1
|
The Role of the Aryl Hydrocarbon Receptor (AhR) and Its Ligands in Breast Cancer. Cancers (Basel) 2022; 14:cancers14225574. [PMID: 36428667 PMCID: PMC9688153 DOI: 10.3390/cancers14225574] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a complex disease which is defined by numerous cellular and molecular markers that can be used to develop more targeted and successful therapies. The aryl hydrocarbon receptor (AhR) is overexpressed in many breast tumor sub-types, including estrogen receptor -positive (ER+) tumors; however, the prognostic value of the AhR for breast cancer patient survival is not consistent between studies. Moreover, the functional role of the AhR in various breast cancer cell lines is also variable and exhibits both tumor promoter- and tumor suppressor- like activity and the AhR is expressed in both ER-positive and ER-negative cells/tumors. There is strong evidence demonstrating inhibitory AhR-Rα crosstalk where various AhR ligands induce ER degradation. It has also been reported that different structural classes of AhR ligands, including halogenated aromatics, polynuclear aromatics, synthetic drugs and other pharmaceuticals, health promoting phytochemical-derived natural products and endogenous AhR-active compounds inhibit one or more of breast cancer cell proliferation, survival, migration/invasion, and metastasis. AhR-dependent mechanisms for the inhibition of breast cancer by AhR agonists are variable and include the downregulation of multiple genes/gene products such as CXCR4, MMPs, CXCL12, SOX4 and the modulation of microRNA levels. Some AhR ligands, such as aminoflavone, have been investigated in clinical trials for their anticancer activity against breast cancer. In contrast, several publications have reported that AhR agonists and antagonists enhance and inhibit mammary carcinogenesis, respectively, and differences between the anticancer activities of AhR agonists in breast cancer may be due in part to cell context and ligand structure. However, there are reports showing that the same AhR ligand in the same breast cancer cell line gives opposite results. These differences need to be resolved in order to further develop and take advantage of promising agents that inhibit mammary carcinogenesis by targeting the AhR.
Collapse
|
2
|
Therachiyil L, Hussein OJ, Uddin S, Korashy HM. Regulation of the aryl hydrocarbon receptor in cancer and cancer stem cells of gynecological malignancies: An update on signaling pathways. Semin Cancer Biol 2022; 86:1186-1202. [PMID: 36252938 DOI: 10.1016/j.semcancer.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
Gynecological malignancies are a female type of cancers that affects the reproductive system. Cancer metastasis or recurrence mediated by cellular invasiveness occurs at advanced stages of cancer progression. Cancer Stem Cells (CSCs) enrichment in tumors leads to chemoresistance, which results in cancer mortality. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons is associated with an increased the risk of CSC enrichment in gynecological cancers. One of the important pathways that mediates the metabolism and bioactivation of these environmental chemicals is the transcription factor, aryl hydrocarbon receptor (AhR). The present review explores the molecular mechanisms regulating the crosstalk and interaction of the AhR with cancer-related signaling pathways, such as apoptosis, epithelial-mesenchymal transition, immune checkpoints, and G-protein-coupled receptors in several gynecological malignancies such as ovarian, uterine, endometrial, and cervical cancers. The review also discusses the potential of targeting the AhR pathway as a novel chemotherapy for gynecological cancers.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Ola J Hussein
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Benoit L, Jornod F, Zgheib E, Tomkiewicz C, Koual M, Coustillet T, Barouki R, Audouze K, Vinken M, Coumoul X. Adverse outcome pathway from activation of the AhR to breast cancer-related death. ENVIRONMENT INTERNATIONAL 2022; 165:107323. [PMID: 35660951 DOI: 10.1016/j.envint.2022.107323] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 05/15/2023]
Abstract
Adverse outcome pathways (AOPs) are formalized and structured linear concepts that connect one molecular initiating event (MIE) to an adverse outcome (AO) via different key events (KE) through key event relationships (KER). They are mainly used in eco-toxicology toxicology, and regulatory health issues. AOPs must respond to specific guidelines from the Organization for Economic Co-operation and Development (OECD) to weight the evidence between each KE. Breast cancer is the deadliest cancer in women with a poor prognosis in case of metastatic breast cancer. The role of the environments in the formation of metastasis has been suggested. We hypothesized that activation of the AhR (MIE), a xenobiotic receptor, could lead to breast cancer related death (AO), through different KEs, constituting a new AOP. An artificial intelligence tool (AOP-helpfinder), which screens the available literature, was used to collect all existing scientific abstracts to build a novel AOP, using a list of key words. Four hundred and seven abstracts were found containing at least a word from our MIE list and either one word from our AO or KE list. A manual curation retained 113 pertinent articles, which were also screened using PubTator. From these analyses, an AOP was created linking the activation of the AhR to breast cancer related death through decreased apoptosis, inflammation, endothelial cell migration, angiogenesis, and invasion. These KEs promote an increased tumor growth, angiogenesis and migration which leads to breast cancer metastasis and breast cancer related death. The evidence of the proposed AOP was weighted using the tailored Bradford Hill criteria and the OECD guidelines. The confidence in our AOP was considered strong. An in vitro validation must be carried out, but our review proposes a strong relationship between AhR activation and breast cancer-related death with an innovative use of an artificial intelligence literature search.
Collapse
Affiliation(s)
- Louise Benoit
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France.
| | - Florence Jornod
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Elias Zgheib
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Celine Tomkiewicz
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Meriem Koual
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France
| | - Thibaut Coustillet
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Robert Barouki
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Xavier Coumoul
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| |
Collapse
|
4
|
Gwak J, Cha J, Lee J, Kim Y, An SA, Lee S, Moon HB, Hur J, Giesy JP, Hong S, Khim JS. Effect-directed identification of novel aryl hydrocarbon receptor-active aromatic compounds in coastal sediments collected from a highly industrialized area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149969. [PMID: 34481160 DOI: 10.1016/j.scitotenv.2021.149969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, we identified major aryl hydrocarbon receptor (AhR) agonists in the sediments from Yeongil Bay (n = 6) using effect-directed analysis. Using the H4IIE-luc bioassays, great AhR-mediated potencies were found in aromatic fractions (F2) of sediment organic extracts from silica gel column chromatography and sub-fractions (F2.6-F2.8) from reverse phase-HPLC. Full-scan mass spectrometric analysis using GC-QTOFMS was conducted to identify novel AhR agonists in highly potent fractions, such as F2.6-F2.8 of S1 (Gumu Creek). Selection criteria for AhR-active compounds consisted of three steps, including matching factor of NIST library (≥70), aromatic structures, and the number of aromatic rings (≥4). Fifty-nine compounds were selected as tentative AhR agonist candidates, with the AhR-mediated activity being assessed for six compounds for which standard materials were available commercially. Of these compounds, 20-methylcholanthrene, 7-methylbenz[a]anthracene, 10-methylbenz[a]pyrene, and 7,12-dimethylbenz[a]anthracene exhibited significant AhR-mediated potency. Relative potency values of these compounds were determined relative to benzo[a]pyrene to be 3.2, 1.4, 1.2, and 0.2, respectively. EPA positive matrix factorization modeling indicated that the sedimentary AhR-active aromatic compounds primarily originated from coal combustion and vehicle emissions. Potency balance analysis indicated that four novel AhR agonists explained 0.007% to 1.7% of bioassay-derived AhR-mediated potencies in samples.
Collapse
Affiliation(s)
- Jiyun Gwak
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jihyun Cha
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Youngnam Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seong-Ah An
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX 76798-7266, United States
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jong Seong Khim
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Ma YN, Sun LH, Li SY, Ni YX, Cao ZY, Chen MX, Mou RX. Modulation of steroid metabolism and xenobiotic biotransformation responses in zebrafish (Danio rerio) exposed to triadimefon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114145. [PMID: 32142974 DOI: 10.1016/j.envpol.2020.114145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
The widely used fungicide triadimefon (TDF) has been detected in aquatic environments, and appears to disrupt steroid homeostasis; however, the toxic effects on fish reproduction triggered by TDF via the key receptor signaling pathways remain largely unknown. The present study showed that TDF (0.069, 0.138, 0.690 mg/L) exposure not only caused disordered germ cell maturation, but also decreased spawned egg production. In order to better understand this reproductive inhibition, we investigated the effects of TDF based on quantitative PCR, Western blot and mass spectrometry methodology in zebrafish. Due to the preferential accumulation of TDF in the liver, a general pattern of up-regulation of genes involved in biotransformation pathway was observed. A significant increase in abcb4 expression appeared to be responsible for TDF excretion. TDF-induced receptors (AhR2 and PXR) changed many genes involved in steroid metabolism, and subsequent disruptions in steroid homeostasis, which might be the key biological pathway in TDF reproductive toxicity. However, due to the different metabolic demands, the transcript profiles involved in steroid metabolism in zebrafish exhibited a sex-specific expression pattern. For example, the increase in gene expression of ahr2 was accompanied by a reduction in the rate of E2 biosynthesis resulting from the diminished cyp19a1a expression, and in turn led to down-regulation of esr1 and vtg1 in the liver, supporting the anti-estrogenic effect of TDF in male fish. In contrast, the increase in E2 production was accompanied by an increase in Esr1 protein expression caused by TDF and paralleled the increase in ahrr1 expression, suggesting that TDF may induce estrogenic activity through AhR-ER interactions in females. In addition, over-induction of cyp3a65 activity mediated through pxr, which helped to accelerate the transformation from TDF to triadimenol in the liver, appeared to elevate T metabolite rate in females. The down-regulation of fshβ transcript in males further suggested that TDF might adversely affect normal gametogenesis and induce reproductive toxicity.
