1
|
Zhou M, Wu J, Wu L, Sun X, Chen C, Huang L. The utilization of N-acetylgalactosamine and its effect on the metabolism of amino acids in Erysipelotrichaceae strain. BMC Microbiol 2024; 24:397. [PMID: 39379811 PMCID: PMC11462708 DOI: 10.1186/s12866-024-03505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The metabolism of gut microbiota produces bioactive metabolites that modulate host physiology and promote self-growth. Erysipelotrichaceae is one of the most common anaerobic microorganism families in the gut, which has been discovered to play a vital role in host metabolic disorders and inflammatory diseases. Our previous study found that N-acetylgalactosamine (GalNAc) in caecal content of pigs significantly affected the abundance of Erysipelotrichaceae strains. However, it remains unknown how GalNAc feeding in vitro culture affects the expression levels of genes in the GalNAc metabolic pathway and the concentrations of intermediate metabolites in the Erysipelotrichaceae strain. Whether GalNAc feeding should influence the metabolism of other nutrients, such as amino acids, remains unrevealed. RESULTS In this study, whole-genome sequence, transcriptome, and metabolome data were analyzed to assess the utilization of a Erysipelotrichaceae strain on GalNAc. The results showed the presence of a complete GalNAc catabolism pathway in the genome of this Erysipelotrichaceae strain. GalNAc feeding to this Erysipelotrichaceae strain significantly changed the expression levels of genes involved in glycolysis and tricarboxylic acid (TCA) cycle. Meanwhile, the concentrations of lactate, pyruvate, citrate, succinate and malate from the glycolysis and TCA cycle were significantly increased. In addition, transcriptome analysis indicated that the genes involved in the metabolism of amino acids were affected by GalNAc, including lysA (a gene involved in lysine biosynthesis) that was significantly down-regulated. The intracellular concentrations of 14 amino acids in the Erysipelotrichaceae strain were significantly increased after feeding GalNAc. CONCLUSIONS Our findings comfirmed and extended our previous works that demonstrated the utilization of GalNAc by Erysipelotrichaceae strain, and explained the possible mechanism of GalNAc affecting the abundance of Erysipelotrichaceae strain in vitro.
Collapse
Affiliation(s)
- Mengqing Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, PR China
| | - Jinyuan Wu
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, PR China
| | - Lin Wu
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, PR China
| | - Xiao Sun
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, PR China
| | - Congying Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, PR China.
| | - Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, PR China.
| |
Collapse
|
2
|
Marín-Miret J, Pérez-Cobas AE, Domínguez-Santos R, Pérez-Rocher B, Latorre A, Moya A. Adaptability of the gut microbiota of the German cockroach Blattella germanica to a periodic antibiotic treatment. Microbiol Res 2024; 287:127863. [PMID: 39106785 DOI: 10.1016/j.micres.2024.127863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
High-throughput sequencing studies have shown that diet or antimicrobial treatments impact animal gut microbiota equilibrium. However, properties related to the gut microbial ecosystem stability, such as resilience, resistance, or functional redundancy, must be better understood. To shed light on these ecological processes, we combined advanced statistical methods with 16 S rRNA gene sequencing, functional prediction, and fitness analyses in the gut microbiota of the cockroach Blattella germanica subject to three periodic pulses of the antibiotic (AB) kanamycin (n=512). We first confirmed that AB did not significantly affect cockroaches' biological fitness, and gut microbiota changes were not caused by insect physiology alterations. The sex variable was examined for the first time in this species, and no statistical differences in the gut microbiota diversity or composition were found. The comparison of the gut microbiota dynamics in control and treated populations revealed that (1) AB treatment decreases diversity and completely disrupts the co-occurrence networks between bacteria, significantly altering the gut community structure. (2) Although AB also affected the genetic composition, functional redundancy would explain a smaller effect on the functional potential than on the taxonomic composition. (3) As predicted by Taylor's law, AB generally affected the most abundant taxa to a lesser extent than the less abundant taxa. (4) Taxa follow different trends in response to ABs, highlighting "resistant taxa," which could be critical for community restoration. (5) The gut microbiota recovered faster after the three AB pulses, suggesting that gut microbiota adapts to repeated treatments.
Collapse
Affiliation(s)
- Jesús Marín-Miret
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, Paterna, Valencia 46980, Spain; Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, Valencia 46020, Spain
| | - Ana Elena Pérez-Cobas
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain; CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Rebeca Domínguez-Santos
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, Paterna, Valencia 46980, Spain
| | - Benjamí Pérez-Rocher
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, Paterna, Valencia 46980, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, Paterna, Valencia 46980, Spain; Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, Valencia 46020, Spain
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish Research Council, Paterna, Valencia 46980, Spain; Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region, Valencia 46020, Spain.
| |
Collapse
|
3
|
Liang S, Meng J, Tang Z, Xie X, Tian M, Ma X, Yang X, Xiao D, Wang S. Licorice Extract Supplementation Benefits Growth Performance, Blood Biochemistry and Hormones, Immune Antioxidant Status, Hindgut Fecal Microbial Community, and Metabolism in Beef Cattle. Vet Sci 2024; 11:356. [PMID: 39195810 PMCID: PMC11359752 DOI: 10.3390/vetsci11080356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
This study aimed to evaluate the effects of licorice extract (LE) on growth performance, nutrient apparent digestibility, serum index (biochemistry, hormones, humoral immunity, and antioxidant function), hindgut fecal microbiota, and metabolism in beef cattle. In total, 12 male yellow cattle aged 12 months were divided into two groups (6 cattle per group): the basal diet (CK group) and the basal diet supplemented with 2 g/kg LE (CHM group). The entire experimental phase lasted for 120 days, including a 30-day pre-feeding period. Compared to the CK group, the average daily gain, crude fiber, calcium, and crude protein nutrient digestibility were greater on d 30 than d 60 (p < 0.05) and the feed meat ratio was lower for LE addition (p < 0.01). In terms of serum indexes, the insulin and nitric oxide contents were enhanced on d 30, the alkaline phosphatase level was improved on d 60, and the levels of albumin, immunoglobulin A, and catalase were increased on d 90 (p < 0.05). In contrast, the cholesterol content was lower on d 60 for LE addition compared with the CK group (p < 0.05). The higher enrichment of [Eubacterium]-oxidoreducens-group, p-2534-18b5-gut-group, and Ileibacterium were observed in the CHM group (p < 0.05), while the relative abundances of Gallibacterium and Breznakia in the CHM group were lower compared with the CK group (p < 0.05). In addition, the differential metabolites related to healthy growth in the CHM group were increased compared with the CK group. And there was a close correlation between hindgut microbiota and metabolic differentials. In general, LE has a promoting effect on the growth performance and health status of beef cattle over a period (30 to 60 days).
