1
|
Kohlmeier MG, O'Hara GW, Ramsay JP, Terpolilli JJ. Closed genomes of commercial inoculant rhizobia provide a blueprint for management of legume inoculation. Appl Environ Microbiol 2025:e0221324. [PMID: 39791879 DOI: 10.1128/aem.02213-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
Rhizobia are soil bacteria capable of establishing symbiosis within legume root nodules, where they reduce atmospheric N2 into ammonia and supply it to the plant for growth. Australian soils often lack rhizobia compatible with introduced agricultural legumes, so inoculation with exotic strains has become a common practice for over 50 years. While extensive research has assessed the N2-fixing capabilities of these inoculants, their genomics, taxonomy, and core and accessory gene phylogeny are poorly characterized. Furthermore, in some cases, inoculant strains have been developed from isolations made in Australia. It is unknown whether these strains represent naturalized exotic organisms, native rhizobia with a capacity to nodulate introduced legumes, or recombinant strains arising from horizontal transfer between introduced and native bacteria. Here, we describe the complete, closed genome sequences of 42 Australian commercial rhizobia. These strains span the genera, Bradyrhizobium, Mesorhizobium, Methylobacterium, Rhizobium, and Sinorhizobium, and only 23 strains were identified to species level. Within inoculant strain genomes, replicon structure and location of symbiosis genes were consistent with those of model strains for each genus, except for Rhizobium sp. SRDI969, where the symbiosis genes are chromosomally encoded. Genomic analysis of the strains isolated from Australia showed they were related to exotic strains, suggesting that they may have colonized Australian soils following undocumented introductions. These genome sequences provide the basis for accurate strain identification to manage inoculation and identify the prevalence and impact of horizontal gene transfer (HGT) on legume productivity. IMPORTANCE Inoculation of cultivated legumes with exotic rhizobia is integral to Australian agriculture in soils lacking compatible rhizobia. The Australian inoculant program supplies phenotypically characterized high-performing strains for farmers but in most cases, little is known about the genomes of these rhizobia. Horizontal gene transfer (HGT) of symbiosis genes from inoculant strains to native non-symbiotic rhizobia frequently occurs in Australian soils and can impact the long-term stability and efficacy of legume inoculation. Here, we present the analysis of reference-quality genomes for 42 Australian commercial rhizobial inoculants. We verify and classify the genetics, genome architecture, and taxonomy of these organisms. Importantly, these genome sequences will facilitate the accurate strain identification and monitoring of inoculants in soils and plant nodules, as well as enable detection of horizontal gene transfer to native rhizobia, thus ensuring the efficacy and integrity of Australia's legume inoculation program.
Collapse
Affiliation(s)
- MacLean G Kohlmeier
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Graham W O'Hara
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Joshua P Ramsay
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Jason J Terpolilli
- Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
2
|
Bouhnik O, Alami S, Lamin H, Lamrabet M, Bennis M, Ouajdi M, Bellaka M, Antri SE, Abbas Y, Abdelmoumen H, Bedmar EJ, Idrissi MME. The Fodder Legume Chamaecytisus albidus Establishes Functional Symbiosis with Different Bradyrhizobial Symbiovars in Morocco. MICROBIAL ECOLOGY 2022; 84:794-807. [PMID: 34625829 DOI: 10.1007/s00248-021-01888-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
In this work, we analyzed the symbiotic performance and diversity of rhizobial strains isolated from the endemic shrubby legume Chamaecytisus albidus grown in soils of three different agroforestry ecosystems representing arid and semi-arid forest areas in Morocco. The analysis of the rrs gene sequences from twenty-four representative strains selected after REP-PCR fingerprinting showed that all the strains belong to the genus Bradyrhizobium. Following multi-locus sequence analysis (MLSA) using the rrs, gyrB, recA, glnII, and rpoB housekeeping genes, five representative strains, CA20, CA61, CJ2, CB10, and CB61 were selected for further molecular studies. Phylogenetic analysis of the concatenated glnII, gyrB, recA, and rpoB genes showed that the strain CJ2 isolated from Sahel Doukkala soil is close to Bradyrhizobium canariense BTA-1 T (96.95%); that strains CA20 and CA61 isolated from the Amhach site are more related to Bradyrhizobium valentinum LmjM3T, with 96.40 and 94.57% similarity values; and that the strains CB10 and CB60 isolated from soil in the Bounaga site are more related to Bradyrhizobium murdochi CNPSo 4020 T and Bradyrhizobium. retamae Ro19T, with which they showed 95.45 and 97.34% similarity values, respectively. The phylogenetic analysis of the symbiotic genes showed that the strains belong to symbiovars lupini, genistearum, and retamae. All the five strains are able to nodulate Lupinus luteus, Retama monosperma, and Cytisus monspessilanus, but they do not nodulate Glycine max and Phaseolus vulgaris. The inoculation tests showed that the strains isolated from the 3 regions improve significantly the plant yield as compared to uninoculated plants. However, the strains of Bradyrhizobium sp. sv. retamae isolated from the site of Amhach were the most performing. The phenotypic analysis showed that the strains are able to use a wide range of carbohydrates and amino acids as sole carbon and nitrogen source. The strains isolated from the arid areas of Bounaga and Amhach were more tolerant to salinity and drought stress than strains isolated in the semi-arid area of Sahel Doukkala.
