1
|
Wang Y, Chen X, Xu X, Yang J, Liu X, Sun G, Li Z. Weighted Gene Co-Expression Network Analysis Based on Stimulation by Lipopolysaccharides and Polyinosinic:polycytidylic Acid Provides a Core Set of Genes for Understanding Hemolymph Immune Response Mechanisms of Amphioctopus fangsiao. Animals (Basel) 2023; 14:80. [PMID: 38200810 PMCID: PMC10778463 DOI: 10.3390/ani14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The primary influencer of aquaculture quality in Amphioctopus fangsiao is pathogen infection. Both lipopolysaccharides (LPS) and polyinosinic:polycytidylic acid (Poly I:C) are recognized by the pattern recognition receptor (PRR) within immune cells, a system that frequently serves to emulate pathogen invasion. Hemolymph, which functions as a transport mechanism for immune cells, offers vital transcriptome information when A. fangsiao is exposed to pathogens, thereby contributing to our comprehension of the species' immune biological mechanisms. In this study, we conducted analyses of transcript profiles under the influence of LPS and Poly I:C within a 24 h period. Concurrently, we developed a Weighted Gene Co-expression Network Analysis (WGCNA) to identify key modules and genes. Further, we carried out Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to investigate the primary modular functions. Co-expression network analyses unveiled a series of immune response processes following pathogen stress, identifying several key modules and hub genes, including PKMYT1 and NAMPT. The invaluable genetic resources provided by our results aid our understanding of the immune response in A. fangsiao hemolymph and will further our exploration of the molecular mechanisms of pathogen infection in mollusks.
Collapse
Affiliation(s)
- Yongjie Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xipan Chen
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| |
Collapse
|
2
|
Van Der Laan JW. Revision of ICH S8 Needed? FRONTIERS IN TOXICOLOGY 2022; 4:866737. [PMID: 35548682 PMCID: PMC9081432 DOI: 10.3389/ftox.2022.866737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
|
3
|
Abdel Shaheed C, Beardsley J, Day RO, McLachlan AJ. Immunomodulatory effects of pharmaceutical opioids and antipyretic analgesics: Mechanisms and relevance to infection. Br J Clin Pharmacol 2022; 88:3114-3131. [PMID: 35229890 DOI: 10.1111/bcp.15281] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding how pharmaceutical opioids and antipyretic analgesics interact with the immune system potentially has major clinical implications for management of patients with infectious diseases and surgical and critical care patients. An electronic search was carried out on MEDLINE, EMBASE, PsycINFO, CENTRAL and the Cochrane library to identify reports describing the immunomodulatory effects of opioid analgesics and antipyretic analgesics, and their effects in infectious diseases. In adaptive immunity, nonsteroidal anti-inflammatory drugs have divergent effects: augmenting cell-mediated immunity but inhibiting humoral immunity. Nonsteroidal anti-inflammatory drugs have demonstrated a beneficial role in Mycobacterium tuberculosis infection and histoplasmosis in animals, and may be plausible adjuvants to antimicrobial agents in these diseases. There is a need to evaluate these findings rigorously in human clinical trials. There is preliminary evidence demonstrating antiviral effects of indomethacin in SARS CoV-2 in vitro; however, uncertainty regarding its clinical benefit in humans needs to be resolved in large clinical trials. Certain opioid analgesics are associated with immunosuppressive effects, with a developing understanding that fentanyl, morphine, methadone and buprenorphine suppress innate immunity, whilst having diverse effects on adaptive immunity. Morphine suppresses key cells of the innate immunity and is associated with greater risk of infection in the postsurgical setting. Efforts are needed to achieve adequate analgesia whilst avoiding suppression of the innate immunity in the immediate postoperative period caused by certain opioids, particularly in cancer surgery.
Collapse
Affiliation(s)
- Christina Abdel Shaheed
- Faculty of Medicine and Health, Sydney School of Public Health, University of Sydney, Sydney, Australia.,Institute for Musculoskeletal Health, University of Sydney and Sydney Local Health District, Sydney, Australia
| | - Justin Beardsley
- Westmead Institute for Medical Research, Sydney, Australia.,Sydney Institute for Infectious Diseases, University of Sydney, Australia
| | - Richard O Day
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Sydney, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Andrew J McLachlan
- Faculty of Medicine and Health, Sydney Pharmacy School, University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
RNA-Seq-Based Gene Expression Pattern and Morphological Alterations in Chick Thymus during Postnatal Development. Int J Genomics 2019; 2019:6905194. [PMID: 31179312 PMCID: PMC6501151 DOI: 10.1155/2019/6905194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/20/2018] [Accepted: 02/25/2019] [Indexed: 12/23/2022] Open
Abstract
The thymus is a lobulated unique lymphoid immune organ that plays a critical role in the selection, development, proliferation, and differentiation of T cells. The thymus of developing chickens undergoes continued morphological alterations; however, the biomolecular and transcriptional dynamics of the postnatal thymus in avian species is not clear yet. Therefore, the thymuses from chickens at different stages of development (at weeks 0, 1, 5, 9, 18, and 27) were used in the present study. The RNA-seq method was used to study the gene expression patterns. On average, 24120819 clean reads were mapped, differentially expressed genes (DEGs) were identified on the basis of log values (fold change), including 744 upregulated and 425 downregulated genes. The expression pattern revealed by RNA-seq was validated by quantitative real-time PCR (qPCR) analysis of four important genes, which are PCNA, CCNA2, CCNB2, and CDK1. Thus, the current study revealed that during postnatal development, the thymus undergoes severe atrophy. Thymus structure was damaged and gene expression changed dramatically, especially at the 27th week of age. Moreover, we found significant changes of several signaling pathways such as the cytokine-cytokine receptor interaction and cell cycle signaling pathways. Hence, it may be inferred that those signaling pathways might be closely related to the postnatal chicken thymus development.
