1
|
Liu X, Wang J, Yang Z, Xie Q, Diao X, Yao X, Huang S, Chen R, Zhao Y, Li T, Jiang M, Lou Z, Huang C. Upregulated DNMT3a coupling with inhibiting p62-dependent autophagy contributes to NNK tumorigenicity in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117157. [PMID: 39393198 DOI: 10.1016/j.ecoenv.2024.117157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
NNK, formally known as 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanoe, is a potent chemical carcinogen prevalent in cigarette smoke and is a key contributor to the development of human lung adenocarcinomas. On the other hand, autophagy plays a complex role in cancer development, acting as a "double-edged sword" whose impact varies depending on the cancer type and stage. Despite this, the relationship between autophagy and NNK-induced lung carcinogenesis remains largely unexplored. Our current study uncovers a marked reduction in p62 protein expression in both lung adenocarcinomas and lung tissues of mice exposed to cigarette smoke. Interestingly, this reduction appears to be contingent upon the activity of extrahepatic cytochrome P450 (CYP450), revealing that NNK metabolic activation by CYP450 enzyme escalates its potential to induce p62 downregulation. Further mechanistic investigations reveal that NNK suppresses autophagy by accelerating the degradation of p62 mRNA, thereby promoting the malignant transformation of human bronchial epithelial cells. This degradation process is facilitated by the hypermethylation of the Human antigen R (HuR) promoter, resulting in the transcriptional repression of HuR - a key regulator responsible for stabilizing p62 mRNA through direct binding. This hypermethylation is triggered by the activation of ribosomal protein S6, which is influenced by NNK exposure and subsequently amplifies the translation of DNA methyltransferase 3 alpha (DNMT3a). These findings provide crucial insights into the nature of p62 in both the development and potential treatment of tobacco-related lung cancer.
Collapse
Affiliation(s)
- Xuelei Liu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Jingjing Wang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ziyi Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xinqi Diao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Xiaoyan Yao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Shirui Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ruifan Chen
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Tengda Li
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Minghua Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Zhefeng Lou
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Chuanshu Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China.
| |
Collapse
|
2
|
Lou Q, Chen F, Li B, Zhang M, Yin F, Liu X, Zhang Z, Zhang X, Fan C, Gao Y, Yang Y. Malignant growth of arsenic-transformed cells depends on activated Akt induced by reactive oxygen species. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:284-298. [PMID: 34974760 DOI: 10.1080/09603123.2021.2023113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Arsenic is an identified carcinogen for humans.In this study, chronic exposure of human hepatocyte L-02 to low-doses of inorganic arsenic caused cell malignant proliferation. Meanwhile, compared with normal L-02 cells, arsenic-transformed malignant cells, L-02-As displayed more ROS and significantly higher Cyclin D1 expression as well as aerobic glycolysis. Moreover, Akt activation is followed by the upregulation of Cyclin D1 and HK2 expression in L-02-As cells, since inhibition of Akt activity by Ly294002 attenuated the colony formation in soft agar and decreased the levels of Cyclin D1 and HK2. In addition, scavenging of ROS by NAC resulted in a decreased expression of phospho-Akt, HK2 and Cyclin D1, and attenuates the ability of anchorage-independent growth ofL-02-As cells, suggested that ROS mediated the Akt activation in L-02-As cells. In summary, our results demonstrated that ROS contributes to the malignant phenotype of arsenic-transformed human hepatocyte L-02-As via the activation of Akt pathway.
Collapse
Affiliation(s)
- Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fuxun Chen
- Yantai Center for Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yantai, Shandong, China
| | - Bingyang Li
- Yantai Center for Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yantai, Shandong, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fanshuo Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zaihong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xin Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chenlu Fan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
3
|
Zhang D, Yong WH, Movassaghi M, Rodriguez FJ, Yang I, McKeever P, Qian J, Li JY, Mao Q, Newell KL, Green RM, Welsh CT, Heaney AP. Whole Exome Sequencing Identifies PHF14 Mutations in Neurocytoma and Predicts Responsivity to the PDGFR Inhibitor Sunitinib. Biomedicines 2022; 10:2842. [PMID: 36359362 PMCID: PMC9687778 DOI: 10.3390/biomedicines10112842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 07/22/2023] Open
Abstract
Neurocytomas are rare low-grade brain tumors predominantly affecting young adults, but their cellular origin and molecular pathogenesis is largely unknown. We previously reported a sellar neurocytoma that secreted excess arginine vasopressin causing syndrome of inappropriate anti-diuretic hormone (SIADH). Whole exome sequencing in 21 neurocytoma tumor tissues identified somatic mutations in the plant homeodomain finger protein 14 (PHF14) in 3/21 (14%) tumors. Of these mutations, two were missense mutations and 4 caused splicing site losses, resulting in PHF14 dysfunction. Employing shRNA-mediated knockdown and CRISPR/Cas9-based knockout approaches, we demonstrated that loss of PHF14 increased proliferation and colony formation in five different human, mouse and rat mesenchymal and differentiated cell lines. Additionally, we demonstrated that PHF14 depletion resulted in upregulation of platelet derived growth factor receptor-alpha (PDGFRα) mRNA and protein in neuroblastoma SHSY-5Y cells and led to increased sensitivity to treatment with the PDGFR inhibitor Sunitinib. Furthermore, in a neurocytoma primary culture harboring splicing loss PHF14 mutations, overexpression of wild-type PHF14 and sunitinib treatment inhibited cell proliferation. Nude mice, inoculated with PHF14 knockout SHSY-5Y cells developed earlier and larger tumors than control cell-inoculated mice and Sunitinib administration caused greater tumor suppression in mice harboring PHF-14 knockout than control SHSY-5Y cells. Altogether our studies identified mutations of PHF14 in 14% of neurocytomas, demonstrate it can serve as an alternative pathway for certain cancerous behavior, and suggest a potential role for Sunitinib treatment in some patients with residual/recurrent neurocytoma.
Collapse
Affiliation(s)
- Dongyun Zhang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - William H. Yong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Masoud Movassaghi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Fausto J. Rodriguez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Issac Yang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Paul McKeever
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiang Qian
- Department of Pathology, Albany Medical Center, Albany, NY 12208, USA
| | - Jian Yi Li
- Department of Pathology and Laboratory Medicine, North Shore University Hospital and Long Island Jewish Medical Center, Manhasset, NY 11040, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Lake Success, NY 11549, USA
| | - Qinwen Mao
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Kathy L. Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Richard M. Green
- Neuro-Oncology Program, Kaiser Los Angeles Medical Center, Los Angeles, CA 90027, USA
| | - Cynthia T. Welsh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anthony P. Heaney
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules 2020; 10:biom10020240. [PMID: 32033297 PMCID: PMC7072296 DOI: 10.3390/biom10020240] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.
Collapse
|
5
|
Ji R, Gu Y, Zhang J, Gao C, Gao W, Zang X, Zhao Y. TRIM7 promotes proliferation and migration of vascular smooth muscle cells in atherosclerosis through activating c-Jun/AP-1. IUBMB Life 2019; 72:247-258. [PMID: 31625258 DOI: 10.1002/iub.2181] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/23/2019] [Indexed: 01/04/2023]
Abstract
Atherosclerosis (AS), with associated risk of stroke or cerebrovascular disease, is one of the most common causes of death globally. It has been well established that tripartite motif-containing protein 7 Tripartite Motif-containing 7 (Trim7), as an E3 ubiquitin protein ligase, is involved in protein ubiquitination and thus regulating cellular proliferation. Moreover, TRIM7 is upregulated in advanced carotid AS. However, the detailed mechanism of TRIM7 on regulation of AS remains unclear. In the present study, we firstly discovered that TRIM7 expression was robustly induced in platelet-derived growth factor type BB-treated vascular smooth muscle cells (VSMCs) and human atherosclerotic plaques. Functional approaches established that knockdown of TRIM7 inhibited proliferation and migration of VSMCs, as well as arrested the cell cycle at G1-S, thus suppressing AS progression. Our results also identified that c-Jun/activator protein 1 (AP-1) signaling pathway was activated by TRIM7. Moreover, gain- and loss-of-function studies revealed that TRIM7 could promote proliferation and migration of VSMCs via activation of c-Jun/AP-1 signaling pathway. Finally, by using atherogenic apolipoprotein E-deficient (apoE-/-) C57BL/6 mice with high-fat diet AS model, we demonstrated that interference of TRIM7 could effectively mitigate in vivo AS via inactivation of c-Jun/AP-1 signaling pathway. In general, activation of c-Jun/AP-1 signaling pathway via TRIM7 could be an important mechanism in AS progression, thus shedding light on the development of novel therapeutics to the treatment of the disease.