Collapse
Affiliation(s)
- You-Ning Ma
- China National Rice Research Institute, Hangzhou, 310006, PR China
| | - Li-Hua Sun
- Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, 310013, PR China
| | - Shu-Ying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, PR China
| | - Yan-Xia Ni
- China National Rice Research Institute, Hangzhou, 310006, PR China
| | - Zhao-Yun Cao
- China National Rice Research Institute, Hangzhou, 310006, PR China
| | - Ming-Xue Chen
- China National Rice Research Institute, Hangzhou, 310006, PR China
| | - Ren-Xiang Mou
- China National Rice Research Institute, Hangzhou, 310006, PR China.
| |
Collapse
|
6
|
Park C, Song H, Choi J, Sim S, Kojima H, Park J, Iida M, Lee Y. The mixture effects of bisphenol derivatives on estrogen receptor and androgen receptor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114036. [PMID: 31995776 DOI: 10.1016/j.envpol.2020.114036] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 05/27/2023]
Abstract
Bisphenol A (BPA) is a well-known for endocrine-disrupting chemical (EDC) and is one of the highest amounts of chemicals produced worldwide. Some countries restrict the use of BPA, which is widely used in the production of a variety products. Considering the toxicity and limitations on use of BPA, efforts are needed to find safer alternatives. Increasingly, bisphenol F (BPF) and bisphenol S (BPS) are alternatives of BPA, which is increasing their exposure levels in various environments. There are many ways to assess whether a chemical is an EDC. Here, we evaluated the endocrine-disrupting risks of the bisphenols by investigating their agonist and antagonist activities with the estrogen (ER), androgen (AR), and aryl hydrocarbon (AhR) receptors. Our results showed that BPA, BPS, and BPF (BPs) have estrogen agonist and androgen antagonist activities and decrease the ERα protein level. Interestingly, a mixture of the BPs had ER and anti-AR activity at lower concentrations than BPs alone. The activation of AhR was not a concentration-dependent effect of BPs, although it was increased significantly. In conclusion, BPs have estrogen agonist and androgen antagonist activities, and the effect of exposure to a BPs mixture differs from that of BPs alone.
Collapse
Affiliation(s)
- Choa Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Heewon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Junyeong Choi
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Seunghye Sim
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari, Tobetsu, Hokkaido, 061-0293, Japan; Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Joonwoo Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | | | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
7
|
Hýžd'alová M, Pivnicka J, Zapletal O, Vázquez-Gómez G, Matthews J, Neca J, Pencíková K, Machala M, Vondrácek J. Aryl Hydrocarbon Receptor-Dependent Metabolism Plays a Significant Role in Estrogen-Like Effects of Polycyclic Aromatic Hydrocarbons on Cell Proliferation. Toxicol Sci 2019; 165:447-461. [PMID: 30137621 DOI: 10.1093/toxsci/kfy153] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants that interact in a complex manner with both the aryl hydrocarbon receptor (AhR) and estrogen receptors (ER). Their potential endocrine-disrupting activities may depend on both inhibitory AhR-ER cross-talk and on AhR-dependent metabolic production of estrogenic PAH metabolites. Here, we analyzed the impact of AhR on estrogen-like effects of PAHs, such as benzo[a]pyrene (BaP), in particular, on control of cell cycle progression/cell proliferation. Using AhR knockout variant of estrogen-sensitive human breast cancer MCF-7 cells (MCF-7 AhRKO cells), we observed that the AhR-dependent control of cytochrome P450 family 1 (CYP1) expression played a major role in formation of estrogenic BaP metabolites, most notably 3-OH-BaP, which contributed to the ER-dependent induction of cell cycle progression/cell proliferation. Both BaP metabolism and the BaP-induced S-phase transition/cell proliferation were inhibited in MCF-7 AhRKO cells, whereas these cells remained sensitive towards both endogenous estrogen 17β-estradiol or hydroxylated BaP metabolites. BaP was found to increase the activity of ER-dependent luciferase reporter gene in wild-type MCF-7 cells; however, unlike its hydroxylated metabolite, BaP failed to stimulate luciferase activity in MCF-7 AhRKO cells. Similarly, estrogen-like effects of other known estrogenic PAHs, such as benz[a]anthracene or 3-methylcholanthrene, were diminished in MCF-7 AhRKO cells. Ectopic expression of human CYP1A1 and CYP1B1 enzymes partly restored both BaP metabolism and its effects on cell proliferation. Taken together, our data suggest that the AhR-dependent metabolism of PAHs contributes significantly to the impact of PAHs on cell proliferation in estrogen-sensitive cells.
Collapse
Affiliation(s)
- Martina Hýžd'alová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic.,Department of Chemistry and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Jakub Pivnicka
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Ondrej Zapletal
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Gerardo Vázquez-Gómez
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic.,Genomic Medicine and Environmental Toxicology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México C.U, 04510 Mexico City, Mexico
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Jirí Neca
- Department of Chemistry and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Katerina Pencíková
- Department of Chemistry and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Jan Vondrácek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| |
Collapse
|
8
|
Cirillo F, Lappano R, Bruno L, Rizzuti B, Grande F, Guzzi R, Briguori S, Miglietta AM, Nakajima M, Di Martino MT, Maggiolini M. AHR and GPER mediate the stimulatory effects induced by 3-methylcholanthrene in breast cancer cells and cancer-associated fibroblasts (CAFs). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:335. [PMID: 31370872 PMCID: PMC6676524 DOI: 10.1186/s13046-019-1337-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The chemical carcinogen 3-methylcholanthrene (3MC) binds to the aryl hydrocarbon receptor (AHR) that regulates the expression of cytochrome P450 (CYP) enzymes as CYP1B1, which is involved in the oncogenic activation of environmental pollutants as well as in the estrogen biosynthesis and metabolism. 3MC was shown to induce estrogenic responses binding to the estrogen receptor (ER) α and stimulating a functional interaction between AHR and ERα. Recently, the G protein estrogen receptor (GPER) has been reported to mediate certain biological responses induced by endogenous estrogens and environmental compounds eliciting an estrogen-like activity. METHODS Molecular dynamics and docking simulations were performed to evaluate the potential of 3MC to interact with GPER. SkBr3 breast cancer cells and cancer-associated fibroblasts (CAFs) derived from breast tumor patients were used as model system. Real-time PCR and western blotting analysis were performed in order to evaluate the activation of transduction mediators as well as the mRNA and protein levels of CYP1B1 and cyclin D1. Co-immunoprecipitation studies were performed in order to explore the potential of 3MC to trigger the association of GPER with AHR and EGFR. Luciferase assays were carried out to determine the activity of CYP1B1 promoter deletion constructs upon 3MC exposure, while the nuclear shuttle of AHR induced by 3MC was assessed through confocal microscopy. Cell proliferation stimulated by 3MC was determined as biological counterpart of the aforementioned experimental assays. The statistical analysis was performed by ANOVA. RESULTS We first ascertained by docking simulations the ability of 3MC to interact with GPER. Thereafter, we established that 3MC activates the EGFR/ERK/c-Fos transduction signaling through both AHR and GPER in SkBr3 cells and CAFs. Then, we found that these receptors are involved in the up-regulation of CYP1B1 and cyclin D1 as well as in the stimulation of growth responses induced by 3MC. CONCLUSIONS In the present study we have provided novel insights regarding the molecular mechanisms by which 3MC may trigger a physical and functional interaction between AHR and GPER, leading to the stimulation of both SkBr3 breast cancer cells and CAFs. Altogether, our results indicate that 3MC may engage both GPER and AHR transduction pathways toward breast cancer progression.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Cosenza, Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Cosenza, Rende, Italy
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF. Cal and Department of Physics, University of Calabria, 87036, Rende, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Cosenza, Rende, Italy
| | - Rita Guzzi
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF. Cal and Department of Physics, University of Calabria, 87036, Rende, Italy.,Molecular Biophysics Laboratory, Department of Physics, University of Calabria, 87036, Rende, Italy
| | - Sara Briguori
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Cosenza, Rende, Italy
| | | | - Miki Nakajima
- Drug Metabolism and Toxicology, WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Cosenza, Rende, Italy.
| |
Collapse
|
9
|
Tarnow P, Tralau T, Luch A. Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opin Drug Metab Toxicol 2019; 15:219-229. [PMID: 30644759 DOI: 10.1080/17425255.2019.1569627] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Estrogen receptors (ERs) and the arylhydrocarbon receptor (AHR) are ligand-activated transcription factors that regulate the expression of genes involved in many physiological processes. With both receptors binding a broad range of natural and anthropogenic ligands, they are molecular targets for many substances, raising concerns for possible health effects. Areas covered: This review shall give a brief overview on the physiological functions of both receptors including their underlying molecular mechanisms. It summarizes the interaction of the respective signaling pathways including impacts on metabolism of endogenous estrogens, transcriptional interference, inhibitory crosstalk, and proteasomal degradation. Also addressed are the AHR dependent formation of estrogenic metabolites from polycyclic aromatic hydrocarbons and the possible impact of the ER/AHR crosstalk in the context of drug metabolism. Expert opinion: Despite decade-long research, the physiological role of the AHR and ER as well as the implications of their complex mutual crosstalk remain to be determined as do resulting potential impacts on human health. With more and more endogenous AHR ligands being discovered, future research should hence systematically address the potential impact of such substances on estrogen signaling. The intimate link between these two pathways and the genes regulated therein bears the potential for impacts on drug metabolism and human health.
