1
|
González-Martínez F, Johnson-Restrepo B, Quiñones LA. Arsenic inorganic exposure, metabolism, genetic biomarkers and its impact on human health: A mini-review. Toxicol Lett 2024; 398:105-117. [PMID: 38901734 DOI: 10.1016/j.toxlet.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Inorganic arsenic species exist in the environment as a result of both natural sources, such as volcanic and geothermal activities, and geological formations, as well as anthropogenic activities, including smelting, exploration of fossil fuels, coal burning, mining, and the use of pesticides. These species deposit in water, rocks, soil, sediments, and the atmosphere. Arsenic-contaminated drinking water is a global public health issue because of its natural prevalence and toxicity. Therefore, chronic exposure to arsenic can have deleterious effect on humans, including cancer and other diseases. This work describes the mechanisms of environmental exposure to arsenic, molecular regulatory factors involved in its metabolism, genetic polymorphisms affecting individual susceptibility and the toxic effects of arsenic on human health (oxidative stress, DNA damage and cancer). We conclude that the role of single nucleotide variants affecting urinary excretion of arsenic metabolites are highly relevant and can be used as biomarkers of the intracellular retention rates of arsenic, showing new avenues of research in this field.
Collapse
Affiliation(s)
- Farith González-Martínez
- Faculty of Dentistry and Faculty of Exact Sciences, University of Cartagena, Colombia; Public Health Research Group, University of Cartagena, Colombia; Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile.
| | | | - Luis A Quiñones
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile; Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Chile; Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Chile.
| |
Collapse
|
2
|
Wang D, Liang Q, Tai D, Wang Y, Hao H, Liu Z, Huang L. Association of urinary arsenic with the oxidative DNA damage marker 8-hydroxy-2 deoxyguanosine: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166600. [PMID: 37659570 DOI: 10.1016/j.scitotenv.2023.166600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND The International Agency for Research on Cancer has classified arsenic as a class I carcinogen. Oxidative DNA damage is a typical early precursor to recognized malignancies. The most sensitive early independent marker of oxidative DNA damage is believed to be 8-hydroxy-2 deoxyguanosine (8-OHdG). To date, research on the link between urinary arsenic and 8-OHdG has not been consistent. OBJECTIVE This study was aimed at exploring the effects of urinary arsenic on 8-OHdG in human urine. METHODS A literature search until January 2023 was performed on the PubMed, Cochrane Library, Web of Science, Embase, and Scopus databases through a combination of computer and manual retrieval. Stata 12.0 was used to examine the degree of heterogeneity among included studies. The percentage change and 95 % confidence interval (95 % CI) of 8-OHdG were calculated between populations exposed to different doses. We used a random effect model because the degree of heterogeneity exceeded 50 %. Sensitivity analysis and testing for publication bias were performed. RESULTS This meta-analysis included nine studies, most of which were performed in China. After exposure to arsenic, urinary arsenic (per 10 μg/g creatinine increase) was associated with the increased 8-OHdG (% change = 41.49 %, 95 % CI: 19.73 %, 63.25 %). Subgroup analysis indicated that the percentage change in 8-OHdG in urine was more pronounced in people exposed to arsenic <50 μg/L (% change = 24.60 %, 95 % CI: 17.35 %, 37.85 %). In studies using total urinary arsenic content as an indicator, the percentage change in 8-OHdG in urine was more significant (% change = 60.38 %, 95 % CI: 15.08 %, 105.68 %). CONCLUSION The 8-OHdG levels in human urine significantly increased after exposure to environmental arsenic, thus suggesting that arsenic exposure is correlated with oxidative DNA damage.
Collapse
Affiliation(s)
- Donglei Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Qingqing Liang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Dapeng Tai
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Yali Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Hongyu Hao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Zhengran Liu
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China.
| | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China.
| |
Collapse
|
3
|
Vázquez Cervantes GI, González Esquivel DF, Ramírez Ortega D, Blanco Ayala T, Ramos Chávez LA, López-López HE, Salazar A, Flores I, Pineda B, Gómez-Manzo S, Pérez de la Cruz V. Mechanisms Associated with Cognitive and Behavioral Impairment Induced by Arsenic Exposure. Cells 2023; 12:2537. [PMID: 37947615 PMCID: PMC10649068 DOI: 10.3390/cells12212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Arsenic (As) is a metalloid naturally present in the environment, in food, water, soil, and air; however, its chronic exposure, even with low doses, represents a public health concern. For a long time, As was used as a pigment, pesticide, wood preservative, and for medical applications; its industrial use has recently decreased or has been discontinued due to its toxicity. Due to its versatile applications and distribution, there is a wide spectrum of human As exposure sources, mainly contaminated drinking water. The fact that As is present in drinking water implies chronic human exposure to this metalloid; it has become a worldwide health problem, since over 200 million people live where As levels exceed safe ranges. Many health problems have been associated with As chronic exposure including cancer, cardiovascular diseases, gastrointestinal disturbances, and brain dysfunctions. Because As can cross the blood-brain barrier (BBB), the brain represents a target organ where this metalloid can exert its long-term toxic effects. Many mechanisms of As neurotoxicity have been described: oxidative stress, inflammation, DNA damage, and mitochondrial dysfunction; all of them can converge, thus leading to impaired cellular functions, cell death, and in consequence, long-term detrimental effects. Here, we provide a current overview of As toxicity and integrated the global mechanisms involved in cognitive and behavioral impairment induced by As exposure show experimental strategies against its neurotoxicity.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Dinora Fabiola González Esquivel
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Daniela Ramírez Ortega
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Tonali Blanco Ayala
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Lucio Antonio Ramos Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Humberto Emanuel López-López
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| |
Collapse
|
4
|
Artymowicz M, Struck-Lewicka W, Wiczling P, Markuszewski M, Markuszewski MJ, Siluk D. Targeted quantitative metabolomics with a linear mixed-effect model for analysis of urinary nucleosides and deoxynucleosides from bladder cancer patients before and after tumor resection. Anal Bioanal Chem 2023; 415:5511-5528. [PMID: 37460824 PMCID: PMC10444683 DOI: 10.1007/s00216-023-04826-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
In the present study, we developed and validated a fast, simple, and sensitive quantitative method for the simultaneous determination of eleven nucleosides and deoxynucleosides from urine samples. The analyses were performed with the use of liquid chromatography coupled with triple quadrupole mass spectrometry. The sample pretreatment procedure was limited to centrifugation, vortex mixing of urine samples with a methanol/water solution (1:1, v/v), evaporation and dissolution steps. The analysis lasted 20 min and was performed in dynamic multiple reaction monitoring mode (dMRM) in positive polarity. Process validation was conducted to determine the linearity, precision, accuracy, limit of quantification, stability, recovery and matrix effect. All validation procedures were carried out in accordance with current FDA and EMA regulations. The validated method was applied for the analysis of 133 urine samples derived from bladder cancer patients before tumor resection and 24 h, 2 weeks, and 3, 6, 9, and 12 months after the surgery. The obtained data sets were analyzed using a linear mixed-effect model. The analysis revealed that concentration level of 2-methylthioadenosine was decreased, while for inosine, it was increased 24 h after tumor resection in comparison to the preoperative state. The presented quantitative longitudinal study of urine nucleosides and deoxynucleosides before and up to 12 months after bladder tumor resection brings additional prospective insight into the metabolite excretion pattern in bladder cancer disease. Moreover, incurred sample reanalysis was performed proving the robustness and repeatability of the developed targeted method.
Collapse
Affiliation(s)
- Małgorzata Artymowicz
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Wiktoria Struck-Lewicka
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Paweł Wiczling
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Marcin Markuszewski
- Department of Urology, Medical University of Gdańsk, Mariana Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Michał J Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Danuta Siluk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Aleja Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| |
Collapse
|
5
|
Mizuno Y, Inaba Y, Masuoka H, Kibe M, Kosaka S, Natsuhara K, Hirayama K, Inthavong N, Kounnavong S, Tomita S, Umezaki M. Determinants of oxidative stress among indigenous populations in Northern Laos: Trace element exposures and dietary patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161516. [PMID: 36646220 DOI: 10.1016/j.scitotenv.2023.161516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVES To investigate determinants of oxidative stress in an indigenous population, we examined associations of trace element exposures and dietary patterns with three oxidative stress-related biomarkers among indigenous populations in Northern Laos. METHODS This cross-sectional study included 341 adults from three villages with different levels of modernization. We used three oxidative stress-related biomarkers: urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-isoprostane concentrations, which were measured using liquid chromatography-tandem mass spectrometry, and blood telomere lengths, which were measured using a quantitative polymerase chain reaction method. We used multilevel analysis to examine associations of urinary arsenic, cadmium, and selenium concentrations, their interaction terms, and wild-plant-food scores (principal component scores calculated from food consumption frequencies) with oxidative stress-related biomarkers. RESULTS Urinary arsenic and cadmium concentrations were positively associated with urinary 8-isoprostane concentrations. Urinary selenium concentrations were positively associated with urinary 8-OHdG concentrations. Interaction terms ([arsenic or cadmium] × selenium) showed negative associations with urinary 8-OHdG and 8-isoprostane concentrations, respectively. Urinary cadmium concentrations were negatively associated with telomere lengths. Wild-plant-food scores did not exhibit associations with oxidative stress-related biomarkers. CONCLUSION Our findings imply that exposure to arsenic and cadmium is associated with greater oxidative lipid damage, whereas selenium may attenuate arsenic-induced oxidative DNA damage and cadmium-induced oxidative lipid damage. Cadmium exposure may accelerate telomere attrition. Trace element exposure may be a determinant of oxidative stress among indigenous populations in Northern Laos.