Collapse
Affiliation(s)
- Rongjing Ji
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China.,Department of Cardiology, Medical School of Jinzhou Medical University, Jinzhou, China.,Department of Cardiology, The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Gu
- Department of neurology, The Third People's Hospital of Zhengzhou, Zhengzhou, China
| | - Jing Zhang
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Chuanyu Gao
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Wanli Gao
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Xiaobiao Zang
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Yonghui Zhao
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China.,Department of Cardiology, The People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Chen Y, Liu X, Wang H, Liu S, Hu N, Li X. Akt Regulated Phosphorylation of GSK-3β/Cyclin D1, p21 and p27 Contributes to Cell Proliferation Through Cell Cycle Progression From G1 to S/G2M Phase in Low-Dose Arsenite Exposed HaCat Cells. Front Pharmacol 2019; 10:1176. [PMID: 31680960 PMCID: PMC6798184 DOI: 10.3389/fphar.2019.01176] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Arsenic is a toxic environmental contaminant. Long-term exposure to arsenic through drinking water induces human cancers. However, it is as yet uncertain about the mechanisms of arsenic induced carcinogenesis. Although the effects of low-dose arsenicals on proliferation and cell cycle have been revealed by short time exposure, the evidences for long-term exposure were seldom reported. The detailed mechanism has been unclear and supplemented constantly. In the present study, we used normal human keratinocytes (HaCat) to study the effects of long-term, low-dose sodium arsenite (NaAsO2) exposure on cell proliferation with emphasis on the Akt regulated cell cycle signaling pathways. Treatment of NaAsO2 resulted in increased cell proliferation and promotion of cell cycle progression from G1 to S/G2M phase, both of which could be attenuated by MK2206, a highly selective inhibitor of Akt. Along with the increased expression of phospho-Akt (p-Akt, Ser 473), increased expression of p-GSK-3β (Ser 9), p-p21 (Thr 145), p-p27 (Thr 157) and total cyclin D1, and decreased expression of p-cyclin D1 (Thr 286), p21 and p27 were also found in the NaAsO2 exposed cells. Treatment of MK2206 markedly reversed the expression of all of the above proteins. Our findings indicated that the phosphorylated activation of Akt played a role in the proliferation of HaCat cells upon long-term, low-dose NaAsO2 exposure through the phosphorylative regulation of its downstream cell cycle regulating factors of GSK-3β/cyclin D1, p21 and p27, which could induce the promotion of cell cycle progression from G1 to S/G2M phase.
Collapse
Affiliation(s)
- Yao Chen
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Xudan Liu
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Huanhuan Wang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Shiyi Liu
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Nannan Hu
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Xin Li
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Zhang D, Babayan L, Ho H, Heaney AP. Chromogranin A regulates neuroblastoma proliferation and phenotype. Biol Open 2019; 8:8/3/bio036566. [PMID: 30833285 PMCID: PMC6451332 DOI: 10.1242/bio.036566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma is a commonly encountered solid tumor in early childhood with high neuroplasticity, and differentiation therapy is hypothesized to lead to tumor mass shrinkage and/or symptom relief. CgA is a tissue specific protein restricted to the diffuse neuroendocrine system, and widely expressed in neuroblastomas. Using knockdown and knockout approaches to deplete CgA levels, we demonstrated that CgA loss inhibits SH-SY5Y cell proliferation and leads to a morphological shift with increased expression of Schwann and extracellular matrix specific molecules, and suppression of chromaffin features. We further confirmed the effects of CgA in a series of neuroblastoma cells with [BE(2)-M17 and IMR-32] and without (SK-N-SH) N-Myc amplification. We demonstrated that CgA depletion reduced IGF-II and IGFBP-2 expression, increased IGFBP-3 levels, and suppresses IGF downstream signaling as evidenced by reduced AKT/ERK pathway activation. This was further supported by an increased anti-proliferative effect of the ERK inhibitor in the CgA depleted cells. In an in vivo xenograft neuroblastoma model, CgA knockdown led to increased S-phenotypic marker expression at both protein and mRNA levels. Together these results suggest that CgA maintains IGF secretion and intracellular signaling to regulate proliferation and differentiation in neuroblastomas.
Collapse
Affiliation(s)
- Dongyun Zhang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| | - Lilit Babayan
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| | - Hillary Ho
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| | - Anthony P Heaney
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA .,Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| |
Collapse
|
8
|
Mouse embryonic stem cells resist c-Jun induced differentiation when in suspension. CELL REGENERATION 2019; 7:16-21. [PMID: 30671225 PMCID: PMC6326245 DOI: 10.1016/j.cr.2018.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 11/22/2022]
Abstract
The oncogene c-Jun plays a key role in development and cancer. Yet, its role in cell fate decision remains poorly understood at the molecular level. Here we report that c-Jun confers different fate decisions upon mouse embryonic stem cells (mESCs) in adhesion vs suspension culture. We developed a Tet-on system for temporal induction of c-Jun expression by Doxycycline treatment in mESCs. We show that mESCs carrying the inducible c-Jun TetOn remain pluripotent and grow slowly in suspension when c-Jun expression is induced, whilst when the cells adhere they undergo differentiation and show normal proliferative potential upon c-Jun induction. Our data indicates that c-Jun pushes mESCs in suspension into cell cycle arrest at G1/S, by activating the cell cycle inhibitors Cdkn1a/b and Cdkn2/a/b/c. Despite this cell cycle arrest, they can still re-enter the cell cycle upon transfer to an adhesive surface, and grow into typical mESC colonies, albeit at a lower efficiency. These results demonstrate that mESCs respond to induced c-Jun overexpression differently in suspension or adherent cultures. Our results suggest that cells in suspension may be more resistant to differentiation than when they adhere.
Collapse
|
9
|
Li X, Tian Z, Jin H, Xu J, Hua X, Yan H, Liufu H, Wang J, Li J, Zhu J, Huang H, Huang C. Decreased c-Myc mRNA Stability via the MicroRNA 141-3p/AUF1 Axis Is Crucial for p63α Inhibition of Cyclin D1 Gene Transcription and Bladder Cancer Cell Tumorigenicity. Mol Cell Biol 2018; 38:e00273-18. [PMID: 30104251 PMCID: PMC6189456 DOI: 10.1128/mcb.00273-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/15/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022] Open
Abstract
Bladder cancer (BC) ranks as the sixth most common cancer in the United States and is the leading cause of death in patients with urinary malignancies. p63 is a member of the p53 family and is believed to function as a tumor suppressor in human BCs. Our most recent studies revealed a previously unknown function of the RING of XIAP in promoting microRNA 4295 (miR-4295) transcription, thereby reducing p63α protein translation and enhancing normal urothelial transformation, whereas p63α upregulates hsp70 transcription, subsequently activating the HSP70/Wasf3/Wave3/matrix metalloproteinase 9 (MMP-9) axis and promoting BC cell invasion via initiating the transcription factor E2F1. In this study, we found that p63α inhibited cyclin D1 protein expression, subsequently decreasing the ability of BC cell anchorage-independent growth in vitro and tumorigenicity in vivo Mechanistic studies demonstrated that p63α expression is able to downregulate cyclin D1 gene transcription through attenuation of c-Myc mRNA stability. We further show that the reduction of miR-141-3p expression by p63α directly releases its inhibition of 3' untranslated region (UTR) activity of AU-rich element RNA-binding factor 1 (AUF1) mRNA, thereby increasing AUF1 protein translation and further resulting in degradation of c-Myc mRNA, which, in turn, reduces cyclin D1 gene transcription and BC cell anchorage-independent growth. Collectively, our results demonstrate that p63α is a negative regulator of BC cell tumorigenic growth, a distinctly different function than its promotion of BC invasion, thus providing further new insight into the "two faces" of p63α in regulation of BC cell tumorigenic growth and progression/invasion.
Collapse
Affiliation(s)
- Xin Li
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Zhongxian Tian
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiheng Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Xiaohui Hua
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Huiying Yan
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huating Liufu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Junlan Zhu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| |
Collapse
|
10
|
Guo X, Huang H, Jin H, Xu J, Risal S, Li J, Li X, Yan H, Zeng X, Xue L, Chen C, Huang C. ISO, via Upregulating MiR-137 Transcription, Inhibits GSK3β-HSP70-MMP-2 Axis, Resulting in Attenuating Urothelial Cancer Invasion. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:337-349. [PMID: 30195772 PMCID: PMC6037888 DOI: 10.1016/j.omtn.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/02/2018] [Accepted: 05/20/2018] [Indexed: 01/23/2023]
Abstract
Our most recent studies demonstrate that miR-137 is downregulated in human bladder cancer (BC) tissues, while treatment of human BC cells with isorhapontigenin (ISO) elevates miR-137 abundance. Since ISO showed a strong inhibition of invasive BC formation in the N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced invasive BC mouse model, the elucidation of a potential biological effect of miR-137 on antagonizing BC invasion and molecular mechanisms underlying ISO upregulation of miR-137 are very important. Here we discovered that ectopic expression of miR-137 led to specific inhibition of BC invasion in human high-grade BC T24T and UMUC3 cells, while miR-137 deletion promoted the invasion of both cells, indicating the inhibitory effect of miR-137 on human BC invasion. Mechanistic studies revealed that ISO treatment induced miR-137 transcription by promoting c-Jun phosphorylation and, in turn, abolishing matrix metalloproteinase-2 (MMP-2) abundance and invasion in BC cells. Moreover, miR-137 was able to directly bind to the 3' UTR of Glycogen synthase kinase-3β (GSK3β) mRNA and inhibit GSK3β protein translation, consequently leading to a reduction of heat shock protein-70 (HSP70) translation via targeting the mTOR/S6 axis. Collectively, our studies discover an unknown function of miR-137, directly targeting the 3' UTR of GSK3β mRNA and, thereby, inhibiting GSK3β protein translation, mTOR/S6 activation, and HSP70 protein translation and, consequently, attenuating HSP70-mediated MMP-2 expression and invasion in human BC cells. These novel discoveries provide a deep insight into understanding the biomedical significance of miR-137 downregulation in invasive human BCs and the anti-cancer effect of ISO treatment on mouse invasive BC formation.