Collapse
Affiliation(s)
- Patrick Tarnow
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Tewes Tralau
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Andreas Luch
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| |
Collapse
|
10
|
Vondráček J, Pivnička J, Machala M. Polycyclic aromatic hydrocarbons and disruption of steroid signaling. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Helle J, Keiler AM, Zierau O, Dörfelt P, Vollmer G, Lehmann L, Chittur SV, Tenniswood M, Welsh J, Kretzschmar G. Effects of the aryl hydrocarbon receptor agonist 3-methylcholanthrene on the 17β-estradiol regulated mRNA transcriptome of the rat uterus. J Steroid Biochem Mol Biol 2017; 171:133-143. [PMID: 28285017 DOI: 10.1016/j.jsbmb.2017.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion of organic compounds, abundant in exhaust fumes and cigarette smoke. They act by binding to the aryl hydrocarbon receptor (AHR) which induces expression of phase 1 and phase 2 enzymes in the liver. PAH induced AHR activation may also lead to adverse effects by modulating other pathways, for example estrogen receptor (ER) signaling in the female reproductive tract. We have investigated the effects of the PAH 3-methylcholanthrene (3-MC) on 17β-estradiol (E2) dependent signaling in the uterus of ovariectomized rats to characterize the cross talk between AHR and ER on an mRNA transcriptome wide scale. A standard three day uterotrophic assay was performed in young adult Lewis rats. Treatment induced effects were analyzed using histology, immunohistochemistry and gene expression analysis by microarray and qPCR. 3-MC shows broad E2 antagonistic effects on uterine mRNA transcription of the vast majority of E2 regulated genes, significantly altering prostaglandin biosynthesis, complement activation, coagulation pathways and other inflammatory response pathways. The regulation of ER expression in the uterus, but not the regulation of E2 metabolism in the liver, was identified as a potentially important factor in mediating this general antiestrogenic effect. The regulation of prostaglandin biosynthesis by E2 is important for inflammation-like events during pregnancy including the initiation of birth. Our results suggest that adverse effects of PAHs on prostaglandin related pathways are likely caused by the interference with E2 signaling, specifically by inhibiting the E2 mediated downregulation of PGF2α. Characterization of the generalized antagonistic effect of 3-MC on E2 dependent signaling in the rat uterus thus contributes to a better understanding of molecular mechanisms of the toxicity of PAHs in female reproductive organs.
Collapse
Affiliation(s)
- Janina Helle
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Annekathrin M Keiler
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Oliver Zierau
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Peggy Dörfelt
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Günter Vollmer
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Leane Lehmann
- Institute of Pharmacy and Food Chemistry, Universität Würzburg, 97070 Würzburg, Germany
| | - Sridar V Chittur
- Cancer Research Center and Department of Biomedical Sciences, University at Albany, NY 12144-2345, United States
| | - Martin Tenniswood
- Cancer Research Center and Department of Biomedical Sciences, University at Albany, NY 12144-2345, United States
| | - JoEllen Welsh
- Cancer Research Center and Department of Biomedical Sciences, University at Albany, NY 12144-2345, United States
| | - Georg Kretzschmar
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
12
|
Shen H, Robertson LW, Ludewig G. Regulatory effects of dioxin-like and non-dioxin-like PCBs and other AhR ligands on the antioxidant enzymes paraoxonase 1/2/3. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2108-2118. [PMID: 26006071 PMCID: PMC4662644 DOI: 10.1007/s11356-015-4722-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/13/2015] [Indexed: 05/31/2023]
Abstract
Paraoxonase 1 (PON1), an antioxidant enzyme, is believed to play a critical role in many diseases, including cancer. PCBs are widespread environmental contaminants known to induce oxidative stress and cancer and to produce changes in gene expression of various pro-oxidant and antioxidant enzymes. Thus, it appeared of interest to explore whether PCBs may modulate the activity and/or gene expression of PON1 as well. In this study, we compared the effects of dioxin-like and non-dioxin-like PCBs and of various aryl hydrocarbon receptor (AhR) ligands on PON1 regulation and activity in male and female Sprague-Dawley rats. Our results demonstrate that (i) the non-dioxin-like PCB154, PCB155, and PCB184 significantly reduced liver and serum PON1 activities, but only in male rats; (ii) the non-dioxin-like PCB153, the most abundant PCB in many matrices, did not affect PON1 messenger RNA (mRNA) level in the liver but significantly decreased serum PON1 activity in male rats; (iii) PCB126, an AhR ligand and dioxin-like PCB, increased both PON1 activities and gene expression; and (iv) even though three tested AhR ligands induced CYP1A in several tissues to a similar extent, they displayed differential effects on the three PONs and AhR, i.e., PCB126 was an efficacious inducer of PON1, PON2, PON3, and AhR in the liver, while 3-methylcholantrene induced liver AhR and lung PON3, and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent AhR agonist, increased only PON3 in the lung, at the doses and exposure times used in these studies. These results show that PCBs may have an effect on the antioxidant protection by paraoxonases in exposed populations and that regulation of gene expression through AhR is highly diverse.
Collapse
Affiliation(s)
- Hua Shen
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA
- Department of Occupational & Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus, 214 IREH, Iowa City, IA, 52242-5000, USA
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, Graduate College, The University of Iowa, Iowa City, IA, USA.
- Department of Occupational & Environmental Health, College of Public Health, The University of Iowa, 100 Oakdale Campus, 214 IREH, Iowa City, IA, 52242-5000, USA.
| |
Collapse
|
13
|
Estrogen receptor α and aryl hydrocarbon receptor cross-talk in a transfected hepatoma cell line (HepG2) exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Rep 2014; 1:1029-1036. [PMID: 28962316 PMCID: PMC5598243 DOI: 10.1016/j.toxrep.2014.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/11/2014] [Accepted: 09/30/2014] [Indexed: 01/07/2023] Open
Abstract
The prototype dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to exert anti-estrogenic effects via activation of the aryl hydrocarbon receptor (AhR) by interfering with the regulation of oestrogen homeostasis and the estrogen receptor α (ERα) signalling pathway. The AhR/ER cross-talk is considered to play a crucial role in TCDD- and E2-dependent mechanisms of carcinogenesis, though the concerted mechanism of action in the liver is not yet elucidated. The present study investigated TCDD's impact on the transcriptional cross-talk between AhR and ERα and its modulation by 17β-estradiol (E2) in the human hepatoma cell line HepG2, which is AhR-responsive but ERα-negative. Transient transfection assays with co-transfection of hERα and supplementation of receptor antagonists showed anti-estrogenic action of TCDD via down-regulation of E2-induced ERα signaling. In contrast, enhancement of AhR signaling dependent on ERα was observed providing evidence for increased cytochrome P450 (CYP) induction to promote E2 metabolism. However, relative mRNA levels of major E2-metabolizing CYP1A1 and 1B1 and the main E2-detoxifying catechol-O-methyltransferase were not affected by the co-treatments. This study provides new evidence of a TCDD-activated AhR-mediated molecular AhR/ERα cross-talk mechanism at transcriptional level via indirect inhibition of ERα and enhanced transcriptional activity of AhR in HepG2 cells.