Collapse
Affiliation(s)
- Yuki Mizuno
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Yohei Inaba
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan.
| | - Hiroaki Masuoka
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Mihoko Kibe
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Satoko Kosaka
- Department of Public Health & Nursing, Nagasaki University, Nagasaki, Japan.
| | | | - Kazuhiro Hirayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Nouhak Inthavong
- Lao Tropical and Public Health Institute, Ministry of Health, Vientiane, Lao Democratic People's Republic
| | - Sengchanh Kounnavong
- Lao Tropical and Public Health Institute, Ministry of Health, Vientiane, Lao Democratic People's Republic
| | - Shinsuke Tomita
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan.
| | - Masahiro Umezaki
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Muhammad J, Xu P, Khan S, Su JQ, Sarwar T, Nazneen S, Khan A. Arsenic contribution of poultry manure towards soils and food plants contamination and associated cancer risk in Khyber Pakhtunkhwa, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3321-3342. [PMID: 34542787 DOI: 10.1007/s10653-021-01096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Exposure to high level of arsenic (As) through the ingestion of contaminated soil, dust and food plants can pose health risk to humans. This study investigates the total arsenic (As), arsenobetaine (AsB), monomethylarsenate (MMA), dimethylarsenate (DMA), arsenite (As3+) and arsenate (As5+) concentrations in poultry feed, manure, agricultural soils and food plants collected from Khyber Pakhtunkhwa Province, Pakistan. The total mean As concentrations in the edible parts of food plants ranged from 0.096 mg kg-1 to 1.25 mg kg-1 with percentile (P) values (P25-0.039, P50-0.0765, P75-0.165 1 mg kg-1 to P25-0.95, P50-1.23, P75-1.6 1 mg kg-1) and exceeded the food safety limit (0.1 mg kg-1) of Food & Agriculture Organization (FAO) and World Health Organization (WHO) in all plant species except Pisum sativum (pea) and Mentha arvensis (mint). The risk to human health was assessed through the average daily intake (ADI), hazards quotient (HQ), health risk index (HRI) and lifetime cancer risk (LTCR). The highest average daily intake of As via the ingestion of Malva neglecta (mallow, a leafy plant) was observed for adults and children. The ADI for adults and children (2.36 × 10-4 mg kg-1 day-1 and 6.33 × 10-4 mg kg-1 day-1) was about 13% and 5%, respectively, of the Bench Mark Dose Limit (BMDL0.5) of 3.00 × 10-3 mg kg-1 day-1 set by WHO. The HRI was 3 times more in the children (2.1) than the adults (0.79), posing non-cancer health risks (health risk index > 1) for children. The LTCR values were slightly higher (1.53 × 10-4) relative to USEPA and WHO limits (1 × 10-6 to 1 × 10-4) for children whereas a minimal cancer risk was observed for adults via consumption of selected food plants. The results showed that poultry manure can contaminate food plants that may lead to cancer and non-cancer risks in agricultural areas, Pakistan. Thus, it is important to minimize As concentration in poultry feed to safeguard human health and environment from adverse effects.
Collapse
Affiliation(s)
- Juma Muhammad
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Pakistan
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ping Xu
- China National Rice Research Institute, Hangzhou, 310006, China
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Jian Qiang Su
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Tasneem Sarwar
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Shahla Nazneen
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Alamgir Khan
- Department of Forestry, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Pakistan
| |
Collapse
|
7
|
Sarker MK, Tony SR, Siddique AE, Karim MR, Haque N, Islam Z, Islam MS, Khatun M, Islam J, Hossain S, Alam Saud Z, Miyataka H, Sumi D, Barchowsky A, Himeno S, Hossain K. Arsenic Secondary Methylation Capacity Is Inversely Associated with Arsenic Exposure-Related Muscle Mass Reduction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9730. [PMID: 34574656 PMCID: PMC8472591 DOI: 10.3390/ijerph18189730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022]
Abstract
Skeletal muscle mass reduction has been implicated in insulin resistance (IR) that promotes cardiometabolic diseases. We have previously reported that arsenic exposure increases IR concomitantly with the reduction of skeletal muscle mass among individuals exposed to arsenic. The arsenic methylation capacity is linked to the susceptibility to some arsenic exposure-related diseases. However, it remains unknown whether the arsenic methylation capacity affects the arsenic-induced reduction of muscle mass and elevation of IR. Therefore, this study examined the associations between the arsenic methylation status and skeletal muscle mass measures with regard to IR by recruiting 437 participants from low- and high-arsenic exposure areas in Bangladesh. The subjects' skeletal muscle mass was estimated by their lean body mass (LBM) and serum creatinine levels. Subjects' drinking water arsenic concentrations were positively associated with total urinary arsenic concentrations and the percentages of MMA, as well as inversely associated with the percentages of DMA and the secondary methylation index (SMI). Subjects' LBM and serum creatinine levels were positively associated with the percentage of DMA and SMI, as well as inversely associated with the percentage of MMA. HOMA-IR showed an inverse association with SMI, with a confounding effect of sex. Our results suggest that reduced secondary methylation capacity is involved in the arsenic-induced skeletal muscle loss that may be implicated in arsenic-induced IR and cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Selim Reza Tony
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Abu Eabrahim Siddique
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Md. Rezaul Karim
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia 7003, Bangladesh; (M.R.K.); (M.S.I.)
| | - Nazmul Haque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Zohurul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Md. Shofikul Islam
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia 7003, Bangladesh; (M.R.K.); (M.S.I.)
| | - Moriom Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Jahidul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| | - Hideki Miyataka
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; (H.M.); (D.S.); (S.H.)
| | - Daigo Sumi
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; (H.M.); (D.S.); (S.H.)
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; (H.M.); (D.S.); (S.H.)
- Division of Health Chemistry, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.R.T.); (A.E.S.); (N.H.); (Z.I.); (M.K.); (J.I.); (S.H.); (Z.A.S.)
| |
Collapse
|
8
|
Bustaffa E, Gorini F, Bianchi F, Minichilli F. Factors Affecting Arsenic Methylation in Contaminated Italian Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145226. [PMID: 32698366 PMCID: PMC7399830 DOI: 10.3390/ijerph17145226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/01/2023]
Abstract
Chronic arsenic (As) exposure is a critical public health issue. The As metabolism can be influenced by many factors. The objective of this study is to verify if these factors influence As metabolism in four Italian areas affected by As pollution. Descriptive analyses were conducted on 271 subjects aged 20-49 in order to assess the effect of each factor considered on As methylation. Percentages of metabolites of As in urine, primary and secondary methylation indexes were calculated as indicators for metabolic capacity. The results indicate that women have a better methylation capacity (MC) than men, and drinking As-contaminated water from public aqueducts is associated with poorer MC, especially in areas with natural As pollution. In areas with anthropogenic As pollution occupational exposure is associated with a higher MC while smoking with a poorer MC. Dietary habits and genetic characteristics are probably implicated in As metabolism. BMI, alcohol consumption and polymorphism of the AS3MT gene seem not to influence As MC. Arsenic metabolism may be affected by various factors and in order to achieve a comprehensive risk assessment of As-associated disease, it is crucial to understand how these factors contribute to differences in As metabolism.
Collapse
|
9
|
González-Martínez F, Sánchez-Rodas D, Varela NM, Sandoval CA, Quiñones LA, Johnson-Restrepo B. As3MT and GST Polymorphisms Influencing Arsenic Metabolism in Human Exposure to Drinking Groundwater. Int J Mol Sci 2020; 21:ijms21144832. [PMID: 32650499 PMCID: PMC7402318 DOI: 10.3390/ijms21144832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 01/28/2023] Open
Abstract
The urinary arsenic metabolites may vary among individuals and the genetic factors have been reported to explain part of the variation. We assessed the influence of polymorphic variants of Arsenic-3-methyl-transferase and Glutathione-S-transferase on urinary arsenic metabolites. Twenty-two groundwater wells for human consumption from municipalities of Colombia were analyzed for assessed the exposure by lifetime average daily dose (LADD) (µg/kg bw/day). Surveys on 151 participants aged between 18 and 81 years old were applied to collect demographic information and other factors. In addition, genetic polymorphisms (GSTO2-rs156697, GSTP1-rs1695, As3MT-rs3740400, GSTT1 and GSTM1) were evaluated by real time and/or conventional PCR. Arsenic metabolites: AsIII, AsV, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) were measured using HPLC-HG-AFS. The influence of polymorphic variants, LADD and other factors were tested using multivariate analyses. The median of total arsenic concentration in groundwater was of 33.3 μg/L and the median of LADD for the high exposure dose was 0.33 µg/kg bw/day. Univariate analyses among arsenic metabolites and genetic polymorphisms showed MMA concentrations higher in heterozygous and/or homozygous genotypes of As3MT compared to the wild-type genotype. Besides, DMA concentrations were lower in heterozygous and/or homozygous genotypes of GSTP1 compared to the wild-type genotype. Both DMA and MMA concentrations were higher in GSTM1-null genotypes compared to the active genotype. Multivariate analyses showed statistically significant association among interactions gene-gene and gene-covariates to modify the MMA and DMA excretion. Interactions between polymorphic variants As3MT*GSTM1 and GSTO2*GSTP1 could be potential modifiers of urinary excretion of arsenic and covariates as age, LADD, and alcohol consumption contribute to largely vary the arsenic individual metabolic capacity in exposed people.
Collapse
Affiliation(s)
- Farith González-Martínez
- Environmental Chemistry Research Group and Public Health Research Group, University of Cartagena, Cartagena 130015, Colombia;
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain;
| | - Daniel Sánchez-Rodas
- Center for Research in Sustainable Chemistry, CIQSO, University of Huelva, 21071 Huelva, Spain;
| | - Nelson M. Varela
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain;
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8320000, Chile;
| | - Christopher A. Sandoval
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8320000, Chile;
| | - Luis A. Quiñones
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain;
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8320000, Chile;
- Correspondence: (L.A.Q.); (B.J.-R.); Tel.: +56-2-297-707-4144 (L.A.Q.); +57-301-363-5979 (B.J.-R.)
| | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group and Public Health Research Group, University of Cartagena, Cartagena 130015, Colombia;
- Correspondence: (L.A.Q.); (B.J.-R.); Tel.: +56-2-297-707-4144 (L.A.Q.); +57-301-363-5979 (B.J.-R.)
| |
Collapse
|
10
|
Di Giovanni P, Di Martino G, Scampoli P, Cedrone F, Meo F, Lucisano G, Romano F, Staniscia T. Arsenic Exposure and Risk of Urothelial Cancer: Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093105. [PMID: 32365627 PMCID: PMC7246722 DOI: 10.3390/ijerph17093105] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Abstract
Background: Arsenic is a toxic metalloid element widely distributed throughout the environment. Arsenic contaminated water has become an ongoing public health issue affecting hundred million people worldwide. The aim of this paper was to summarize the evidence in the association between arsenic metabolites and urinary tract cancer risk. Methods: A systematic review was conducted searching for observational studies that evaluated the association of arsenic metabolites and urinary tract cancer. Risk estimates from individual studies were pooled by using random effects models. Results: All the metabolites considered in this study resulted to be significantly associated to urothelial cancer, respectively: IA% 3.51 (1.21-5.82) (p = 0.003), MMA with WMD = 2.77 (1.67-3.87) (p < 0.001) and DMA with WMD = -4.56 (-7.91-1.22) (p = 0.008). Conclusions: Arsenic metabolites are significantly associated to urothelial cancer. Future studies will help to verify the independent association(s) between arsenic metabolites and urothelial cancer.