Collapse
Affiliation(s)
- Xirui Guo
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haishan Huang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiheng Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sanjiv Risal
- The Center of Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Xin Li
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huiying Yan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Lei Xue
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Changyan Chen
- The Center of Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| |
Collapse
|
11
|
Cao L, Liu Y, Wang D, Huang L, Li F, Liu J, Zhang C, Shen Z, Gao Q, Yuan W, Zhang Y. MiR-760 suppresses human colorectal cancer growth by targeting BATF3/AP-1/cyclinD1 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:83. [PMID: 29661228 PMCID: PMC5902951 DOI: 10.1186/s13046-018-0757-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Background Recent studies have reported that microRNAs (miRNAs) often function as negative post-transcriptional regulators with altered expression levels found in colorectal cancer (CRC). There have been few studies on miRNAs that regulate the oncogenic alterations in CRC. Here, we aim to explore the anti-cancer miRNA and the potential mechanisms by which miRNAs modulate CRC progression. Methods We performed an integrated analysis of CRC miRNA expression datasets in The Cancer Genome Atlas (TCGA). The miRNA with the lowest expression, miR-760, was validated in an independent validation sample cohort of 76 CRC tissues. Functional assays, such as CCK-8 assay, colony formation assay, and CFSE staining, were used to determine the oncogenic role of miR-760 in human CRC progression. Furthermore, western blotting and dual-luciferase reporter assay were used to determine the mechanism by which miR-760 promotes proliferation of CRC cells. Xenograft nude mouse models were used to determine the role of miR-760 in CRC tumorigenicity in vivo. Immunohistochemical assays were conducted to study the relationship between miR-760 expression and basic leucine zipper transcriptional factor ATF-like 3 (BATF3) expression in human CRC samples. Results miR-760 was markedly downregulated in CRC tissues, and low miR-760 expression was associated with poor prognosis among CRC patients. Upregulation of miR-760 suppressed CRC cell proliferation, whereas downregulation of miR-760 promoted CRC proliferation in vitro. Additionally, we identified BATF3 as a direct target of miR-760, and that the essential biological function of miR-760 during CRC progression both in vitro and in vivo is to suppress the expression of BATF3 and downstream cyclinD1 via AP-1 transcription factor. Finally, we showed a significant correlation between miR-760 and BATF3 expression in CRC tissues. Conclusions miR-760 inhibited CRC growth by downregulating BATF3/AP-1/ cyclinD1 signaling. Electronic supplementary material The online version of this article (10.1186/s13046-018-0757-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling Cao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yulin Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chaoqi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhibo Shen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qun Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China. .,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
12
|
Cheliensisin A (Chel A) induces apoptosis in human bladder cancer cells by promoting PHLPP2 protein degradation. Oncotarget 2018; 7:66689-66699. [PMID: 27556506 PMCID: PMC5341830 DOI: 10.18632/oncotarget.11440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/09/2016] [Indexed: 12/26/2022] Open
Abstract
Cheliensisin A (Chel A), a styryl-lactone compound extracted from Goniothalamus cheliensis, is reported to have significant anti-cancer effects in various cancer cells. Here we demonstrated that Chel A treatment resulted in apoptosis and an inhibition of anchorage-independent growth in human bladder cancer T24, T24T and U5637 cells. Mechanistic studies showed that such effect is mediated by PH domain and Leucine rich repeat Protein Phosphatases (PHLPP2) protein. Chel A treatment led to PHLPP2 degradation and subsequently increased in c-Jun phosphorylation. Moreover PHLPP2 degradation could be attenuated by inhibition of autophagy, which was mediated by Beclin 1. Collectively, we discover that Chel A treatment induces Beclin-dependent autophagy, consequently mediates PHLPP2 degradation and JNK/C-Jun phosphorylation and activation, further in turn contributing to apoptosis in human bladder cancer cells. Current studies provide a significant insight into understanding of anticancer effect of Chel A in treatment of human bladder cancer.
Collapse
|
13
|
Inhibition of PHLPP2/cyclin D1 protein translation contributes to the tumor suppressive effect of NFκB2 (p100). Oncotarget 2018; 7:34112-30. [PMID: 27095572 PMCID: PMC5085141 DOI: 10.18632/oncotarget.8746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022] Open
Abstract
Although the precursor protein of NFκB2 (p100) is thought to act as a tumor suppressor in mammalian cells, the molecular mechanism of its anti-tumor activity is far from clear. Here, we are, for the first time, to report that p100 protein expression was dramatically decreased in bladder cancers of N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-treated mice and human patients. Knockdown of p100 in cultured human bladder cancer cells promoted anchorage-independent growth accompanied with elevating abundance of cell-cycle-related proteins and accelerated cell-cycle progression. Above effects could be completely reversed by ectopically expression of p100, but not p52. Mechanistically, p100 inhibited Cyclin D1 protein translation by activating the transcription of LARP7 and its hosted miR-302d, which could directly bind to 3'-UTR of cyclin d1 mRNA and inhibited its protein translation. Furthermore, p100 suppressed the expression of PHLPP2 (PH domain and leucine-rich repeat protein phosphatases 2), thus promoting CREB phosphorylation at Ser133 and subsequently leading to miR-302d transcription. Taken together, our studies not only for the first time establish p100 as a key tumor suppressor of bladder cancer growth, but also identify a novel molecular cascade of PHLPP2/CREB/miR-302d that mediates the tumor suppressive function of p100.
Collapse
|
14
|
Chakraborty D, Benham V, Jdanov V, Bullard B, Leal AS, Liby KT, Bernard JJ. A BET Bromodomain Inhibitor Suppresses Adiposity-Associated Malignant Transformation. Cancer Prev Res (Phila) 2017; 11:129-142. [PMID: 29246955 DOI: 10.1158/1940-6207.capr-17-0262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/24/2017] [Accepted: 12/07/2017] [Indexed: 11/16/2022]
Abstract
Almost half a million of all new cancers have been attributed to obesity and epidemiologic evidence implicates visceral adipose tissue (VAT) and high-fat diets (HFD) in increasing cancer risk. We demonstrated that VAT-derived fibroblast growth factor 2 (FGF2) from mice fed an HFD or obese individuals stimulates the malignant transformation of epithelial cells. Mechanism-based strategies to prevent this VAT-enhanced tumorigenesis have not been explored. Clinical studies have indicated that bromodomain inhibitors have considerable potential as therapeutic agents for cancer by inhibiting the activity of several oncogenes, including c-Myc; however, their chemopreventive activity is unknown. We show herein that mice with visceral adiposity have elevated nuclear c-Myc expression in their epidermis. We hypothesized that the bromodomain inhibitor I-BET-762 (I-BET) would have efficacy in the prevention of malignant transformation by VAT and FGF2. We tested this hypothesis using our novel models of VAT-stimulated transformation in vitro and FGF2- stimulated tumor formation in vivo We found that I-BET significantly attenuates VAT and FGF2-stimulated transformation and inhibits VAT-induced c-Myc protein expression in several skin and breast epithelial cell lines. Moreover, I-BET attenuated tumor growth significantly in FGF2-treated nude mice. Work is ongoing to determine the role of visceral adiposity in c-Myc activity in several tissues and determine the inhibitory effect of I-BET on VAT-promoted tumors in vivoCancer Prev Res; 11(3); 129-42. ©2017 AACRSee related editorial by Berger and Scacheri, p. 125.
Collapse
Affiliation(s)
- Debrup Chakraborty
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Vanessa Benham
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Vladislav Jdanov
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Blair Bullard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Ana S Leal
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Jamie J Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
15
|
Kryeziu K, Pirker C, Englinger B, van Schoonhoven S, Spitzwieser M, Mohr T, Körner W, Weinmüllner R, Tav K, Grillari J, Cichna-Markl M, Berger W, Heffeter P. Chronic arsenic trioxide exposure leads to enhanced aggressiveness via Met oncogene addiction in cancer cells. Oncotarget 2017; 7:27379-93. [PMID: 27036042 PMCID: PMC5053657 DOI: 10.18632/oncotarget.8415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/18/2016] [Indexed: 01/02/2023] Open
Abstract
As an environmental poison, arsenic is responsible for many cancer deaths. Paradoxically, arsenic trioxide (ATO) presents also a powerful therapy used to treat refractory acute promyelocytic leukemia (APL) and is intensively investigated for treatment of other cancer types. Noteworthy, cancer therapy is frequently hampered by drug resistance, which is also often associated with enhancement of tumor aggressiveness. In this study, we analyzed ATO-selected cancer cells (A2780ATO) for the mechanisms underlying their enhanced tumorigenicity and aggressiveness. These cells were characterized by enhanced proliferation and spheroid growth as well as increased tumorigenicity of xenografts in SCID mice. Noteworthy, subsequent studies revealed that overexpression of Met receptor was the underlying oncogenic driver of these effects, as A2780ATO cells were characterized by collateral sensitivity against Met inhibitors. This finding was also confirmed by array comparative genomic hybridization (array CGH) and whole genome gene expression arrays, which revealed that Met overexpression by chronic ATO exposure was based on the transcriptional regulation via activation of AP-1. Finally, it was shown that treatment with the Met inhibitor crizotinib was also effective against A2780ATO cell xenografts in vivo, indicating that targeting of Met presents a promising strategy for the treatment of Met-overexpressing tumors after either arsenic exposure or failure to ATO treatment.