Collapse
Affiliation(s)
- Omar Bouhnik
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco.
| | - Soufiane Alami
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Hanane Lamin
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Mouad Lamrabet
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Meryeme Bennis
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Mohammed Ouajdi
- Centre de Recherche Forestière, Département Des Eaux Et Forêts, Avenue Omar Ibn El KhattabAgdal, BP 763, 10050, Rabat, Morocco
| | - Mhammed Bellaka
- Centre de Recherche Forestière, Département Des Eaux Et Forêts, Avenue Omar Ibn El KhattabAgdal, BP 763, 10050, Rabat, Morocco
| | - Salwa El Antri
- Centre de Recherche Forestière, Département Des Eaux Et Forêts, Avenue Omar Ibn El KhattabAgdal, BP 763, 10050, Rabat, Morocco
| | - Younes Abbas
- Faculté Polydiciplinaire, Université Sultan Moulay Slimane, Beni Mellal, Morocco
| | - Hanaa Abdelmoumen
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Eulogio J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos Estación Experimental del Zaidín, CSIC Apartado Postal 419, Granada, 18008, Spain
| | - Mustapha Missbah El Idrissi
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| |
Collapse
|
3
|
Mburu SW, Koskey G, Njeru EM, Ombori O, Maingi J, Kimiti JM. Genetic and phenotypic diversity of microsymbionts nodulating promiscuous soybeans from different agro-climatic conditions. J Genet Eng Biotechnol 2022; 20:109. [PMID: 35849206 PMCID: PMC9294079 DOI: 10.1186/s43141-022-00386-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
Background Global food supply is highly dependent on field crop production that is currently severely threatened by changing climate, poor soil quality, abiotic, and biotic stresses. For instance, one of the major challenges to sustainable crop production in most developing countries is limited nitrogen in the soil. Symbiotic nitrogen fixation of legumes such as soybean (Glycine max (L.) Merril) with rhizobia plays a crucial role in supplying nitrogen sufficient to maintain good crop productivity. Characterization of indigenous bradyrhizobia is a prerequisite in the selection and development of effective bioinoculants. In view of this, bradyrhizobia were isolated from soybean nodules in four agro-climatic zones of eastern Kenya (Embu Upper Midland Zone, Embu Lower Midland Zone, Tharaka Upper Midland Zone, and Tharaka Lower Midland Zone) using two soybean varieties (SB8 and SB126). The isolates were characterized using biochemical, morphological, and genotypic approaches. DNA fingerprinting was carried out using 16S rRNA gene and restricted by enzymes HaeIII, Msp1, and EcoRI. Results Thirty-eight (38) bradyrhizobia isolates obtained from the trapping experiments were placed into nine groups based on their morphological and biochemical characteristics. Most (77%) of the isolates had characteristics of fast-grower bradyrhizobia while 23% were slow-growers. Restriction digest revealed significant (p < 0.015) variation within populations and not among the agro-climatic zones based on analysis of molecular variance. Principal coordinate analysis demonstrated sympatric speciation of indigenous bradyrhizobia isolates. Embu Upper Midland Zone bradyrhizobia isolates had the highest polymorphic loci (80%) and highest genetic diversity estimates (H’ = 0.419) compared to other agro-climatic zones. Conclusion The high diversity of bradyrhizobia isolates depicts a valuable genetic resource for selecting more effective and competitive strains to improve promiscuous soybean production at a low cost through biological nitrogen fixation.