Collapse
|
5
|
Hampel M, Blasco J, Babbucci M, Ferraresso S, Bargelloni L, Milan M. Transcriptome analysis of the brain of the sea bream (Sparus aurata) after exposure to human pharmaceuticals at realistic environmental concentrations. MARINE ENVIRONMENTAL RESEARCH 2017; 129:36-45. [PMID: 28434674 DOI: 10.1016/j.marenvres.2017.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/09/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
Human pharmaceuticals such as Acetaminophen, Atenolol and Carbamazepine are pseudo persistent aquatic pollutants with yet unknown sub-lethal effects at environmentally relevant concentrations. Gilthead seabream (Sparus aurata) were exposed to Acetaminophen: 31.90 ± 11.07 μg L-1; Atenolol: 0.95 ± 0.38 μg L-1 and Carbamazepine: 6.95 ± 0.13 μg L-1 in a 28 day flow through experiment to (1) determine whether exposure to low concentrations in the μg·L-1 range of the pharmaceuticals alters the brain transcriptome and, (2) identify different expression profiles and treatment specific modes of action and pathways. Despite low exposure concentrations, 411, 7 and 612 differently expressed transcripts were identified in the individual treatments with Acetaminophen, Atenolol and Carbamazepine, respectively. Functional analyses of differentially expressed genes revealed a significant over representation of several biological processes, cellular compartment features and molecular functions for both Acetaminophen and Carbamazepine treatments. Overall, the results obtained in seabream brain suggest similar physiological responses to those observed in humans also at environmental concentrations, as well as the existence of treatment specific processes that may be useful for the development of biomarkers of contamination.
Collapse
Affiliation(s)
- Miriam Hampel
- Department for Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain; University Institute for Marine Research (INMAR), 11510 Puerto Real, Cadiz, Spain.
| | - Julian Blasco
- Andalusian Institute for Marine Sciences, Department of Ecology and Coastal Management, Campus Universitario Río San Pedro s/n, 11519 Puerto Real, Spain
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, I-35020 Legnaro, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, I-35020 Legnaro, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, I-35020 Legnaro, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, I-35020 Legnaro, Italy
| |
Collapse
|
6
|
Bushel PR, Fannin RD, Gerrish K, Watkins PB, Paules RS. Blood gene expression profiling of an early acetaminophen response. THE PHARMACOGENOMICS JOURNAL 2016; 17:230-236. [PMID: 26927286 DOI: 10.1038/tpj.2016.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/16/2015] [Accepted: 01/20/2016] [Indexed: 01/12/2023]
Abstract
Acetaminophen can adversely affect the liver especially when overdosed. We used whole blood as a surrogate to identify genes as potential early indicators of an acetaminophen-induced response. In a clinical study, healthy human subjects were dosed daily with 4 g of either acetaminophen or placebo pills for 7 days and evaluated over the course of 14 days. Alanine aminotransferase (ALT) levels for responders to acetaminophen increased between days 4 and 9 after dosing, and 12 genes were detected with expression profiles significantly altered within 24 h. The early responsive genes separated the subjects by class and dose period. In addition, the genes clustered patients who overdosed on acetaminophen apart from controls and also predicted the exposure classifications with 100% accuracy. The responsive genes serve as early indicators of an acetaminophen exposure, and their gene expression profiles can potentially be evaluated as molecular indicators for further consideration.
Collapse
Affiliation(s)
- P R Bushel
- Microarray and Genome Informatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - R D Fannin
- Molecular Genomics Core, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - K Gerrish
- Molecular Genomics Core, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - P B Watkins
- The Hamner Institute for Health Sciences, Research Triangle Park, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - R S Paules
- Molecular Genomics Core, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
7
|
DeWitt JC, Germolec DR, Luebke RW, Johnson VJ. Associating Changes in the Immune System with Clinical Diseases for Interpretation in Risk Assessment. CURRENT PROTOCOLS IN TOXICOLOGY 2016; 67:18.1.1-18.1.22. [PMID: 26828330 PMCID: PMC4780336 DOI: 10.1002/0471140856.tx1801s67] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This overview is an update of the unit originally published in 2004. While the basic tenets of immunotoxicity have not changed in the past 10 years, several publications have explored the application of immunotoxicological data to the risk assessment process. Therefore, the goal of this unit is still to highlight relationships between xenobiotic-induced immunosuppression and risk of clinical diseases progression. In immunotoxicology, this may require development of models to equate moderate changes in markers of immune functions to potential changes in incidence or severity of infectious diseases. For most xenobiotics, exposure levels and disease incidence data are rarely available, and safe exposure levels must be estimated based on observations from experimental models or human biomarker studies. Thus, it is important to establish a scientifically sound framework that allows accurate and quantitative interpretation of experimental or biomarker data in the risk assessment process.
