarbons, e.g., toluene, m-xylene and cumene. Transfer of ICEXTD to other Azoarcus strains, e.g., A. evansii, confers them the ability to degrade aromatic hydrocarbons both aerobically and anaerobically. Interestingly, ICEXTD allows Cupriavidus pinatubonensis, a bacterium unable to degrade anaerobically aromatic compounds, to grow with m-xylene under anoxic conditions. Thus, ICEXTD constitutes the first mobile genetic element able to expand the catabolic abilities of certain bacteria for the removal of aromatic hydrocarbons either in the presence or absence of oxygen.
Collapse
Affiliation(s)
- María Teresa Zamarro
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Zaira Martín-Moldes
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Eduardo Díaz
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
45
|
Fernández-Llamosas H, Castro L, Blázquez ML, Díaz E, Carmona M. Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB. Microb Cell Fact 2016; 15:109. [PMID: 27301452 PMCID: PMC4908764 DOI: 10.1186/s12934-016-0510-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Different bacteria have been reported so far that link selenite resistance to the production of metallic selenium nanoparticles (SeNPs). Although SeNPs have many biotechnological applications in diverse areas, the molecular mechanisms involved in their microbial genesis are not fully understood. The Azoarcus genus is a physiologically versatile group of beta-proteobacteria of great environmental relevance. Azoarcus sp. CIB is a facultative anaerobe that combines the ability to degrade under aerobic and/or anaerobic conditions a wide range of aromatic compounds, including some toxic hydrocarbons such as toluene and m-xylene, with an endophytic life style in the root of rice. We unravel here an additional physiological feature of the strain CIB that is related to its resistance to selenium oxyanions and the formation of SeNPs. RESULTS This work is the first report of a member of the Azoarcus genus that is able to anaerobically grow in the presence of selenite. Electron microscopy preparations and X-ray spectroscopy analyses demonstrate the reduction of selenite to spherical electron-dense SeNPs whose average size was 123 ± 35 nm of diameter. Our data suggest that the main molecular mechanism of selenite resistance resides on an energy-dependent selenite exporter. Azoarcus cells trigger the synthesis of SeNPs when they reach the stationary-phase of growth, and either the exhaustion of electron donor or acceptor, both of which lead to starvation conditions, produce the reduction of selenite to red elemental selenium. Azoarcus becomes a promising biocatalyst, either as whole cells or cellular extracts, for the anaerobic and/or aerobic green synthesis of SeNPs. CONCLUSIONS Azoarcus turns out to be a new eco-friendly system to reduce selenite and produce spherical SeNPs. Moreover, this is the first report of a rice endophyte able to produce SeNPs. Since Azoarcus is also able to degrade both aerobically and anaerobically toxic aromatic compounds of great environmental concern, it becomes a suitable candidate for a more sustainable agricultural practice and for bioremediation strategies.
Collapse
Affiliation(s)
- Helga Fernández-Llamosas
- />Environmental Biology Department, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura Castro
- />Material Science and Metallurgical Engineering Department, Facultad de Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - María Luisa Blázquez
- />Material Science and Metallurgical Engineering Department, Facultad de Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Eduardo Díaz
- />Environmental Biology Department, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Manuel Carmona
- />Environmental Biology Department, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|