Collapse
Key Words
- 17β-estradiol
- AhR
- AhR, aryl hydrocarbon receptor
- COMT, catechol-O-methyltransferase
- CPRG, chlorophenol red β-d-galactopyranoside
- CYP, cytochrome P450
- Ct, cycle threshold
- DMSO, dimethyl sulfoxide
- Dioxin
- E, strogen receptor
- E2, 17β-estradiol
- ERE, estrogen response element
- Estrogen receptor
- Gene reporter assay
- Human hepatoma cell line HepG2
- TCDD
- TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin
- XRE, xenobiotic response element
- α-NF, α-naphthoflavone
Collapse
|
14
|
Shen H, Li M, Wang B, Lai IK, Robertson LW, Ludewig G. Dietary antioxidants (selenium and N-acetylcysteine) modulate paraoxonase 1 (PON1) in PCB 126-exposed rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6384-99. [PMID: 23644946 PMCID: PMC3769429 DOI: 10.1007/s11356-013-1690-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/26/2013] [Indexed: 05/10/2023]
Abstract
Environmental pollutants polychlorinated biphenyls (PCBs), especially dioxin-like PCBs, cause oxidative stress and associated toxic effects, including cancer and possibly atherosclerosis. We previously reported that PCB 126, the most potent dioxin-like PCB congener, not only decreases antioxidants such as hepatic selenium (Se), Se-dependent glutathione peroxidase, and glutathione (GSH) but also increases levels of the antiatherosclerosis enzyme paraoxonase 1 (PON1) in liver and serum. To probe the interconnection of these three antioxidant systems, Se, GSH, and PON1, we examined the influence of varying levels of dietary Se and N-acetylcysteine (NAC), a scavenger of reactive oxygen species (ROS) and precursor for GSH synthesis, on PON1 in the absence and presence of PCB 126 exposure. Male Sprague-Dawley rats, fed diets with differing Se levels (0.02, 0.2, or 2 ppm) or NAC (1%), were treated with a single intraperitoneal injection of corn oil or various doses of PCB 126 and euthanized 2 weeks later. PCB 126 significantly increased liver PON1 mRNA, protein level and activity, and serum PON1 activity in all dietary groups but did not consistently increase thiobarbituric acid levels (thiobarbituric acid reactive substances, TBARS), an indicator of lipid oxidation and oxidative stress, in liver or serum. Inadequate (high or low) dietary Se decreased baseline and PCB 126-induced aryl hydrocarbon receptor (AhR) expression but further increased PCB 126-induced cytochrome P450 1A1 (CYP1A1) expression, the enzyme believed to be the cause for PCB 126-induced oxidative stress. In addition, a significant inverse relationship was observed not only between dietary Se levels and PON1 mRNA and PON1 activity but also with TBARS levels in the liver, suggesting significant antioxidant protection from dietary Se. NAC lowered serum baseline TBARS levels in controls and increased serum PON1 activity but lowered liver PON1 activities in animals treated with 1 μmol/kg PCB 126, suggesting antioxidant activity by NAC primarily in serum. These results also show an unexpected predominantly inverse relationship between Se or NAC and PON1 during control and PCB 126 exposure conditions. These interactions should be further explored in the development of dietary protection regimens.
Collapse
Affiliation(s)
- Hua Shen
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
| | - Miao Li
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
| | - Bingxuan Wang
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
| | - Ian K. Lai
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
| | - Larry W. Robertson
- The University of Iowa Department of Occupational & Environmental Health, The University of Iowa, Iowa City, Iowa
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
| | - Gabriele Ludewig
- The University of Iowa Department of Occupational & Environmental Health, The University of Iowa, Iowa City, Iowa
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
15
|
Chang Z, Lu M, Kim SS, Park JS. Potential role of HSP90 in mediating the interactions between estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) signaling pathways. Toxicol Lett 2014; 226:6-13. [PMID: 24487124 DOI: 10.1016/j.toxlet.2014.01.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 11/28/2022]
Abstract
The estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) are ligand-activated transcription factors involved in estrogen or xenobiotic exposure, whereas the 90-kDa heat shock protein (HSP90), which is a ubiquitously expressed molecular chaperone, is involved in the signal transduction process. Although the interactions between these pathways have been under investigation, the mechanisms are unclear and the potential role of HSP90 in these interactions has not been reported. The results of goldfish primary hepatocytes showed that exposure to PCB77 and 17β-estradiol (E2) alone induced significant protein expression of cytochrome P450 1A (CYP1A) and vitellogenin (VTG), respectively. On the other hand, the combined exposure to PCB77 and E2 led to the reduction of CYP1A and VTG compared to the single treatments. Although the AhRs and ERs were naturally induced during the co-treatment, the total amount of HSP90 binding to the receptors was not changed. Furthermore, while the HSP90 chaperon activity was blocked by the specific inhibitor (geldanamycin), reciprocal inhibition between AhR and ER pathways was not observed. These findings indicate a potential role of HSP90 where competition between AhR and ER for binding to HSP90 can occur and cause reciprocal inhibition.
Collapse
Affiliation(s)
- Ziwei Chang
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Ming Lu
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - So-Sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea
| | - Jang-Su Park
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 609-735, Republic of Korea.
| |
Collapse
|
16
|
Kuo LC, Cheng LC, Lin CJ, Li LA. Dioxin and estrogen signaling in lung adenocarcinoma cells with different aryl hydrocarbon receptor/estrogen receptor α phenotypes. Am J Respir Cell Mol Biol 2014; 49:1064-73. [PMID: 23855798 DOI: 10.1165/rcmb.2012-0497oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Evidence suggests that estrogen affects the pulmonary response to carcinogenic pollutants, such as dioxins. In this study, we examined dioxin and estrogen signaling cross-talk in lung adenocarcinoma cell lines that were engineered to exhibit different aryl hydrocarbon receptor (AhR)/estrogen receptor (ER) α phenotypes. Data showed that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) weakly antagonized estrogen-activated ERα activity in cells expressing abundant ERα, but little AhR. Increase of AhR expression or presence of a dioxin-responsive element in proximity silenced the antiestrogenic effect of TCDD. AhR was bound to dioxin-responsive element and transcriptionally active in both TCDD-untreated and -treated lung adenocarcinoma cells. 17β-estradiol (E2) reduced basal and TCDD-induced AhR activity only in ERα-positive cells. AhR and ERα exhibited a protein-protein interaction in the presence of E2. Cotreatment with TCDD moderated this protein interaction. Colocalization of ERα and AhR at the estrogen-responsive site under E2 and TCDD/E2 treatments implied that E2 ∣ ERα might hijack AhR away from the dioxin-responsive site. Increasing the relative expression of AhR to ERα counteracted inhibition of AhR activity by E2 ∣ ERα. When AhR and ERα were both highly expressed, TCDD and E2 up-regulated expression of dual-responsive genes cytochrome P450 (CYP) 1A1 and CYP1B1 in a cumulative manner, increasing the danger of metabolic activation of carcinogens. Whereas TCDD ∣ AhR and E2 ∣ ERα appeared to regulate CYP1B1 separately through their binding sites, E2 ∣ ERα increased the TCDD responsiveness and mRNA expression of CYP1A1 in a noncanonical way. In conclusion, AhR/ERα expression pattern, estrogen level, and promoter context determine the genomic action of dioxin in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Lun-Cheng Kuo
- 1 Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China
| | | | | | | |
Collapse
|
17
|
Brandner S, Eberhagen C, Lichtmannegger J, Hieber L, Andrae U. TCDD induces the expression of insulin-like growth factor binding protein 4 in 5L rat hepatoma cells: A cautionary tale of the use of this cell line in studies on dioxin toxicity. Toxicology 2013; 309:107-16. [DOI: 10.1016/j.tox.2013.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022]
|
18
|
Gjernes MH, Schlenk D, Arukwe A. Estrogen receptor-hijacking by dioxin-like 3,3'4,4',5-pentachlorobiphenyl (PCB126) in salmon hepatocytes involves both receptor activation and receptor protein stability. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 124-125:197-208. [PMID: 22982498 DOI: 10.1016/j.aquatox.2012.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 05/20/2023]
Abstract
Several hypotheses have been proposed explaining the interactions between estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) signaling pathways in both fish and mammalian systems. In both piscine and mammalian systems, ligand-activated AhR may recruit basal ER (i.e. hijack) in the absence of ER ligand and bind to the estrogen responsive elements (ERE) to activate ER-responsive genes. We have evaluated, the roles of receptor activation and receptor-protein stability on dioxin-like [3,3'4,4',5-pentachlorobiphenyl: PCB 126] mediated ER-hijacking in a salmon in vitro system. Primary salmon hepatocytes were exposed to PCB126 (1, 10 and 50 nM) with or without an ER-antagonist (ICI), putative AhR inhibitor (3',4'-dimethoxyflavone; DMF) or protein synthesis inhibitor (cycloheximide; CHX). Hepatocytes were exposed for 6, 12 and 24h. The expression of genes and proteins involved in ER (ERα, ERβ and vitellogenin) and AhR (CYP1A1, AhR-repressor, AhR2-isotypes and cofactors) pathways were analysed using qPCR and immunochemical methods. PCB126 induced transcripts of ER and AhR signalling pathways that were variably influenced by protein synthesis and receptor inhibitors. CHX stimulated a coordinated recruitment of the proteasome complex, resulting in the ubiquitination and degradation of ER and AhR isoforms and downstream protein products. Interestingly, DMF produced differential effects on the AhR signalling pathway, in the presence or absence of PCB126. Overall, ER-hijacking by dioxin-like compounds and subsequent activation of ER responsive genes involves both receptor activation/deactivation and receptor-protein degradation/destabilization (stability). Given that the Per-AhR/Arnt-Sim homology sequence of transcription factors usually associate with each other to form heterodimers and bind the XRE or ERE sequences in the promoter regions of target genes to regulate their expression, the complete mechanism of interactions between dioxin-like and estrogenic compounds in vertebrate systems may require additional characterization.