Collapse
Affiliation(s)
- Jamie C DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Dori R Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Robert W Luebke
- Cardiopulmonary and Immunotoxicology Branch, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | | |
Collapse
|
8
|
Mandarapu R, Prakhya BM. Exposure to cypermethrin and mancozeb alters the expression profile of THBS1, SPP1, FEZ1 and GPNMB in human peripheral blood mononuclear cells. J Immunotoxicol 2016; 13:463-73. [PMID: 26796295 DOI: 10.3109/1547691x.2015.1130088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The complex immune system displays a coordinated transcriptional response to xenobiotic exposure by altering expression of designated transcription factors that, in turn, trigger immune responses. Despite the identification of several transcription factors that contribute to regulatory response, very little is known about the specific role of factors that are triggered due to exposure to obnoxious pesticides. Here, for the first time, alterations in human peripheral blood lymphocyte expression of transcriptional factors - thrombospondin-1 (THBS-1), secretory phospho-protein-1 (SPP-1), glycoprotein non-metastatic-β (GPNMB) and fasciculation and elongation factor ζ-1 (FEZ-1), due to in vitro exposure to the crop protection chemicals cypermethrin and mancozeb are reported. Results revealed significant changes in expression profiles due to mancozeb exposure, supporting its immune dysfunction potential; in contrast, cypermethrin exposure did not cause significant changes. Based on these effects on gene expression across the doses tested, it was likely key components of immune mechanisms such as proliferation, cell adhesion, apoptosis and cell activation in human PBMC were affected. Although these data are from in vitro experiments, the results point out the potential role for changes in these factors in the etiology of defective T-cell immune function seen in humans occupationally exposed to crop protection chemicals like mancozeb. These studies suggest the involvement of transcription factors in regulation of pesticide-induced immune dysfunction; these studies also represent a novel approach for identifying potential immune-related dysfunctions due to exposure to pesticides. Further studies are needed to better understand the functional significance of these in vitro findings.
Collapse
Affiliation(s)
| | - Balakrishna Murthy Prakhya
- a Prakhya Research Laboratories, Selaiyur, Chennai, India ;,b SRM University , Kattankulathur , Chennai , India
| |
Collapse
|
9
|
Lu X, Hu B, Zheng J, Ji C, Fan X, Gao Y. Predose and Postdose Blood Gene Expression Profiles Identify the Individuals Susceptible to Acetaminophen-Induced Liver Injury in Rats. PLoS One 2015; 10:e0141750. [PMID: 26512990 PMCID: PMC4626237 DOI: 10.1371/journal.pone.0141750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/13/2015] [Indexed: 11/18/2022] Open
Abstract
The extent of drug-induced liver injury (DILI) can vary greatly between different individuals. Thus, it is crucial to identify susceptible population to DILI. The aim of this study was to determine whether transcriptomics analysis of predose and postdose rat blood would allow prediction of susceptible individuals to DILI using the widely applied analgesic acetaminophen (APAP) as a model drug. Based on ranking in alanine aminotransferase levels, five most susceptible and five most resistant rats were identified as two sub-groups after APAP treatment. Predose and postdose gene expression profiles of blood samples from these rats were determined by microarray analysis. The expression of 158 genes innately differed in the susceptible rats from the resistant rats in predose data. In order to identify more reliable biomarkers related to drug responses for detecting individuals susceptibility to APAP-induced liver injury (AILI), the changes of these genes' expression posterior to APAP treatment were detected. Through the further screening method based on the trends of gene expression between the two sub-groups before and after drug treatment, 10 genes were identified as potential predose biomarkers to distinguish between the susceptible and resistant rats. Among them, four genes, Incenp, Rpgrip1, Sbf1, and Mmp12, were found to be reproducibly in real-time PCR with an independent set of animals. They were all innately higher expressed in resistant rats to AILI, which are closely related to cell proliferation and tissue repair functions. It indicated that rats with higher ability of cell proliferation and tissue repair prior to drug treatment might be more resistant to AILI. In this study, we demonstrated that combination of predose and postdose gene expression profiles in blood might identify the drug related inter-individual variation in DILI, which is a novel and important methodology for identifying susceptible population to DILI.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bin Hu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Zheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cai Ji
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (XHF); (YG)
| | - Yue Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, China
- * E-mail: (XHF); (YG)
| |
Collapse
|
10
|
Kuper CF, Vogels J, Kemmerling J, Fehlert E, Rühl-Fehlert C, Vohr HW, Krul C. Integrated analysis of toxicity data of two pharmaceutical immunosuppressants and two environmental pollutants with immunomodulating properties to improve the understanding of side effects-A toxicopathologist׳s view. Eur J Pharmacol 2015; 759:343-55. [PMID: 25824899 DOI: 10.1016/j.ejphar.2015.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/03/2015] [Accepted: 03/12/2015] [Indexed: 12/19/2022]
Abstract
Data in a toxicity test are evaluated generally per parameter. Information on the response per animal in addition to per parameter can improve the evaluation of the results. The results from the six studies in rats, described in the paper by Kemmerling, J., Fehlert, E., Rühl-Fehlert, C., Kuper, C.F., Stropp, G., Vogels, J., Krul, C., Vohr, H.-W., 2015. The transferability from rat subacute 4-week oral toxicity study to translational research exemplified by two pharmaceutical immunosuppressants and two environmental pollutants with immunomodulating properties (In this issue), have been subjected to principal component analysis (PCA) and principal component discriminant analysis (PC-DA). The two pharmaceuticals azathioprine (AZA) and cyclosporine A (CSA) and the two environmental pollutants hexachlorobenzene (HCB) and benzo(a)pyrene (BaP) all modulate the immune system, albeit that their mode of immunomodulation is quite diverse. PCA illustrated the similarities between the two independent studies with AZA (AZA1 and AZA2) and CSA (CSA1 and CSA2). The PC-DA on data of the AZA2 study did not increase substantially the information on dose levels. In general, the no-effect levels were lower upon single parameter analysis than indicated by the distances between the dose groups in the PCA. This was mostly due to the expert judgment in the single parameter evaluation, which took into account outstanding pathology in only one or two animals. The PCA plots did not reveal sex-related differences in sensitivity, but the key pathology for males and females differed. The observed variability in some of the control groups was largely a peripheral blood effect. Most importantly, PCA analysis identified several animals outside the 95% confidence limit indicating high-responders; also low-to-non-responders were identified. The key pathology enhanced the understanding of the response of the animals to the four model compounds.