Collapse
Affiliation(s)
- Pamela Di Giovanni
- Department of Pharmacy, “G. d’Annunzio” University Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Giuseppe Di Martino
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
- Correspondence: ; Tel.: +3908713554118
| | - Piera Scampoli
- School of Hygiene and Preventive Medicine, “G. d’Annunzio” University Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.S.); (F.C.); (F.M.)
| | - Fabrizio Cedrone
- School of Hygiene and Preventive Medicine, “G. d’Annunzio” University Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.S.); (F.C.); (F.M.)
| | - Francesca Meo
- School of Hygiene and Preventive Medicine, “G. d’Annunzio” University Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.S.); (F.C.); (F.M.)
| | - Giuseppe Lucisano
- Centre for Outcomes Research and Clinical Epidemiology (CORESEARCH), Via Tiziano Veciello, 65100 Pescara, Italy;
| | - Ferdinando Romano
- Department of Public Health and Infectious Diseases, “La Sapienza” University of Rome, P.zza Aldo Moro 5, 00100 Rome, Italy;
| | - Tommaso Staniscia
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| |
Collapse
|
11
|
Ma L, Liang B, Yang Y, Chen L, Liu Q, Zhang A. hOGG1 promoter methylation, hOGG1 genetic variants and their interactions for risk of coal-borne arsenicosis: A case-control study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103330. [PMID: 32004920 DOI: 10.1016/j.etap.2020.103330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
To identify the effect of hOGG1 methylation, Ser326Cys polymorphism and their interactions on the risk of coal-borne arsenicosis, 113 coal-borne arsenicosis subjects and 55 reference subjects were recruited. Urinary arsenic contents were analyzed with ICP-MS. hOGG1 methylation and Ser326Cys polymorphism was measured by mehtylation-specific PCR and restriction fragment length polymorphism PCR in PBLCs, respectively. The results showed that the prevalence of methylated hOGG1 and variation genotype (326 Ser/Cys & 326 Cys/Cys) were increased with raised levels of urinary arsenic in arsenicosis subjects. Increased prevalence of methylated hOGG1 and variation genotype were associated with raised risk of arsenicosis. Moreover, the results revealed that variant genotype might increase the susceptibility to hOGG1 methylation. The interactions of methylated hOGG1 and variation genotype were also found to contribute to increased risk of arsenicosis. Taken together, hOGG1 hypermethylation, hOGG1 variants and their interactions might be potential biomarkers for evaluating risk of coal-borne arsenicosis.
Collapse
Affiliation(s)
- Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Bing Liang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Yuan Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Liyuan Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China.
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| |
Collapse
|
12
|
Chung CJ, Lee HL, Chang CH, Chang H, Liu CS, Jung WT, Liu HJ, Liou SH, Chung MC, Hsueh YM. Measurement of urinary arsenic profiles and DNA hypomethylation in a case-control study of urothelial carcinoma. Arch Toxicol 2019; 93:2155-2164. [PMID: 31363818 DOI: 10.1007/s00204-019-02500-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022]
Abstract
Environmental exposure to arsenic may be involved in the disturbance of DNA hypomethylation. The aim of this study is the first to explore the effect of interactions of urinary total arsenic levels, arsenic methylation capacity, 8-hydroxy-2'-deoxyguanosine (8-OHdG), plasma folate, and global 5-methyl-2'-deoxycytidine (5-MedC) levels on the risk of urothelial carcinoma (UC). A hospital-based case-control study was constructed. The research involved the histological recruitment and pathological verification of 178 UC patients and 356 age-/sex-matched controls without prior history of cancer. Arsenic species were determined by high-performance liquid chromatography (HPLC)-hydride generation and atomic absorption. 5-MedC levels were detected by HPLC and triple-quadrupole mass spectrometry (MS). 8-OHdG was processed by an online solid-phase extraction LC-MS/MS. Plasma folate levels were measured using the chemiluminescent technology. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by multiple logistic regression analysis. Results indicate that the high levels of total urinary arsenic, inorganic arsenic percentage, and 8-OHdG and the low levels of DMA % and plasma folate were independent factors of UC. In addition, global 5-MedC levels in the first quartile versus fifth quartile significantly increased the twofold OR of UC after potential factors were adjusted (95% CI:1.10-4.03). The interaction of 5-MedC level and high total arsenic level, insufficient arsenic capacity, high 8-OHdG, and low folate levels was insignificant. Results of stepwise logistic regression analysis indicate that high total urinary arsenic levels (Q3 versus Q1), low plasma folate level, and low global 5-MedC (Q4 versus Q5) significantly increased the ORs of UC. The above results suggest that high total arsenic, low plasma folate, and 5-MedC levels affect the ORs of UC independently.
Collapse
Affiliation(s)
- Chi-Jung Chung
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chao-Hsiang Chang
- Department of Urology, China Medical University and Hospital, Taichung, Taiwan
| | - Han Chang
- Department of Pathology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chiu-Shong Liu
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Ting Jung
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Huei-Ju Liu
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Saou-Hsing Liou
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Mu-Chi Chung
- Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan. .,Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei, 110, Taiwan.
| |
Collapse
|
13
|
Sinha D, Prasad P. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J Appl Toxicol 2019; 40:87-131. [PMID: 31273810 DOI: 10.1002/jat.3823] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Groundwater arsenic (As) contamination is a global public health concern. The high level of As exposure (100-1000 μg/L or even higher) through groundwater has been frequently associated with serious public health hazards, e.g., skin disorders, cardiovascular diseases, respiratory problems, complications of gastrointestinal tract, liver and splenic ailments, kidney and bladder disorders, reproductive failure, neurotoxicity and cancer. However, reviews on low-level As exposure and the imperative health effects are far less documented. The World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA) has set the permissible standard of As in drinking water at 10 μg/L. Considering the WHO and USEPA guidelines, most of the developed countries have established standards at or below this guideline. Worldwide many countries including India have millions of aquifers with low-level As contamination (≤50 μg/L). The exposed population of these areas might not show any As-related skin lesions (hallmark of As toxicity particularly in a population consuming As contaminated groundwater >300 μg/L) but might be subclinically affected. This review has attempted to encompass the wide range of health effects associated with chronic low-level As exposure ≤50 μg/L and the probable mechanisms that might provide a better insight regarding the underlying cause of these clinical manifestations. Therefore, there is an urgent need to create mass awareness about the health effects of chronic low-level As exposure and planning of proper mitigation strategies.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Priyanka Prasad
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
14
|
Chou CY, Shu KH, Chen HC, Wang MC, Chang CC, Hsu BG, Chen TW, Chen CL, Huang CC. Development and validation of a nomogram for urothelial cancer in patients with chronic kidney disease. Sci Rep 2019; 9:3473. [PMID: 30837585 PMCID: PMC6401318 DOI: 10.1038/s41598-019-40276-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
Urothelial cancer (UC) is a common kidney cancer in Taiwan and patients with chronic kidney disease (CKD) are more at risk for UC than the general population. The diagnostic value of urine analysis and urine cytology is limited, especially in CKD patients. The aim of the study is to develop a nomogram to predict the risk of UC in CKD patients. We enrolled 169 UC patients and 1383 CKD patients from 9 hospitals in Taiwan between 2012 and 2015. CA125, HE4, clinical characteristics, and medical history were analyzed using multivariable logistic regression for its association with UC. A nomogram was developed to predict the risk of UC and was validated using Bootstrap. CA125 was associated with UC in CKD patients (OR: 5.91, 95% CI: 3.24–10.77) but HE4 was not (OR: 1.29, 95% CI: 0.67–2.35). A nomogram based on patients’ age, estimated glomerular filtration rate, CA125 (log transformed), smoking, exposure of environmental toxin, use of nonsteroid anti-inflammatory drugs, and use of traditional Chinese medicine was conducted. The AUC of the nomogram was 0.90 (95% CI: 0.86–0.92, p < 0.01). Serum CA125 may identify UC patients from CKD patients but has limited diagnostic value due to low sensitivity. The diagnostic value of serum CA125 level can be improved by the combination with clinical characteristics including age, renal function, and medical history.
Collapse
Affiliation(s)
- Che-Yi Chou
- Division of Nephrology and Kidney Institute, China Medical University and Hospitals, Taichung, Taiwan.,Division of Nephrology, Asia University Hospital, Taichung, Taiwan.,Department of Post-baccalaureate Veterinary Medicine, Asia University, Taichung, Taiwan
| | - Kuo-Hsiung Shu
- Division of Nephrology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hung-Chun Chen
- Division of Nephrology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Chang Wang
- Division of Nephrology, Cheng Kung University Hospital, Tainan, Taiwan
| | - Chia-Chu Chang
- Division of Nephrology, Changhua Christian Hospital, Changhua, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Tzen-Wen Chen
- Division of Nephrology, Taipei Medical University, Taipei, Taiwan
| | | | - Chiu-Ching Huang
- Division of Nephrology and Kidney Institute, Department of Internal Medicine, China Medical University and Hospital, Taichung, Taiwan.
| |
Collapse
|
15
|
González-Martínez F, Sánchez-Rodas D, Cáceres DD, Martínez MF, Quiñones LA, Johnson-Restrepo B. Arsenic exposure, profiles of urinary arsenic species, and polymorphism effects of glutathione-s-transferase and metallothioneins. CHEMOSPHERE 2018; 212:927-936. [PMID: 30286549 DOI: 10.1016/j.chemosphere.2018.08.139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
This study assessed the effects of polymorphic variants of gutathione-S-transferase and metallothioneins on profiles of urinary arsenic species. Drinking groundwater from Margarita and San Fernando, Colombia were analyzed and the lifetime average daily dose (LADD) of arsenic was determined. Specific surveys were applied to collect demographic information and other exposure factors. In addition, GSTT1-null, GSTM1-null, GSTP1-rs1695 and MT-2A-rs28366003 genetic polymorphisms were evaluated, either by direct PCR or PCR-RFLP. Urinary speciated arsenic concentrations were determined by HPLC-HG-AFS for species such as AsIII, AsV, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and total urinary As (TuAs). Primary methylation index (PMI) and secondary methylation index (SMI) were also calculated as indicators of the metabolic capacity. Polymorphisms effects were tested using multivariate analysis, adjusted by potential confounders. The As concentrations in groundwater were on average 34.6 ± 24.7 μg/L greater than the WHO guideline for As (10 μg/L). There was a correlation between As concentrations in groundwater and TuAs (r = 0.59; p = 0.000). Urinary inorganic arsenic (%InAs) was associated with GSTP1, LADD, GSTP1*Age, GSTP1*alcohol consumption (r2 = 0.43; likelihood-ratio test, p = 0.000). PMI was associated with sex (r2 = 0.20; likelihood-ratio test, p = 0.007). GSTP1 (AG + GG) homozygotes/heterozygotes could increase urinary %InAs and decrease the PMI ratio in people exposed to low and high As from drinking groundwater. Therefore, the explanatory models showed the participation of some covariates that could influence the effects of the polymorphisms on these exposure biomarkers to As.