Collapse
Affiliation(s)
- Martine H Gjernes
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | |
Collapse
|
19
|
Kolasa E, Balaguer P, Houlbert N, Fardel O. Phorbol ester-modulation of estrogenic genomic effects triggered by the environmental contaminant benzanthracene. Toxicol In Vitro 2012; 26:807-16. [DOI: 10.1016/j.tiv.2012.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/11/2012] [Accepted: 05/18/2012] [Indexed: 12/29/2022]
|
20
|
Volkov MS, Bolotina NA, Evteev VA, Koblyakov VA. Ah-receptor-independent stimulation of hepatoma 27 culture cell proliferation by polycyclic aromatic hydrocarbons. BIOCHEMISTRY (MOSCOW) 2012; 77:201-7. [DOI: 10.1134/s0006297912020125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Shen H, Robertson LW, Ludewig G. Regulation of paraoxonase 1 (PON1) in PCB 126-exposed male Sprague Dawley rats. Toxicol Lett 2012; 209:291-8. [PMID: 22266287 DOI: 10.1016/j.toxlet.2012.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
Abstract
3,3',4,4',5-Pentachlorobiphenyl (PCB 126), an aryl hydrocarbon receptor (AhR) agonist and most potent dioxin-like PCB congener, significantly alters gene expression, lipid metabolism, and oxidative stress in the liver. PON1, an antioxidant and anti-atherogenic enzyme, is produced in the liver and secreted into the blood where it is incorporated into high density lipoprotein (HDL) and protects LDL and cellular membranes against lipid peroxidation. To explore the regulation of PON1, male Sprague-Dawley rats were treated with ip injections of corn oil or 1 μmol/kg or 5 μmol/kg PCB 126 and euthanized up to two weeks afterwards. Serum total and HDL-cholesterol were increased by low dose and decreased by high dose exposure, while LDL-cholesterol was unchanged. PCB 126 significantly increased hepatic PON1 gene expression and liver and serum PON1 activities. Liver and serum thiobarbituric acid reactive substances levels were not elevated except for high dose and long exposure times. Serum antioxidant capacity was unchanged across all exposure doses and time points. This study, the first describing the regulation of gene expression of PON1 by a PCB congener, raises interesting questions whether elevated PON1 is able to ameliorate PCB 126-induced lipid peroxidation and whether serum PON1 levels may serve as a new biomarker of exposure to dioxin-like compounds.
Collapse
Affiliation(s)
- Hua Shen
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, 100 Oakdale Campus, IREH, Iowa City, IA, USA
| | | | | |
Collapse
|
22
|
Denison MS, Soshilov AA, He G, DeGroot DE, Zhao B. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci 2011; 124:1-22. [PMID: 21908767 DOI: 10.1093/toxsci/kfr218] [Citation(s) in RCA: 569] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Ah receptor (AhR) is a ligand-dependent transcription factor that mediates a wide range of biological and toxicological effects that result from exposure to a structurally diverse variety of synthetic and naturally occurring chemicals. Although the overall mechanism of action of the AhR has been extensively studied and involves a classical nuclear receptor mechanism of action (i.e., ligand-dependent nuclear localization, protein heterodimerization, binding of liganded receptor as a protein complex to its specific DNA recognition sequence and activation of gene expression), details of the exact molecular events that result in most AhR-dependent biochemical, physiological, and toxicological effects are generally lacking. Ongoing research efforts continue to describe an ever-expanding list of ligand-, species-, and tissue-specific spectrum of AhR-dependent biological and toxicological effects that seemingly add even more complexity to the mechanism. However, at the same time, these studies are also identifying and characterizing new pathways and molecular mechanisms by which the AhR exerts its actions and plays key modulatory roles in both endogenous developmental and physiological pathways and response to exogenous chemicals. Here we provide an overview of the classical and nonclassical mechanisms that can contribute to the differential sensitivity and diversity in responses observed in humans and other species following ligand-dependent activation of the AhR signal transduction pathway.
Collapse
Affiliation(s)
- Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
23
|
Russell R, Gori I, Pellegrini C, Kumar R, Achtari C, Canny GO. Lipoxin A4 is a novel estrogen receptor modulator. FASEB J 2011; 25:4326-37. [PMID: 21885654 DOI: 10.1096/fj.11-187658] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inflammation is intimately linked with naturally occurring remodeling events in the endometrium. Lipoxins comprise a group of short-lived, nonclassic eicosanoids possessing potent anti-inflammatory and proresolution properties. In the present study, we investigated the role of lipoxin A(4) (LXA(4)) in the endometrium and demonstrated that 15-LOX-2, an enzyme necessary for LX biosynthesis, is expressed in this tissue. Our results establish that LXA(4) possesses robust estrogenic activity through its capacity to alter ERE transcriptional activity, as well as expression of estrogen-regulated genes, alkaline phosphatase activity, and proliferation in human endometrial epithelial cells. Interestingly, LXA(4) also demonstrated antiestrogenic potential, significantly attenuating E2-induced activity. This estrogenic activity was directly mediated through estrogen receptors (ERs). Subsequent investigations determined that the actions of LXA(4) are exclusively mediated through ERα and closely mimic those of the potent estrogen 17β-estradiol (E2). In binding assays, LXA(4) competed with E2 for ER binding, with an IC(50) of 46 nM. Furthermore, LXA(4) exhibited estrogenic activity in vivo, increasing uterine wet weight and modulating E2-regulated gene expression. These findings reveal a previously unappreciated facet of LXA(4) bioactions, implicating this lipid mediator in novel immunoendocrine crosstalk mechanisms.
Collapse
Affiliation(s)
- Ronan Russell
- Mucosal Immunity Laboratory, Department of Gynecology, Obstetrics and Medical Genetics, University Hospital Center and University of Lausanne, Ave. Pierre Decker 2, 1011 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Fu J, Fang H, Paulsen M, Ljungman M, Kocarek TA, Runge-Morris M. Regulation of estrogen sulfotransferase expression by confluence of MCF10A breast epithelial cells: role of the aryl hydrocarbon receptor. J Pharmacol Exp Ther 2011; 339:597-606. [PMID: 21828262 DOI: 10.1124/jpet.111.185173] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Estrogen sulfotransferase (SULT1E1) catalyzes the sulfonation of estrogens, which limits estrogen mitogenicity. We recently reported that SULT1E1 expression is low in preconfluent MCF10A human breast epithelial cells but increases when the cells become confluent. Pulse-chase labeling experiments with 5-bromouridine demonstrated that the confluence-mediated increase in SULT1E1 expression was due to increased mRNA synthesis. Because aryl hydrocarbon receptor (AhR) activation has been shown to suppress SULT1E1 expression and loss of cell-cell contact has been shown to activate the AhR in other cell types, we tested whether the confluence-associated changes in SULT1E1 expression were mediated by the AhR. Relative to confluent MCF10A cells, preconfluent cells had higher levels of CYP1A1 mRNA and greater activation of an AhR-responsive luciferase reporter, demonstrating that the AhR was active in the preconfluent cells. AhR and aryl hydrocarbon receptor nuclear translocator mRNA and protein levels were also higher in preconfluent than in confluent cultures. Treatment of preconfluent cells with the AhR antagonist, 3'-methoxy-4'-nitroflavone (MNF), or AhR knockdown significantly increased SULT1E1 expression. MCF10A cells stably transfected with a luciferase reporter containing ∼7 kilobases of the SULT1E1 5'-flanking region showed both MNF- and confluence-inducible luciferase expression. Preconfluent cells transiently transfected with the reporter showed both MNF treatment- and AhR knockdown-mediated luciferase induction, but mutation of a computationally predicted dioxin response element (DRE) at nucleotide (nt) -3476 did not attenuate these effects. These results demonstrate that SULT1E1 expression in MCF10A cells is transcriptionally regulated by confluence through a suppressive action of the AhR, which is not mediated through a DRE at nt -3476.
Collapse
Affiliation(s)
- Jiaqi Fu
- Institute of Environmental Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
25
|
Peng KW, Chang M, Wang YT, Wang Z, Qin Z, Bolton JL, Thatcher GRJ. Unexpected hormonal activity of a catechol equine estrogen metabolite reveals reversible glutathione conjugation. Chem Res Toxicol 2011; 23:1374-83. [PMID: 20540524 DOI: 10.1021/tx100129h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
4-Hydroxyequilenin (4-OHEN) is a major phase I metabolite of the equine estrogens present in widely prescribed hormone replacement formulations. 4-OHEN is autoxidized to an electrophilic o-quinone that has been shown to redox cycle, generating ROS, and to covalently modify proteins and DNA and thus potentially to act as a chemical carcinogen. To establish the ability of 4-OHEN to act as a hormonal carcinogen at the estrogen receptor (ER), estrogen responsive gene expression and proliferation were studied in ER(+) breast cancer cells. Recruitment by 4-OHEN of ER to estrogen responsive elements (ERE) of DNA in MCF-7 cells was also studied and observed. 4-OHEN was a potent estrogen, with additional weak activity associated with binding to the arylhydrocarbon receptor (AhR). The potency of 4-OHEN toward classical ERalpha mediated activity was unexpected given the reported rapid autoxidation and trapping of the resultant quinone by GSH. Addition of thiols to cell cultures did not attenuate the estrogenic activity of 4-OHEN, and preformed thiol conjugates added to cell incubations only marginally reduced ERE-luciferase induction. On reaction of the 4OHEN-GSH conjugate with NADPH, 4-OHEN was observed to be regenerated at a rate dependent upon NADPH concentration, indicating that intracellular nonenzymatic and enzymatic regeneration of 4-OHEN accounts for the observed estrogenic activity of 4-OHEN. 4-OHEN is therefore capable of inducing chemical and hormonal pathways that may contribute to estrogen-dependent carcinogenesis, and trapping by cellular thiols does not provide a mechanism of termination of these pathways.