Collapse
Affiliation(s)
- Kushtrim Kryeziu
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria.,Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Bernhard Englinger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Sushilla van Schoonhoven
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | | | - Thomas Mohr
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Wilfried Körner
- Department of Environmental Geosciences, University of Vienna, Vienna, Austria
| | - Regina Weinmüllner
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Koray Tav
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Austria.,Evercyte GmbH, Vienna, Austria
| | | | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria.,Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria.,Research Platform "Translational Cancer Therapy Research", Vienna, Austria
| |
Collapse
|
16
|
Chakraborty D, Benham V, Bullard B, Kearney T, Hsia HC, Gibbon D, Demireva EY, Lunt SY, Bernard JJ. Fibroblast growth factor receptor is a mechanistic link between visceral adiposity and cancer. Oncogene 2017; 36:6668-6679. [PMID: 28783178 PMCID: PMC5709202 DOI: 10.1038/onc.2017.278] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/19/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Epidemiological evidence implicates excess adipose tissue in increasing cancer risk. Despite a steeply rising global prevalence of obesity, how adiposity contributes to transformation (stage a non-tumorigenic cell undergoes to become malignant) is unknown. To determine the factors in adipose tissue that stimulate transformation, we used a novel ex vivo system of visceral adipose tissue (VAT)-condition medium-stimulated epithelial cell growth in soft agar. To extend this system in vivo, we used a murine lipectomy model of ultraviolet light B-induced, VAT-promoted skin tumor formation. We found that VAT from mice and obese human donors stimulated growth in soft agar of non-tumorigenic epithelial cells. The difference in VAT activity was associated with fibroblast growth factor-2 (FGF2) levels. Moreover, human and mouse VAT failed to stimulate growth in soft of agar in cells deficient in FGFR-1 (FGF2 receptor). We also demonstrated that circulating levels of FGF2 were associated with non-melanoma tumor formation in vivo. These data implicate FGF2 as a major factor VAT releases to transform epithelial cells-a novel, potential pathway of VAT-enhanced tumorigenesis. Strategies designed to deplete VAT stores of FGF2 or inhibit FGFR-1 in abdominally obese individuals may be important cancer prevention strategies as well as adjuvant therapies for improving outcomes.
Collapse
Affiliation(s)
- D Chakraborty
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - V Benham
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - B Bullard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - T Kearney
- Division of Surgical Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - H C Hsia
- Section of Plastic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - D Gibbon
- Summit Medical4 Group, Livingston, NJ, USA
| | - E Y Demireva
- Office for the Vice President for Research and Graduate Studies, Michigan State University, East Lansing, MI, USA
| | - S Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - J J Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
17
|
Chen QY, Costa M. A comprehensive review of metal-induced cellular transformation studies. Toxicol Appl Pharmacol 2017; 331:33-40. [DOI: 10.1016/j.taap.2017.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/30/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
|
18
|
Wu H, Bi J, Peng Y, Huo L, Yu X, Yang Z, Zhou Y, Qin L, Xu Y, Liao L, Xie Y, Conneely OM, Jonkers J, Xu J. Nuclear receptor NR4A1 is a tumor suppressor down-regulated in triple-negative breast cancer. Oncotarget 2017; 8:54364-54377. [PMID: 28903348 PMCID: PMC5589587 DOI: 10.18632/oncotarget.17532] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/15/2017] [Indexed: 12/11/2022] Open
Abstract
The nuclear receptor (NR) superfamily contains hormone-inducible transcription factors that regulate many physiological and pathological processes through regulating gene expression. NR4A1 is an NR family member that still does not have an identified endogenous ligand, and its role in cancer is also currently unclear and controversial. In this study, we aimed to define the expression profiles and specific role of NR4A1 in the highly malignant triple-negative breast cancer (TNBC), which still lacks available targeted therapies. Bioinformatic analysis revealed a decrease of NR4A1 mRNA expression in human TNBC samples. Semi-quantitative analysis of NR4A1 protein expression by immunohistochemistry also identified a progressive NR4A1 reduction during the development of mouse basal-like mammary tumors and a significant NR4A1 downregulation in human TNBC samples. Furthermore, the expression levels of NR4A1 in human TNBC were negatively associated with tumor stage, lymph node metastasis and disease recurrence. Moreover, ectopic expression of NR4A1 in MDA-MB-231, a TNBC cell line with little endogenous NR4A1, inhibited the proliferation, viability, migration and invasion of these cells, and these inhibitions were associated with an attenuated JNK1–AP-1–cyclin D1 pathway. NR4A1 expression also largely suppressed the growth and metastasis of these cell-derived tumors in mice. These results demonstrate that NR4A1 is downregulated in TNBC and restoration of NR4A1 expression inhibits TNBC growth and metastasis, suggesting that NR4A1 is a tumor suppressor in TNBC.
Collapse
Affiliation(s)
- Hongmei Wu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Current address: College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Jiong Bi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Current address: Departments of General Surgical Laboratory, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yan Peng
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Huo
- Department of Pathology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaobin Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhihui Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Institute for Cancer Medicine, School of Basic Medical Sciences, and Department of Pathology, Xinan Medical University, Luzhou, Sichuan 646000, China
| | - Yunyun Zhou
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Current address: Department of Data Science, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Li Qin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yixiang Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Xie
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Orla M Conneely
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jos Jonkers
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, Netherlands
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Institute for Cancer Medicine, School of Basic Medical Sciences, and Department of Pathology, Xinan Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
19
|
Huang H, Zhu J, Li Y, Zhang L, Gu J, Xie Q, Jin H, Che X, Li J, Huang C, Chen LC, Lyu J, Gao J, Huang C. Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells. Autophagy 2016; 12:1687-1703. [PMID: 27467530 PMCID: PMC5079680 DOI: 10.1080/15548627.2016.1196313] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure.
Collapse
Affiliation(s)
- Haishan Huang
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Junlan Zhu
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Yang Li
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Liping Zhang
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Jiayan Gu
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Qipeng Xie
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Honglei Jin
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Xun Che
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Jingxia Li
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Chao Huang
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Lung-Chi Chen
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Jianxin Lyu
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Jimin Gao
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Chuanshu Huang
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| |
Collapse
|
20
|
Escudero-Lourdes C. Toxicity mechanisms of arsenic that are shared with neurodegenerative diseases and cognitive impairment: Role of oxidative stress and inflammatory responses. Neurotoxicology 2016; 53:223-235. [DOI: 10.1016/j.neuro.2016.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/21/2022]
|
21
|
Kim HG, Shi C, Bode AM, Dong Z. p38α MAPK is required for arsenic-induced cell transformation. Mol Carcinog 2015; 55:910-7. [PMID: 25969347 DOI: 10.1002/mc.22331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/18/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Abstract
Arsenic exposure has been reported to cause neoplastic transformation through the activation of PcG proteins. In the present study, we show that activation of p38α mitogen-activated protein kinase (MAPK) is required for arsenic-induced neoplastic transformation. Exposure of cells to 0.5 μM arsenic increased CRE and c-Fos promoter activities that were accompanied by increases in p38α MAPK and CREB phosphorylation and expression levels concurrently with AP-1 activation. Introduction of short hairpin (sh) RNA-p38α into BALB/c 3T3 cells markedly suppressed arsenic-induced colony formation compared with wildtype cells. CREB phosphorylation and AP-1 activation were decreased in p38α knockdown cells after arsenic treatment. Arsenic-induced AP-1 activation, measured as c-Fos and CRE promoter activities, and CREB phosphorylation were attenuated by p38 inhibition in BALB/c 3T3 cells. Thus, p38α MAPK activation is required for arsenic-induced neoplastic transformation mediated through CREB phosphorylation and AP-1 activation.
Collapse
Affiliation(s)
- Hong-Gyum Kim
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Chengcheng Shi
- The Hormel Institute, University of Minnesota, Austin, Minnesota.,The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| |
Collapse
|
22
|
Zhang J, Gao G, Chen L, Li J, Deng X, Zhao QS, Huang C. Hydrogen peroxide/ATR-Chk2 activation mediates p53 protein stabilization and anti-cancer activity of cheliensisin A in human cancer cells. Oncotarget 2015; 5:841-52. [PMID: 24553354 PMCID: PMC3996661 DOI: 10.18632/oncotarget.1780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cheliensisine A (Chel A) as a novel styryl-lactone isolated from Goniothalamus cheliensis Hu has been indicated to be a chemotherapeutic agent in Leukemia HL-60 cells. However, its potential for cancer treatment and the underlying mechanisms are not deeply investigated to the best of our knowledge. Current studies showed that Chel A could trigger p53-mediated apoptosis, accompanied with dramatically inhibition of anchorage-independent growth of human colon cancer HCT116 cells. Further studies found that Chel A treatment resulted in p53 protein stabilization and accumulation via the induction of its phosphorylation at Ser20 and Ser15. Moreover, Chel A-induced p53 protein accumulation and activation required ATR/Chk2 axis, which is distinct from the mechanism that we have most recently identified the Chk1/p53-dependent apoptotic response by Chel A in normal mouse epidermal Cl41 cells. In addition, our results demonstrated that hydrogen peroxide generation induced by Chel A acted as a precursor for all these signaling events and downstream biological effects. Taken together, we have identified the Chel A as a new therapeutic agent, which highlights its potential for cancer therapeutic effect.