Collapse
Affiliation(s)
- Farith González-Martínez
- Public Health Research Group, School of Dentistry, Campus of Zaragocilla, University of Cartagena, Cartagena 130015, Colombia; Environmental Chemistry Research Group, School of Exact and Natural Sciences, Campus of San Pablo, University of Cartagena, Cartagena 130015, Colombia
| | - Daniel Sánchez-Rodas
- Center for Research in Sustainable Chemistry, CIQSO, University of Huelva, Huelva 21071, Spain
| | - Dante D Cáceres
- Institute of Population Health, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Matías F Martínez
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Quiñones
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, Campus of San Pablo, University of Cartagena, Cartagena 130015, Colombia.
| |
Collapse
|
16
|
Szymańska B, Sawicka E, Guzik A, Zdrojowy R, Długosz A. The Diagnostic Value of Nuclear Matrix Proteins in Bladder Cancer in the Aspect of Environmental Risk from Carcinogens. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9643139. [PMID: 28929116 PMCID: PMC5591903 DOI: 10.1155/2017/9643139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/14/2017] [Accepted: 07/03/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND The interaction of environmental factors with genetic susceptibility and detoxification level seems to be an important causative factor in bladder cancer (BC). The aim of this study was to look for a BC marker panel which reflects the environmental risk. The nuclear matrix protein 22 (NMP22), bladder cancer-4 (BLCA-4), and total level proteins NMP22 and BLCA-4 (NMBL) in BC patients with genetic predisposition NAT2 (classified as slow acetylators, SA), DNA damage (8-OHdG), and detoxification by isoenzyme GSTπ activity were measured. MATERIALS AND METHODS The urine and blood from 91 BC patients and controls were examined, also according to tumor stage (T) and grade (G). The participants completed a questionnaire in order to evaluate environmental risk. RESULTS Most patients (75.3%) were previous or actual smokers. The levels of 8-OHdG, NMP22, BLCA-4, NMBL, and GSTπ were significantly higher in BC (p ≤ 0.001). The majority of patients (59.3%) were slow acetylators (SA). The highest BLCA-4/8-OHdG correlation was observed in total BC and SA smokers. CONCLUSIONS The total pool of nuclear matrix proteins in the urine (NMBL) has a higher diagnostic value in bladder cancer than single proteins. The particular value of BLCA-4 and GSTπ in the aspect of environmental risk was noted.
Collapse
Affiliation(s)
- Beata Szymańska
- Department of Toxicology, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| | - Ewa Sawicka
- Department of Toxicology, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| | - Anna Guzik
- Department of Toxicology, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| | - Romuald Zdrojowy
- Department of Urology and Urological Oncology, Wrocław University Hospital, Wrocław, Poland
| | - Anna Długosz
- Department of Toxicology, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
17
|
Kuo CC, Moon KA, Wang SL, Silbergeld E, Navas-Acien A. The Association of Arsenic Metabolism with Cancer, Cardiovascular Disease, and Diabetes: A Systematic Review of the Epidemiological Evidence. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:087001. [PMID: 28796632 PMCID: PMC5880251 DOI: 10.1289/ehp577] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The available evidence on the role of arsenic metabolism in individual susceptibility to the development of cancer, cardiovascular disease, and diabetes has not been formally and comprehensively reviewed. OBJECTIVES Our goal was to systematically investigate the association of arsenic metabolism with cancer, cardiovascular disease, and diabetes-related outcomes in epidemiologic studies. As a secondary objective, we characterized the variation of arsenic metabolism in different populations worldwide. METHODS We searched Medline/PubMed and EMBASE from inception to January 2016 and applied predetermined exclusion criteria. Compositional data analysis was used to describe the distribution of arsenic metabolism biomarkers and evaluate the association between arsenic exposure and metabolism. RESULTS Twenty-eight studies met the inclusion criteria, 12 on cancer, nine on cardiovascular disease, and seven on diabetes-related outcomes. The median (interquartile range) for mean iAs%, MMA%, and DMA% was 11.2 (7.8-14.9)%, 13.0 (10.4-13.6)%, and 74.9 (69.8-80.0)%, respectively. Findings across studies suggested that higher arsenic exposure levels were associated with higher iAs% and lower DMA% and not associated with MMA%. For cancer, most studies found a pattern of higher MMA% and lower DMA% associated with higher risk of all-site, urothelial, lung, and skin cancers. For cardiovascular disease, higher MMA% was generally associated with higher risk of carotid atherosclerosis and clinical cardiovascular disease but not with hypertension. For diabetes-related outcomes, the pattern of lower MMA% and higher DMA% was associated with higher risk of metabolic syndrome and diabetes. CONCLUSIONS Population level of iAs% and DMA%, but not MMA%, were associated with arsenic exposure levels. Overall, study findings suggest that higher MMA% was associated with an increased risk of cancer and cardiovascular disease, while lower MMA% was associated with an increased risk of diabetes and metabolic syndrome. Additional population-based studies and experimental studies are needed to further evaluate and understand the role of arsenic exposure in arsenic metabolism and the role of arsenic metabolism in disease development. https://doi.org/10.1289/EHP577.
Collapse
Affiliation(s)
- Chin-Chi Kuo
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland, USA
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions , Baltimore, Maryland, USA
- Kidney Institute and Big Data Center, China Medical University Hospital and College of Medicine, China Medical University , Taichung, Taiwan
| | - Katherine A Moon
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland, USA
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions , Baltimore, Maryland, USA
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes , Miaoli, Taiwan
| | - Ellen Silbergeld
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland, USA
| | - Ana Navas-Acien
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland, USA
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions , Baltimore, Maryland, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health , New York, New York, USA
| |
Collapse
|
18
|
Gamboa-Loira B, Cebrián ME, Franco-Marina F, López-Carrillo L. Arsenic metabolism and cancer risk: A meta-analysis. ENVIRONMENTAL RESEARCH 2017; 156:551-558. [PMID: 28433864 DOI: 10.1016/j.envres.2017.04.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/24/2017] [Accepted: 04/14/2017] [Indexed: 05/19/2023]
Abstract
OBJECTIVE To describe the studies that have reported association measures between risk of cancer and the percentage distribution of urinary inorganic arsenic (iAs) metabolites by anatomical site, in non-ecological epidemiological studies. METHODS Studies were identified in the PubMed database in the period from 1990 to 2015. Inclusion criteria were: non-ecological epidemiological study, with histologically confirmed cancer cases, reporting the percentage distribution of inorganic arsenic (iAs), monomethylated (MMA) and dimethylated (DMA) metabolites, as well as association measures with confidence intervals (CI) between cancer and %iAs and/or %MMA and/or %DMA. A descriptive meta-analysis was performed by the method of the inverse of the variance for the fixed effects model and the DerSimonian and Laird's method for the random effects model. Heterogeneity was tested using the Q statistic and stratifying for epidemiological design and total As in urine. The possibility of publication bias was assessed through Begg's test. RESULTS A total of 13 eligible studies were found, most of them were performed in Taiwan and focused on skin and bladder cancer. The positive association between %MMA and various types of cancer was consistent, in contrast to the negative relationship between %DMA and cancer that was inconsistent. The summary risk of bladder (OR=1.79; 95% CI: 1.42, 2.26, n=4 studies) and lung (OR=2.44; 95% CI: 1.57, 3.80, n=2 studies) cancer increased significantly with increasing %MMA, without statistical heterogeneity. In contrast, lung cancer risk was inversely related to %DMA (OR=0.58; 95% CI: 0.36, 0.93, n=2 studies), also without significant heterogeneity. These results were similar after stratifying by epidemiological design and total As in urine. No evidence of publication bias was found. CONCLUSION These findings provide additional support that methylation needs to be taken into account when assessing the potential iAs carcinogenicity risk.
Collapse
Affiliation(s)
- Brenda Gamboa-Loira
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100 Cuernavaca, Morelos, Mexico.
| | - Mariano E Cebrián
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Del. Gustavo A. Madero, C.P. 07360 D.F., Mexico.
| | - Francisco Franco-Marina
- Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Col. Sección XVI, C.P. 14080 Tlalpan, D.F., Mexico.
| | - Lizbeth López-Carrillo
- Instituto Nacional de Salud Pública, Av. Universidad 655, Col. Santa María Ahuacatitlán, C.P. 62100 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
19
|
Chung JY, Kim BG, Lee BK, Moon JD, Sakong J, Jeon MJ, Park JD, Choi BS, Kim NS, Yu SD, Seo JW, Ye BJ, Lim HJ, Hong YS. Urinary arsenic species concentration in residents living near abandoned metal mines in South Korea. Ann Occup Environ Med 2016; 28:67. [PMID: 27895924 PMCID: PMC5120503 DOI: 10.1186/s40557-016-0150-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arsenic is a carcinogenic heavy metal that has a species-dependent health effects and abandoned metal mines are a source of significant arsenic exposure. Therefore, the aims of this study were to analyze urinary arsenic species and their concentration in residents living near abandoned metal mines and to monitor the environmental health effects of abandoned metal mines in Korea. METHODS This study was performed in 2014 to assess urinary arsenic excretion patterns of residents living near abandoned metal mines in South Korea. Demographic data such as gender, age, mine working history, period of residency, dietary patterns, smoking and alcohol use, and type of potable water consumed were obtaining using a questionnaire. Informed consent was also obtained from all study subjects (n = 119). Urinary arsenic species were quantified using high performance liquid chromatography (HPLC) and inductively coupled plasma mass spectrometry (ICP/MS). RESULTS The geometric mean of urinary arsenic (sum of dimethylarsinic acid, monomethylarsonic acid, As3+, and As5+) concentration was determined to be 131.98 μg/L (geometric mean; 95% CI, 116.72-149.23) while urinary inorganic arsenic (As3+ and As5+) concentration was 0.81 μg/L (95% CI, 0.53-1.23). 66.3% (n = 79) and 21.8% (n = 26) of these samples exceeded ATSDR reference values for urinary arsenic (>100 μg/L) and inorganic arsenic (>10 μg/L), respectively. Mean urinary arsenic concentrations (geometric mean, GM) were higher in women then in men, and increased with age. Of the five regions evaluated, while four regions had inorganic arsenic concentrations less than 0.40 μg/L, one region showed a significantly higher concentration (GM 15.48 μg/L; 95% CI, 7.51-31.91) which investigates further studies to identify etiological factors. CONCLUSION We propose that the observed elevation in urinary arsenic concentration in residents living near abandoned metal mines may be due to environmental contamination from the abandoned metal mine. TRIAL REGISTRATION Not Applicable (We do not have health care intervention on human participants).