Collapse
Affiliation(s)
- Simon W Mburu
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844 (00100), Nairobi, Kenya. .,Department of Biological Sciences, Chuka University, P.O Box 109, Chuka, -60400, Kenya.
| | - Gilbert Koskey
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà, 33, 56127, Pisa, Italy
| | - Ezekiel M Njeru
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844 (00100), Nairobi, Kenya
| | - Omwoyo Ombori
- Department of Plant Sciences, Kenyatta University, P.O. Box 43844 (00100), Nairobi, Kenya
| | - John Maingi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844 (00100), Nairobi, Kenya
| | - Jacinta M Kimiti
- Department of Forestry and Land Resources Management, South Eastern Kenya University, P.O. Box 170, Kitui, -90200, Kenya
| |
Collapse
|
4
|
Klepa MS, Helene LCF, O´Hara G, Hungria M. Bradyrhizobium cenepequi sp. nov., Bradyrhizobium semiaridum sp. nov., Bradyrhizobium hereditatis sp. nov. and Bradyrhizobium australafricanum sp. nov., symbionts of different leguminous plants of Western Australia and South Africa and definition of three novel symbiovars. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bradyrhizobium
is a heterogeneous bacterial genus capable of establishing symbiotic associations with a broad range of legume hosts, including species of economic and environmental importance. This study was focused on the taxonomic and symbiovar definition of four strains – CNPSo 4026T, WSM 1704T, WSM 1738T and WSM 4400T – previously isolated from nodules of legumes in Western Australia and South Africa. The 16S rRNA gene phylogenetic tree allocated the strains to the
Bradyrhizobium elkanii
supergroup. The multilocus sequence analysis (MLSA) with partial sequences of six housekeeping genes – atpD, dnaK, glnII, gyrB, recA and rpoB – did not cluster the strains under study as conspecific to any described
Bradyrhizobium
species. Average nucleotide identity and digital DNA–DNA hybridization values were calculated for the four strains of this study and the closest species according to the MLSA phylogeny with the highest values being 95.46 and 62.20 %, respectively; therefore, both being lower than the species delineation cut-off values. The nodC and nifH phylogenies included strains WSM 1738T and WSM 4400T in the symbiovars retamae and vignae respectively, and also allowed the definition of three new symbiovars, sv. cenepequi, sv. glycinis, and sv. cajani. Analysis of morphophysiological characterization reinforced the identification of four novel proposed
Bradyrhizobium
species that are accordingly named as follows: Bradyrhizobium cenepequi sp. nov. (CNPSo 4026T=WSM 4798T=LMG 31653T), isolated from Vigna unguiculata; Bradyrhizobium semiaridum sp. nov. (WSM 1704T=CNPSo 4028T=LMG 31654T), isolated from Tephrosia gardneri; Bradyrhizobium hereditatis sp. nov. (WSM 1738T=CNPSo 4025T=LMG 31652T), isolated from Indigofera sp.; and Bradyrhizobium australafricanum sp. nov. (WSM 4400T=CNPSo 4015T=LMG 31648T) isolated from Glycine sp.
Collapse
Affiliation(s)
- Milena Serenato Klepa
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Luisa Caroline Ferraz Helene
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Graham O´Hara
- Centre for Rhizobium Studies (CRS), Murdoch University 90 South St. Murdoch, WA, Australia
| | - Mariangela Hungria
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| |
Collapse
|
5
|
Ferraz Helene LC, Klepa MS, Hungria M. New Insights into the Taxonomy of Bacteria in the Genomic Era and a Case Study with Rhizobia. Int J Microbiol 2022; 2022:4623713. [PMID: 35637770 PMCID: PMC9148247 DOI: 10.1155/2022/4623713] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Since early studies, the history of prokaryotes taxonomy has dealt with many changes driven by the development of new and more robust technologies. As a result, the number of new taxa descriptions is exponentially increasing, while an increasing number of others has been subject of reclassification, demanding from the taxonomists more effort to maintain an organized hierarchical system. However, expectations are that the taxonomy of prokaryotes will acquire a more stable status with the genomic era. Other analyses may continue to be necessary to determine microbial features, but the use of genomic data might be sufficient to provide reliable taxa delineation, helping taxonomy to reach the goal of correct classification and identification. Here we describe the evolution of prokaryotes' taxonomy until the genomic era, emphasizing bacteria and taking as an example the history of rhizobia taxonomy. This example was chosen because of the importance of the symbiotic nitrogen fixation of legumes with rhizobia to the nitrogen input to both natural ecosystems and agricultural crops. This case study reports the technological advances and the methodologies used to classify and identify bacterial species and indicates the actual rules required for an accurate description of new taxa.