Collapse
Affiliation(s)
- Sunzhen Liang
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Jinzhu Meng
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Zining Tang
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Xinxin Xie
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Miaomiao Tian
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Xiaowan Ma
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Xiao Yang
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shuilian Wang
- College of Animal Medicine, Hunan Agricultural University, Changsha 410128, China; (S.L.); (J.M.); (Z.T.); (X.X.); (M.T.); (X.M.); (X.Y.)
| |
Collapse
|
4
|
Mei C, Shi Y, Wang Y, Qiu Z, Yang H. Termitidicoccus mucosus gen. nov. sp. nov. a novel Verrucomicrobiota species isolated from Reticulitermes chinensis gives insights of high adaptability of symbiotic bacteria to termite gut ecosystem. Res Microbiol 2024; 175:104173. [PMID: 38157920 DOI: 10.1016/j.resmic.2023.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/27/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Verrucomicrobiota is widely distributed in various habitats including insect guts. It was found to be prevalent in almost all investigated termite guts, whereas their physiological functions are not very clear. In this study we characterized the physiological and genomic properties of Verrucomicrobiota strain TSB47T isolated from Reticulitermes chinensis. The cells of strain TSB47T were Gram-stain-negative, non-motile, and non-spore-forming coccoid with one or more warts. 16S rRNA gene analysis showed that the closest relatives of strain TSB47T were Opitutaceae strain TAV1 and Ereboglobus luteus Ho45T (98.3% and 95.4% sequence similarity, respectively). Whole genome analysis revealed that there are a large number of glycoside hydrolase genes, amino acid metabolism genes, complete Mo-Fe nitrogenase and Fe-Fe nitrogenase gene clusters, as well as cbb3-type cytochrome oxidase gene in the genome of strain TSB47T. Strain TSB47T grows well under anaerobic and microaerophilic conditions with a strong tolerance to oxygen. Physiological and genomic characters of strain TSB47T indicated its high adaptability to termite gut ecosystem. Based on phenotypic and phylogenetic evidence, we suggest strain TSB47T as the type species of a novel genus in the family Opitutaceae, for which the name Termitidicoccus mucosus sp. nov. is proposed. The type strain is TSB47T (CCTCC AB2022447T; KCTC 102044T).
Collapse
Affiliation(s)
- Cheng Mei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yu Shi
- College of Food and Biotechnology, Wuhan Institute of Design and Sciences, Wuhan 430079, PR China
| | - Yu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Zhengyong Qiu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Hong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
5
|
Romão TC, Menezes-Filho ACP, Harakava R, Castro CFS, Morais PB. Molecular and morphological diversity, qualitative chemical profile and antioxidant activity of filamentous fungi of the digestive tract of Phylloicus sp. (Trichoptera: Calamoceratidae). BRAZ J BIOL 2024; 84:e259983. [DOI: 10.1590/1519-6984.259983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/11/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract This study aimed to identify by molecular analysis, morphology, chemistry and antioxidant extracts of filamentous fungi isolated from the digestive tract of Phylloicus sp, an aquatic insect that lives on leaf packages in tropical streams and participates together with fungi of the decomposition of plant substrates in aquatic habitats. Insect larvae of Phylloicus sp. were collected in streams in the state of Tocantins, Brazil. Fungi were isolated from the digestive tract of larvae after disinfection and dissection, then described and purified for identification purposes and testing for antioxidant activity. Molecular identity was performed of ITS1 and ITS4, TUB e TEF sequencing. Fungal extracts were produced in 70% ethanol solution and later lyophilized. For analysis of chemical groups of extracts, thin layer chromatography (TLC) was performed in two mobile phases and different developers. Morphology was performed by optical microscopy stained with Toluidine Blue and measurement performed using the ImageJ program. Antioxidant activity performed in TLC and by quantitative method for DPPH and hydrogen peroxide (H2O2) radicals. Four fungi were identified: Endomelanconiopsis endophytica, Myxospora musae, Neopestalotiopsis cubana and Fusarium pseudocircinatum. The TLC showed several spots with acetone/chloroform mobile phase and UV 254 nm developers and I2 vapor. Fungal extracts demonstrate antioxidant action to reduce the DPPH free radical and especially for H2O2 above 50%, E. endophytica 91.6%, M. musae 87.8%, N. cubana 89.5% and 92.3% for F. pseudocircinatum. This study demonstrated that the molecular technique by PCR was satisfactory for identifying fungi, and extracts with numerous chemical groups and potent reducing agents. Thus future work, should be carried out evaluating these four species for industrial use.
Collapse
|
6
|
Du Y, Sun F. MetaCC allows scalable and integrative analyses of both long-read and short-read metagenomic Hi-C data. Nat Commun 2023; 14:6231. [PMID: 37802989 PMCID: PMC10558524 DOI: 10.1038/s41467-023-41209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/25/2023] [Indexed: 10/08/2023] Open
Abstract
Metagenomic Hi-C (metaHi-C) can identify contig-to-contig relationships with respect to their proximity within the same physical cell. Shotgun libraries in metaHi-C experiments can be constructed by next-generation sequencing (short-read metaHi-C) or more recent third-generation sequencing (long-read metaHi-C). However, all existing metaHi-C analysis methods are developed and benchmarked on short-read metaHi-C datasets and there exists much room for improvement in terms of more scalable and stable analyses, especially for long-read metaHi-C data. Here we report MetaCC, an efficient and integrative framework for analyzing both short-read and long-read metaHi-C datasets. MetaCC outperforms existing methods on normalization and binning. In particular, the MetaCC normalization module, named NormCC, is more than 3000 times faster than the current state-of-the-art method HiCzin on a complex wastewater dataset. When applied to one sheep gut long-read metaHi-C dataset, MetaCC binning module can retrieve 709 high-quality genomes with the largest species diversity using one single sample, including an expansion of five uncultured members from the order Erysipelotrichales, and is the only binner that can recover the genome of one important species Bacteroides vulgatus. Further plasmid analyses reveal that MetaCC binning is able to capture multi-copy plasmids.
Collapse
Affiliation(s)
- Yuxuan Du
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Fengzhu Sun
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Márton Z, Csitári B, Felföldi T, Hidas A, Jordán F, Szabó A, Székely AJ. Contrasting response of microeukaryotic and bacterial communities to the interplay of seasonality and local stressors in shallow soda lakes. FEMS Microbiol Ecol 2023; 99:fiad095. [PMID: 37586889 PMCID: PMC10449373 DOI: 10.1093/femsec/fiad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Seasonal environmental variation is a leading driver of microbial planktonic community assembly and interactions. However, departures from usual seasonal trends are often reported. To understand the role of local stressors in modifying seasonal succession, we sampled fortnightly, throughout three seasons, five nearby shallow soda lakes exposed to identical seasonal and meteorological changes. We characterised their microeukaryotic and bacterial communities by amplicon sequencing of the 16S and 18S rRNA gene, respectively. Biological interactions were inferred by analyses of synchronous and time-shifted interaction networks, and the keystone taxa of the communities were topologically identified. The lakes showed similar succession patterns during the study period with spring being characterised by the relevance of trophic interactions and a certain level of community stability followed by a more dynamic and variable summer-autumn period. Adaptation to general seasonal changes happened through shared core microbiome of the lakes. Stochastic events such as desiccation disrupted common network attributes and introduced shifts from the prevalent seasonal trajectory. Our results demonstrated that, despite being extreme and highly variable habitats, shallow soda lakes exhibit certain similarities in the seasonality of their planktonic communities, yet local stressors such as droughts instigate deviations from prevalent trends to a greater extent for microeukaryotic than for bacterial communities.