Collapse
Affiliation(s)
- Jingjie Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
A new tumour suppression mechanism by p27Kip1: EGFR down-regulation mediated by JNK/c-Jun pathway inhibition. Biochem J 2014; 463:383-92. [PMID: 25121353 PMCID: PMC4209780 DOI: 10.1042/bj20140103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
p27Kip1 is a potent inhibitor of cyclin-dependent kinases that drive G1-to-S cell-cycle transition. Reduced p27Kip1 expression is prevalent in a wide range of human tumours; however, the exact mechanism(s) of p27Kip1-mediated tumour suppression remains obscure. In the present study, we identified a close inverse relationship between p27Kip1 and EGFR (epidermal growth factor receptor) expression: the parental T24 human bladder cancer cells had high p27Kip1 expression but low EGFR expression and, in striking contrast, the metastatic derivative of T24 (T24T) had low p27Kip1 expression but high EGFR expression. This relationship was also found in various human cancer tissues, and was not only just correlative but also causal; depletion of p27Kip1 in MEF (mouse embryonic fibroblast) cells resulted in markedly elevated EGFR expression, a result reproducible with an Egfr promoter-luciferase reporter in both T24 and MEF cells, suggesting transcriptional repression of EGFR by p27Kip1. Indeed, p27Kip1 was found to regulate EGFR expression via the JNK (c-Jun N-terminal kinase)/c-Jun transcription factor: p27Kip1 deficiency activated JNK/c-Jun, whereas inhibition of JNK/c-Jun by dominant-negative mutants dramatically repressed Egfr transcription. Furthermore, the proximal promoter of the Egfr gene was crucial for its transcription, where the recruiting activity of c-Jun was much greater in p27Kip1−/− cells than in p27Kip1+/+ cells. Introduction of GFP–p27Kip1 into T24T cells suppressed JNK/c-Jun activation, EGFR expression and anchorage-independent growth. The results of the present study demonstrate that p27Kip1 suppresses JNK/c-Jun activation and EGFR expression in MEFs and human bladder cancer cells, and the results obtained are consistent with those from human cancer specimens. The present study provides new insights into p27Kip1 suppression of cancer cell growth, migration and metastasis. An inverse relationship between p27Kip1 and EGFR expression in parental T24 human bladder cancer cells and various human cancer tissues was found. Depletion of p27Kip1 in cells markedly elevated EGFR expression through transcriptional repression of Egfr by p27Kip1 via the JNK/c-Jun cascade.
Collapse
|
24
|
The N-terminal region of p27 inhibits HIF-1α protein translation in ribosomal protein S6-dependent manner by regulating PHLPP-Ras-ERK-p90RSK axis. Cell Death Dis 2014; 5:e1535. [PMID: 25412313 PMCID: PMC4260754 DOI: 10.1038/cddis.2014.496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022]
Abstract
P27 was identified as a tumor suppressor nearly two decades, being implicated in cell-cycle control, differentiation, senescence, apoptosis and motility. Our present study, for the first time to the best of our knowledge, revealed a potential role of p27 in inhibiting S6-mediated hypoxia-inducible factor-1α (HIF-1α) protein translation, which contributed to the protection from environmental carcinogen (sodium arsenite)-induced cell transformation. Our findings showed that depletion of p27 expression by knockout and knockdown approaches efficiently enhanced S6 phosphorylation in arsenite response via overactivating Ras/Raf/MEK/ERK pathway, which consequently resulted in the stimulation of p90RSK (90 kDa ribosomal S6 kinase), a direct kinase for S6 phosphorylation. Although PI3K/AKT pathway was also involved in S6 activation, blocking AKT and p70S6K activation did not attenuate arsenite-induced S6 activation in p27−/− cells, suggesting p27 specifically targeted Ras/ERK pathway rather than PI3K/AKT pathway for inhibition of S6 activation in response to arsenite exposure. Further functional studies found that p27 had a negative role in cell transformation induced by chronic low-dose arsentie exposure. Mechanistic investigations showed that HIF-1α translation was upregulated in p27-deficient cells in an S6 phosphorylation-dependent manner and functioned as a driving force in arsenite-induced cell transformation. Knockdown of HIF-1α efficiently reversed arsenite-induced cell transformation in p27-depleted cells. Taken together, our findings provided strong evidence showing that by targeting Ras/ERK pathway, p27 provided a negative control over HIF-1α protein synthesis in an S6-dependent manner, and abrogated arsenite-induced cell transformation via downregulation of HIF-1α translation.
Collapse
|
25
|
Zhu J, Zhang J, Huang H, Li J, Yu Y, Jin H, Li Y, Deng X, Gao J, Zhao Q, Huang C. Crucial role of c-Jun phosphorylation at Ser63/73 mediated by PHLPP protein degradation in the cheliensisin a inhibition of cell transformation. Cancer Prev Res (Phila) 2014; 7:1270-81. [PMID: 25281487 DOI: 10.1158/1940-6207.capr-14-0233] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cheliensisin A (Chel A), as a novel styryl-lactone isolated from Goniothalamus cheliensis Hu, has been demonstrated to have an inhibition of EGF-induced Cl41 cell transformation via stabilizing p53 protein in a Chk1-dependent manner, suggesting its chemopreventive activity in our previous studies. However, its underlying molecular mechanisms have not been fully characterized yet. In the current study, we found that Chel A treatment could increase c-Jun protein phosphorylation and activation, whereas the inhibition of c-Jun phosphorylation, by ectopic expression of a dominant-negative mutant of c-Jun, TAM67, reversed the Chel A inhibition of EGF-induced cell transformation and impaired Chel A induction of p53 protein and apoptosis. Moreover, our results indicated that Chel A treatment led to a PHLPP downregulation by promoting PHLPP protein degradation. We also found that PHLPP could interact with and bind to c-Jun protein, whereas ectopic PHLPP expression blocked c-Jun activation, p53 protein and apoptotic induction by Chel A, and further reversed the Chel A inhibition of EGF-induced cell transformation. With the findings, we have demonstrated that Chel A treatment promotes a PHLPP protein degradation, which can bind to c-Jun and mediates c-Jun phosphorylation, and further leading to p53 protein induction, apoptotic responses, subsequently resulting in cell transformation inhibition and chemopreventive activity of Chel A.
Collapse
Affiliation(s)
- Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York. Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjie Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Haishan Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York. Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Yonghui Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York. Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York. Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Qinshi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York.
| |
Collapse
|
26
|
Qi Y, Li H, Zhang M, Zhang T, Frank J, Chen G. Autophagy in arsenic carcinogenesis. ACTA ACUST UNITED AC 2014; 66:163-8. [DOI: 10.1016/j.etp.2014.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
|
27
|
Zhang J, Gao G, Chen L, Deng X, Li J, Yu Y, Zhang D, Li F, Zhang M, Zhao Q, Huang C. Cheliensisin A inhibits EGF-induced cell transformation with stabilization of p53 protein via a hydrogen peroxide/Chk1-dependent axis. Cancer Prev Res (Phila) 2013; 6:949-958. [PMID: 23852422 DOI: 10.1158/1940-6207.capr-13-0097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cheliensisin A (Chel A), a novel styryl-lactone isolated from Goniothalamus cheliensis Hu, has been shown to induce apoptosis in human promyelocytic leukemia HL-60 cells with Bcl-2 downregulation. Yet, the potential chemopreventive effect of Chel A has not been explored. Here, we showed that Chel A treatment with various concentrations (0.5, 1.0, 2.0, and 4.0 μmol/L) for 3 weeks could dramatically inhibit EGF-induced cell transformation in Cl41 cells (IC50 ∼2.0 μmol/L). Also, coincubation of Cl41 cells with Chel A (2.0 and 4.0 μmol/L) for 48 hours could induce cell apoptosis in a caspase-3-dependent manner. Mechanically, Chel A treatment could result in increased p53 phosphorylation at Ser15 and elevated p53 total protein expression. Moreover, we found that p53 induction by Chel A was regulated at the protein degradation level, but not at either the transcription or the mRNA level. Further studies showed that p53 stabilization by Chel A was mediated via induction of phosphorylation and activation of Chk1 protein at Ser345. This notion was substantiated by the results that transfection of dominant negative mutant of Chk1 (GFP-Chk1 D130A) significantly attenuated the p53 protein expression, cell apoptosis, and inhibition of cell transformation by Chel A. Finally, increased hydrogen peroxide was found to mediate Chk1 phosphorylation at Ser345, p53 protein induction, cell apoptotic induction, and transformation inhibition following Chel A treatment. Taken together, our studies identify Chel A as a chemopreventive agent with the understanding of the molecular mechanisms involved.
Collapse
Affiliation(s)
- Jingjie Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | - Guangxun Gao
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | - Liang Chen
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | | | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | - Yonghui Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | - Fei Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | - Min Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | | | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| |
Collapse
|
28
|
Xu Y, Zhao Y, Xu W, Luo F, Wang B, Li Y, Pang Y, Liu Q. Involvement of HIF-2α-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells. Toxicol Appl Pharmacol 2013; 272:542-50. [PMID: 23811328 DOI: 10.1016/j.taap.2013.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/23/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
Abstract
Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested a link between inflammation and lung cancer; however, it is unknown if arsenite-induced inflammation causally contributes to arsenite-caused malignant transformation of cells. In this study, we investigated the molecular mechanisms underlying inflammation during neoplastic transformation induced in human bronchial epithelial (HBE) cells by chronic exposure to arsenite. The results showed that, on acute or chronic exposure to arsenite, HBE cells over-expressed the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β). The data also indicated that HIF-2α was involved in arsenite-induced inflammation. Moreover, IL-6 and IL-8 were essential for the malignant progression of arsenite-transformed HBE cells. Thus, these experiments show that HIF-2α mediates arsenite-induced inflammation and that such inflammation is involved in arsenite-induced malignant transformation of HBE cells. The results provide a link between the inflammatory response and the acquisition of a malignant transformed phenotype by cells chronically exposed to arsenite and thus establish a previously unknown mechanism for arsenite-induced carcinogenesis.