Collapse
Affiliation(s)
- Luisa Caroline Ferraz Helene
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
| | - Milena Serenato Klepa
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, PR, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70040-020 Brasília, DF, Brazil
| | - Mariangela Hungria
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
6
|
Adjei JA, Aserse AA, Yli-Halla M, Ahiabor BDK, Abaidoo RC, Lindstrom K. Phylogenetically diverse Bradyrhizobium genospecies nodulate Bambara groundnut (Vigna subterranea L. Verdc) and soybean (Glycine max L. Merril) in the northern savanna zones of Ghana. FEMS Microbiol Ecol 2022; 98:fiac043. [PMID: 35404419 PMCID: PMC9329091 DOI: 10.1093/femsec/fiac043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022] Open
Abstract
A total of 102 bacterial strains isolated from nodules of three Bambara groundnut and one soybean cultivars grown in nineteen soil samples collected from northern Ghana were characterized using multilocus gene sequence analysis. Based on a concatenated sequence analysis (glnII-rpoB-recA-gyrB-atpD-dnaK), 54 representative strains were distributed in 12 distinct lineages, many of which were placed mainly in the Bradyrhizobium japonicum and Bradyrhizobium elkanii supergroups. Twenty-four of the 54 representative strains belonged to seven putative novel species, while 30 were conspecific with four recognized Bradyrhizobium species. The nodA phylogeny placed all the representative strains in the cosmopolitan nodA clade III. The strains were further separated in seven nodA subclusters with reference strains mainly of African origin. The nifH phylogeny was somewhat congruent with the nodA phylogeny, but both symbiotic genes were mostly incongruent with the core housekeeping gene phylogeny indicating that the strains acquired their symbiotic genes horizontally from distantly related Bradyrhizobium species. Using redundancy analysis, the distribution of genospecies was found to be influenced by the edaphic factors of the respective sampling sites. In general, these results mainly underscore the high genetic diversity of Bambara groundnut-nodulating bradyrhizobia in Ghanaian soils and suggest a possible vast resource of adapted inoculant strains.
Collapse
Affiliation(s)
- Josephine A Adjei
- Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
- Council for Scientific and Industrial Research, Savanna Agricultural Research Institute, PO Box 52, Tamale, Ghana
| | - Aregu A Aserse
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Markku Yli-Halla
- Department of Agricultural Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Benjamin D K Ahiabor
- Council for Scientific and Industrial Research, Savanna Agricultural Research Institute, PO Box 52, Tamale, Ghana
| | - Robert C Abaidoo
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
- International Institute of Tropical Agriculture, PMB 5320, Ibadan, Nigeria
| | - Kristina Lindstrom
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|
7
|
Klepa MS, Janoni V, Paulitsch F, da Silva AR, do Carmo MRB, Delamuta JRM, Hungria M, da Silva Batista JS. Molecular diversity of rhizobia-nodulating native Mimosa of Brazilian protected areas. Arch Microbiol 2021; 203:5533-5545. [PMID: 34427725 DOI: 10.1007/s00203-021-02537-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022]
Abstract
Symbiotic Paraburkholderia have been increasingly studied in the past 20 years, especially when associated with Mimosa; however, studies with native/endemic species are still scarce. In this study, thirty strains were isolated from root nodules of native Mimosa paranapiacabae and M. micropteris in two locations of the Campos Gerais. The BOX-PCR fingerprinting revealed high genomic diversity, and the 16S rRNA phylogeny clustered the strains in three distinct groups (GI, GII, GIII), with one strain occupying an isolated position. Phylogenetic analysis with four concatenated housekeeping genes (atpD + gltB + gyrB + recA) confirmed the same clusters of 16S rRNA, and the closest species were P. nodosa BR 3437T and P. guartelaensis CNPSo 3008T; this last one isolated from another Mimosa species of the Campos Gerais. The phylogenies of the symbiotic genes nodAC and nifH placed all strains in a well-supported branch with the other species of the symbiovar mimosae. The phylogenetic analyses indicated that the strains represent novel lineages of sv. mimosae and that endemic Mimosa coevolved with indigenous Paraburkholderia in their natural environments.