Collapse
Affiliation(s)
- Zsuzsanna Márton
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- National Multidisciplinary Laboratory for Climate Change, Centre for Ecological Research, H-1113 Budapest, Hungary
- Doctoral School of Environmental Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Bianka Csitári
- Doctoral School of Environmental Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
- Karolinska Institutet, 171 65 Stockholm, Sweden
- Uppsala University, 752 36 Uppsala, Sweden
| | - Tamás Felföldi
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- Department of Microbiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - András Hidas
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- Doctoral School of Environmental Sciences, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Ferenc Jordán
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Attila Szabó
- Institute of Aquatic Ecology, Centre for Ecological Research, H-1113 Budapest, Hungary
- Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Anna J Székely
- Uppsala University, 752 36 Uppsala, Sweden
- Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
8
|
Assis BA, Bell TH, Engler HI, King WL. Shared and unique responses in the microbiome of allopatric lizards reared in a standardized environment. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:5-12. [PMID: 36266922 DOI: 10.1002/jez.2665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/15/2022]
Abstract
The gut microbiome can influence host fitness and, consequently, the ecology and evolution of natural populations. Microbiome composition can be driven by environmental exposure but also by the host's genetic background and phenotype. To contrast environmental and genetic effects on the microbiome we leverage preserved specimens of eastern fence lizards from allopatric lineages east and west of the Mississippi River but reared in standardized conditions. Bacterial composition was indistinguishable between lineages but responded significantly to host age-a proxy for environmental exposure. This was accompanied by a continuous decrease in bacterial diversity in both lineages, partially driven by decreasing evenness seen only in western lizards. These findings indicate that longer exposure to a homogeneous habitat may have a depreciating effect on microbiome diversity in eastern fence lizards, a response shared by both lineages. We highlight the importance of such effects when extrapolating patterns from laboratory experiments to the natural world.
Collapse
Affiliation(s)
- Braulio A Assis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA.,Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Heather I Engler
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - William L King
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA.,School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Juottonen H, Moghadam NN, Murphy L, Mappes J, Galarza JA. Host's genetic background determines the outcome of reciprocal faecal transplantation on life-history traits and microbiome composition. Anim Microbiome 2022; 4:67. [PMID: 36564793 PMCID: PMC9789590 DOI: 10.1186/s42523-022-00210-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microbes play a role in their host's fundamental ecological, chemical, and physiological processes. Host life-history traits from defence to growth are therefore determined not only by the abiotic environment and genotype but also by microbiota composition. However, the relative importance and interactive effects of these factors may vary between organisms. Such connections remain particularly elusive in Lepidoptera, which have been argued to lack a permanent microbiome and have microbiota primarily determined by their diet and environment. We tested the microbiome specificity and its influence on life-history traits of two colour genotypes of the wood tiger moth (Arctia plantaginis) that differ in several traits, including growth. All individuals were grown in the laboratory for several generations with standardized conditions. We analyzed the bacterial community of the genotypes before and after a reciprocal frass (i.e., larval faeces) transplantation and followed growth rate, pupal mass, and the production of defensive secretion. RESULTS After transplantation, the fast-growing genotype grew significantly slower compared to the controls, but the slow-growing genotype did not change its growth rate. The frass transplant also increased the volume of defensive secretions in the fast-growing genotype but did not affect pupal mass. Overall, the fast-growing genotype appeared more susceptible to the transplantation than the slow-growing genotype. Microbiome differences between the genotypes strongly suggest genotype-based selective filtering of bacteria from the diet and environment. A novel cluster of insect-associated Erysipelotrichaceae was exclusive to the fast-growing genotype, and specific Enterococcaceae were characteristic to the slow-growing genotype. These Enterococcaceae became more prevalent in the fast-growing genotype after the transplant, which suggests that a slower growth rate is potentially related to their presence. CONCLUSIONS We show that reciprocal frass transplantation can reverse some genotype-specific life-history traits in a lepidopteran host. The results indicate that genotype-specific selective filtering can fine-tune the bacterial community at specific life stages and tissues like the larval frass, even against a background of a highly variable community with stochastic assembly. Altogether, our findings suggest that the host's genotype can influence its susceptibility to being colonized by microbiota, impacting key life-history traits.
Collapse
Affiliation(s)
- Heli Juottonen
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Neda N. Moghadam
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Liam Murphy
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Johanna Mappes
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland ,grid.7737.40000 0004 0410 2071Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 3, 00014 Helsinki, Finland
| | - Juan A. Galarza
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland ,grid.7737.40000 0004 0410 2071Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 3, 00014 Helsinki, Finland
| |
Collapse
|
10
|
Ahmad F, Yang G, Zhu Y, Poulsen M, Li W, Yu T, Mo J. Tripartite Symbiotic Digestion of Lignocellulose in the Digestive System of a Fungus-Growing Termite. Microbiol Spectr 2022; 10:e0123422. [PMID: 36250871 PMCID: PMC9769757 DOI: 10.1128/spectrum.01234-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023] Open
Abstract
Fungus-growing termites are efficient in degrading and digesting plant substrates, achieved through the engagement of symbiotic gut microbiota and lignocellulolytic Termitomyces fungi cultivated for protein-rich food. Insights into where specific plant biomass components are targeted during the decomposition process are sparse. In this study, we performed several analytical approaches on the fate of plant biomass components and did amplicon sequencing of the 16S rRNA gene to investigate the lignocellulose digestion in the symbiotic system of the fungus-growing termite Odontotermes formosanus (Shiraki) and to compare bacterial communities across the different stages in the degradation process. We observed a gradual reduction of lignocellulose components throughout the process. Our findings support that the digestive tract of young workers initiates the degradation of lignocellulose but leaves most of the lignin, hemicellulose, and cellulose, which enters the fresh fungus comb, where decomposition primarily occurs. We found a high diversity and quantity of monomeric sugars in older parts of the fungus comb, indicating that the decomposition of lignocellulose enriches the old comb with sugars that can be utilized by Termitomyces and termite workers. Amplicon sequencing of the 16S rRNA gene showed clear differences in community composition associated with the different stages of plant biomass decomposition which could work synergistically with Termitomyces to shape the digestion process. IMPORTANCE Fungus-farming termites have a mutualist association with fungi of the genus Termitomyces and gut microbiota to support the nearly complete decomposition of lignocellulose to gain access to nutrients. This elaborate strategy of plant biomass digestion makes them ecologically successful dominant decomposers in (sub)tropical Old World ecosystems. We employed acid detergent fiber analysis, high-performance anion-exchange chromatography (HPAEC), high-performance liquid chromatography (HPLC), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), and amplicon sequencing of the 16S rRNA gene to examine which lignocellulose components were digested and which bacteria were abundant throughout the decomposition process. Our findings suggest that although the first gut passage initiates lignocellulose digestion, the most prominent decomposition occurs within the fungus comb. Moreover, distinct bacterial communities were associated with different stages of decomposition, potentially contributing to the breakdown of particular plant components.