Collapse
Affiliation(s)
| | - Jack Vogels
- TNO, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Jessica Kemmerling
- Bayer Pharma AG, GDD-GED-TOX-IT-Immunotoxicology, Aprather Weg, 42096 Wuppertal, Germany
| | - Ellen Fehlert
- Department of Medicine IV, Eberhard-Karls University, Otfried-Mueller Strasse 10, 72076 Tuebingen, Germany
| | | | - Hans-Werner Vohr
- Bayer Pharma AG, GDD-GED-TOX-IT-Immunotoxicology, Aprather Weg, 42096 Wuppertal, Germany
| | | |
Collapse
|
11
|
Pennings JLA, Jennen DGJ, Nygaard UC, Namork E, Haug LS, van Loveren H, Granum B. Cord blood gene expression supports that prenatal exposure to perfluoroalkyl substances causes depressed immune functionality in early childhood. J Immunotoxicol 2015; 13:173-80. [PMID: 25812627 DOI: 10.3109/1547691x.2015.1029147] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of synthetic compounds that have widespread use in consumer and industrial applications. PFAS are considered environmental pollutants that have various toxic properties, including effects on the immune system. Recent human studies indicate that prenatal exposure to PFAS leads to suppressed immune responses in early childhood. In this study, data from the Norwegian BraMat cohort was used to investigate transcriptomics profiles in neonatal cord blood and their association with maternal PFAS exposure, anti-rubella antibody levels at 3 years of age and the number of common cold episodes until 3 years. Genes associated with PFAS exposure showed enrichment for immunological and developmental functions. The analyses identified a toxicogenomics profile of 52 PFAS exposure-associated genes that were in common with genes associated with rubella titers and/or common cold episodes. This gene set contains several immunomodulatory genes (CYTL1, IL27) as well as other immune-associated genes (e.g. EMR4P, SHC4, ADORA2A). In addition, this study identified PPARD as a PFAS toxicogenomics marker. These markers can serve as the basis for further mechanistic or epidemiological studies. This study provides a transcriptomics connection between prenatal PFAS exposure and impaired immune function in early childhood and supports current views on PPAR- and NF-κB-mediated modes of action. The findings add to the available evidence that PFAS exposure is immunotoxic in humans and support regulatory policies to phase out these substances.
Collapse
Affiliation(s)
- Jeroen L A Pennings
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Danyel G J Jennen
- b Department of Toxicogenomics , Maastricht University , Maastricht , the Netherlands , and
| | - Unni C Nygaard
- c Division of Environmental Medicine , Norwegian Institute of Public Health (NIPH) , Oslo , Norway
| | - Ellen Namork
- c Division of Environmental Medicine , Norwegian Institute of Public Health (NIPH) , Oslo , Norway
| | - Line S Haug
- c Division of Environmental Medicine , Norwegian Institute of Public Health (NIPH) , Oslo , Norway
| | - Henk van Loveren
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands .,b Department of Toxicogenomics , Maastricht University , Maastricht , the Netherlands , and
| | - Berit Granum
- c Division of Environmental Medicine , Norwegian Institute of Public Health (NIPH) , Oslo , Norway
| |
Collapse
|
12
|
Schmeits PCJ, Schaap MM, Luijten M, van Someren E, Boorsma A, van Loveren H, Peijnenburg AACM, Hendriksen PJM. Detection of the mechanism of immunotoxicity of cyclosporine A in murine in vitro and in vivo models. Arch Toxicol 2014; 89:2325-37. [PMID: 25224403 DOI: 10.1007/s00204-014-1365-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/04/2014] [Indexed: 01/25/2023]
Abstract
Transcriptomics in combination with in vitro cell systems is a powerful approach to unravel modes of action of toxicants. An important question is to which extent the modes of action as revealed by transcriptomics depend on cell type, species and study type (in vitro or in vivo). To acquire more insight into this, we assessed the transcriptomic effects of the immunosuppressive drug cyclosporine A (CsA) upon 6 h of exposure of the mouse cytotoxic T cell line CTLL-2, the thymoma EL-4 and primary splenocytes and compared these to the effects in spleens of mice orally treated with CsA for 7 days. EL-4 and CTLL-2 cells showed the highest similarities in response. CsA affected many genes in primary splenocytes that were not affected in EL-4 or CTLL-2. Pathway analysis demonstrated that CsA upregulated the unfolded protein response, endoplasmic reticulum stress and NRF2 activation in EL-4 cells, CTLL-2 cells and primary mouse splenocytes but not in mouse spleen in vivo. As expected, CsA downregulated cell cycle and immune response in splenocytes in vitro, spleens in vivo as well as CTLL-2 in vitro. Genes up- and downregulated in human Jurkat, HepG2 and renal proximal tubular cells were similarly affected in CTLL-2, EL-4 and primary splenocytes in vitro. In conclusion, of the models tested in this study, the known mechanism of immunotoxicity of CsA is best represented in the mouse cytotoxic T cell line CTLL-2. This is likely due to the fact that this cell line is cultured in the presence of a T cell activation stimulant (IL-2) making it more suitable to detect inhibitory effects on T cell activation.