Collapse
Affiliation(s)
- Kuan-Wei Peng
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612-7231, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Shanle EK, Xu W. Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol 2010; 24:6-19. [PMID: 21053929 DOI: 10.1021/tx100231n] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many endocrine disrupting chemicals (EDCs) adversely impact estrogen signaling by interacting with two estrogen receptors (ERs): ERα and ERβ. Though the receptors have similar ligand binding and DNA binding domains, ERα and ERβ have some unique properties in terms of ligand selectivity and target gene regulation. EDCs that target ER signaling can modify genomic and nongenomic ER activity through direct interactions with ERs, indirectly through transcription factors such as the aryl hydrocarbon receptor (AhR), or through modulation of metabolic enzymes that are critical for normal estrogen synthesis and metabolism. Many EDCs act through multiple mechanisms as exemplified by chemicals that bind both AhR and ER, such as 3-methylcholanthrene. Other EDCs that target ER signaling include phytoestrogens, bisphenolics, and organochlorine pesticides, and many alter normal ER signaling through multiple mechanisms. EDCs can also display tissue-selective ER agonist and antagonist activities similar to selective estrogen receptor modulators (SERMs) designed for pharmaceutical use. Thus, biological effects of EDCs need to be carefully interpreted because EDCs can act through complex tissue-selective modulation of ERs and other signaling pathways in vivo. Current requirements by the U.S. Environmental Protection Agency require some in vitro and cell-based assays to identify EDCs that target ER signaling through direct and metabolic mechanisms. Additional assays may be useful screens for identifying EDCs that act through alternative mechanisms prior to further in vivo study.
Collapse
Affiliation(s)
- Erin K Shanle
- McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Avenue, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
27
|
Li Y, Li Y, Zhang T, Chan WK. The aryl hydrocarbon receptor nuclear translocator-interacting protein 2 suppresses the estrogen receptor signaling via an Arnt-dependent mechanism. Arch Biochem Biophys 2010; 502:121-9. [PMID: 20674540 DOI: 10.1016/j.abb.2010.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/16/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
Abstract
We explored whether modulation of the estrogen receptor (ER) signaling is possible through an aryl hydrocarbon receptor nuclear translocator (Arnt)-dependent mechanism. We utilized the Arnt-interacting protein 2 (Ainp2) to examine whether the presence of Ainp2 in MCF-7 cells would interfere with the Arnt-mediated ER signaling. We found that Arnt increased the 17 beta-estradiol (E2)-dependent luciferase activity and Ainp2 significantly suppressed this Arnt-mediated luciferase activity. Ainp2 significantly suppressed 25% of the E2- and Arnt-dependent up-regulation of the GREB1 message. No suppression of the ER target gene expression by Ainp2 was detected in Arnt-knockdown MCF-7 cells and in Arnt-independent ER signaling. Although Ainp2 did not interact with ER alpha and ER beta, it suppressed the ER alpha::Arnt interaction and reduced the E2-driven recruitment of Arnt to the GREB1 promoter. We concluded that Ainp2 suppresses the ER signaling by not allowing Arnt to participate in the ER-dependent, Arnt-mediated activation of gene transcription.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | | | | | | |
Collapse
|
28
|
Ohura T, Morita M, Kuruto-Niwa R, Amagai T, Sakakibara H, Shimoi K. Differential action of chlorinated polycyclic aromatic hydrocarbons on aryl hydrocarbon receptor-mediated signaling in breast cancer cells. ENVIRONMENTAL TOXICOLOGY 2010; 25:180-187. [PMID: 19365803 DOI: 10.1002/tox.20488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chlorinated polycyclic aromatic hydrocarbons (ClPAHs), which are a series of halogenated aromatic hydrocarbons, have been found in the environment. The primary step in their metabolic activation seems to be associated with aryl hydrocarbon receptor (AhR)-mediated induction of the cytochrome P450 (CYP) 1 family, although the evidence remains unclear. In this study, we first investigated the effects of five ClPAHs with three to five rings and the corresponding parent PAHs on the expression of CYP1A1 and 1B1 in human breast cancer MCF-7 cells. For the targeted ClPAHs, Western blot analysis of ClPAH-induced CYP1A1 and 1B1 showed an enhancement in activities in comparison with induction by the corresponding parent PAHs, and the effects of chlorination were especially prominent in phenanthrene. In a further study, using 6-chlorobenzo[a]pyrene (6-ClBaP), cotreatment with 17beta-estradiol showed an increase in the expression of CYP1B1 mRNA but not CYP1A1 mRNA. Since the AhR ligand has been reported to induce formation of an AhR-estrogen receptor (ER) complex, which stimulates transcription of ER target genes, the effects of ClPAHs in MCF-7 cells transfected with estrogen response elements-regulated green fluorescent protein (GFP) reporter genes were also investigated in this study. 6-ClBaP induced a dose-dependent increase in GFP expression related to ER signaling through AhR activation in the cells, but 3,9,10-trichlorophenanthrene (3,9,10-Cl(3)ClPhe) did not, despite its ability to activate AhR. Furthermore, we investigated the effect of ClPAHs on the expression of the endogenous ER-responsive genes, cathepsin D, in MCF-7 cells. 6-ClBaP stimulated expression of the ER-responsive genes but 3,9,10-Cl(3)ClPhe did not, as in the GFP expression system. These results suggest that estrogenic action mediated ER signaling through AhR activation does not necessarily occur for every ligand that can activate AhR.
Collapse
Affiliation(s)
- Takeshi Ohura
- Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Swedenborg E, Pongratz I, Gustafsson JA. Endocrine disruptors targeting ERbeta function. ACTA ACUST UNITED AC 2009; 33:288-97. [PMID: 20050941 DOI: 10.1111/j.1365-2605.2009.01025.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endocrine disruptive chemicals (EDCs) circulating in the environment constitute a risk to ecosystems, wildlife and human health. Oestrogen receptor (ER) alpha and beta are targeted by various kinds of EDCs but the molecular mechanisms and long-term consequences of exposure are largely unknown. Some biological effects of EDCs are mediated by the aryl hydrocarbon receptor (AhR), which is a key player in the cellular defence against xenobiotic substances. Adding complexity to the picture, there is also accumulating evidence that AhR-ER pathways have an intricate interplay at multiple levels. In this review, we discuss some EDCs that affect the oestrogen pathway by targeting ERbeta. Furthermore, we describe some effects of AhR activities on the oestrogen system. Mechanisms as well as potential adverse effects on human health are discussed.
Collapse
Affiliation(s)
- E Swedenborg
- Department of Biosciences and Nutrition, Karolinska Institutet at Novum, Huddinge, Sweden.
| | | | | |
Collapse
|
30
|
Furness SGB, Whelan F. The pleiotropy of dioxin toxicity--xenobiotic misappropriation of the aryl hydrocarbon receptor's alternative physiological roles. Pharmacol Ther 2009; 124:336-53. [PMID: 19781569 DOI: 10.1016/j.pharmthera.2009.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
The aryl hydrocarbon receptor is a signal regulated transcription factor that has best been characterised as regulating the xenobiotic response to a variety of planar aromatic hydrocarbons. There is compelling evidence that it mediates most, if not all, of the toxic effects of dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin). Dioxin exposure results in a wide variety of toxic outcomes including severe wasting syndrome, chloracne, thymic involution, severe immune suppression, reduced fertility, hepatotoxicity, teratogenicity, tumour promotion and death. The pleiotropy of toxic outcomes implies the disruption of a wide range of normal physiological functions. The aryl hydrocarbon receptor has developmentally restricted expression as well as developmental defects in gene-targeted mice. It has a wide range of target genes that do not fit into the classical xenobiotic metabolising gene battery and has recently been shown to interact with NF-kappa B and the estrogen receptor. There is also evidence for its activation in the absence of exogenous ligand, all of which point to various roles outside xenobiotic metabolism. Ligands so far identified display differential activation potential with respect to receptor activity. This article addresses activities of the aryl hydrocarbon receptor that are outside the xenobiotic response. Known physiological roles are discussed as well as how their disruption contributes to the pleiotropic toxicity of TCDD.