Collapse
Affiliation(s)
- Milena Serenato Klepa
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, C.P. 6001, Ponta Grossa, PR, 84030-900, Brazil.,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10.011, Londrina, Paraná, 86057-970, Brazil.,Embrapa Soja, C.P. 231, Londrina, PR, 86001-970, Brazil
| | - Vanessa Janoni
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, C.P. 6001, Ponta Grossa, PR, 84030-900, Brazil
| | - Fabiane Paulitsch
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, C.P. 6001, Ponta Grossa, PR, 84030-900, Brazil.,Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10.011, Londrina, Paraná, 86057-970, Brazil.,Embrapa Soja, C.P. 231, Londrina, PR, 86001-970, Brazil
| | - Adriane Ribeiro da Silva
- Secretaria da Educação e do Esporte, Governo do Estado do Paraná, NRE Ponta Grossa, Rua Cyro de Lima Garcia, Ponta Grossa, PR, 84050-091, Brazil
| | | | - Jakeline Renata Marçon Delamuta
- Embrapa Soja, C.P. 231, Londrina, PR, 86001-970, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, Distrito Federal, Brasília, 71605-001, Brazil
| | - Mariangela Hungria
- Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10.011, Londrina, Paraná, 86057-970, Brazil.,Embrapa Soja, C.P. 231, Londrina, PR, 86001-970, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, Distrito Federal, Brasília, 71605-001, Brazil
| | - Jesiane Stefania da Silva Batista
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, C.P. 6001, Ponta Grossa, PR, 84030-900, Brazil.
| |
Collapse
|
8
|
Avontuur JR, Palmer M, Beukes CW, Chan WY, Tasiya T, van Zyl E, Coetzee MPA, Stepkowski T, Venter SN, Steenkamp ET. Bradyrhizobium altum sp. nov., Bradyrhizobium oropedii sp. nov. and Bradyrhizobium acaciae sp. nov. from South Africa show locally restricted and pantropical nodA phylogeographic patterns. Mol Phylogenet Evol 2021; 167:107338. [PMID: 34757168 DOI: 10.1016/j.ympev.2021.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
Africa is known for its rich legume diversity with a significant number of endemic species originating in South Africa. Many of these legumes associate with rhizobial symbionts of the genus Bradyrhizobium, of which most represent new species. Yet, none of the Bradyrhizobium species from South Africa have been described. In this study, phylogenetic analysis of 16S rRNA gene sequences of fourteen strains isolated in southern Africa from root nodules of diverse legumes (i.e., from the tribes Crotalarieae, Acacieae, Genisteae, Phaseoleae and Cassieae) revealed that they belong to the Bradyrhizobium elkanii supergroup. The taxonomic position and possible novelty of these strains were further interrogated using genealogical concordance of five housekeeping genes (atpD, dnaK, glnII, gyrB and rpoB). These phylogenies consistently recovered four monophyletic groups and one singleton within Bradyrhizobium. Of these groups, two were conspecific with Bradyrhizobium brasilense UFLA 03-321T and Bradyrhizobium ivorense CI-1BT, while the remaining three represented novel taxa. Their existence was further supported with genome data, as well as metabolic and physiological traits. Analysis of nodA gene sequences further showed that the evolution of these bacteria likely involved adapting to local legume hosts and environmental conditions through the acquisition, via horizontal gene transfer, of optimal symbiotic loci. We accordingly propose the following names Bradyrhizobium acaciae sp. nov. 10BBT (SARCC 730T = LMG 31409T), Bradyrhizobium oropedii sp. nov. Pear76T (SARCC 731T = LMG 31408T), and Bradyrhizobium altum sp. nov. Pear77T (SARCC 754T = LMG 31407T) to accommodate three novel species, all of which are symbionts of legumes in South Africa.