Collapse
Affiliation(s)
- P C J Schmeits
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - M M Schaap
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
- Department of Toxicogenetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - M Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
- Department of Toxicogenetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - E van Someren
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Research Group Microbiology and Systems Biology, TNO, P.O. Box 360, 3700 AJ, Zeist, The Netherlands
| | - A Boorsma
- Research Group Microbiology and Systems Biology, TNO, P.O. Box 360, 3700 AJ, Zeist, The Netherlands
| | - H van Loveren
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - A A C M Peijnenburg
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
- Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - P J M Hendriksen
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Effects of prophylactic and therapeutic paracetamol treatment during vaccination on hepatitis B antibody levels in adults: two open-label, randomized controlled trials. PLoS One 2014; 9:e98175. [PMID: 24897504 PMCID: PMC4045752 DOI: 10.1371/journal.pone.0098175] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/25/2014] [Indexed: 12/03/2022] Open
Abstract
Worldwide, paracetamol is administered as a remedy for complaints that occur after vaccination. Recently published results indicate that paracetamol inhibits the vaccination response in infants when given prior to vaccination. The goal of this study was to establish whether paracetamol exerts similar effects in young adults. In addition, the effect of timing of paracetamol intake was investigated. In two randomized, controlled, open-label studies 496 healthy young adults were randomly assigned to three groups. The study groups received paracetamol for 24 hours starting at the time of (prophylactic use) - or 6 hours after (therapeutic use) the primary (0 month) and first booster (1 month) hepatitis B vaccination. The control group received no paracetamol. None of the participants used paracetamol around the second booster (6 months) vaccination. Anti-HBs levels were measured prior to and one month after the second booster vaccination on ADVIA Centaur XP. One month after the second booster vaccination, the anti-HBs level in the prophylactic paracetamol group was significantly lower (p = 0.048) than the level in the control group (4257 mIU/mL vs. 5768 mIU/mL). The anti-HBs level in the therapeutic paracetamol group (4958 mIU/mL) was not different (p = 0.34) from the level in the control group. Only prophylactic paracetamol treatment, and not therapeutic treatment, during vaccination has a negative influence on the antibody concentration after hepatitis B vaccination in adults. These findings prompt to consider therapeutic instead of prophylactic treatment to ensure maximal vaccination efficacy and retain the possibility to treat pain and fever after vaccination. Trial Registration Controlled-Trials.com ISRCTN03576945
Collapse
|
14
|
Schmeits PCJ, van Kol S, van Loveren H, Peijnenburg AACM, Hendriksen PJM. The effects of tributyltin oxide and deoxynivalenol on the transcriptome of the mouse thymoma cell line EL-4. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50100k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
15
|
Transcriptome-based functional classifiers for direct immunotoxicity. Arch Toxicol 2013; 88:673-89. [DOI: 10.1007/s00204-013-1179-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/03/2013] [Indexed: 01/28/2023]
|
16
|
Zaccaria KJ, McClure PR. Using Immunotoxicity Information to Improve Cancer Risk Assessment for Polycyclic Aromatic Hydrocarbon Mixtures. Int J Toxicol 2013; 32:236-50. [DOI: 10.1177/1091581813492829] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estimating cancer risk from environmental mixtures containing polycyclic aromatic hydrocarbons (PAHs) is challenging. Ideally, each mixture would undergo toxicity testing to derive a cancer slope factor (CSF) for use in site-specific cancer risk assessments. However, this whole mixture approach is extremely costly in terms of finances, time, and animal usage. Alternatively, if an untested mixture is “sufficiently similar” to a well-characterized mixture with a CSF, the “surrogate” CSF can be used in risk assessments. We propose that similarity between 2 mixtures could be established using an in vitro battery of genotoxic and nongenotoxic tests. An observed association between carcinogenicity and immunosuppression of PAHs suggests that the addition of immune suppression assays may improve this battery. First, using published studies of benzo[a]pyrene (BaP) and other PAHs, we demonstrated a correlation between the derived immune suppression relative potency factors (RPFs) for 9 PAHs and their respective cancer RPFs, confirming observations published previously. Second, we constructed an integrated knowledge map for immune suppression by BaP based on the available mechanistic information. The map illustrates the mechanistic complexities involved in BaP immunosuppression, suggesting that multiple in vitro tests of immune suppression involving different processes, cell types, and tissues will have greater predictive value for immune suppression in vivo than a single test. Based on these observations, research strategies are recommended to validate a battery of in vitro immune suppression tests that, along with tests for genotoxic and other nongenotoxic modes of cancer action, could be used to establish “sufficient similarity” of 2 mixtures for site-specific cancer risk assessments.
Collapse
Affiliation(s)
| | - Peter R. McClure
- SRC, Inc, Defense and Environmental Solutions, North Syracuse, NY, USA
| |
Collapse
|
17
|
Shao J, Katika MR, Schmeits PCJ, Hendriksen PJM, van Loveren H, Peijnenburg AACM, Volger OL. Toxicogenomics-based identification of mechanisms for direct immunotoxicity. Toxicol Sci 2013; 135:328-46. [PMID: 23824090 DOI: 10.1093/toxsci/kft151] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Compounds with direct immunotoxic properties, including metals, mycotoxins, agricultural pesticides, and industrial chemicals, form potential human health risks due to exposure through food, drinking water, and the environment. Insights into the mechanisms of action are currently lacking for the majority of these direct immunotoxicants. Therefore, the present work aimed to gain insights into the molecular mechanisms underlying direct immunotoxicity. To this end, we assessed in vitro the effects of 31 test compounds on the transcriptome of the human Jurkat T-cell line. These compounds included direct immunotoxicants, immunosuppressive drugs with different mode of actions, and nonimmunotoxic control chemicals. Pathway analysis of the microarray data allowed us to identify canonical pathways and Gene Ontology processes that were transcriptionally regulated in common by immunotoxicants (1) with structural similarities, such as tributyltin chloride and tributyltin oxide that activated the retinoic acid/X receptor signaling pathway and (2) without structural similarities, such as As2O3, dibutyltin chloride, diazinon, MeHg, ochratoxin A (OTA), S9-treated OTA, S9-treated cyclophosphamide, and S9-treated benzo[a]pyrene, which activated unfolded protein response, and FTY720, lindane, and propanil, which activated the cholesterol biosynthesis pathway. In addition, processes uniquely affected by individual immunotoxicants were identified, such as the induction of Notch receptor signaling and the downregulation of acute-phase response genes by OTA. These findings were validated by quantitative real-time PCR analysis of genes involved in these processes. Our study indicated that diverse modes of action are involved in direct immunotoxicity and that a set of pathways or genes, rather than one single gene, can be used to screen compounds for direct immunotoxicity.