Collapse
Affiliation(s)
- Jin-Yong Chung
- Heavy Metal Exposure Environmental Health Center, Dong-A University, Busan, Korea
| | - Byoung-Gwon Kim
- Heavy Metal Exposure Environmental Health Center, Dong-A University, Busan, Korea ; Department of Preventive Medicine, College of Medicine, Dong-A University, 26, Daesingongwon-ro, Seo-gu, Busan, Korea
| | | | - Jai-Dong Moon
- Department of Preventive and Occupational Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Joon Sakong
- Department of Preventive Medicine, College of Medicine, Yeungnam University, Daegu, Korea
| | - Man Joong Jeon
- Department of Preventive Medicine, College of Medicine, Yeungnam University, Daegu, Korea
| | - Jung-Duck Park
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Byung-Sun Choi
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Nam-Soo Kim
- Institute of Environmental and Occupational Medicine, College of Medicine, Soonchunhyang University, Asan, Chungnam Korea
| | - Seung-Do Yu
- National Institute of Environmental Research, Incheon, Korea
| | - Jung-Wook Seo
- Heavy Metal Exposure Environmental Health Center, Dong-A University, Busan, Korea
| | - Byeong-Jin Ye
- Heavy Metal Exposure Environmental Health Center, Dong-A University, Busan, Korea ; Department of Occupational and Environmental Medicine, Dong-A University Hospital, Busan, Korea
| | - Hyoun-Ju Lim
- Heavy Metal Exposure Environmental Health Center, Dong-A University, Busan, Korea
| | - Young-Seoub Hong
- Heavy Metal Exposure Environmental Health Center, Dong-A University, Busan, Korea ; Department of Preventive Medicine, College of Medicine, Dong-A University, 26, Daesingongwon-ro, Seo-gu, Busan, Korea
| |
Collapse
|
20
|
Recio-Vega R, González-Cortes T, Olivas-Calderón E, Lantz RC, Gandolfi AJ, Michel-Ramirez G. Association between polymorphisms in arsenic metabolism genes and urinary arsenic methylation profiles in girls and boys chronically exposed to arsenic. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:516-25. [PMID: 27327299 PMCID: PMC4980171 DOI: 10.1002/em.22026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 06/06/2023]
Abstract
Disease manifestations or susceptibilities often differ among individuals exposed to the same concentrations of arsenic (As). These differences have been associated with several factors including As metabolism, sex, age, genetic variants, nutritional status, smoking, and others. This study evaluated the associations between four As metabolism-related gene polymorphisms/null genotypes with urinary As methylation profiles in girls and boys chronically exposed to As. In a total of 332 children aged 6-12 years, the frequency of AS3MT, GSTO1, GSTT1, and GSTM1 polymorphisms/null genotypes and As urinary metabolites were measured. The results revealed that total As and monomethyl metabolites of As (MMA) levels were higher in boys than in girls. No differences in the frequency of the evaluated polymorphisms were found between girls and boys. In AS3MT-Met287Thr carriers, %MMA levels were higher and second methylation levels (defined as dimethylarsinic acid divided by MMA) were lower. In children with the GSTM1 null genotype, second methylation levels were higher. In boys, a positive association between the AS3MT-Met287Thr polymorphism with %MMA and between the GSTO1-Glu155del and As(v) was found; whereas, a negative relationship was identified between AS3MT-Met287Thr and second methylation profiles. In girls, a positive association was found between the GSTO1-Ala140Asp polymorphism with second methylation levels. In conclusion, our data indicate that gender, high As exposure levels, and polymorphisms in the evaluated genes negatively influenced As metabolism. Environ. Mol. Mutagen. 57:516-525, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rogelio Recio-Vega
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - Tania González-Cortes
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - Edgar Olivas-Calderón
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
- School of Chemical Sciences, University Juarez of Durango, Gomez Palacio, Durango, México
| | - R. Clark Lantz
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, United States of America
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - A. Jay Gandolfi
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, United States of America
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States of America
| | - Gladis Michel-Ramirez
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| |
Collapse
|
21
|
Arsenic Exposure and Immunotoxicity: a Review Including the Possible Influence of Age and Sex. Curr Environ Health Rep 2016; 3:1-12. [DOI: 10.1007/s40572-016-0082-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Ellegaard PK, Poulsen HE. Tobacco smoking and oxidative stress to DNA: a meta-analysis of studies using chromatographic and immunological methods. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 76:151-8. [PMID: 26767849 DOI: 10.3109/00365513.2015.1127407] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxidative stress to DNA from smoking was investigated in one randomized smoking cessation study and in 36 cohort studies from excretion of urinary 8-oxo-7-hydrodeoxyguanosine (8-oxodG). Meta-analysis of the 36 cohort studies showed smoking associated with a 15.7% (95% CL 11.0:20.3, p < 0.0001) increased oxidative stress to DNA, in agreement with the reduction of oxidative stress to DNA found in the smoking cessation study. Meta-analysis of the 22 studies that used chromatography methodology on 1709 persons showed a significant 29.3% increase in smokers (95% CL 17.3;41.3), but meta-analysis of 14 studies on 3668 persons using ELISA methodology showed a non-significant effect of 8.7% [95% CL -1.2;18.6]. Tobacco smoke induces oxidative damage to DNA; however, this is not detected with ELISA methodology. Currently, the use of existing ELISA methodology to measure urinary excretion of 8-oxo-7-hydrodeoxyguanosine cannot be recommended.
Collapse
Affiliation(s)
| | - Henrik E Poulsen
- b Department of Clinical Pharmacology , Bispebjerg Hospital , Copenhagen N , Denmark ;,c Laboratory of Clinical Pharmacology , Rigshospitalet , Copenhagen , Denmark ;,d Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
23
|
Huang YC, Yu HS, Chai CY. Roles of oxidative stress and the ERK1/2, PTEN and p70S6K signaling pathways in arsenite-induced autophagy. Toxicol Lett 2015; 239:172-81. [PMID: 26432159 DOI: 10.1016/j.toxlet.2015.09.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/25/2015] [Accepted: 09/27/2015] [Indexed: 12/19/2022]
Abstract
Studies show that arsenite induces oxidative stress and modifies cellular function via phosphorylation of proteins and inhibition of DNA repair enzymes. Autophagy, which has multiple physiological and pathological roles in cellular function, is initiated by oxidative stress and is regulated by the signaling pathways of phosphatidylinositol 3-phosphate kinase (PI3K)/mammalian target of rapamycin (mTOR)/p70S6 kinase (p70S6K) and extracellular signaling-regulated protein kinase 1/2 (ERK1/2) that play important roles in oncogenesis. However, the effects of arsenite-induced oxidative stress on autophagy and on expression of related proteins are not fully understood. This study found that cells treated with sodium arsenite had reduced 8-oxoguanine DNA glycosylase 1 (OGG1) and increased 8-hydroxy-2'-deoxyguanosine (8-OHdG) and activating transcription factor (ATF) 3 in SV-40 immortalized human uroepithelial (SV-HUC-1) cells. Arsenite also increased the number of autophagosomes and increased levels of the autophagy markers Beclin-1 and microtubule-associated protein 1 light chain 3B. Reactive oxygen species scavenger decreased arsenite-induced autophagy in SV-HUC-1 cells. Our previous work showed that arsenite induced phosphorylation of the ERK1/2 signaling pathway. The current study further showed that arsenite decreased phosphatase and tensin homologue (PTEN) levels and increased phospho-p70S6 kinase (p-p70S6K) in SV-HUC-1 cells. However, both kinase inhibitor U0126 and the DNA (cytosine-5-)-methyltransferase 1 (DNMT1) inhibitor 5-aza-deoxycytidine abolished the effect of arsenite on expressions of PTEN and p-p70S6K. These results show that autophagy induced by arsenite exposure is mediated by oxidative stress, which regulates activation of the PTEN, p70S6K and ERK1/2 signaling pathways. Thus, this study clarifies the role of autophagy in arsenite-induced urothelial carcinogenesis.
Collapse
Affiliation(s)
- Ya-Chun Huang
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
24
|
Huang CY, Pu YS, Shiue HS, Chen WJ, Lin YC, Hsueh YM. Polymorphisms of human 8-oxoguanine DNA glycosylase 1 and 8-hydroxydeoxyguanosine increase susceptibility to arsenic methylation capacity-related urothelial carcinoma. Arch Toxicol 2015; 90:1917-27. [PMID: 26359225 DOI: 10.1007/s00204-015-1590-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/31/2015] [Indexed: 01/15/2023]
Abstract
Arsenic causes oxidative stress in cultured animal and human cells, and it is a well-documented human carcinogen. We conducted a hospital-based case-control study including 167 cases of urothelial carcinoma (UC) and 334 age- and gender-matched healthy controls to evaluate the relationships between urinary arsenic profiles, urinary 8-hydroxydeoxyguanosine (8-OHdG) levels, and human 8-oxoguanine DNA glycosylase (hOGG1) genotypes and UC. The urinary arsenic species were analyzed by high-performance liquid chromatography and hydride generator-atomic absorption spectrometry. Genotyping for hOGG1 (Ser326Cys) and hOGG1 (-15C>G) was performed using the Sequenom MassARRAY platform with iPLEX Gold chemistry. Urinary 8-OHdG was measured with high-sensitivity enzyme-linked immunosorbent assay kits. The results indicated that the hOGG1 326 Cys/Cys genotype and the hOGG1 -15C>G G/G genotype were associated with an increased risk of UC (OR [95 % CI] 1.57 [1.04-2.35] and 1.57 [1.04-2.35], respectively). Participants with high urinary total arsenic, regardless of the haplotype of hOGG1 Ser326Cys and the -15C>G polymorphism, had significantly higher urinary 8-OHdG compared to participants with low urinary total arsenic. This is the first study to investigate the joint effects of high urinary total arsenic or inefficient arsenic methylation capacity indices, and the high-risk G-G haplotype of hOGG1 on the risk of UC. The findings are especially meaningful for participants with risk factors such as high urinary total arsenic, inefficient arsenic methylation indices, high urinary 8-OHdG, and the high-risk G-G haplotype of hOGG1 which are all associated with an increased UC risk.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wei-Jen Chen
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shung Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Family Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Mei Hsueh
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan. .,Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei 110, Taiwan.
| |
Collapse
|
25
|
XRCC1 Polymorphisms and Urinary 8-Hydroxydeoxyguanine Levels Are Associated with Urothelial Carcinoma. PLoS One 2015; 10:e0124066. [PMID: 25938407 PMCID: PMC4418762 DOI: 10.1371/journal.pone.0124066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to examine the associations between the combined effects of urinary 8-Hydroxydeoxyguanine (8-OHdG) level and polymorphisms of XRCC1 Arg194Trp and XRCC1 Arg399Gln on the risk of urothelial carcinoma (UC). We conducted a hospital-based case-control study that included 168 cases of UC and 336 age- and gender-matched healthy controls. We used polymerase chain reaction and restriction fragment length polymorphism analyses to examine the genotypes of XRCC1 Arg194Trp and XRCC1 Arg399Gln. We used a competitive in vitro enzyme-linked immunosorbent assay to determine urinary 8-OHdG levels. The XRCC1 399 Gln/Gln genotype and the XRCC1 194 Arg/Arg genotype were positively correlated to UC (OR [95%CI] = 2.27 [1.20-4.27] and 1.59 [1.06-2.36], respectively). Urinary 8-OHdG levels were associated with UC in a dose-dependent manner. Participants with the XRCC1 (Arg399Gln) Gln/Gln genotype or the G-C/A-C haplotype of XRCC1 and a high urinary 8-OHdG level had a significantly higher risk of UC than those with the Arg/Arg + Arg/Gln genotype or the G-T haplotype and a low urinary 8-OHdG level. This is the first study to investigate the combined effect of urinary 8-OHdG level and XRCC1 polymorphisms on UC risk. The findings are especially meaningful for participants with XRCC1 399Gln or XRCC1 Arg194 genotypes and a high urinary 8-OHdG level, since these variables are associated with an increased risk of UC.