Collapse
Affiliation(s)
- Farhan Ahmad
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, People’s Republic of China
- Entomology Section, Central Cotton Research Institute, Multan, Punjab, Pakistan
- Entomology Section, Central Cotton Research Institute, Sakrand, Shaheed Benazirabad, Sindh, Pakistan
| | - Guiying Yang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, People’s Republic of China
| | - Yaning Zhu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, People’s Republic of China
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen East, Denmark
| | - Wuhan Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, People’s Republic of China
| | - Ting Yu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, People’s Republic of China
| | - Jianchu Mo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, People’s Republic of China
| |
Collapse
|
11
|
Comparative Analysis of Brucepastera parasyntrophica gen. nov., sp. nov. and Teretinema zuelzerae gen. nov., comb. nov. ( Treponemataceae) Reveals the Importance of Interspecies Hydrogen Transfer in the Energy Metabolism of Spirochetes. Appl Environ Microbiol 2022; 88:e0050322. [PMID: 35862663 PMCID: PMC9317865 DOI: 10.1128/aem.00503-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most members of the family Treponemataceae (Spirochaetales) are associated with vertebrate hosts. However, a diverse clade of uncultured, putatively free-living treponemes comprising several genus-level lineages is present in other anoxic environments. The only cultivated representative to date is Treponema zuelzerae, isolated from freshwater mud. Here, we describe the isolation of strain RmG11 from the intestinal tract of cockroaches. The strain represents a novel genus-level lineage of Treponemataceae and is metabolically distinct from T. zuelzerae. While T. zuelzerae grows well on various sugars, forming acetate and H2 as major fermentation products, strain RmG11 grew poorly on glucose, maltose, and starch, forming mainly ethanol and only small amounts of acetate and H2. In contrast to the growth of T. zuelzerae, that of strain RmG11 was strongly inhibited at high H2 partial pressures but improved considerably when H2 was removed from the headspace. Cocultures of strain RmG11 with the H2-consuming Methanospirillum hungatei produced acetate and methane but no ethanol. Comparative genomic analysis revealed that strain RmG11 possesses only a single, electron-confurcating hydrogenase that forms H2 from NADH and reduced ferredoxin, whereas T. zuelzerae also possesses a second, ferredoxin-dependent hydrogenase that allows the thermodynamically more favorable formation of H2 from ferredoxin via the Rnf complex. In addition, we found that T. zuelzerae utilizes xylan and possesses the genomic potential to degrade other plant polysaccharides. Based on phenotypic and phylogenomic evidence, we describe strain RmG11 as Brucepastera parasyntrophica gen. nov., sp. nov. and Treponema zuelzerae as Teretinema zuelzerae gen. nov., comb. nov. IMPORTANCE Spirochetes are widely distributed in various anoxic environments and commonly form molecular hydrogen as a major fermentation product. Here, we show that two closely related members of the family Treponemataceae differ strongly in their sensitivity to high hydrogen partial pressure, and we explain the metabolic mechanisms that cause these differences by comparative genome analysis. We demonstrate a strong boost in the growth of the hydrogen-sensitive strain and a shift in its fermentation products to acetate during cocultivation with a H2-utilizing methanogen. Our results add a hitherto unrecognized facet to the fermentative metabolism of spirochetes and also underscore the importance of interspecies hydrogen transfer in not-obligately-syntrophic interactions among fermentative and hydrogenotrophic guilds in anoxic environments.
Collapse
|
12
|
Pardesi B, Roberton AM, Wollmuth EM, Angert ER, Rosendale DI, White WL, Clements KD. Tannockella kyphosi gen. nov., sp. nov., a member of the family Erysipelotrichaceae, isolated from the hindgut of the marine herbivorous fish Kyphosus sydneyanus. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, non-spore-forming, rod-shaped, obligately anaerobic bacterium, designated strain BP52GT, was isolated from the hindgut of a Silver Drummer (Kyphosus sydneyanus) fish collected from the Hauraki Gulf, New Zealand. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the isolate belonged to the family
Erysipelotrichaceae
in the phylum Firmicutes and was most closely related to
Clostridium saccharogumia
with 93.3 % sequence identity. Isolate BP52GT grew on agar medium containing mannitol as the sole carbon source. White, opaque and shiny colonies of the isolate measuring approximately 1 mm diameter grew within a week at 20–28 °C (optimum, 24 °C) and pH 6.9–8.5 (optimum, pH 7.8). BP52GT tolerated the addition of up to 1 % NaCl to the medium. Formate and acetate were the major fermentation products. The major cellular fatty acids were C16 : 0, C16:1n-7t and C18:1n-7t. The genome sequence of the isolate was determined. Its G+C content was 30.7 mol%, and the 72.65 % average nucleotide identity of the BP52GT genome to its closest neighbour with a completely sequenced genome (
Erysipelatoclostridium ramosum
JCM 1298T) indicated low genomic relatedness. Based on the phenotypic and taxonomic characteristics observed in this study, a novel genus and species Tannockella kyphosi gen. nov., sp. nov. is proposed for isolate BP52GT (=NZRM 4757T=JCM 34692T).
Collapse
Affiliation(s)
- Bikiran Pardesi
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony M. Roberton
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Emily M. Wollmuth
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Esther R. Angert
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | - William Lindsey White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Kendall D. Clements
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Zhou JS, Cheng JF, Li XD, Li YH. Unique bacterial communities associated with components of an artificial aquarium ecosystem and their possible contributions to nutrient cycling in this microecosystem. World J Microbiol Biotechnol 2022; 38:72. [PMID: 35277761 DOI: 10.1007/s11274-022-03258-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
In order to better understand the bacterial distribution characteristics in a whole microecosystem, the bacterial communities in different components of an artificial aquarium (i.e., plants, fishes, sand and water) were characterized using high throughput sequencing of bacterial 16S rRNA genes. Across all samples, 2873 operational taxonomic units were identified and assigned to 771 genera in 36 phyla. In a principle coordinate analysis, samples clustered according to their origin, indicating that bacterial communities from the same component were most similar. Further taxonomic analysis revealed that most dominant genera, even those with the similar functions, were biased to one component: Nitrospira and Rhodobacter were mainly abundant in plant samples; Rhodococcus, Serratia, Ralstonia, Sphingobacterium and Pseudomonas were most common in sand samples; Cetobacterium and Aeromonas dominated fish samples; and Flavobacterium, Alpinimonas and Limnobacter were especially common in water samples. Functional predictions performed by PICRUSt and the dominant genera exhibited that bacteria detected in each component could participate in all nutrient cycles in the aquarium. However, those involved in carbon and nitrogen cycling were most common in plant and fish samples, while phosphate metabolism-related pathways were more abundant in sand and water samples. Moreover, the aquarium plants, in association with their bacterial communities might be the most important component in the aquarium, as indicated by their highest bacterial richness and diversity. This study adds to our understanding on the differences in the microbiome of different components and their possible contributions to nutrient cycling in a self-sustaining aquarium.