Collapse
Affiliation(s)
- Sebastian G B Furness
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | | |
Collapse
|
31
|
AhR and ARNT modulate ER signaling. Toxicology 2009; 268:132-8. [PMID: 19778576 DOI: 10.1016/j.tox.2009.09.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/26/2009] [Accepted: 09/14/2009] [Indexed: 11/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR), in complex with its binding partner ARNT, mediates the cellular response to xenobiotic compounds such as the environmental pollutant dioxin. In addition, the AhR has important regulatory roles in normal physiology. For instance, there is extensive data showing an intricate relationship between the AhR and estrogen receptor (ER) pathways. This review focuses on the regulatory roles of AhR and ARNT, beyond the response to xenobiotics. In particular, the effects of AhR agonists on the estrogen signaling pathways and the role of ARNT as a modulator of ER activity are discussed.
Collapse
|
32
|
Monostory K, Pascussi JM, Kóbori L, Dvorak Z. Hormonal regulation of CYP1A expression. Drug Metab Rev 2009; 41:547-72. [DOI: 10.1080/03602530903112284] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Wihlén B, Ahmed S, Inzunza J, Matthews J. Estrogen receptor subtype- and promoter-specific modulation of aryl hydrocarbon receptor-dependent transcription. Mol Cancer Res 2009; 7:977-86. [PMID: 19470599 DOI: 10.1158/1541-7786.mcr-08-0396] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we examined the role of estrogen receptors (ER) in aryl hydrocarbon receptor (AHR)-dependent transactivation. Chromatin immunoprecipitation assays showed that AHR agonists differentially induced recruitment of ERalpha to the AHR target genes CYP1A1 and CYP1B1. Cotreatment with 17beta-estradiol significantly increased beta-naphthoflavone (BNF)- and 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced recruitment of ERalpha to CYP1A1, whereas 3,3'-diindolylmethane induced promoter occupancy of ERalpha at CYP1A1 that was unaffected by cotreatment with 17beta-estradiol. Cyclical recruitment of AHR and ERalpha to CYP1A1 was only observed in cells treated with BNF. Stable and subtype-specific knockdown of ERalpha or ERbeta using shRNA showed that suppression of ERalpha significantly reduced, whereas knockdown of ERbeta significantly enhanced, AHR agonist-induced Cyp1a1 expression in HC11 mouse mammary epithelial cells. AHR agonist-induced Cyp1b1 expression was reduced by ERbeta knockdown but unaffected by ERalpha knockdown. The siRNA-mediated knockdown of ERalpha in MCF-7 human breast cancer cells did not affect 2,3,7,8-tetrachlorodibenzo-p-dioxin-dependent regulation of CYP1A1 and CYP1B1 mRNA expression. In agreement with our in vitro findings in the HC11 cells, ERalpha knockout mice exhibit reduced BNF-dependent induction of Cyp1a1 mRNA. These results establish ligand- and promoter-specific influences on the cyclical recruitment patterns for AHR and show ER species-, subtype-, and promoter-specific modulation of AHR-dependent transcription.
Collapse
Affiliation(s)
- Björn Wihlén
- Department of Biosciences and Nutrition at Novum, Karolinska Institutet, Huddinge, Sweden
| | | | | | | |
Collapse
|
34
|
QSAR study on the non-monotonic dose-response curve of PCBs in chicken embryo hepatocyte bioassay. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11426-009-0023-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Food flavonoid aryl hydrocarbon receptor-mediated agonistic/antagonistic/synergic activities in human and rat reporter gene assays. Anal Chim Acta 2008; 637:337-45. [PMID: 19286049 DOI: 10.1016/j.aca.2008.09.054] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 09/24/2008] [Accepted: 09/24/2008] [Indexed: 02/01/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor mediating the adverse effects of dioxins and polycyclic aromatic hydrocarbons (PAHs). In this study, we investigated the genetic-, time-, dose-, species- and tissue-dependent AhR-mediated agonistic/antagonistic activities of three food flavonoids: quercetin, chrysin and genistein. To that end, four stably transfected cell lines were used in cell-based luciferase reporter gene assays: three lines were transformed with the ptKLuc vector harbouring four dioxin-responsive elements (DREs) upstream of the thymidine kinase promoter and the luciferase gene (HepG2-Luc, T-47D-Luc and H4IIE-ULg). The fourth is a patented cell line transformed with a different construct: H4IIE DR-CALUX((R)). Both H4IIE cells were compared for their genetic construction. Human hepatoma (HepG2-Luc) and human breast tumour (T-47D-Luc) cells were compared for tissue-dependent effects. Rat hepatoma (H4IIE-ULg) and human hepatoma (HepG2-Luc) cells were compared for species-dependent activities. We concluded that quercetin, chrysin and genistein act in a time-, dose-, species- and tissue-specific way. For example, genistein displayed agonistic activities when exposed to rat hepatoma cells during 6h but not after 24h. Flavonoids displayed agonistic/antagonistic activities in human breast tumour cells, depending on the exposure time, while in human hepatoma cells, only antagonistic activities of flavonoids were measured. In addition, we report, in all the cells, a synergy between an isoflavone and two food contaminants; the 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3-methylcholanthrene, a PAH. In rat cells, this synergy occurred when cells were exposed to flavonoids and contaminant for 6h, while it was observed in human cells only after 24h.
Collapse
|
36
|
Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr 2008; 18:207-50. [PMID: 18540824 DOI: 10.1615/critreveukargeneexpr.v18.i3.20] [Citation(s) in RCA: 546] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of a diverse set of genes. The toxicity of the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin is almost exclusively mediated through this receptor. However, the key alterations in gene expression that mediate toxicity are poorly understood. It has been established through characterization of AhR-null mice that the AhR has a required physiological function, yet how endogenous mediators regulate this orphan receptor remains to be established. A picture as to how the AhR/ARNT heterodimer actually mediates gene transcription is starting to emerge. The AhR/ARNT complex can alter transcription both by binding to its cognate response element and through tethering to other transcription factors. In addition, many of the coregulatory proteins necessary for AhR-mediated transcription have been identified. Cross talk between the estrogen receptor and the AhR at the promoter of target genes appears to be an important mode of regulation. Inflammatory signaling pathways and the AhR also appear to be another important site of cross talk at the level of transcription. A major focus of this review is to highlight experimental efforts to characterize nonclassical mechanisms of AhR-mediated modulation of gene transcription.
Collapse
Affiliation(s)
- Timothy V Beischlag
- Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
37
|
Bagchi G, Hurst CH, Waxman DJ. Interactions of methoxyacetic acid with androgen receptor. Toxicol Appl Pharmacol 2008; 238:101-10. [PMID: 18486176 DOI: 10.1016/j.taap.2008.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/28/2008] [Accepted: 03/24/2008] [Indexed: 01/11/2023]
Abstract
Endocrine disruptive compounds (EDC) alter hormone-stimulated, nuclear receptor-dependent physiological and developmental processes by a variety of mechanisms. One recently identified mode of endocrine disruption is through hormone sensitization, where the EDC modulates intracellular signaling pathways that control nuclear receptor function, thereby regulating receptor transcriptional activity indirectly. Methoxyacetic acid (MAA), the primary, active metabolite of the industrial solvent ethylene glycol monomethyl ether and a testicular toxicant, belongs to this EDC class. Modulation of nuclear receptor activity by MAA could contribute to the testicular toxicity associated with MAA exposure. In the present study, we evaluated the impact of MAA on the transcriptional activity of several nuclear receptors including the androgen receptor (AR), which plays a pivotal role in the development and maturation of spermatocytes. AR transcriptional activity is shown to be increased by MAA through a tyrosine kinase signaling pathway that involves PI3-kinase. In a combinatorial setting with AR antagonists, MAA potentiated the AR response without significantly altering the EC(50) for androgen responsiveness, partially alleviating the antagonistic effect of the anti-androgens. Finally, MAA treatment of TM3 mouse testicular Leydig cells markedly increased the expression of Cyp17a1 and Shbg while suppressing Igfbp3 expression by ~90%. Deregulation of these genes may alter androgen synthesis and action in a manner that contributes to MAA-induced testicular toxicity.