Collapse
|
26
|
Chiang CI, Huang YL, Chen WJ, Shiue HS, Huang CY, Pu YS, Lin YC, Hsueh YM. XRCC1 Arg194Trp and Arg399Gln polymorphisms and arsenic methylation capacity are associated with urothelial carcinoma. Toxicol Appl Pharmacol 2014; 279:373-379. [PMID: 25018058 DOI: 10.1016/j.taap.2014.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
The association between DNA repair gene polymorphisms and bladder cancer has been widely studied. However, few studies have examined the correlation between urothelial carcinoma (UC) and arsenic or its metabolites. The aim of this study was to examine the association between polymorphisms of the DNA repair genes, XRCC1 Arg194Trp, XRCC1 Arg399Gln, XRCC3 Thr241Met, and XPD Lys751Gln, with urinary arsenic profiles and UC. To this end, we conducted a hospital-based case-control study with 324 UC patients and 647 age- and gender-matched non-cancer controls. Genomic DNA was used to examine the genotype of XRCC1 Arg194Trp, XRCC1 Arg399Gln, XRCC3 Thr241Met, and XPD Lys751Gln by PCR-restriction fragment length polymorphism analysis (PCR-RFLP). Urinary arsenic profiles were measured by high performance liquid chromatography (HPLC) linked with hydride generator and atomic absorption spectrometry. The XRCC1 399 Gln/Gln and 194 Arg/Trp and Trp/Trp genotypes were significantly related to UC, and the odds ratio (OR) and 95% confidence interval (95%CI) were 1.68 (1.03-2.75) and 0.66 (0.48-0.90), respectively. Participants with higher total urinary arsenic levels, a higher percentage of inorganic arsenic (InAs%) and a lower percentage of dimethylarsinic acid (DMA%) had a higher OR of UC. Participants carrying XRCC1 risk diplotypes G-C/G-C, A-C/A-C, and A-T/G-T, and who had higher total arsenic levels, higher InAs%, or lower DMA% compared to those with other XRCC1 diplotypes had a higher OR of UC. Our results suggest that the XRCC1 399 Gln/Gln and 194 Arg/Arg DNA repair genes play an important role in poor arsenic methylation capacity, thereby increasing the risk of UC in non-obvious arsenic exposure areas.
Collapse
Affiliation(s)
- Chien-I Chiang
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jen Chen
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shung Ho Hospital, Taipei Medical University, New Taipei, Taiwan; Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Family Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Mei Hsueh
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
27
|
Arsenic methylation capacity and developmental delay in preschool children in Taiwan. Int J Hyg Environ Health 2014; 217:678-86. [DOI: 10.1016/j.ijheh.2014.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/04/2014] [Accepted: 02/21/2014] [Indexed: 11/30/2022]
|
28
|
Saint-Jacques N, Parker L, Brown P, Dummer TJB. Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence. Environ Health 2014; 13:44. [PMID: 24889821 PMCID: PMC4088919 DOI: 10.1186/1476-069x-13-44] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 03/05/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arsenic in drinking water is a public health issue affecting hundreds of millions of people worldwide. This review summarizes 30 years of epidemiological studies on arsenic exposure in drinking water and the risk of bladder or kidney cancer, quantifying these risks using a meta-analytical framework. METHODS Forty studies met the selection criteria. Seventeen provided point estimates of arsenic concentrations in drinking water and were used in a meta-analysis of bladder cancer incidence (7 studies) and mortality (10 studies) and kidney cancer mortality (2 studies). Risk estimates for incidence and mortality were analyzed separately using Generalized Linear Models. Predicted risks for bladder cancer incidence were estimated at 10, 50 and 150 μg/L arsenic in drinking water. Bootstrap randomizations were used to assess robustness of effect size. RESULTS Twenty-eight studies observed an association between arsenic in drinking water and bladder cancer. Ten studies showed an association with kidney cancer, although of lower magnitude than that for bladder cancer. The meta-analyses showed the predicted risks for bladder cancer incidence were 2.7 [1.2-4.1]; 4.2 [2.1-6.3] and; 5.8 [2.9-8.7] for drinking water arsenic levels of 10, 50, and 150 μg/L, respectively. Bootstrapped randomizations confirmed this increased risk, but, lowering the effect size to 1.4 [0.35-4.0], 2.3 [0.59-6.4], and 3.1 [0.80-8.9]. The latter suggests that with exposures to 50 μg/L, there was an 83% probability for elevated incidence of bladder cancer; and a 74% probability for elevated mortality. For both bladder and kidney cancers, mortality rates at 150 ug/L were about 30% greater than those at 10 μg/L. CONCLUSION Arsenic in drinking water is associated with an increased risk of bladder and kidney cancers, although at lower levels (<150 μg/L), there is uncertainty due to the increased likelihood of exposure misclassification at the lower end of the exposure curve. Meta-analyses suggest exposure to 10 μg/L of arsenic in drinking water may double the risk of bladder cancer, or at the very least, increase it by about 40%. With the large number of people exposed to these arsenic concentrations worldwide the public health consequences of arsenic in drinking water are substantial.
Collapse
Affiliation(s)
- Nathalie Saint-Jacques
- Cancer Care Nova Scotia, Surveillance and Epidemiology Unit, Room 560 Bethune Building, 1276 South Street, Halifax B3H 2Y9, Nova Scotia, Canada
- Interdisciplinary PhD program, Dalhousie University, 6299 South Street, Room 314, PO Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| | - Louise Parker
- Department of Pediatrics and Population Cancer Research Program, Dalhousie University, 1494 Carlton Street, PO Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| | - Patrick Brown
- Population Studies and Surveillance, Cancer Care Ontario, 620 University Ave, Toronto M5G 2 L7 Ontario, Canada
| | - Trevor JB Dummer
- Department of Pediatrics and Population Cancer Research Program, Dalhousie University, 1494 Carlton Street, PO Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| |
Collapse
|
29
|
Oxidative DNA damage and repair in children exposed to low levels of arsenic in utero and during early childhood: Application of salivary and urinary biomarkers. Toxicol Appl Pharmacol 2013; 273:569-79. [DOI: 10.1016/j.taap.2013.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 01/07/2023]
|
30
|
Savic-Radojevic A, Djukic T, Simic T, Pljesa-Ercegovac M, Dragicevic D, Pekmezovic T, Cekerevac M, Santric V, Matic M. GSTM1-null and GSTA1-low activity genotypes are associated with enhanced oxidative damage in bladder cancer. Redox Rep 2013; 18:1-7. [PMID: 23394311 DOI: 10.1179/1351000212y.0000000031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES To examine the association between gene variants of the detoxifying and antioxidant enzymes glutathione transferase M1 (GSTM1) and glutathione transferase A1 (GSTA1) and the extent of oxidative damage in patients with transitional cell carcinoma (TCC) of the urinary bladder. METHODS GSTM1 deletion polymorphism was identified by polymerase chain reaction, and the restriction fragment length polymorphism method was used for the single nucleotide polymorphism of GSTA1. Enzyme immunoassay was used to determine markers of DNA (8-hydroxy-2′-deoxyguanosine, 8-OHdG) and lipid (8-epiprostaglandin F2α) oxidative damage in the urine of 80 TCC patients and 60 age-matched controls. RESULTS Urinary 8-OHdG and 8-epi-prostaglandin F2α concentrations in TCC patients were significantly higher than in controls (P=0.043 and 0.001, respectively). GSTM1 and GSTA1 polymorphisms influence vulnerability to both DNA and lipid oxidation, with the GSTM1-null gene variant having a more pronounced effect. A significant effect of combined GSTM1 and GSTA1 genotypes on the extent of oxidative damage was found only for 8-OHdG (P=0.018). In addition, TCC patients with the most malignant tumors exhibited significantly higher frequencies of GSTM1-null or GSTA1-low activity genotypes, associated with a twofold increase in urinary 8-OHdG concentration (P=0.044). CONCLUSIONS Our results suggest that absent GSTM1 or reduced GSTA1 antioxidant activity may increase the accumulation of oxidative DNA damage, thereby contributing to the malignant potential of TCC.
Collapse
Affiliation(s)
- Ana Savic-Radojevic
- Faculty of Medicine, Institute of Medical and Clinical Biochemistry, University of Belgrade, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wu CC, Huang YK, Chung CJ, Huang CY, Pu YS, Shiue HS, Lai LA, Lin YC, Su CT, Hsueh YM. Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma. Toxicol Appl Pharmacol 2013; 272:30-6. [PMID: 23727622 DOI: 10.1016/j.taap.2013.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/19/2013] [Accepted: 05/20/2013] [Indexed: 01/08/2023]
Abstract
Chronic exposure to arsenic can generate reactive oxidative species, which can induce certain proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8). TNF-α, IL-6 and IL-8 have been shown to be involved in the development and progression of various cancers, including bladder cancer. This study aimed to investigate the joint effect of the polymorphism of TNF-α -308 G/A, IL-6 -174 G/C, IL-8 -251 T/A and urinary arsenic profiles on urothelial carcinoma (UC) risk. This study evaluated 300 pathologically-confirmed cases of UC and 594 cancer-free controls. Urinary arsenic species were detected using high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphism of TNF-α -308 G/A, IL-6 -174 G/C and IL-8 -251 T/A was determined using polymerase chain reaction-restriction fragment length polymorphism. The joint effects on UC risk were estimated by odds ratios and 95% confidence intervals using unconditional logistic regression. We found that the TNF-α -308 A/A and IL-8 -251 T/T polymorphisms were significantly associated with UC. Moreover, significant dose-response joint effect of TNF-α -308 A/A or IL-8 -251 T/T genotypes and arsenic methylation indices were seen to affect UC risk. The present results also showed a significant increase in UC risk in subjects with the IL-8 -251 T/T genotype for each SD increase in urinary total arsenic and MMA%. In contrast, a significant decrease in UC risk was found in subjects who carried the IL-8 -251 T/T genotype for each SD increase in DMA%.
Collapse
Affiliation(s)
- Chia-Chang Wu
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan; Department of Urology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nizam S, Kato M, Yatsuya H, Khalequzzaman M, Ohnuma S, Naito H, Nakajima T. Differences in urinary arsenic metabolites between diabetic and non-diabetic subjects in Bangladesh. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:1006-19. [PMID: 23481591 PMCID: PMC3709300 DOI: 10.3390/ijerph10031006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/25/2013] [Accepted: 03/05/2013] [Indexed: 01/12/2023]
Abstract
Ingestion of inorganic arsenic (iAs) is considered to be related to the development of diabetes mellitus. In order to clarify the possible differences in the metabolism in diabetics, we measured urinary iAs metabolites in diabetic cases and non-diabetic control subjects in Faridpur, an arsenic-contaminated area in Bangladesh. Physician-diagnosed type 2 diabetic cases (140 persons) and non-diabetic controls (180 persons) were recruited. Drinking water and spot urine samples were collected. Mean concentrations of total arsenic in drinking water did not differ between cases (85.1 μg/L) and controls (85.8 μg/L). The percentage of urinary iAs (iAs%) was significantly lower in cases (8.6%) than in controls (10.4%), while that of dimethylarsinic acid (DMA%) was higher in cases (82.6%) than in controls (79.9%). This may have been due to the higher secondary methylation index (SMI) in the former (11.6) rather than the latter (10.0). Adjusting for matching factors (sex and unions), and the additional other covariates (age and water arsenic) significantly attenuated the differences in iAs%, SMI, and DMA%, respectively, though the difference in monomethylarsonic acid% was newly significant in the latter adjustment. Our study did not suggest any significant differences in urinary arsenic metabolites between diabetic and non-diabetic subjects.