Collapse
Affiliation(s)
- Jun Shi Zhou
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China
| | - Jian Fei Cheng
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China
| | - Xue Dong Li
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China
| | - Yan Hong Li
- College of Life Science, Capital Normal University, Xisanhuan North Road 105#, Haidian District, Beijing, 100048, China.
| |
Collapse
|
14
|
Comparison of Gut Microbiota between Gentoo and Adélie Penguins Breeding Sympatrically on Antarctic Ardley Island as Revealed by Fecal DNA Sequencing. DIVERSITY 2021. [DOI: 10.3390/d13100500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are two pygoscelid penguins, the Gentoo (Pygoscelis papua Forster, 1781) and Adélie (P. adeliae Hombron and Jacquinot, 1841) penguins, breeding sympatrically on Ardley Island, Fildes Peninsula region, South Shetlands, Antarctica. Whether the two closely related penguin species with similar dietary habits possess compositional similarity in gut microbiota remains unknown. DNA barcoding of feces is an emerging approach for gut microbiota analysis of protected animals. In the present study, the 16S rRNA gene from penguin feces was sequenced using the Illumina MiSeq platform to investigate the gut microbiota of the two pygoscelid penguin species. The fecal community of Gentoo penguins has higher diversity indices and OTU (operational taxonomic unit) richness compared to Adélie penguins. Besides unclassified bacteria, sequences fell into 22 major lineages of the domain Bacteria: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chlamydiae, Chloroflexi, Cloacimonetes, Cyanobacteria, Deinococcus-Thermus, Fibrobacteres, Firmicutes, Fusobacteria, Gemmatimonadetes, Ignavibacteriae, Planctomycetes, Proteobacteria, Tenericutes, Verrucomicrobia, and candidate divisions BRC1, SR1, WPS-2, and Saccharibacteria. Among these, Firmicutes (37.7%), Proteobacteria (23.1%, mainly Gamma- and Betaproteobacteria), Fusobacteria (14.3%), Bacteroidetes (7.9%), and Actinobacteria (6.6%) were dominant in the fecal microbiota of the two penguin species. At the same time, significantly higher abundances of Actinobacteria and Cyanobacteria were detected in Gentoo penguins than in Adélie penguins (p < 0.05). Overall, there was a clear difference in the composition of gut microbiota between the Adélie and Gentoo penguins. The results suggested that both the phylogeny of penguin species and the diet could be responsible for the differences in the gut microbiota of the two pygoscelid penguins breeding in the same area.
Collapse
|
15
|
Feldewert C, Lang K, Brune A. The hydrogen threshold of obligately methyl-reducing methanogens. FEMS Microbiol Lett 2021; 367:5895324. [PMID: 32821944 PMCID: PMC7485788 DOI: 10.1093/femsle/fnaa137] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Methanogenesis is the final step in the anaerobic degradation of organic matter. The most important substrates of methanogens are hydrogen plus carbon dioxide and acetate, but also the use of methanol, methylated amines, and aromatic methoxy groups appears to be more widespread than originally thought. Except for most members of the family Methanosarcinaceae, all methylotrophic methanogens require external hydrogen as reductant and therefore compete with hydrogenotrophic methanogens for this common substrate. Since methanogenesis from carbon dioxide consumes four molecules of hydrogen per molecule of methane, whereas methanogenesis from methanol requires only one, methyl-reducing methanogens should have an energetic advantage over hydrogenotrophic methanogens at low hydrogen partial pressures. However, experimental data on their hydrogen threshold is scarce and suffers from relatively high detection limits. Here, we show that the methyl-reducing methanogens Methanosphaera stadtmanae (Methanobacteriales), Methanimicrococcus blatticola (Methanosarcinales), and Methanomassiliicoccus luminyensis (Methanomassiliicoccales) consume hydrogen to partial pressures < 0.1 Pa, which is almost one order of magnitude lower than the thresholds for M. stadtmanae and M. blatticola reported in the only previous study on this topic. We conclude that methylotrophic methanogens should outcompete hydrogenotrophic methanogens for hydrogen and that their activity is limited by the availability of methyl groups.
Collapse
Affiliation(s)
- Christopher Feldewert
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kristina Lang
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
16
|
Song Y, Hervé V, Radek R, Pfeiffer F, Zheng H, Brune A. Characterization and phylogenomic analysis of Breznakiella homolactica gen. nov. sp. nov. indicate that termite gut treponemes evolved from non-acetogenic spirochetes in cockroaches. Environ Microbiol 2021; 23:4228-4245. [PMID: 33998119 DOI: 10.1111/1462-2920.15600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023]
Abstract
Spirochetes of the genus Treponema are surprisingly abundant in termite guts, where they play an important role in reductive acetogenesis. Although they occur in all termites investigated, their evolutionary origin is obscure. Here, we isolated the first representative of 'termite gut treponemes' from cockroaches, the closest relatives of termites. Phylogenomic analysis revealed that Breznakiella homolactica gen. nov. sp. nov. represents the most basal lineage of the highly diverse 'termite cluster I', a deep-branching sister group of Treponemataceae (fam. 'Termitinemataceae') that was present already in the cockroach ancestor of termites and subsequently coevolved with its host. Breznakiella homolactica is obligately anaerobic and catalyses the homolactic fermentation of both hexoses and pentoses. Resting cells produced acetate in the presence of oxygen. Genome analysis revealed the presence of pyruvate oxidase and catalase, and a cryptic potential for the formation of acetate, ethanol, formate, CO2 and H2 - the fermentation products of termite gut isolates. Genes encoding key enzymes of reductive acetogenesis, however, are absent, confirming the hypothesis that the ancestral metabolism of the cluster was fermentative, and that the capacity for acetogenesis from H2 plus CO2 - the most intriguing property among termite gut treponemes - was acquired by lateral gene transfer.
Collapse
Affiliation(s)
- Yulin Song
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Renate Radek
- Institute of Biology/Zoology, Free University of Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
| | - Fabienne Pfeiffer
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Hao Zheng
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| |
Collapse
|
17
|
Góngora E, Elliott KH, Whyte L. Gut microbiome is affected by inter-sexual and inter-seasonal variation in diet for thick-billed murres (Uria lomvia). Sci Rep 2021; 11:1200. [PMID: 33441848 PMCID: PMC7806582 DOI: 10.1038/s41598-020-80557-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
The role of the gut microbiome is increasingly being recognized by health scientists and veterinarians, yet its role in wild animals remains understudied. Variations in the gut microbiome could be the result of differential diets among individuals, such as variation between sexes, across seasons, or across reproductive stages. We evaluated the hypothesis that diet alters the avian gut microbiome using stable isotope analysis (SIA) and 16S rRNA gene sequencing. We present the first description of the thick-billed murre (Uria lomvia) fecal microbiome. The murre microbiome was dominated by bacteria from the genus Catellicoccus, ubiquitous in the guts of many seabirds. Microbiome variation was explained by murre diet in terms of proportion of littoral carbon, trophic position, and sulfur isotopes, especially for the classes Actinobacteria, Bacilli, Bacteroidia, Clostridia, Alphaproteobacteria, and Gammaproteobacteria. We also observed differences in the abundance of bacterial genera such as Catellicoccus and Cetobacterium between sexes and reproductive stages. These results are in accordance with behavioural observations of changes in diet between sexes and across the reproductive season. We concluded that the observed variation in the gut microbiome may be caused by individual prey specialization and may also be reinforced by sexual and reproductive stage differences in diet.