Collapse
Affiliation(s)
- Jia Shao
- * RIKILT-Institute of Food Safety, Wageningen University and Research Centre, 6700 AE Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Schmeits PCJ, Volger OL, Zandvliet ET, van Loveren H, Peijnenburg AACM, Hendriksen PJM. Assessment of the usefulness of the murine cytotoxic T cell line CTLL-2 for immunotoxicity screening by transcriptomics. Toxicol Lett 2012; 217:1-13. [PMID: 23253260 DOI: 10.1016/j.toxlet.2012.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
Abstract
A toxicogenomics approach was applied to assess the usefulness of the mouse cytotoxic T cell line CTLL-2 for in vitro immunotoxicity testing. CTLL-2 cells were exposed for 6 h to two model immunotoxic compounds: (1) the mycotoxin deoxynivalenol (DON, 1 and 2 μM), a ribotoxic stress inducer, and (2) the organotin compound tributyltin oxide (TBTO, 100 and 200 nM), an endoplasmic reticulum (ER) stress inducer. Effects on whole-genome mRNA expression were assessed by microarray analysis. The biological interpretation of the microarray data indicated that TBTO (200 nM) induced genes involved in T cell activation, ER stress, NFκB activation and apoptosis, which agreed very well with results obtained before on TBTO exposed Jurkat cells and mouse primary thymocytes. Remarkably, DON (2 μM) downregulated genes involved in T cell activation, ER stress and apoptosis, which is opposite to results obtained before for DON-exposed Jurkat cells and mouse primary thymocytes. Furthermore, the results for DON in CTLL-2 cells are also opposite to the results obtained for TBTO in CTLL-2 cells. In agreement with the lack of induction of ER stress and apoptosis, viability assays showed that CTLL-2 cells are much more resistant to the toxicity of DON than Jurkat cells and primary thymocytes. We propose that CTLL-2 cells lack the signal transduction that induces ER stress and apoptosis in response to ribotoxic stress. Based on the results for TBTO and DON, the CTLL-2 cell line does not yield an added value for immunotoxicity compared to the human Jurkat T cell line.
Collapse
Affiliation(s)
- Peter C J Schmeits
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
19
|
Geng XC, Li B, Zhang L, Song Y, Lin Z, Zhang YQ, Wang JZ. Corn oil as a vehicle in drug development exerts a dose-dependent effect on gene expression profiles in rat thymus. J Appl Toxicol 2012; 32:850-7. [DOI: 10.1002/jat.2773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 04/09/2012] [Accepted: 04/09/2012] [Indexed: 12/20/2022]
Affiliation(s)
| | - Bo Li
- National Institute for Food and Drug Control; Beijing; 100050; People's Republic of China
| | - Liang Zhang
- BioChain (Beijing) Science and Technology Inc.; Beijing; 100176; People's Republic of China
| | - Ying Song
- School of Pharmaceutical Science; Sun Yat-sen University; Guangzhou; 510006; People's Republic of China
| | - Zhi Lin
- National Institute for Food and Drug Control; Beijing; 100050; People's Republic of China
| | - Ying-Qi Zhang
- Biotechnology Center, School of Pharmacy; The Fourth Military Medical University; Xi'an; 710032; People's Republic of China
| | - Jun-Zhi Wang
- National Institute for Food and Drug Control; Beijing; 100050; People's Republic of China
| |
Collapse
|
20
|
Jetten MJA, Gaj S, Ruiz-Aracama A, de Kok TM, van Delft JHM, Lommen A, van Someren EP, Jennen DGJ, Claessen SM, Peijnenburg AACM, Stierum RH, Kleinjans JCS. 'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans. Toxicol Appl Pharmacol 2012; 259:320-8. [PMID: 22285215 DOI: 10.1016/j.taap.2012.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 12/25/2022]
Abstract
Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure acetaminophen exposure after profound liver toxicity has already occurred. Furthermore, these tests do not provide mechanistic information. Here, 'omics techniques (global analysis of metabolomic/gene-expression responses) may provide additional insight. To better understand acetaminophen-induced responses at low doses, we evaluated the effects of (sub-)therapeutic acetaminophen doses on metabolite formation and global gene-expression changes (including, for the first time, full-genome human miRNA expression changes) in blood/urine samples from healthy human volunteers. Many known and several new acetaminophen-metabolites were detected, in particular in relation to hepatotoxicity-linked, oxidative metabolism of acetaminophen. Transcriptomic changes indicated immune-modulating effects (2g dose) and oxidative stress responses (4g dose). For the first time, effects of acetaminophen on full-genome human miRNA expression have been considered and confirmed the findings on mRNA level. 'Omics techniques outperformed clinical chemistry tests and revealed novel response pathways to acetaminophen in humans. Although no definitive conclusion about potential immunotoxic effects of acetaminophen can be drawn from this study, there are clear indications that the immune system is triggered even after intake of low doses of acetaminophen. Also, oxidative stress-related gene responses, similar to those seen after high dose acetaminophen exposure, suggest the occurrence of possible pre-toxic effects of therapeutic acetaminophen doses. Possibly, these effects are related to dose-dependent increases in levels of hepatotoxicity-related metabolites.