Collapse
Affiliation(s)
- Juanita R Avontuur
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States
| | - Chrizelle W Beukes
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai Y Chan
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; National Institute for Communicable Disease, National Health Laboratory Service, Johannesburg, South Africa
| | - Taponeswa Tasiya
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Elritha van Zyl
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tomasz Stepkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Poland
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Lamin H, Alami S, Lamrabet M, Bouhnik O, Bennis M, Abdelmoumen H, Bedmar EJ, Missbah-El Idrissi M. Bradyrhizobium sp. sv. retamae nodulates Retama monosperma grown in a lead and zinc mine tailings in Eastern Morocco. Braz J Microbiol 2021; 52:639-649. [PMID: 33447935 PMCID: PMC8105474 DOI: 10.1007/s42770-021-00420-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022] Open
Abstract
The aim of this work was to characterize and identify some bacteria isolated from the root nodules of Retama monosperma grown in Sidi Boubker lead and zinc mine tailings. Very few root nodules were obtained on the root nodules of R. monosperma grown in these soils. The three bacteria isolated from the root nodules were tolerant in vitro to different concentrations of heavy metals, including lead and zinc. The rep-PCR experiments showed that the three isolates have different molecular fingerprints and were considered as three different strains. The analysis of their 16S rRNA gene sequences proved their affiliation to the genus Bradyrhizobium. The analysis and phylogeny of the housekeeping genes atpD, glnII, gyrB, recA, and rpoB confirmed that the closest species was B. valentinum with similarity percentages of 95.61 to 95.82%. The three isolates recovered from the root nodules were slow-growing rhizobia capable to renodulate their original host plant in the presence of Pb-acetate. They were able to nodulate R. sphaerocarpa and Lupinus luteus also but not Glycine max or Phaseolus vulgaris. The phylogeny of the nodA and nodC nodulation genes as well as the nifH gene of the three strains showed that they belong to the symbiovar retamae of the genus Bradyrhizobium. The three strains isolated could be considered for use as inoculum for Retama plants before use in phytoremediation experiments.
Collapse
Affiliation(s)
- Hanane Lamin
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Soufiane Alami
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Mouad Lamrabet
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Omar Bouhnik
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Meryeme Bennis
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Hanaa Abdelmoumen
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-419, 18080, Granada, Spain
| | - Mustapha Missbah-El Idrissi
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco.
| |
Collapse
|
10
|
Banasiewicz J, Granada CE, Lisboa BB, Grzesiuk M, Matuśkiewicz W, Bałka M, Schlindwein G, Vargas LK, Passaglia LMP, Stępkowski T. Diversity and phylogenetic affinities of Bradyrhizobium isolates from Pampa and Atlantic Forest Biomes. Syst Appl Microbiol 2021; 44:126203. [PMID: 33857759 DOI: 10.1016/j.syapm.2021.126203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
In this work, we investigated Bradyrhizobium strains isolated from soils collected from the rhizosphere of native and exotic legumes species inhabiting two ecoclimatic zones - asubtropical-lowland pasture (Pampa Biome) and a volcanic plateau covered by Araucaria Moist Forests (Atlantic Forest Biome). The rhizobial strains were isolated from the nodules of seven native and one exotic legume species used as rhizobium traps. Single-gene (recA, glnII, dnaK) and combined-gene MLSA analyses (dnaK-glnII-gyrB-recA-rpoB) revealed that nearly 85% of the isolates clustered in B. elkanii supergroup, while the remaining (except for two isolates) in B. japonicum supergroup, albeit, in most cases, separately from the type strains of Bradyrhizobium species. As a symbiotic gene marker, a portion of nifD gene was sequenced for 194 strains. In the nifD-tree, an American branch III.3D (104 isolates), was the most numerous among the isolates. A significant portion of the isolates clustered in American groups; subclade III.4 (40 strains), Clade VII (3 strains), and a new Clade XX (4 strains). Most of the remaining strains belonged to a pantropical III.3C branch (39 isolates). On the other hand, identification of isolates belonging, respectively, to Clade I and Clade II may result of spreading of the Australian (Clade I) and European (Clade II) bradyrhizobia following the introduction of their legume hosts. Our study indicated that the American groups predominated in the symbiotic Bradyrhizobium communities in southern Brazil. However, there is a significant component of exotic lineages, resulting from the dispersal of pantropical Fabaceae taxa and the introduction of exotic legumes.