Collapse
Affiliation(s)
- Esteban Góngora
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, H9X 3V9, Canada.
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, H9X 3V9, Canada
| |
Collapse
|
18
|
Guzman J, Vilcinskas A. Bacteria associated with cockroaches: health risk or biotechnological opportunity? Appl Microbiol Biotechnol 2020; 104:10369-10387. [PMID: 33128616 PMCID: PMC7671988 DOI: 10.1007/s00253-020-10973-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Abstract Cockroaches have existed for 300 million years and more than 4600 extant species have been described. Throughout their evolution, cockroaches have been associated with bacteria, and today Blattabacterium species flourish within specialized bacteriocytes, recycling nitrogen from host waste products. Cockroaches can disseminate potentially pathogenic bacteria via feces and other deposits, particularly members of the family Enterobacteriaceae, but also Staphylococcus and Mycobacterium species, and thus, they should be cleared from sites where hygiene is essential, such as hospitals and kitchens. On the other hand, cockroaches also carry bacteria that may produce metabolites or proteins with potential industrial applications. For example, an antibiotic-producing Streptomyces strain was isolated from the gut of the American cockroach Periplaneta americana. Other cockroach-associated bacteria, including but not limited to Bacillus, Enterococcus, and Pseudomonas species, can also produce bioactive metabolites that may be suitable for development as pharmaceuticals or plant protection products. Enzymes that degrade industrially relevant substrates, or that convert biomasses into useful chemical precursors, are also expressed in cockroach-derived bacteria and could be deployed for use in the food/feed, paper, oil, or cosmetics industries. The analysis of cockroach gut microbiomes has revealed a number of lesser-studied bacteria that may form the basis of novel taxonomic groups. Bacteria associated with cockroaches can therefore be dangerous or useful, and this review explores the bacterial clades that may provide opportunities for biotechnological exploitation. Key points • Members of the Enterobacteriaceae are the most frequently cultivated bacteria from cockroaches. • Cultivation-independent studies have revealed a diverse community, led by the phyla Bacteroidetes and Firmicutes. • Although cockroaches may carry pathogenic bacteria, most strains are innocuous and may be useful for biotechnological applications. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-020-10973-6.
Collapse
Affiliation(s)
- Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany.
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany.,Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
19
|
Ghimire S, Wongkuna S, Scaria J. Description of a new member of the family Erysipelotrichaceae: Dakotella fusiforme gen. nov., sp. nov., isolated from healthy human feces. PeerJ 2020; 8:e10071. [PMID: 33083133 PMCID: PMC7543727 DOI: 10.7717/peerj.10071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 09/09/2020] [Indexed: 01/08/2023] Open
Abstract
A Gram-positive, non-motile, rod-shaped facultative anaerobic bacterial strain SG502T was isolated from healthy human fecal samples in Brookings, SD, USA. The comparison of the 16S rRNA gene placed the strain within the family Erysipelotrichaceae. Within this family, Clostridium innocuum ATCC 14501T, Longicatena caecimuris strain PG-426-CC-2, Eubacterium dolichum DSM 3991T and E. tortuosum DSM 3987T(=ATCC 25548T) were its closest taxa with 95.28%, 94.17%, 93.25%, and 92.75% 16S rRNA sequence identities respectively. The strain SG502T placed itself close to C. innocuum in the 16S rRNA phylogeny. The members of genus Clostridium within family Erysipelotrichaceae was proposed to be reassigned to genus Erysipelatoclostridium to resolve the misclassification of genus Clostridium. Therefore, C. innocuum was also classified into this genus temporarily with the need to reclassify it in the future because of its difference in genomic properties. Similarly, genome sequencing of the strain and comparison with its 16S phylogenetic members and proposed members of the genus Erysipelatoclostridium, SG502T warranted a separate genus even though its 16S rRNA similarity was >95% when comapred to C. innocuum. The strain was 71.8% similar at ANI, 19.8% [17.4–22.2%] at dDDH and 69.65% similar at AAI to its closest neighbor C. innocuum. The genome size was nearly 2,683,792 bp with 32.88 mol% G+C content, which is about half the size of C. innocuum genome and the G+C content revealed 10 mol% difference. Phenotypically, the optimal growth temperature and pH for the strain SG502T were 37 °C and 7.0 respectively. Acetate was the major short-chain fatty acid product of the strain when grown in BHI-M medium. The major cellular fatty acids produced were C18:1ω9c, C18:0and C16:0. Thus, based on the polyphasic analysis, for the type strain SG502T (=DSM 107282T= CCOS 1889T), the name Dakotella fusiforme gen. nov., sp. nov., is proposed.
Collapse
Affiliation(s)
- Sudeep Ghimire
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States of America
| | - Supapit Wongkuna
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States of America
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States of America
| |
Collapse
|
20
|
Shin Y, Paek J, Kim H, Kook JK, Kim JS, Kim SH, Chang YH. Absicoccus porci gen. nov., sp. nov., a member of the family Erysipelotrichaceae isolated from pig faeces. Int J Syst Evol Microbiol 2020; 70:732-737. [DOI: 10.1099/ijsem.0.003803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yeseul Shin
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Jayoung Paek
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Hongik Kim
- Vitabio, Inc., Daejeon, 305-500, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Joong-Su Kim
- Jeonbuk Branch Institute, Molecular Bioprocess Research Center, KRIBB, 1404 Sinjeong-dong, Jeongeup-si, Jeonbuk 580-185, Republic of Korea
| | - Si Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Young-Hyo Chang
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| |
Collapse
|
21
|
Blázquez-Pallí N, Rosell M, Varias J, Bosch M, Soler A, Vicent T, Marco-Urrea E. Integrative isotopic and molecular approach for the diagnosis and implementation of an efficient in-situ enhanced biological reductive dechlorination of chlorinated ethenes. WATER RESEARCH 2019; 167:115106. [PMID: 31581036 DOI: 10.1016/j.watres.2019.115106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Based on the previously observed intrinsic bioremediation potential of a site originally contaminated with perchloroethene (PCE), field-derived lactate-amended microcosms were performed to test different lactate isomers and concentrations, and find clearer isotopic and molecular parameters proving the feasibility of an in-situ enhanced reductive dechlorination (ERD) from PCE-to-ethene (ETH). According to these laboratory results, which confirmed the presence of Dehalococcoides sp. and the vcrA gene, an in-situ ERD pilot test consisting of a single injection of lactate in a monitoring well was performed and monitored for 190 days. The parameters used to follow the performance of the ERD comprised the analysis of i) hydrochemistry, including redox potential (Eh), and the concentrations of redox sensitive species, chlorinated ethenes (CEs), lactate, and acetate; ii) stable isotope composition of carbon of CEs, and sulphur and oxygen of sulphate; and iii) 16S rRNA gene sequencing from groundwater samples. Thus, it was proved that the injection of lactate promoted sulphate-reducing conditions, with the subsequent decrease in Eh, which allowed for the full reductive dechlorination of PCE to ETH in the injection well. The biodegradation of CEs was also confirmed by the enrichment in 13C and carbon isotopic mass balances. The metagenomic results evidenced the shift in the composition of the microbial population towards the predominance of fermentative bacteria. Given the success of the in-situ pilot test, a full-scale ERD with lactate was then implemented at the site. After one year of treatment, PCE and trichloroethene were mostly depleted, whereas vinyl chloride (VC) and ETH were the predominant metabolites. Most importantly, the shift of the carbon isotopic mass balances towards more positive values confirmed the complete reductive dechlorination, including the VC-to-ETH reaction step. The combination of techniques used here provides complementary lines of evidence for the diagnosis of the intrinsic biodegradation potential of a polluted site, but also to monitor the progress, identify potential difficulties, and evaluate the success of ERD at the field scale.