Collapse
Affiliation(s)
- Marlon J A Jetten
- Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Martini F, Fernández C, Tarazona JV, Pablos MV. Gene expression of heat shock protein 70, interleukin-1β and tumor necrosis factor α as tools to identify immunotoxic effects on Xenopus laevis: a dose-response study with benzo[a]pyrene and its degradation products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 160:28-33. [PMID: 22035922 DOI: 10.1016/j.envpol.2011.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 09/06/2011] [Accepted: 09/14/2011] [Indexed: 05/31/2023]
Abstract
The exposure to benzo[a]pyrene (B[a]P) results in an alteration of immune function in mammals and fish, and the analysis of cytokine mRNA levels has been suggested for predicting the immunomodulatory potential of chemicals. To obtain evidence of the innate immune responses to B[a]P in Xenopus laevis, the present study monitored the mRNA expression of interleukin 1-β (IL-1β), tumor necrosis factor α (TNF-α) and heat shock protein 70 (HSP70) in a laboratorial exposure. Tadpoles exposed to 8.36, 14.64, 89.06 and 309.47 μg/L of B[a]P,were used for detecting hsp70, IL-1β and TNF-α mRNA induction. A dose-response increase in the expression of hsp70 and IL-1β mRNA was found. The results of this study confirmed the use of hsp70 and IL-1β, but not TNF-α, as sensitive indicators of immunotoxic effect of B[a]P in X. laevis. Further research would be required for the validation of these endpoints.
Collapse
Affiliation(s)
- Federica Martini
- Laboratory for Ecotoxicology, Department of Environment, Spanish National Institute for Agricultural and Food Research and Technology (INIA), Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
22
|
Yauk CL, Jackson K, Malowany M, Williams A. Lack of change in microRNA expression in adult mouse liver following treatment with benzo(a)pyrene despite robust mRNA transcriptional response. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 722:131-9. [DOI: 10.1016/j.mrgentox.2010.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/20/2010] [Indexed: 12/12/2022]
|
23
|
Oshida K, Maeda A, Kitsukawa M, Suga S, Iwano S, Miyoshi T, Miyamoto Y. Novel gene markers of immunosuppressive chemicals in mouse lymph node assay. Toxicol Lett 2011; 205:79-85. [PMID: 21621594 DOI: 10.1016/j.toxlet.2011.05.1017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 01/07/2023]
Abstract
The murine local lymph node assay (LLNA) is an immunologically based test of the sensitizing potential of immunotoxicants, but also evaluates immunosuppressive potential with good sensitivity and specificity. We conducted the LLNA with calcineurin inhibitors (tacrolimus and cyclosporin A), antimetabolites (methotrexate and azathioprine), steroids (dexamethasone and prednisolone), and an alkylator (cyclophosphamide). We performed a comprehensive analysis of results of gene expression in lymph nodes obtained in the LLNA using a highly sensitive DNA chip, 3D-Gene™, and the quantitative reverse transcription-polymerase chain reaction (qPCR). Zfp459 expression increased in all animals treated with immunosuppressive chemicals. Ltf, Cbll1 and Lias expression changed specifically in response to the calcineurin inhibitors, Fmo2 and 9630033F20Rik in response to the antimetabolites, Krt8, Gjb1, Hmha1 and Sfrs7 in response to the steroids, and Gbp1 and Mup5 in response to the alkylator. Therefore, these genes were considered novel markers for immunosuppression and their expression could be used to evaluate the mechanism of action of immunosuppressive chemicals.
Collapse
Affiliation(s)
- Keiyu Oshida
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1, Tebiro, Kamakura, Kanagawa 248-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
van Dartel DAM, Piersma AH. The embryonic stem cell test combined with toxicogenomics as an alternative testing model for the assessment of developmental toxicity. Reprod Toxicol 2011; 32:235-44. [PMID: 21575713 DOI: 10.1016/j.reprotox.2011.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/20/2011] [Accepted: 04/29/2011] [Indexed: 01/15/2023]
Abstract
One of the most studied in vitro alternative testing methods for identification of developmental toxicity is the embryonic stem cell test (EST). Although the EST has been formally validated, the applicability domain as well as the predictability of the model needs further study to allow successful implementation of the EST as an alternative testing method in regulatory toxicity testing. Genomics technologies have already provided a proof of principle of their value in identification of toxicants such as carcinogenic compounds. Also within the EST, gene expression profiling has shown its value in the identification of developmental toxicity and in the evaluation of factors critical for risk assessment, such as dose and time responses. It is expected that the implementation of genomics into the EST will provide a more detailed end point evaluation as compared to the classical morphological scoring of differentiation cultures. Therefore, genomics may contribute to improvement of the EST, both in terms of definition of its applicability domain as well as its predictive capacity. In the present review, we present the progress that has been made with regard to the prediction of developmental toxicity using the EST combined with transcriptomics. Furthermore, we discuss the developments of additional aspects required for further optimization of the EST, including kinetics, the use of human embryonic stem cells (ESC) and computational toxicology. Finally, the current and future use of the EST model for prediction of developmental toxicity in testing strategies and in regulatory toxicity evaluations is discussed.