Collapse
Affiliation(s)
- Joanna Banasiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Camille E Granada
- Universidade do Vale do Taquari - UNIVATES, Rua Avelino Tallini, 171, 95900-000 Lajeado, RS, Brazil
| | - Bruno B Lisboa
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060 Porto Alegre, RS, Brazil
| | - Małgorzata Grzesiuk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Weronika Matuśkiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Mateusz Bałka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Gilson Schlindwein
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060 Porto Alegre, RS, Brazil
| | - Luciano K Vargas
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060 Porto Alegre, RS, Brazil
| | - Luciane M P Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul., Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970 Porto Alegre, RS, Brazil
| | - Tomasz Stępkowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
11
|
Helene LCF, Klepa MS, O'Hara G, Hungria M. Bradyrhizobium archetypum sp. nov., Bradyrhizobium australiense sp. nov. and Bradyrhizobium murdochi sp. nov., isolated from nodules of legumes indigenous to Western Australia. Int J Syst Evol Microbiol 2020; 70:4623-4636. [PMID: 32667875 DOI: 10.1099/ijsem.0.004322] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Bradyrhizobium is considered as the probable ancestor lineage of all rhizobia, broadly spread in a variety of ecosystems and with remarkable diversity. A polyphasic study was performed to characterize and clarify the taxonomic position of eight bradyrhizobial strains isolated from indigenous legumes to Western Australia. As expected for the genus, the 16S rRNA gene sequences were highly conserved, but the results of multilocus sequence analysis with four housekeeping genes (dnaK, glnII, gyrB and recA) confirmed three new distinct clades including the following strains: (1) WSM 1744T, WSM 1736 and WSM 1737; (2) WSM 1791T and WSM 1742; and (3) WSM 1741T, WSM 1735 and WSM 1790. The highest ANI values of the three groups in relation to the closest type strains were 92.4, 92.3 and 93.3 %, respectively, below the threshold of species circumscription. The digital DNA-DNA hybridization analysis also confirmed new species descriptions, with less than 52 % relatedness with the closest type strains. The phylogeny of the symbiotic gene nodC clustered the eight strains into the symbiovar retamae, together with seven Bradyrhizobium type strains, sharing from 94.2-98.1 % nucleotide identity (NI), and less than 88.7 % NI with other related strains and symbiovars. Morpho-physiological, phylogenetics, genomic and symbiotic traits were determined for the new groups and our data support the description of three new species, Bradyrhizobium archetypum sp. nov., Bradyrhizobium australiense sp. nov. and Bradyrhizobium murdochi sp. nov., with WSM 1744T (=CNPSo 4013T=LMG 31646T), WSM 1791T (=CNPSo 4014T=LMG 31647T) and WSM 1741T (=CNPSo 4020T=LMG 31651T) designated as type strains, respectively.
Collapse
Affiliation(s)
- Luisa Caroline Ferraz Helene
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil.,Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Milena Serenato Klepa
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil.,Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil.,Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| | - Graham O'Hara
- Centre for Rhizobium Studies (CRS), Murdoch University 90 South St. Murdoch, WA, Australia
| | - Mariangela Hungria
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil.,Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil.,Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
| |
Collapse
|
12
|
Joglekar P, Mesa CP, Richards VA, Polson SW, Wommack KE, Fuhrmann JJ. Polyphasic analysis reveals correlation between phenotypic and genotypic analysis in soybean bradyrhizobia (Bradyrhizobium spp.). Syst Appl Microbiol 2020; 43:126073. [PMID: 32139173 PMCID: PMC7894101 DOI: 10.1016/j.syapm.2020.126073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 10/25/2022]
Abstract
Soybean bradyrhizobia (Bradyrhizobium spp.) are bacteria that fix atmospheric nitrogen within the root nodules of soybean, a crop critical for meeting global nutritional protein demand. Members of this group differ in symbiotic effectiveness, and historically both phenotypic and genotypic approaches have been used to assess bradyrhizobial diversity. However, agreement between various approaches of assessment is poorly known. A collection (n=382) of soybean bradyrhizobia (Bradyrhizobium japonicum, B. diazoefficiens, and B. elkanii) were characterized by Internal Transcribed Spacer - Restriction Fragment Length Polymorphism (ITS-RFLP), cellular fatty acid composition (fatty acid methyl esters, FAME), and serological reactions to assess agreement between phenotypic and genotypic methods. Overall, 76% of the accessions demonstrated identical clustering with each of these techniques. FAME was able to identify all 382 accessions, whereas 14% were non-reactive serologically. One ITS-RFLP group, containing 36 Delaware isolates, produced multiple ITS amplicons indicating they possess multiple ribosomal RNA (rrn) operons. Cloning and sequencing revealed that these strains contained as many as three heterogenous rrn operons, a trait previously unknown in bradyrhizobia. A representative subset of 96 isolates was further characterized using 16S rRNA and Internal Transcribed Spacer (ITS) amplicon sequencing. ITS sequences showed better inter- and intra-species discrimination (65-99% identity) than 16S sequences (96-99% identity). This study shows that phenotypic and genotypic approaches are strongly correlated at the species level but should be approached with caution. We also suggest using combined 16S and ITS genotyping data to obtain better inter- and intra-species resolution in bradyrhizobia classification.