Collapse
Affiliation(s)
- Natàlia Blázquez-Pallí
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), c/ de les Sitges s/n, 08193, Cerdanyola del Vallès, Spain; Litoclean, S.L, c/ Numància 36, 08029, Barcelona, Spain
| | - Mònica Rosell
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028, Barcelona, Spain
| | - Joan Varias
- Litoclean, S.L, c/ Numància 36, 08029, Barcelona, Spain
| | - Marçal Bosch
- Litoclean, S.L, c/ Numància 36, 08029, Barcelona, Spain
| | - Albert Soler
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028, Barcelona, Spain
| | - Teresa Vicent
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), c/ de les Sitges s/n, 08193, Cerdanyola del Vallès, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), c/ de les Sitges s/n, 08193, Cerdanyola del Vallès, Spain.
| |
Collapse
|
22
|
Singer JR, Blosser EG, Zindl CL, Silberger DJ, Conlan S, Laufer VA, DiToro D, Deming C, Kumar R, Morrow CD, Segre JA, Gray MJ, Randolph DA, Weaver CT. Preventing dysbiosis of the neonatal mouse intestinal microbiome protects against late-onset sepsis. Nat Med 2019; 25:1772-1782. [PMID: 31700190 DOI: 10.1038/s41591-019-0640-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Late-onset sepsis (LOS) is thought to result from systemic spread of commensal microbes from the intestines of premature infants. Clinical use of probiotics for LOS prophylaxis has varied owing to limited efficacy, reflecting an incomplete understanding of relationships between development of the intestinal microbiome, neonatal dysbiosis and LOS. Using a model of LOS, we found that components of the developing microbiome were both necessary and sufficient to prevent LOS. Maternal antibiotic exposure that eradicated or enriched transmission of Lactobacillus murinus exacerbated and prevented disease, respectively. Prophylactic administration of some, but not all Lactobacillus spp. was protective, as was administration of Escherichia coli. Intestinal oxygen level was a major driver of colonization dynamics, albeit via mechanisms distinct from those in adults. These results establish a link between neonatal dysbiosis and LOS, and provide a basis for rational selection of probiotics that modulate primary succession of the microbiome to prevent disease.
Collapse
Affiliation(s)
- Jeffrey R Singer
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Emily G Blosser
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Obstetrics and Gynecology, Ochsner Health System, New Orleans, LA, USA
| | - Carlene L Zindl
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel J Silberger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sean Conlan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vincent A Laufer
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel DiToro
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Clay Deming
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ranjit Kumar
- Center for Clinical and Translational Science Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey D Morrow
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julia A Segre
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Gray
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David A Randolph
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Neonatal-Perinatal Medicine, Rocky Mountain Hospital for Children, Denver, CO, USA
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
23
|
Jahnes BC, Herrmann M, Sabree ZL. Conspecific coprophagy stimulates normal development in a germ-free model invertebrate. PeerJ 2019; 7:e6914. [PMID: 31139506 PMCID: PMC6521811 DOI: 10.7717/peerj.6914] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Microbial assemblages residing within and on animal gastric tissues contribute to various host beneficial processes that include diet accessibility and nutrient provisioning, and we sought to examine the degree to which intergenerational and community-acquired gut bacteria impact development in a tractable germ-free (GF) invertebrate model system. Coprophagy is a common behavior in cockroaches and termites that provides access to both nutrients and the primary means by which juveniles are inoculated with beneficial gut bacteria. This hypothesis was tested in the American cockroach (Periplaneta americana) by interfering with this means of acquiring gut bacteria, which resulted in GF insects that exhibited prolonged growth rates and gut tissue dysmorphias relative to wild-type (WT) P. americana. Conventionalization of GF P. americana via consumption of frass (feces) from conspecifics and siblings reared under non-sterile conditions resulted in colonization of P. americana gut tissues by a diverse microbial community and a significant (p < 0.05) recovery of WT level growth and hindgut tissue development phenotypes. These data suggest that coprophagy is essential for normal gut tissue and organismal development by introducing beneficial gut bacteria to P. americana, and that the GF P. americana model system is a useful system for examining how gut bacteria impact host outcomes.
Collapse
Affiliation(s)
- Benjamin C Jahnes
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Madeline Herrmann
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Zakee L Sabree
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Intestinibaculum porci gen. nov., sp. nov., a new member of the family Erysipelotrichaceae isolated from the small intestine of a swine. J Microbiol 2019; 57:381-387. [PMID: 30796749 DOI: 10.1007/s12275-019-8631-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
A strictly anaerobic, Gram-stain-positive, catalase-negative, non-motile, rod-shaped bacterium, designated SG0102T, was isolated from the small intestine of a swine. Optimal growth occurred at 37°C and pH 7.0. Furthermore, growth was observed in the presence of up to 3% (w/v) NaCl but not at salinity levels higher than 4%. The comparative analysis of 16S rRNA gene sequences showed that strain SG0102T was most closely related to Kandleria vitulina DSM 20405T (93.3%), followed by Catenibacterium mitsuokai KCTC 5053T (91.1%), Sharpea azabuensis KCTC 15217T (91.0%), and Eggerthia catenaformis DSM 5348T (89.6%). The average nucleotide identity values between strain SG0102T and related species, K. vitulina DSM 20405T, C. mitsuokai KCTC 5053T, S. azabuensis KCTC 15217T, and E. catenaformis DSM 5348T, were 71.0, 69.3, 70.0, and 69.2%, respectively. The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain SG0102T belonged to the family Erysipelotrichaceae in the class Erysipelotrichia. The DNA G + C content of the strain SG0102T was 39.5 mol%. The major cellular fatty acids (> 10%) of strain SG0102T were C16:0, C16:0 dimethyl acetal, and C18:2ω9/12c. The cell wall peptidoglycan of strain SG0102T contained the meso-diaminopimelic acid. The strain SG0102T produced lactic acid as a major end product of fermentation. These distinct phenotypic and phylogenetic properties suggest that strain SG0102T represents a novel species in a novel genus of the family Erysipelotrichaceae, for which the name Intestinibaculum porci gen. nov. sp. nov. is proposed. The type strain is SG0102T (= KCTC 15725T = NBRC 113396T).