Collapse
Affiliation(s)
- Dorien A M van Dartel
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | |
Collapse
|
25
|
Dietert RR. Fractal immunology and immune patterning: potential tools for immune protection and optimization. J Immunotoxicol 2011; 8:101-10. [PMID: 21428733 DOI: 10.3109/1547691x.2011.559951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fractals are self-similar geometric patterns that are inherently embedded throughout nature. Their discovery and application have produced significant benefits across a wide variety of biomedical applications. Recently, complex physiological systems (e.g., neurological, respiratory, cardiovascular) have been shown to exhibit fractal dimensions that are capable of distinguishing among physiologic function versus dysfunction and, in turn, health versus disease. Additionally, fractal data suggest that the immune system operates under similar patterned relationships, and this is in keeping with the recent findings that immune-based diseases are organized according to specific patterns. This review considers the potential benefits of using fractal analysis along with considerations of nonlinearity, scaling, and chaos as calibration tools to obtain holistic information on immune-environment interactions. The potential uses of both synthetic and artificial immune systems for improved protection of the biological immune system are also discussed. The addition of holistic measures of immune status to currently collected biomarkers of immunotoxicity has the potential to increase the effectiveness of health risk assessment. The objective of extending fractal physiology analyses to the immune system would be to promote immune optimization as a public health benefit, which would include improved: (1) immunotoxicity testing and effective health risk reduction and (2) measures of effective immune management for children, adults, and aged individuals.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
26
|
|
27
|
Tong W, Mendrick DL. Genomics. Biomarkers 2010. [DOI: 10.1002/9780470918562.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
House RV, Selgrade MJ. A Quarter-Century of Immunotoxicology: Looking Back, Looking Forward. Toxicol Sci 2010; 118:1-3. [DOI: 10.1093/toxsci/kfq242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
29
|
Hochstenbach K, van Leeuwen DM, Gmuender H, Stølevik SB, Nygaard UC, Løvik M, Granum B, Namork E, van Delft JHM, van Loveren H. Transcriptomic profile indicative of immunotoxic exposure: in vitro studies in peripheral blood mononuclear cells. Toxicol Sci 2010; 118:19-30. [PMID: 20702593 DOI: 10.1093/toxsci/kfq239] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Investigating the immunotoxic effects of exposure to chemicals usually comprises evaluation of weight and histopathology of lymphoid tissues, various lymphocyte parameters in the circulation, and immune function. Immunotoxicity assessment is time consuming in humans or requires a high number of animals, making it expensive. Furthermore, reducing the use of animals in research is an important ethical and political issue. Immunotoxicogenomics represents a novel approach to investigate immunotoxicity able of overcoming these limitations. The current research, embedded in the European Union project NewGeneris, aimed to retrieve gene expression profiles that are indicative of exposure to immunotoxicants. To this end, whole-genome gene expression was investigated in human peripheral blood mononuclear cells in response to in vitro exposure to a range of immunotoxic chemicals (4-hydroxy-2-nonenal, aflatoxin B1, benzo[a]pyrene, deoxynivalenol, ethanol, malondialdehyde, polychlorinated biphenyl 153, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) and nonimmunotoxic chemicals (acrylamide, dimethylnitrosamine, 2-amino-3-methyl-3H-imidazo[4,5-F]quinoline, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine). Using Agilent oligonucleotide microarrays, whole-genome gene expression profiles were generated, which were analyzed using Genedata's Expressionist software. Using Recursive Feature Elimination and Support Vector Machine, a set of 48 genes was identified that distinguishes the immunotoxic from the nonimmunotoxic compounds. Analysis for enrichment of biological processes showed the gene set to be highly biologically and immunologically relevant. We conclude that we have identified a promising transcriptomic profile indicative of immunotoxic exposure.
Collapse
Affiliation(s)
- Kevin Hochstenbach
- Department of Health Risk Analysis and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lankveld DPK, Van Loveren H, Baken KA, Vandebriel RJ. In vitro testing for direct immunotoxicity: state of the art. Methods Mol Biol 2010; 598:401-23. [PMID: 19967527 DOI: 10.1007/978-1-60761-401-2_26] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunotoxicity is defined as the toxicological effects of xenobiotics including pharmaceuticals on the functioning of the immune system and can be induced in either direct or indirect ways. Direct immunotoxicity is caused by the effects of chemicals on the immune system, leading to immunosuppression and subsequently to reduced resistance to infectious diseases or certain forms of nongenotoxic carcinogenicity.In vitro testing has several advantages over in vivo testing, such as detailed mechanistic understanding, species extrapolation (parallelogram approach), and reduction, refinement, and replacement of animal experiments. In vitro testing for direct immunotoxicity can be done in a two-tiered approach, the first tier measuring myelotoxicity. If this type of toxicity is apparent, the compound can be designated immunotoxic. If not, the compound is tested for lymphotoxicity (second tier). Several in vitro assays for lymphotoxicity exist, each comprising specific functions of the immune system (cytokine production, cell proliferation, cytotoxic T-cell activity, natural killer cell activity, antibody production, and dendritic cell maturation). A brief description of each assay is provided. Only one assay, the human whole blood cytokine release assay, has undergone formal prevalidation, while another one, the lymphocyte proliferation assay, is progressing towards that phase.Progress in in vitro testing for direct immunotoxicity includes prevalidation of existing assays and selection of the assay (or combination of assays) that performs best. To avoid inter-species extrapolation, assays should preferably use human cells. Furthermore, the use of whole blood has the advantage of comprising multiple cell types in their natural proportion and environment. The so-called "omics" techniques provide additional mechanistic understanding and hold promise for the characterization of classes of compounds and prediction of specific toxic effects. Technical innovations such as high-content screening and high-throughput analysis will greatly expand the opportunities for in vitro testing.
Collapse
|
31
|
Zhou T, Chou J, Watkins PB, Kaufmann WK. Toxicogenomics: transcription profiling for toxicology assessment. EXS 2009; 99:325-66. [PMID: 19157067 DOI: 10.1007/978-3-7643-8336-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxicogenomics, the application of transcription profiling to toxicology, has been widely used for elucidating the molecular and cellular actions of chemicals and other environmental stressors on biological systems, predicting toxicity before any functional damages, and classification of known or new toxicants based on signatures of gene expression. The success of a toxicogenomics study depends upon close collaboration among experts in different fields, including a toxicologist or biologist, a bioinformatician, statistician, physician and, sometimes, mathematician. This review is focused on toxicogenomics studies, including transcription profiling technology, experimental design, significant gene extraction, toxicological results interpretation, potential pathway identification, database input and the applications of toxicogenomics in various fields of toxicological study.
Collapse
Affiliation(s)
- Tong Zhou
- Center for Drug Safety Sciences, The Hamner Institutes for Health Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
32
|
Germolec D, Burns-Naas L, Gerberick G, Ladics G, Ryan C, Pruett S, Yucesoy B, Luebke R. Immunotoxicogenomics. Genomics 2008. [DOI: 10.3109/9781420067064-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|