Collapse
Affiliation(s)
- P Joglekar
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - C P Mesa
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - V A Richards
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - S W Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA; Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - K E Wommack
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA; Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - J J Fuhrmann
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
13
|
Klepa MS, Ferraz Helene LC, O’Hara G, Hungria M. Bradyrhizobium agreste sp. nov., Bradyrhizobium glycinis sp. nov. and Bradyrhizobium diversitatis sp. nov., isolated from a biodiversity hotspot of the genus Glycine in Western Australia. Int J Syst Evol Microbiol 2019; 71:004742. [PMID: 33709900 PMCID: PMC8375429 DOI: 10.1099/ijsem.0.004742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/19/2021] [Indexed: 01/16/2023] Open
Abstract
Strains of the genus Bradyrhizobium associated with agronomically important crops such as soybean (Glycine max) are increasingly studied; however, information about symbionts of wild Glycine species is scarce. Australia is a genetic centre of wild Glycine species and we performed a polyphasic analysis of three Bradyrhizobium strains-CNPSo 4010T, CNPSo 4016T, and CNPSo 4019T-trapped from Western Australian soils with Glycine clandestina, Glycine tabacina and Glycine max, respectively. The phylogenetic tree of the 16S rRNA gene clustered all strains into the Bradyrhizobium japonicum superclade; strains CNPSo 4010T and CNPSo 4016T had Bradyrhizobium yuanmingense CCBAU 10071T as the closest species, whereas strain CNPSo 4019T was closer to Bradyrhizobium liaoningense LMG 18230T. The multilocus sequence analysis (MLSA) with five housekeeping genes-dnaK, glnII, gyrB, recA and rpoB-confirmed the same clusters as the 16S rRNA phylogeny, but indicated low similarity to described species, with nucleotide identities ranging from 93.6 to 97.6% of similarity. Considering the genomes of the three strains, the average nucleotide identity and digital DNA-DNA hybridization values were lower than 94.97 and 59.80 %, respectively, with the closest species. In the nodC phylogeny, strains CNPSo 4010T and CNPSo 4019T grouped with Bradyrhizobium zhanjiangense and Bradyrhizobium ganzhouense, respectively, while strain CNPSo 4016T was positioned separately from the all symbiotic Bradyrhizobium species. Other genomic (BOX-PCR), phenotypic and symbiotic properties were evaluated and corroborated with the description of three new lineages of Bradyrhizobium. We propose the names of Bradyrhizobium agreste sp. nov. for CNPSo 4010T (=WSM 4802T=LMG 31645T) isolated from Glycine clandestina, Bradyrhizobium glycinis sp. nov. for CNPSo 4016T (=WSM 4801T=LMG 31649T) isolated from Glycine tabacina and Bradyrhizobium diversitatis sp. nov. for CNPSo 4019T (=WSM 4799T=LMG 31650T) isolated from G. max.
Collapse
Affiliation(s)
- Milena Serenato Klepa
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil
| | - Luisa Caroline Ferraz Helene
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil
| | - Graham O’Hara
- Centre for Rhizobium Studies (CRS), Murdoch University 90 South St. Murdoch, WA, Australia
| | - Mariangela Hungria
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Distrito Federal, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil
| |
Collapse
|