Collapse
Affiliation(s)
- Saika Nizam
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; E-Mails: (S.N.); (M.K.); (H.N.)
| | - Masashi Kato
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi, Aichi 487-8501, Japan; E-Mails: (M.K.); (S.O.)
| | - Hiroshi Yatsuya
- Department of Public Health, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake-shi, Aichi 470-1192, Japan; E-Mail:
| | - Md. Khalequzzaman
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; E-Mails: (S.N.); (M.K.); (H.N.)
| | - Shoko Ohnuma
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi, Aichi 487-8501, Japan; E-Mails: (M.K.); (S.O.)
| | - Hisao Naito
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; E-Mails: (S.N.); (M.K.); (H.N.)
| | - Tamie Nakajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; E-Mails: (S.N.); (M.K.); (H.N.)
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi, Aichi 487-8501, Japan; E-Mails: (M.K.); (S.O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-568-51-9104; Fax: +81-568-51-9635
| |
Collapse
|
33
|
Rossner P, Rossnerova A, Spatova M, Beskid O, Uhlirova K, Libalova H, Solansky I, Topinka J, Sram RJ. Analysis of biomarkers in a Czech population exposed to heavy air pollution. Part II: chromosomal aberrations and oxidative stress. Mutagenesis 2012; 28:97-106. [DOI: 10.1093/mutage/ges058] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
34
|
Delineating the degree of association between biomarkers of arsenic exposure and type-2 diabetes mellitus. Int J Hyg Environ Health 2012; 216:35-49. [PMID: 22920650 DOI: 10.1016/j.ijheh.2012.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/01/2012] [Accepted: 07/04/2012] [Indexed: 01/18/2023]
Abstract
Non-carcinogenic effects in low-level (< 100 μgL(-1)) arsenic (As)-impacted populations, such as the development and progression of type-2 diabetes mellitus (T2DM), are often neglected given the primary emphasis of public health authorities on As carcinogenicity. We gathered studies reporting urinary biomarkers of As exposure (U-As) and biomarkers associated with T2DM and its complications (U-T2DM), such as renal damage, oxidation stress, low-grade inflammation, and endothelial damage. Studied U-T2DM biomarkers were: 8-hydroxy-2'deoxyguanosine, N-acetyl-β-d-glucosaminidase, β2-microglobulin, and albumin. Data was expressed as: either arithmetic means and standard deviations, or geometric means and geometric standard deviations, or correlation coefficients of U-As and U-T2DM. Urinary As concentrations were consistently associated with the aforementioned biomarkers of T2DM pathologic complications. Despite the limited selectivity of the selected T2DM biomarkers, a per unit change in As exposure level was reflected in the corresponding T2DM biomarker urinary concentrations. Our systematic review provides new evidence on the role of environmental As exposures influencing the T2DM disease process. Additional epidemiologic studies onto the association between As and T2DM should incorporate both urinary As and T2DM biomarkers, as suggested in this study, in order to evaluate subclinical effects of low-level As exposures.
Collapse
|
35
|
Huang CY, Su CT, Chung CJ, Pu YS, Chu JS, Yang HY, Wu CC, Hsueh YM. Urinary total arsenic and 8-hydroxydeoxyguanosine are associated with renal cell carcinoma in an area without obvious arsenic exposure. Toxicol Appl Pharmacol 2012; 262:349-54. [DOI: 10.1016/j.taap.2012.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 01/01/2023]
|
36
|
Orozco MN, Solomons NW, Schümann K, Friel JK. Response of urinary biomarkers of systemic oxidation to oral iron supplementation in healthy men. Food Nutr Bull 2012; 33:53-62. [PMID: 22624298 DOI: 10.1177/156482651203300105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Urinary biomarkers are used in assessment of severe, clinical oxidative stress. Little is known, however, about their diagnostic value within the normative range. OBJECTIVE To evaluate the response of urinary thiobarbituric acid reactive substances (TBARS) and 8-hydroxy-2-deoxyguanosine (8-OHdG) as indicators of systemic oxidation in response to short-term oral iron and antioxidant supplementation. METHODS Five healthy adult men participated in the pilot study phase and 12 in the definitive intervention trial. For 7 days each, separated by 12-day washouts, the subjects received different treatment regimens, consisting of 120 mg of iron, 120 mg of iron in refined palm oil, and 120 mg of iron in palm oil combined with one of the two doses of Carotino Tocotrienol Carotene Mixed Concentrate (CTCMC). Creatinine-normalized urinary TBARS and 8-OHdG concentrations were quantified in samples taken from subjects with and without active supplementation. Temporal and correlative associations between TBARS and 8-OHdG were explored. RESULTS Daily intake of supplemental iron failed to produce any increment in urinary excretion of TBARS or 8-OHdG. However, a significant within-individual correlation between the urinary biomarkers was observed (Spearman r = 0.697, p < .0001, n = 466). Both doses of CTCMC significantly lowered urinary excretion of both oxidation indicators. CONCLUSIONS Despite the lack of effect of oral iron on the biomarkers of systemic oxidation, they show a strong and significant mutual association within the nonpathological range of oxidative stress in healthy male adults.
Collapse
Affiliation(s)
- Monica N Orozco
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala.
| | | | | | | |
Collapse
|
37
|
Abstract
Oxidatively damaged DNA is implicated in various diseases, including neurodegenerative disorders, cancer, diabetes, cardiovascular and inflammatory diseases as well as aging. Several methods have been developed to detect oxidatively damaged DNA. They include chromatographic techniques, the Comet assay, (32)P-postlabelling and immunochemical methods that use antibodies to detect oxidized lesions. In this review, we discuss the detection of 8-oxo-7,8-dihydro-29-deoxyguanosine (8-oxodG), the most abundant oxidized nucleoside. This lesion is frequently used as a marker of exposure to oxidants, including environmental pollutants, as well as a potential marker of disease progression. We concentrate on studies published between the years 2000 and 2011 that used enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry to detect 8-oxodG in humans, laboratory animals and in cell lines. Oxidative damage observed in these organisms resulted from disease, exposure to environmental pollutants or from in vitro treatment with various chemical and physical factors.
Collapse
Affiliation(s)
- Pavel Rossner
- Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague, Czech Republic.
| | | |
Collapse
|
38
|
Hsu LI, Chen WP, Yang TY, Chen YH, Lo WC, Wang YH, Liao YT, Hsueh YM, Chiou HY, Wu MM, Chen CJ. Genetic polymorphisms in glutathione S-transferase (GST) superfamily and risk of arsenic-induced urothelial carcinoma in residents of southwestern Taiwan. J Biomed Sci 2011; 18:51. [PMID: 21798077 PMCID: PMC3199751 DOI: 10.1186/1423-0127-18-51] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 07/29/2011] [Indexed: 12/20/2022] Open
Abstract
Background Arsenic exposure is an important public health issue worldwide. Dose-response relationship between arsenic exposure and risk of urothelial carcinoma (UC) is consistently observed. Inorganic arsenic is methylated to form the metabolites monomethylarsonic acid and dimethylarsinic acid while ingested. Variations in capacity of xenobiotic detoxification and arsenic methylation might explain individual variation in susceptibility to arsenic-induced cancers. Methods To estimate individual susceptibility to arsenic-induced UC, 764 DNA specimens from our long-term follow-up cohort in Southwestern Taiwan were used and the genetic polymorphisms in GSTM1, GSTT1, GSTP1 and arsenic methylation enzymes including GSTO1 and GSTO2 were genotyped. Results The GSTT1 null was marginally associated with increased urothelial carcinoma (UC) risk (HR, 1.91, 95% CI, 1.00-3.65), while the association was not observed for other GSTs. Among the subjects with cumulative arsenic exposure (CAE) ≥ 20 mg/L*year, the GSTT1 null genotype conferred a significantly increased cancer risk (RR, 3.25, 95% CI, 1.20-8.80). The gene-environment interaction between the GSTT1 and high arsenic exposure with respect to cancer risk was statistically significant (multiplicative model, p = 0.0151) and etiologic fraction was as high as 0.86 (95% CI, 0.51-1.22). The genetic effects of GSTO1/GSTO2 were largely confined to high arsenic level (CAE ≥ 20). Diplotype analysis showed that among subjects exposed to high levels of arsenic, the AGG/AGG variant of GSTO1 Ala140Asp, GSTO2 5'UTR (-183)A/G, and GSTO2 Asn142Asp was associated with an increased cancer risk (HRs, 4.91, 95% CI, 1.02-23.74) when compared to the all-wildtype reference, respectively. Conclusions The GSTs do not play a critical role in arsenic-induced urothelial carcinogenesis. The genetic effects of GSTT1 and GSTO1 on arsenic-induced urothelial carcinogenesis are largely confined to very high exposure level.
Collapse
Affiliation(s)
- Ling-I Hsu
- Genomics Research Center, Academia Sinica, No.128 Academia road, Sec 2, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gao J, Yu J, Yang L. Urinary arsenic metabolites of subjects exposed to elevated arsenic present in coal in Shaanxi Province, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:1991-2008. [PMID: 21776214 PMCID: PMC3138009 DOI: 10.3390/ijerph8061991] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/26/2011] [Accepted: 05/30/2011] [Indexed: 11/16/2022]
Abstract
In contrast to arsenic (As) poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP) induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions), who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the south of Shaanxi Province (China), were reported. The urinary arsenic species, including inorganic arsenic (iAs) [arsenite (iAsIII) and arsenate (iAsV)], monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV), were determined by high-performance liquid chromatography (HPLC) combined with inductively coupled plasma mass spectroscopy (ICP-MS). The relative distributions of arsenic species, the primary methylation index (PMI=MMAV/iAs) and the secondary methylation index (SMI=DMAV/MMAV) were calculated to assess the metabolism of arsenic. Subjects with skin lesions had a higher concentration of urinary arsenic and a lower arsenic methylation capability than subjects without skin lesions. Women had a significantly higher methylation capability of arsenic than men, as defined by a higher percent DMAV and SMI in urine among women, which was the one possible interpretation of women with a higher concentration of urinary arsenic but lower susceptibility to skin lesions. The findings suggested that not only the dose of arsenic exposure but also the arsenic methylation capability have an impact on the individual susceptibility to skin lesions induced by coal arsenic exposure.
Collapse
Affiliation(s)
- Jianwei Gao
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Beijing 100101, China; E-Mails: (J.G.); (J.Y.)