Collapse
Affiliation(s)
- Yuan Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cao Z, Zhang R, Li J, Huang H, Zhang D, Zhang J, Gao J, Chen J, Huang C. X-linked inhibitor of apoptosis protein (XIAP) regulation of cyclin D1 protein expression and cancer cell anchorage-independent growth via its E3 ligase-mediated protein phosphatase 2A/c-Jun axis. J Biol Chem 2013; 288:20238-47. [PMID: 23720779 DOI: 10.1074/jbc.m112.448365] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The X-linked inhibitor of apoptosis protein (XIAP) is a well known potent inhibitor of apoptosis; however, it is also involved in other cancer cell biological behavior. In the current study, we discovered that XIAP and its E3 ligase played a crucial role in regulation of cyclin D1 expression in cancer cells. We found that deficiency of XIAP expression resulted in a marked reduction in cyclin D1 expression. Consistently, cell cycle transition and anchorage-independent cell growth were also attenuated in XIAP-deficient cancer cells compared with those of the parental wild-type cells. Subsequent studies demonstrated that E3 ligase activity within the RING domain of XIAP is crucial for its ability to regulate cyclin D1 transcription, cell cycle transition, and anchorage-independent cell growth by up-regulating transactivation of c-Jun/AP-1. Moreover, we found that E3 ligase within RING domain was required for XIAP inhibition of phosphatase PP2A activity by up-regulation of PP2A phosphorylation at Tyr-307 in its catalytic subunit. Such PP2A phosphorylation and inactivation resulted in phosphorylation and activation of its downstream target c-Jun in turn leading to cyclin D1 expression. Collectively, our studies uncovered a novel function of E3 ligase activity of XIAP in the up-regulation of cyclin D1 expression, providing significant insight into the understanding of the biomedical significance of overexpressed XIAP in cancer development, further offering a new molecular basis for utilizing XIAP E3 ligase as a cancer therapeutic target.
Collapse
Affiliation(s)
- Zipeng Cao
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yu Y, Huang H, Li J, Zhang J, Gao J, Lu B, Huang C. GADD45β mediates p53 protein degradation via Src/PP2A/MDM2 pathway upon arsenite treatment. Cell Death Dis 2013; 4:e637. [PMID: 23681232 PMCID: PMC3674369 DOI: 10.1038/cddis.2013.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Growth arrest and DNA-damage-inducible, beta (GADD45β) has been reported to inhibit apoptosis via attenuating c-Jun N-terminal kinase (JNK) activation. We demonstrated here that GADD45β mediated its anti-apoptotic effect via promoting p53 protein degradation following arsenite treatment. We found that p53 protein expression was upregulated in GADD45β−/− cells upon arsenite exposure as compared with those in GADD45β+/+ cells. Further studies showed that GADD45β attenuated p53 protein expression through Src/protein phosphatase 2A/murine double minute 2-dependent p53 protein-degradation pathway. Moreover, we identified that GADD45β-mediated p53 protein degradation was crucial for its anti-apoptotic effect due to arsenite exposure, whereas increased JNK activation was not involved in the increased cell apoptotic response in GADD45β−/− cells under same experimental conditions. Collectively, our results demonstrate a novel molecular mechanism responsible for GADD45β protection of arsenite-exposed cells from cell death, which provides insight into our understanding of GADD45β function and a unique compound arsenite as both a cancer therapeutic reagent and an environmental carcinogen. Those novel findings may also enable us to design more effective strategies for utilization of arsenite for the treatment of cancers.
Collapse
Affiliation(s)
- Y Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Chen B, Liu J, Chang Q, Beezhold K, Lu Y, Chen F. JNK and STAT3 signaling pathways converge on Akt-mediated phosphorylation of EZH2 in bronchial epithelial cells induced by arsenic. Cell Cycle 2012; 12:112-21. [PMID: 23255093 DOI: 10.4161/cc.23030] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms by which arsenic (As ( 3+) ) causes human cancers remain to be fully elucidated. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb-repressive complexes 2 (PRC2) that promotes trimethylation of lysine 27 of histone H3, leading to altered expression of tumor suppressors or oncogenes. In the present study, we determined the effect of As ( 3+) on EZH2 phosphorylation and the signaling pathways important for As ( 3+) -induced EZH2 phosphorylation in human bronchial epithelial cell line BEAS-2B. The involvement of kinases in As ( 3+) -induced EZH2 phosphorylation was validated by siRNA-based gene silencing. The data showed that As ( 3+) can induce phosphorylation of EZH2 at serine 21 in human bronchial epithelial cells and that the phosphorylation of EZH2 requires an As ( 3+) -activated signaling cascade from JNK and STAT3 to Akt. Transfection of the cells with siRNA specific for JNK1 revealed that JNK silencing reduced serine727 phosphorylation of STAT3, Akt activation and EZH2 phosphorylation, suggesting that JNK is the upstream kinase involved in As ( 3+) -induced EZH2 phosphorylation. Because As ( 3+) is capable of inducing miRNA-21 (miR-21), a STAT3-regulated miRNA that represses protein translation of PTEN or Spry2, we also tested the role of STAT3 and miR-21 in As ( 3+) -induced EZH2 phosphorylation. Ectopic overexpression of miR-21 promoted Akt activation and phosphorylation of EZH2, whereas inhibiting miR-21 by transfecting the cells with anti-miR-21 inhibited Akt activation and EZH2 phosphorylation. Taken together, these results demonstrate a contribution of the JNK, STAT3 and Akt signaling axis to As ( 3+) -induced EZH2 phosphorylation. Importantly, these findings may reveal new molecular mechanisms underlying As ( 3+) -induced carcinogenesis.
Collapse
Affiliation(s)
- Bailing Chen
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
32
|
Yang Y, Wang H, Wang S, Xu M, Liu M, Liao M, Frank JA, Adhikari S, Bower KA, Shi X, Ma C, Luo J. GSK3β signaling is involved in ultraviolet B-induced activation of autophagy in epidermal cells. Int J Oncol 2012; 41:1782-8. [PMID: 22961228 PMCID: PMC3583618 DOI: 10.3892/ijo.2012.1620] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/27/2012] [Indexed: 12/25/2022] Open
Abstract
Ultraviolet B (UVB) exposure causes damage to skin and represents the primary etiological agent for skin cancer formation. UVB induces DNA damage and apoptosis in epidermal cells. In this study, we demonstrated that UVB activated autophagy in JB6 epidermal cells, which was evident by the formation of LC3 puncta, the induction of LC3 lipidation, the increase in beclin 1 expression, and the decrease in the levels of p62. Autophagy appeared to be a protective response to UVB-induced damage because inhibition of autophagy exacerbated UVB-induced cell death, and stimulation of autophagy offered protection. Furthermore, we demonstrated that glycogen synthase kinase 3β (GSK3β) was involved in UVB-induced autophagy. UVB inhibited GSK3β activation by simultaneously enhancing phosphorylation at Ser9 and suppressing Tyr216 phosphorylation. GSK3β negatively regulated autophagy; overexpression of wild-type or S9A (constitutive-active) GSK3β mutant inhibited UVB-mediated autophagy, while overexpression of a dominant-negative K85R mutant enhanced UVB-mediated autophagy. Inhibition of GSK3β also offered protection against UVB-mediated damage. UVB activated AMP-activated protein kinase (AMPK), an important regulator of autophagy through the inhibition of GSK3β. Taken together, our results suggest that UVB-stimulated autophagy is a protective response for epidermal cells and is mediated by the GSK3β/AMPK pathway.
Collapse
Affiliation(s)
- Yang Yang
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fang Y, Yu Y, Hou Q, Zheng X, Zhang M, Zhang D, Li J, Wu XR, Huang C. The Chinese herb isolate isorhapontigenin induces apoptosis in human cancer cells by down-regulating overexpression of antiapoptotic protein XIAP. J Biol Chem 2012; 287:35234-35243. [PMID: 22896709 DOI: 10.1074/jbc.m112.389494] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the Chinese herb Gnetum cleistostachyum has been used as a remedy for cancers for hundred years, the active compounds and molecular mechanisms underlying its anti-cancer activity have not been explored. Recently a new derivative of stilbene compound, isorhapontigenin (ISO), was isolated from this Chinese herb. In the present study, we examined the potential of ISO in anti-cancer activity and the mechanisms involved in human cancer cell lines. We found that ISO exhibited significant inhibitory effects on human bladder cancer cell growth that was accompanied by marked apoptotic induction as well as down-regulation of the X-linked inhibitor of apoptosis protein (XIAP). Further studies have shown that ISO down-regulation of XIAP protein expression was only observed in endogenous XIAP, but not in constitutionally exogenously expressed XIAP in the same cells, excluding the possibility of ISO regulating XIAP expression at the level of protein degradation. We also identified that ISO down-regulated XIAP gene transcription via inhibition of Sp1 transactivation. There was no significant effect of ISO on apoptosis and colony formation of cells transfected with exogenous HA-tagged XIAP. Collectively, current studies, for the first time to the best of our knowledge, identify ISO as a major active compound for the anti-cancer activity of G. cleistostachyum by down-regulation of XIAP expression and induction of apoptosis through specific targeting of a SP1 pathway, and cast new light on the treatment of the cancer patients with XIAP overexpression.
Collapse
Affiliation(s)
- Yong Fang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987; Department of Medical Oncology, Sir Run Run Shaw Hospital, ZheJiang University, Hangzhou, Zhejiang 310016, China
| | - Yonghui Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Qi Hou
- Materia Medica of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao Zheng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Min Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Xue-Ru Wu
- Department of Urology and Pathology, New York University School of Medicine, New York, New York 10016
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987.
| |
Collapse
|
34
|
Zhang J, Ouyang W, Li J, Zhang D, Yu Y, Wang Y, Li X, Huang C. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability. Toxicol Appl Pharmacol 2012; 263:218-24. [PMID: 22749963 DOI: 10.1016/j.taap.2012.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/16/2012] [Accepted: 06/19/2012] [Indexed: 02/07/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells.