Collapse
Affiliation(s)
- Gargi Bagchi
- Division of Cell and Molecular Biology, Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | |
Collapse
|
38
|
Cheshenko K, Pakdel F, Segner H, Kah O, Eggen RIL. Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish. Gen Comp Endocrinol 2008; 155:31-62. [PMID: 17459383 DOI: 10.1016/j.ygcen.2007.03.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 03/05/2007] [Accepted: 03/09/2007] [Indexed: 11/28/2022]
Abstract
Many natural and synthetic compounds present in the environment exert a number of adverse effects on the exposed organisms, leading to endocrine disruption, for which they were termed endocrine disrupting chemicals (EDCs). A decrease in reproduction success is one of the most well-documented signs of endocrine disruption in fish. Estrogens are steroid hormones involved in the control of important reproduction-related processes, including sexual differentiation, maturation and a variety of others. Careful spatial and temporal balance of estrogens in the body is crucial for proper functioning. At the final step of estrogen biosynthesis, cytochrome P450 aromatase, encoded by the cyp19 gene, converts androgens into estrogens. Modulation of aromatase CYP19 expression and function can dramatically alter the rate of estrogen production, disturbing the local and systemic levels of estrogens. In the present review, the current progress in CYP19 characterization in teleost fish is summarized and the potential of several classes of EDCs to interfere with CYP19 expression and activity is discussed. Two cyp19 genes are present in most teleosts, cyp19a and cyp19b, primarily expressed in the ovary and brain, respectively. Both aromatase CYP19 isoforms are involved in the sexual differentiation and regulation of the reproductive cycle and male reproductive behavior in diverse teleost species. Alteration of aromatase CYP19 expression and/or activity, be it upregulation or downregulation, may lead to diverse disturbances of the above mentioned processes. Prediction of multiple transcriptional regulatory elements in the promoters of teleost cyp19 genes suggests the possibility for several EDC classes to affect cyp19 expression on the transcriptional level. These sites include cAMP responsive elements, a steroidogenic factor 1/adrenal 4 binding protein site, an estrogen-responsive element (ERE), half-EREs, dioxin-responsive elements, and elements related to diverse other nuclear receptors (peroxisome proliferator activated receptor, retinoid X receptor, retinoic acid receptor). Certain compounds including phytoestrogens, xenoestrogens, fungicides and organotins may modulate aromatase CYP19 activity on the post-transcriptional level. As is shown in this review, diverse EDCs may affect the expression and/or activity of aromatase cyp19 genes through a variety of mechanisms, many of which need further characterization in order to improve the prediction of risks posed by a contaminated environment to teleost fish population.
Collapse
Affiliation(s)
- Ksenia Cheshenko
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, Postfach 611, CH 8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Mortensen AS, Arukwe A. Activation of estrogen receptor signaling by the dioxin-like aryl hydrocarbon receptor agonist, 3,3',4,4',5-pentachlorobiphenyl (PCB126) in salmon in vitro system. Toxicol Appl Pharmacol 2007; 227:313-24. [PMID: 18155262 DOI: 10.1016/j.taap.2007.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 11/02/2007] [Accepted: 11/05/2007] [Indexed: 12/27/2022]
Abstract
Available toxicological evidence indicates that environmental contaminants with strong affinity to the aryl hydrocarbon receptor (AhR) have anti-estrogenic properties in both mammalian and non-mammalian in vivo and in vitro studies. The primary objective of the present study was to investigate the interactions between the AhR and estrogen receptor (ER) in salmon in vitro system. Two separate experiments were performed and gene expression patterns were analyzed using real-time PCR, while protein analysis was done by immunoblotting. Firstly, salmon primary hepatocytes were exposed to the dioxin-like PCB126 at 1, 10 and 50 nM [corrected] and ER agonist nonylphenol (NP) at 5 and 10 microM, singly or in combination. Our data showed increased levels of ER-mediated gene expression (vitellogenin: Vtg, zona radiata protein: Zr-protein, ERalpha, ERbeta and vigilin) as well as increased cellular ERalpha protein levels after treatment with NP and PCB126, singly or in combination. PCB126 treatment alone produced, as expected, increased transcription of AhR nuclear translocator (Arnt), CYP1A1 and AhR repressor (AhRR) mRNA, and these responses were reduced in the presence of NP concentrations. PCB126 exposure alone did not produce significant effect on AhR2alpha mRNA but increased (at 1 and 50 pM) and decreased (at 10 pM) AhR2beta mRNA below control level. For AhR2delta and AhR2gamma isotypes, PCB126 (at 1 nM) [corrected] produced significant decreases (total inhibition for AhR2gamma) of mRNA levels but was indifferent at 10 and 50 pM, compared to control. NP exposure alone produced concentration-dependent significant decrease of AhR2beta mRNA. In contrast, while 5 microM NP produced an indifferent effect on AhR2delta and AhR2gamma, 10 microM NP produced significant decrease (total inhibition for AhR2gamma) and the presence of NP produced apparent PCB126 concentration-specific modulation of all AhR isotypes. A second experiment was performed to evaluate the involvement of ER isoforms in PCB126 mediated estrogenicity. Here, cells were treated with the different concentrations of PCB126, alone or in combination with ICI182,780 (ICI) and sampled at 12, 24 and 48 h post-exposure. Our data showed that PCB126 produced a time- and concentration-specific increase of ERalpha and Vtg expressions and these responses were decreased in the presence of ICI. In general, these responses show a direct PCB126 induced transcriptional activation of ERalpha and estrogenic responses in the absence of ER agonists. Although not conclusive, our findings represent the first study showing the activation of estrogenic responses by a dioxin-like PCB in fish in vitro system and resemble the "ER-hijacking" hypothesis that was recently proposed. Thus, the direct estrogenic actions of PCB126 observed in the present study add new insight on the mechanisms of ER-AhR cross-talk, prompting a new wave of discussion on whether AhR-mediated anti-estrogenicity is an exception rather than rule of action.
Collapse
Affiliation(s)
- Anne Skjetne Mortensen
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | | |
Collapse
|
40
|
Mortensen AS, Arukwe A. Interactions between estrogen- and Ah-receptor signalling pathways in primary culture of salmon hepatocytes exposed to nonylphenol and 3,3',4,4'-tetrachlorobiphenyl (congener 77). COMPARATIVE HEPATOLOGY 2007; 6:2. [PMID: 17433103 PMCID: PMC1855068 DOI: 10.1186/1476-5926-6-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 04/13/2007] [Indexed: 12/16/2022]
Abstract
BACKGROUND The estrogenic and xenobiotic biotransformation gene expressions are receptor-mediated processes that are ligand structure-dependent interactions with estrogen-receptor (ER) and aryl hydrocarbon receptor (AhR), probably involving all subtypes and other co-factors. The anti-estrogenic activities of AhR agonists have been reported. In teleost fish, exposure to AhR agonists has been associated with reduced Vtg synthesis or impaired gonadal development in both in vivo- and in vitro studies. Inhibitory AhR and ER cross-talk have also been demonstrated in breast cancer cells, rodent uterus and mammary tumors. Previous studies have shown that AhR-agonists potentiate xenoestrogen-induced responses in fish in vivo system. Recently, several studies have shown that AhR-agonists directly activate ER alpha and induce estrogenic responses in mammalian in vitro systems. In this study, two separate experiments were performed to study the molecular interactions between ER and AhR signalling pathways using different concentration of PCB-77 (an AhR-agonist) and time factor, respectively. Firstly, primary Atlantic salmon hepatocytes were exposed to nonylphenol (NP: 5 microM--an ER agonist) singly or in combination with 0.001, 0.01 and 1 microM PCB-77 and sampled at 48 h post-exposure. Secondly, hepatocytes were exposed to NP (5 microM) or PCB-77 (1 microM) singly or in combination for 12, 24, 48 and 72 h. Samples were analyzed using a validated real-time PCR for genes in the ER pathway or known to be NP-responsive and AhR pathway or known to be PCB-77 responsive. RESULTS Our data showed a reciprocal inhibitory interaction between NP and PCB-77. PCB-77 produced anti-NP-mediated effect by decreasing the mRNA expression of ER-responsive genes. NP produced anti-AhR mediated effect or as inhibitor of AhR alpha, AhRR, ARNT, CYP1A1 and UDPGT expression. A novel aspect of the present study is that low (0.001 microM) and medium (0.01 microM) PCB-77 concentrations increased ER alpha mRNA expression above control and NP exposed levels, and at 12 h post-exposure, PCB-77 exposure alone produced significant elevation of ER alpha, ER beta and Zr-protein expressions above control levels. CONCLUSION The findings in the present study demonstrate a complex mode of ER-AhR interactions that were dependent on time of exposure and concentration of individual chemicals (NP and PCB-77). This complex mode of interaction is further supported by the effect of PCB-77 on ER alpha and ER beta (shown as increase in transcription) with no concurrent activation of Vtg (but Zr-protein) response. These complex interactions between two different classes of ligand-activated receptors provide novel mechanistic insights on signalling pathways. Therefore, the degree of simultaneous interactions between the ER and AhR gene transcripts demonstrated in this study supports the concept of cross-talk between these signalling pathways.
Collapse
Affiliation(s)
- Anne S Mortensen
- Department of Biology, Norwegian University of science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
41
|
Matthews J, Gustafsson JÅ. Estrogen receptor and aryl hydrocarbon receptor signaling pathways. NUCLEAR RECEPTOR SIGNALING 2006; 4:e016. [PMID: 16862222 PMCID: PMC1513070 DOI: 10.1621/nrs.04016] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 04/03/2006] [Indexed: 11/20/2022]
Abstract
Estrogen receptors (ERs) and the aryl hydrocarbon receptor (AhR) are ligand activated transcription factors and members of the nuclear receptor and bHLH-PAS superfamilies, respectively. AhR is involved in xenobiotic metabolism and in mediating the toxic effects of dioxin-like compounds. Crosstalk has been observed among AhR and nuclear receptors, but has been most well studied with respect to ER signaling. Activated AhR inhibits ER activity through a number of different mechanisms, whereas ERα has been reported to have a positive role in AhR signaling. Here we will discuss recent data revealing that dioxin bound AhR recruits ERα to AhR regulated genes. We will also consider the implications of ER recruitment to AhR target genes on ER and AhR signaling.
Collapse
|