- Graduate School of the Chinese Academy of Sciences, Beijing 10049, China
| | - Jiangping Yu
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Beijing 100101, China; E-Mails: (J.G.); (J.Y.)
| | - Linsheng Yang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Beijing 100101, China; E-Mails: (J.G.); (J.Y.)
| |
Collapse
|
40
|
Ihlaseh SM, Bailey KA, Hester SD, Jones C, Ren H, Cardoso APF, Oliveira MLCS, Wolf DC, de Camargo JLV. Transcriptional Profile of Diuron-Induced Toxicity on the Urinary Bladder of Male Wistar Rats to Inform Mode of Action. Toxicol Sci 2011; 122:330-8. [DOI: 10.1093/toxsci/kfr108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Huang CY, Chu JS, Pu YS, Yang HY, Wu CC, Chung CJ, Hsueh YM. Effect of urinary total arsenic level and estimated glomerular filtration rate on the risk of renal cell carcinoma in a low arsenic exposure area. J Urol 2011; 185:2040-4. [PMID: 21496841 DOI: 10.1016/j.juro.2011.01.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE We explored the relationship between urinary total arsenic and risk of renal cell carcinoma, and investigated whether having hypertension or a low estimated glomerular filtration rate would modify the risk of renal cell carcinoma. MATERIALS AND METHODS The case-control study was conducted between November 2006 and May 2009 with 132 patients with renal cell carcinoma, and 260 sex and age matched controls from a hospital based pool. Pathological verification of renal cell carcinoma was completed by image guided biopsy or surgical resection of renal tumors. Urinary arsenic species, including inorganic arsenic, monomethylarsonic acid and dimethylarsinic acid, were determined with a high performance liquid chromatography linked hydride generator and atomic absorption spectrometry. Estimated glomerular filtration rate was calculated using the Modification of Diet in Renal Disease Study equation. RESULTS Urinary total arsenic was significantly associated with renal cell carcinoma risk in a dose-response relationship after multivariate adjustment. Low estimated glomerular filtration rate or hypertension was significantly related to renal cell carcinoma risk. Estimated glomerular filtration rate was significantly negatively related with urinary total arsenic. A significant interaction was seen between the urinary total arsenic and hypertension on renal cell carcinoma risk. The greatest odds ratio (6.01) was seen in the subjects with hypertension, low estimated glomerular filtration rate and high urinary total arsenic. A trend test indicated that the risk of renal cell carcinoma increased along with the accumulating number of these 3 risk factors (p <0.0001). CONCLUSIONS Higher urinary total arsenic level was a strong predictor of renal cell carcinoma, and estimated glomerular filtration rate or hypertension interacts with urinary total arsenic in modifying the risk of renal cell carcinoma.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
42
|
Chung CJ, Pu YS, Chen YT, Su CT, Wu CC, Shiue HS, Huang CY, Hsueh YM. Protective effects of plasma alpha-tocopherols on the risk of inorganic arsenic-related urothelial carcinoma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:1039-1045. [PMID: 21227482 DOI: 10.1016/j.scitotenv.2010.11.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/12/2010] [Accepted: 11/29/2010] [Indexed: 05/30/2023]
Abstract
Arsenic plays an important role in producing oxidative stress in cultured cells. To investigate the interaction between high oxidative stress and low arsenic methylation capacity on arsenic carcinogenesis, a case-control study was conducted to evaluate the relationship among the indices of oxidative stress, such as urinary 8-hydroxydeoxyquanine (8-OHdG), as well as plasma micronutrients and urinary arsenic profiles on urothelial carcinoma (UC) risk. Urinary 8-OHdG was measured using high-sensitivity enzyme-linked immunosorbent assay kits. The urinary arsenic species were analyzed using high-performance liquid chromatography and hydride generator-atomic absorption spectrometry. Plasma micronutrient levels were analyzed using reversed-phase high-performance liquid chromatography. The present study showed a significant protective effect of plasma alpha-tocopherol on UC risk. Plasma alpha-tocopherol levels were significantly inversely related to urinary total arsenic concentrations and inorganic arsenic percentage (InAs%), and significantly positively related to dimethylarsinic acid percentage (DMA%). There were no correlations between plasma micronutrients and urinary 8-OHdG. Study participants with lower alpha-tocopherol and higher urinary total arsenic, higher InAs%, higher MMA%, and lower DMA% had a higher UC risk than those with higher alpha-tocopherol and lower urinary total arsenic, lower InAs%, lower MMA%, and higher DMA%. These results suggest that plasma alpha-tocopherol might modify the risk of inorganic arsenic-related UC.
Collapse
Affiliation(s)
- Chi-Jung Chung
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Banerjee M, Bhattacharjee P, Giri AK. Arsenic-induced Cancers: A Review with Special Reference to Gene, Environment and Their Interaction. Genes Environ 2011. [DOI: 10.3123/jemsge.33.128] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
44
|
Determination of human serum 8-hydroxy-2′-deoxyguanosine (8-OHdG) by HPLC-ECD combined with solid phase extraction (SPE). J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2163-7. [DOI: 10.1016/j.jchromb.2010.06.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/14/2010] [Accepted: 06/14/2010] [Indexed: 11/18/2022]
|
45
|
Choi YS, Eom SY, Choi BS, Park JD, Kim YD, Kim H. The Relationship between the Urinary Arsenic and 8-Hydroxydeoxyguanosine Levels in Women of Abandoned Mine Area. ACTA ACUST UNITED AC 2010. [DOI: 10.5352/jls.2010.20.4.618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Lindberg AL, Sohel N, Rahman M, Persson LÅ, Vahter M. Impact of smoking and chewing tobacco on arsenic-induced skin lesions. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:533-8. [PMID: 20064784 PMCID: PMC2854731 DOI: 10.1289/ehp.0900728] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 11/03/2009] [Indexed: 05/02/2023]
Abstract
BACKGROUND We recently reported that the main reason for the documented higher prevalence of arsenic-related skin lesions among men than among women is the result of less efficient arsenic metabolism. OBJECTIVE Because smoking has been associated with less efficient arsenic methylation, we aimed to elucidate interactions between tobacco use and arsenic metabolism for the risk of developing skin lesions. METHODS We used a population-based case-referent study that showed increased risk for skin lesions in relation to chronic arsenic exposure via drinking water in Bangladesh and randomly selected 526 of the referents (random sample of inhabitants > 4 years old; 47% male) and all 504 cases (54% male) with arsenic-related skin lesions to measure arsenic metabolites [methylarsonic acid (MA) and dimethylarsinic acid (DMA)] in urine using high-performance liquid chromatography (HPLC) and inductively coupled plasma mass spectrometry (ICPMS). RESULTS The odds ratio for skin lesions was almost three times higher in the highest tertile of urinary %MA than in the lowest tertile. Men who smoked cigarettes and bidis (locally produced cigarettes; 33% of referents, 58% of cases) had a significantly higher risk for skin lesions than did nonsmoking men; this association decreased slightly after accounting for arsenic metabolism. Only two women smoked, but women who chewed tobacco (21% of referents, 43% of cases) had a considerably higher risk of skin lesions than did women who did not use tobacco. The odds ratio (OR) for women who chewed tobacco and who had < or = 7.9%MA was 3.8 [95% confidence interval (CI), 1.4-10] compared with women in the same MA tertile who did not use tobacco. In the highest tertile of %MA or %inorganic arsenic (iAs), women who chewed tobacco had ORs of 7.3 and 7.5, respectively, compared with women in the lowest tertiles who did not use tobacco. CONCLUSION The increased risk of arsenic-related skin lesions in male smokers compared with nonsmokers appears to be partly explained by impaired arsenic methylation, while there seemed to be an excess risk due to interaction between chewing tobacco and arsenic metabolism in women.
Collapse
Affiliation(s)
- Anna-Lena Lindberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- URS Nordic AB, Stockholm, Sweden
| | - Nazmul Sohel
- International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Mahfuzar Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Lars Åke Persson
- International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Address correspondence to M. Vahter, Division of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden. Telephone: 46 8 728 75 40. Fax: 46 8 33 69 81. E-mail:
| |
Collapse
|
47
|
Engström KS, Vahter M, Lindh C, Teichert F, Singh R, Concha G, Nermell B, Farmer PB, Strömberg U, Broberg K. Low 8-oxo-7,8-dihydro-2'-deoxyguanosine levels and influence of genetic background in an Andean population exposed to high levels of arsenic. Mutat Res 2010; 683:98-105. [PMID: 19896490 DOI: 10.1016/j.mrfmmm.2009.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 09/14/2009] [Accepted: 10/23/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Arsenic (As) causes oxidative stress through generation of reactive oxygen species. 8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a sensitive marker of oxidative DNA damage, has been associated with As exposure in some studies, but not in others, possibly due to population-specific genetic factors. OBJECTIVES To evaluate the association between As and 8-oxodG in urine in a population with a low urinary monomethylated As (%MMA) and high dimethylated As (%DMA), as well as the genetic impact on (a) 8-oxodG concentrations and (b) the association between As and 8-oxodG. MATERIALS AND METHODS Women (N=108) in the Argentinean Andes were interviewed and urine was analyzed for arsenic metabolites (ICPMS) and 8-oxodG (LC-MS/MS). Twenty-seven polymorphisms in genes related to oxidative stress and one in As(+III)methyltransferase (AS3MT) were studied. RESULTS Median concentration of 8-oxodG was 4.7 nmol/L (adjusted for specific weight; range 1.6-13, corresponding to 1.7 microg/g creatinine, range 0.57-4.8) and of total urinary As metabolites (U-As) 290 microg/L (range 94-720; 380 microg/g creatinine, range 140-1100). Concentrations of 8-oxodG were positively associated with %MMA (strongest association, p=0.013), and weakly associated with U-As (positively) and %DMA (negatively). These associations were strengthened when taking ethnicity into account, possibly reflecting genetic differences in As metabolism and genes regulating oxidative stress and DNA maintenance. A genetic influence on 8-oxodG concentrations was seen for polymorphisms in apurinic/apyrimidinic endonuclease 1 (APEX1), DNA-methyltransferases 1 and 3b (DNMT1, DNMT3B), thioredoxin reductase 1 (TXNRD1) and 2 (TXNRD2) and glutaredoxin (GLRX). CONCLUSION Despite high As exposure, the concentrations of 8-oxodG in this population were low compared with other As-exposed populations studied. The strongest association was found for %MMA, stressing that some inconsistencies between As and 8-oxodG partly depend on population variations in As metabolism. We found evidence of genetic impact on 8-oxodG concentrations.
Collapse
Affiliation(s)
- Karin S Engström
- Department of Laboratory Medicine, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ke Y, Duan X, Wen F, Xu X, Tao G, Zhou L, Zhang R, Qiu B. Association of melamine exposure with urinary stone and oxidative DNA damage in infants. Arch Toxicol 2009; 84:301-7. [DOI: 10.1007/s00204-009-0500-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 12/02/2009] [Indexed: 11/28/2022]
|
49
|
|
50
|
Abstract
Arsenic, which is commonly found in drinking water, is a potent toxicant, but little is known about its effects on maternal health. Arsenic's modes of action include enzyme inhibition and oxidative stress as well as immune, endocrine, and epigenetic effects. A couple of studies reported increased blood pressure and anemia during pregnancy. Susceptibility to arsenic is dependent on the biomethylation, which occurs via one-carbon metabolism. Methylarsonic acid and dimethylarsinic acid are main metabolites in urine, and elevated methylarsonic acid is considered a general risk factor. Arsenic easily passes the placenta, and a few human studies indicate a moderately increased risk of impaired fetal growth and increased fetal and infant mortality. The fetus and infant are probably partly protected by the increased methylation of arsenic during pregnancy and lactation; the infant is also protected by low arsenic excretion in breast milk. Early-life exposure may induce changes that will become apparent much later in life.
Collapse
Affiliation(s)
- Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|