Collapse
Affiliation(s)
- Jingjie Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Haidian District, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Suzuki T, Kita K, Ochi T. Phosphorylation of histone H3 at serine 10 has an essential role in arsenite-induced expression of FOS, EGR1 and IL8 mRNA in cultured human cell lines. J Appl Toxicol 2012; 33:746-55. [PMID: 22354777 DOI: 10.1002/jat.2724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/28/2011] [Accepted: 12/28/2011] [Indexed: 12/31/2022]
Abstract
Trivalent inorganic arsenite [iAs(III)] is known to alter the expression of a number of genes associated with transcription and cell proliferation, which was thought to be one of the possible mechanisms of arsenical carcinogenesis. However, the detailed mechanisms underlying iAs(III) induction of changes in gene expression are not fully understood. Here we examine the role of histone H3 phosphorylation at serine 10 (Ser(10) ) in gene regulation when the cells were treated with iAs(III). Among the 34 genes tested, iAs(III) induced mRNA expression of JUN, FOS, EGR1, HMOX1, HSPA1A, IL8, GADD45A, GADD45B and GADD153. Phosphorylation of histone H3 Ser(10) was induced by iAs(III) in interphase cells, and was effectively blocked by the ERKs pathway inhibitor (U0126). U0126 treatment significantly reduced constitutive mRNA expression of FOS and EGR1, and dramatically suppressed the induction of FOS, EGR1 and IL8 mRNA in iAs(III)-treated cells. The other genes, which were induced by iAs(III), were not affected by U0126 treatment. When the histone H3 nonphosphorylatable mutant of serine 10 (S10A) was overexpressed in cells, iAs(III) induction of FOS, EGR1and IL8 expression was significantly decreased as compared with wild-type cells. The other genes induced by iAs(III) were not changed in S10A cells nor by U0126 treatment. In addition, S10A cells were more resistant to iAs(III) cytotoxicity. These results indicated that the phosphorylation of histone H3 at Ser(10) through the ERKs pathway in interphase cells is an important regulatory event for iAs(III)-mediated gene expression. Aberrant gene expression seems to be an important cause of cytotoxicity and may have some relation to iAs(III) carcinogenicity.
Collapse
Affiliation(s)
- Toshihide Suzuki
- Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamihara, Kanagawa, 252-5195, Japan.
| | | | | |
Collapse
|
36
|
Carpenter RL, Jiang Y, Jing Y, He J, Rojanasakul Y, Liu LZ, Jiang BH. Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1. Biochem Biophys Res Commun 2011; 414:533-8. [PMID: 21971544 DOI: 10.1016/j.bbrc.2011.09.102] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 11/18/2022]
Abstract
Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidence suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.
Collapse
Affiliation(s)
- Richard L Carpenter
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | | | | | | | | | | | | |
Collapse
|
37
|
Lee CH, Wu SB, Hong CH, Liao WT, Wu CY, Chen GS, Wei YH, Yu HS. Aberrant cell proliferation by enhanced mitochondrial biogenesis via mtTFA in arsenical skin cancers. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2066-76. [PMID: 21514422 DOI: 10.1016/j.ajpath.2011.01.056] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/14/2011] [Accepted: 01/24/2011] [Indexed: 11/26/2022]
Abstract
Arsenic-induced Bowen's disease (As-BD), a cutaneous carcinoma in situ, is thought to arise from gene mutation and uncontrolled proliferation. However, how mitochondria regulate the arsenic-induced cell proliferation remains unclear. The aim of this study was to clarify whether arsenic interfered with mitochondrial biogenesis and function, leading to aberrant cell proliferation in As-BD. Skin biopsy samples from patients with As-BD and controls were stained for cytochrome c oxidase (Complex IV), measured for mitochondrial DNA (mtDNA) copy number and the expression levels of mitochondrial biogenesis-related genes, including peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF-1), and mitochondrial transcription factor A (mtTFA). The results showed that expression of cytochrome c oxidase, mtTFA, NRF-1, and PGC-1α was increased in As-BD compared with in healthy subjects. Treatment of primary keratinocytes with arsenic at concentrations lower than 1.0 μmol/L induced cell proliferation, along with enhanced mitochondrial biogenesis. Furthermore, we observed that the mitochondrial oxygen consumption rate and intracellular ATP level were increased in arsenic-treated keratinocytes. Blocking of mitochondrial function by oligomycin A (Complex V inhibitor) or knockdown of mtTFA by RNA interference abrogated arsenic-induced cell proliferation without affecting cyclin D1 expression. We concluded that mtTFA up-regulation, augmented mitochondrial biogenesis, and enhanced mitochondrial functions may contribute to arsenic-induced cell proliferation. Targeting mitochondrial biogenesis may help treat arsenical cancers at the stage of cell proliferation.
Collapse
Affiliation(s)
- Chih-Hung Lee
- Department of Dermatology, Graduate Institute of Medicine, Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu Y, Hock JM, Sullivan C, Fang G, Cox AJ, Davis KT, Davis BH, Li X. Activation of the p38 MAPK/Akt/ERK1/2 signal pathways is required for the protein stabilization of CDC6 and cyclin D1 in low-dose arsenite-induced cell proliferation. J Cell Biochem 2011; 111:1546-55. [PMID: 20862710 DOI: 10.1002/jcb.22886] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arsenic trioxide (ATO) is a first-line anti-cancer agent for acute promyelocytic leukemia, and induces apoptosis in other solid cancer cell lines including breast cancer cells. However, as with arsenites found in drinking water and used as raw materials for wood preservatives, insecticides, and herbicides, low doses of ATO can induce carcinogenesis after long-term exposure. At 24 h after exposure, ATO (0.01-1 µM) significantly increased cell proliferation and promoted cell cycle progression from the G1 to S/G2 phases in the non-tumorigenic MCF10A breast epithelial cell line. The expression of 14 out of 96 cell-cycle-associated genes significantly increased, and seven of these genes including cell division cycle 6 (CDC6) and cyclin D1 (CCND1) were closely related to cell cycle progression from G1 to S phase. Low-dose ATO steadily increased gene transcript and protein levels of both CDC6 and cyclin D1 in a dose- and time-dependent manner. Low-dose ATO produced reactive oxygen species (ROS), and activated the p38 MAPK, Akt, and ERK1/2 pathways at different time points within 60 min. Small molecular inhibitors and siRNAs inhibiting the activation of p38 MAPK, Akt, and ERK1/2 decreased the ATO-increased expression of CDC6 protein. Inhibiting the activation of Akt and ERK1/2, but not p38 MAPK, decreased the ATO-induced expression of cyclin D1 protein. This study reports for the first time that p38 MAPK/Akt/ERK1/2 activation is required for the protein stabilization of CDC6 in addition to cyclin D1 in ATO-induced cell proliferation and cell cycle modulation from G1 to S phase.
Collapse
Affiliation(s)
- Youhong Liu
- Maine Institute for Human Genetics and Health, 246 Sylvan Road, Maine 04401, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu J, Zhang D, Mi X, Xia Q, Yu Y, Zuo Z, Guo W, Zhao X, Cao J, Yang Q, Zhu A, Yang W, Shi X, Li J, Huang C. p27 suppresses arsenite-induced Hsp27/Hsp70 expression through inhibiting JNK2/c-Jun- and HSF-1-dependent pathways. J Biol Chem 2010; 285:26058-65. [PMID: 20566634 DOI: 10.1074/jbc.m110.100271] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p27 is an atypical tumor suppressor that can regulate the activity of cyclin-dependent kinases and G(0)-to-S phase transitions. More recent studies reveal that p27 may also exhibit its tumor-suppressive function through regulating many other essential cellular events. However, the molecular mechanisms underlying these anticancer effects of p27 are largely unknown. In this study, we found that depletion of p27 expression by either gene knock-out or knockdown approaches resulted in up-regulation of both Hsp27 and Hsp70 expression at mRNA- and promoter-derived transcription as well as protein levels upon arsenite exposure, indicating that p27 provides a negative signal for regulating the expression of Hsp27 and Hsp70. Consistently, arsenite-induced activation of JNK2/c-Jun and HSF-1 pathways was also markedly elevated in p27 knock-out (p27(-/-)) and knockdown (p27 shRNA) cells. Moreover, interference with the expression or function of JNK2, c-Jun, and HSF-1, but not JNK1, led to dramatic inhibition of arsenite-induced Hsp27 and Hsp70 expression. Collectively, our results demonstrate that p27 suppresses Hsp27 and Hsp70 expression at the transcriptional level specifically through JNK2/c-Jun- and HSF-1-dependent pathways upon arsenite exposure, which provides additional important molecular mechanisms for the tumor-suppressive function of p27.