Collapse
|
25
|
Tegtmeier D, Belitz A, Radek R, Heimerl T, Brune A. Ereboglobus luteus gen. nov. sp. nov. from cockroach guts, and new insights into the oxygen relationship of the genera Opitutus and Didymococcus ( Verrucomicrobia : Opitutaceae ). Syst Appl Microbiol 2018; 41:101-112. [DOI: 10.1016/j.syapm.2017.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/19/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022]
|
26
|
Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ, Dewhurst RJ, Walker AW, Roehe R, Watson M. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun 2018; 9:870. [PMID: 29491419 PMCID: PMC5830445 DOI: 10.1038/s41467-018-03317-6] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/05/2018] [Indexed: 12/15/2022] Open
Abstract
The cow rumen is adapted for the breakdown of plant material into energy and nutrients, a task largely performed by enzymes encoded by the rumen microbiome. Here we present 913 draft bacterial and archaeal genomes assembled from over 800 Gb of rumen metagenomic sequence data derived from 43 Scottish cattle, using both metagenomic binning and Hi-C-based proximity-guided assembly. Most of these genomes represent previously unsequenced strains and species. The draft genomes contain over 69,000 proteins predicted to be involved in carbohydrate metabolism, over 90% of which do not have a good match in public databases. Inclusion of the 913 genomes presented here improves metagenomic read classification by sevenfold against our own data, and by fivefold against other publicly available rumen datasets. Thus, our dataset substantially improves the coverage of rumen microbial genomes in the public databases and represents a valuable resource for biomass-degrading enzyme discovery and studies of the rumen microbiome.
Collapse
Affiliation(s)
- Robert D Stewart
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | | | - Amanda Warr
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Andrew H Wiser
- Phase Genomics, 4000 Mason Road, Seattle, WA, 98195, USA
| | | | | | - Ivan Liachko
- Phase Genomics, 4000 Mason Road, Seattle, WA, 98195, USA
| | | | | | - Alan W Walker
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Rainer Roehe
- Scotland's Rural College, Edinburgh, EH25 9RG, UK
| | - Mick Watson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, EH25 9RG, UK.
| |
Collapse
|
27
|
Zhang F, Sun XX, Zhang XC, Zhang S, Lu J, Xia YM, Huang YH, Wang XJ. The interactions between gut microbiota and entomopathogenic fungi: a potential approach for biological control of Blattella germanica (L.). PEST MANAGEMENT SCIENCE 2018; 74:438-447. [PMID: 28888066 DOI: 10.1002/ps.4726] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/18/2017] [Accepted: 09/04/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Metarhizium anisopliae and Beauveria bassiana mainly infect insects through the cuticle; gut infection occasionally occurs. Micro-organisms existing in the gut may play a crucial role in the evolution and ecology of host defenses against fungal pathogens. To evaluate whether the gut bacteria participate in antifungal activity, and to determine their role in host protection, the interactions between gut bacteria and M. anisopliae and the diversity of gut microbiota in cockroaches were studied. RESULTS An oral feeding test showed that the mortality of conventional cockroaches was significantly lower than that of germ-free cockroaches; both gut homogenates and aqueous fecal extracts showed antifungal activity, but the samples from germ-free cockroaches did not. Twenty-two bacterial strains with antifungal activity and siderophore-producing ability were isolated from the gut and feces of cockroaches. Using high-throughput sequencing techniques, a total of 23 different phyla and 212 genera were detected. The composition of the microbiota of the hindgut was vastly different from those of the foregut and midgut; higher diversity and abundance of Bacteroides and Pseudomonas were found in the hindgut. CONCLUSION The gut microbiota of German cockroaches may play a critical role in protecting cockroaches from fungal invasion and colonization. Removing certain bacteria from the B. germanica microbiota may facilitate microbial control using fungal pathogens. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Xiao X Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Xian C Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Shuo Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Jie Lu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Yong M Xia
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Yan H Huang
- Food and Fermentation Engineering Key Lab of Shandong Province, Jinan, People's Republic of China
| | - Xue J Wang
- Shandong Center for Control and Prevention, Jinan, People's Republic of China
| |
Collapse
|
28
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2017; 66:4299-4305. [PMID: 27928990 DOI: 10.1099/ijsem.0.001585] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send an electronic copy of the published paper to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in the nomenclature of prokaryotes. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
29
|
Cox LM, Sohn J, Tyrrell KL, Citron DM, Lawson PA, Patel NB, Iizumi T, Perez-Perez GI, Goldstein EJC, Blaser MJ. Description of two novel members of the family Erysipelotrichaceae: Ileibacterium valens gen. nov., sp. nov. and Dubosiella newyorkensis, gen. nov., sp. nov., from the murine intestine, and emendation to the description of Faecalibaculum rodentium. Int J Syst Evol Microbiol 2017; 67:1247-1254. [PMID: 28100298 DOI: 10.1099/ijsem.0.001793] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To better characterize murine intestinal microbiota, a large number (187) of Gram-positive-staining, rod- and coccoid-shaped, and facultatively or strictly anaerobic bacteria were isolated from small and large intestinal contents from mice. Based on 16S rRNA gene sequencing, a total 115 isolates formed three phylogenetically distinct clusters located within the family Erysipelotrichaceae. Group 1, as represented by strain NYU-BL-A3T, was most closely related to Allobaculum stercoricanis, with 16S rRNA gene sequence similarity values of 87.7 %. A second group, represented by NYU-BL-A4T, was most closely related to Faecalibaculum rodentium, with 86.6 % 16S rRNA gene sequence similarity. A third group had a nearly identical 16S rRNA gene sequence (99.9 %) compared with the recently described Faecalibaculum rodentium, also recovered from a laboratory mouse; however, this strain had a few differences in biochemical characteristics, which are detailed in an emended description. The predominant (>10 %) cellular fatty acids of strain NYU-BL-A3T were C16 : 0 and C18 : 0, and those of strain NYU-BL-A4T were C10 : 0, C16 : 0, C18 : 0 and C18 : 1ω9c. The two groups could also be distinguished by multiple biochemical reactions, with the group represented by NYU-BL-A4T being considerably more active. Based on phylogenetic, biochemical and chemotaxonomic criteria, two novel genera are proposed, Ileibacterium valens gen. nov., sp. nov. with NYU-BL-A3T (=ATCC TSD-63T=DSM 103668T) as the type strain and Dubosiella newyorkensis gen. nov., sp. nov. with NYU-BL-A4T (=ATCC TSD-64T=DSM 103457T) as the type strain.
Collapse
Affiliation(s)
- Laura M Cox
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA.,Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA.,Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiho Sohn
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | | | - Diane M Citron
- R. M. Alden Research Laboratory, Culver City, CA 90230, USA
| | - Paul A Lawson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, USA
| | - Nisha B Patel
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, USA
| | - Tadasu Iizumi
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Guillermo I Perez-Perez
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA.,Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA
| | | | - Martin J Blaser
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA.,Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA.,New York Harbor Department of Veterans Affairs Medical Center, New York, NY 10010, USA
| |
Collapse
|
30
|
Oren A, Garrity GM. Notification of changes in taxonomic opinion previously published outside the IJSEM. Int J Syst Evol Microbiol 2017; 67:7-8. [PMID: 28218571 DOI: 10.1099/ijsem.0.001710] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|