Collapse
Affiliation(s)
- Jinyi Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lee DE, Lee KW, Song NR, Seo SK, Heo YS, Kang NJ, Bode AM, Lee HJ, Dong Z. 7,3',4'-Trihydroxyisoflavone inhibits epidermal growth factor-induced proliferation and transformation of JB6 P+ mouse epidermal cells by suppressing cyclin-dependent kinases and phosphatidylinositol 3-kinase. J Biol Chem 2010; 285:21458-66. [PMID: 20444693 DOI: 10.1074/jbc.m109.094797] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous in vitro and in vivo studies have shown that isoflavones exhibit anti-proliferative activity against epidermal growth factor (EGF) receptor-positive malignancies of the breast, colon, skin, and prostate. 7,3',4'-Trihydroxyisoflavone (7,3',4'-THIF) is one of the metabolites of daidzein, a well known soy isoflavone, but its chemopreventive activity and the underlying molecular mechanisms are poorly understood. In this study, 7,3',4'-THIF prevented EGF-induced neoplastic transformation and proliferation of JB6 P+ mouse epidermal cells. It significantly blocked cell cycle progression of EGF-stimulated cells at the G(1) phase. As shown by Western blot, 7,3',4'-THIF suppressed the phosphorylation of retinoblastoma protein at Ser-795 and Ser-807/Ser-811, which are the specific sites of phosphorylation by cyclin-dependent kinase (CDK) 4. It also inhibited the expression of G(1) phase-regulatory proteins, including cyclin D1, CDK4, cyclin E, and CDK2. In addition to regulating the expression of cell cycle-regulatory proteins, 7,3',4'-THIF bound to CDK4 and CDK2 and strongly inhibited their kinase activities. It also bound to phosphatidylinositol 3-kinase (PI3K), strongly inhibiting its kinase activity and thereby suppressing the Akt/GSK-3beta/AP-1 pathway and subsequently attenuating the expression of cyclin D1. Collectively, these results suggest that CDKs and PI3K are the primary molecular targets of 7,3',4'-THIF in the suppression of EGF-induced cell proliferation. These insights into the biological actions of 7,3',4'-THIF provide a molecular basis for the possible development of new chemoprotective agents.
Collapse
Affiliation(s)
- Dong Eun Lee
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lu X, Shao J, Li H, Yu Y. Temporal gene expression changes induced by a low concentration of benzo[a]pyrene diol epoxide in a normal human cell line. Mutat Res 2010; 684:74-80. [PMID: 20018196 DOI: 10.1016/j.mrfmmm.2009.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 11/30/2009] [Accepted: 12/09/2009] [Indexed: 05/28/2023]
Abstract
(+ or -)-anti-Benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), which causes bulky-adduct DNA damage, is well-characterized as the ultimate carcinogen of benzo[a]pyrene (BaP). In this study, we have employed Affymetrix HG-U133 Plus 2.0 microarray and quantitative real-time RT-PCR methods to investigate a temporal transcriptomic response triggered by a low concentration (0.05 microM) of BPDE at 1, 10, and 22 h after exposure in normal human cells. The differential gene expression profiles at the three time points varied greatly, and generally reflected a cellular responsive process from initiation to progression and to recovery after the BPDE-caused damage. The dynamic regulation of the genes related with cell cycle progression and cell fate exhibited a tendency from inhibition to survival, which was accordant with the cell cycle arrest and cytotoxicity data induced by the low-dose BPDE exposure. In silico comparison of the genomic data revealed that BPDE and ultraviolet induced a panel of common transcriptional responses, which might be related with a series of similar molecular processes elicited by these two DNA-damaging agents. In conclusion, this whole-genome time-course study has identified a dynamically regulated transcriptional signature after low-dose BPDE exposure, which may help to understand the complex mechanisms of mutagenesis and carcinogenesis induced by BPDE.
Collapse
Affiliation(s)
- Xiangyun Lu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | |
Collapse
|
42
|
Zhang D, Li J, Costa M, Gao J, Huang C. JNK1 mediates degradation HIF-1alpha by a VHL-independent mechanism that involves the chaperones Hsp90/Hsp70. Cancer Res 2010; 70:813-23. [PMID: 20068160 DOI: 10.1158/0008-5472.can-09-0448] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) is a master transcription factor that is critical for the regulation of a variety of cellular functions. HIF-1alpha is rapidly degraded under normoxic conditions by ubiquitin-mediated proteasome pathway controlled by the tumor suppressor von Hippel Lindau (VHL). Several recent studies reveal that heat-shock proteins (Hsp) can regulate HIF-1alpha protein degradation by a VHL-independent pathway. Here, we demonstrate that the stress kinase c-Jun NH(2)-terminal kinase 1 (JNK1) is required for Hsp-dependent regulation of HIF-1alpha. Stabilization of HIF-1alpha was impaired in JNK1-/- cells but could be rescued by JNK1 reconstitution under hypoxic conditions. These effects could be phenocopied in other cell settings by JNK1 silencing. Accordingly, HIF-1 transcriptional activity and target gene expression were dramatically reduced in JNK1-/- cells. Further, decreased levels of endogenous Hsp90/Hsp70 proteins in JNK1-/- cells affected the protective roles of these chaperones in stabilizing newly synthesized HIF-1alpha, whereas enforced expression of Hsp90/Hsp70 in JNK1-/- cells increased HIF-1alpha stability relative to parental control cells. Furthering this connection, we also found that defective expression of the Hsp90 acetyltransferase HDAC6 in JNK1-/- cells was associated with reduced Hsp90 chaperone activity. Taken together, our studies define a novel function for JNK1 in regulating HIF-1alpha turnover by a VHL-independent mechanism.
Collapse
Affiliation(s)
- Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | |
Collapse
|
43
|
Genome-wide analysis of BEAS-2B cells exposed to trivalent arsenicals and dimethylthioarsinic acid. Toxicology 2010; 268:31-9. [DOI: 10.1016/j.tox.2009.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/30/2009] [Accepted: 11/20/2009] [Indexed: 01/22/2023]
|
44
|
Sinitsyna NN, Reznikova TV, Qin Q, Song H, Phillips MA, Rice RH. Arsenite suppression of involucrin transcription through AP1 promoter sites in cultured human keratinocytes. Toxicol Appl Pharmacol 2009; 243:275-82. [PMID: 20006635 DOI: 10.1016/j.taap.2009.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/07/2009] [Accepted: 12/05/2009] [Indexed: 02/08/2023]
Abstract
While preserving keratinocyte proliferative ability, arsenite suppresses cellular differentiation markers by preventing utilization of AP1 transcriptional response elements. In present experiments, arsenite had a dramatic effect in electrophoretic mobility supershift analysis of proteins binding to an involucrin promoter AP1 response element. Without arsenite treatment, binding of JunB and Fra1 was readily detected in nuclear extracts from preconfluent cultures and was not detected a week after confluence, while c-Fos was detected only after confluence. By contrast, band shift of nuclear extracts from arsenite treated cultures showed only JunB and Fra1 binding in postconfluent as well as preconfluent cultures. Immunoblotting of cell extracts showed that arsenite treatment prevented the loss of Fra1 and the increase in c-Fos proteins that occurred after confluence in untreated cultures. Chromatin immunoprecipitation assays demonstrated substantial reduction of c-Fos and acetylated histone H3 at the proximal and distal AP1 response elements in the involucrin promoter and of coactivator p300 at the proximal element. Alteration of AP1 transcription factors was also examined in response to treatment with four metal containing compounds (chromate, vanadate, hemin, divalent cadmium) that also suppress involucrin transcription. These agents all influenced transcription at AP1 elements in a transcriptional reporter assay, but exhibited less effect than arsenite on binding activity assessed by mobility shift and chromatin immunoprecipitation and displayed variable effects on AP1 protein levels. These findings help trace a mechanism by which transcriptional effects of arsenite become manifest and help rationalize the unique action of arsenite, compared to the other agents, to preserve proliferative ability.
Collapse
Affiliation(s)
- Nadezda N Sinitsyna
- Department of Environmental Toxicology, University of California, Davis, CA 95616-8588, USA
| | | | | | | | | | | |
Collapse
|
45
|
Chien CW, Ho IC, Lee TC. Induction of neoplastic transformation by ectopic expression of human aldo-keto reductase 1C isoforms in NIH3T3 cells. Carcinogenesis 2009; 30:1813-20. [PMID: 19696165 DOI: 10.1093/carcin/bgp195] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have shown previously that chronic low-dose arsenic exposure induces malignant transformation of human skin keratinocyte HaCaT cells. In this study, we found that several isoforms of aldo-keto reductase 1C (AKR1C) were overexpressed in arsenic-exposed HaCaT cells. The AKR1C family of proteins are phase I drug-metabolizing enzymes involved in maintenance of steroid homeostasis, prostaglandin metabolism and metabolic activation of polycyclic aromatic hydrocarbons. To explore the oncogenic potential of AKR1C isoforms, we established mouse NIH3T3 cell lines ectopically and stably expressing human AKR1C1, AKR1C2 or AKR1C3. Our results showed that ectopic expression of human AKR1C1 and AKR1C2, but not AKR1C3, significantly enhanced foci formation. Following subcutaneous injection of these stable cell lines into nude mice, fibrosarcoma were formed from all three cell lines. However, the number and size of tumors formed by the AKR1C3-expressing cell line was fewer and smaller, respectively, than those formed by AKR1C1- and AKR1C2-expressing cells. Inhibitors of AKR1C, genistein and ursodeoxycholic acid, decreased foci formation in AKR1C1- and AKR1C2-expressing NIH3T3 cells in a dose-dependent manner, implying the association of enzymatic activity and oncogenic potential of AKR1C. The requirement of enzymatic ability for neoplastic transformation was confirmed by establishing a NIH3T3 cell line stably expressing a mutant AKR1C1 lacking enzymatic activity, which did not form foci in culture or tumors in nude mice. Our present study reveals that AKR1C enzymatic activity plays crucial roles on induction of neoplastic transformation of mouse NIH3T3 cells.
Collapse
Affiliation(s)
- Chia-Wen Chien
- Graduate Institute of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | | | | |
Collapse
|