1
|
Sharma R, Ansari MM, Alam M, Fareed M, Ali N, Ahmad A, Sultana S, Khan R. Sophorin mitigates flutamide-induced hepatotoxicity in wistar rats. Toxicon 2024; 243:107722. [PMID: 38653393 DOI: 10.1016/j.toxicon.2024.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Flutamide is frequently used in the management of prostate cancer, hirsutism, and acne. It is a non-steroidal anti-androgenic drug and causes hepatotoxicity. The current study's objective is to evaluate sophorin's hepatoprotective effectiveness against flutamide-induced hepatotoxicity in Wistar rats. Sophorin is a citrus flavonoid glycoside, also known as rutin, which is a low molecular weight polyphenolic compound with natural antioxidant properties and reported to have promising hepatoprotective efficacy. In this study, sophorin was used at a dose of 100 mg/kg body weight in purified water via oral route for 4 week daily whereas, flutamide was used at a dose of 100 mg kg/b.wt for 4 weeks daily in 0.5% carboxy methyl cellulose (CMC) through the oral route for the induction of hepatotoxicity. Flutamide administration leads to enhanced reactive oxygen species (ROS) generation, an imbalance in redox homeostasis and peroxidation of lipid resulted in reduced natural antioxidant level in liver tissue. Our result demonstrated that sophorin significantly abrogate flutamide induced lipid peroxidation, protein carbonyl (PC), and also significantly increasesed in enzymatic activity/level of tissue natural antioxidant such as reduced glutathione(GSH), glutathione reductase(GR), catalase, and superoxide dismutase(SOD). Additionally, sophorin reduced the activity of cytochrome P450 3A1 in liver tissue which was elevated due to flutamide treatment. Furthermore, sophorin treatment significantly decreased the pro-inflammatory cytokines (TNF-α and IL-6) level. Immunohistochemical analysis for the expression of inflammatory proteins (iNOS and COX-2) in hepatic tissue was decreased after sophorin treatment against flutamide-induced hepatotoxicity. Moreover, sophorin suppressed the infiltration of mast cells in liver tissue which further showed anti-inflammatory potential of sophorin. Our histological investigation further demonstrated sophorin's hepatoprotective function by restoring the typical histology of the liver. Based on the aforementioned information, we are able to come to the conclusion that sophorin supplementation might benefit wistar rats with flutamide-induced hepatic damage by reducing oxidative stress and hepatocellular inflammation.
Collapse
Affiliation(s)
- Rishi Sharma
- Molecular Carcinogenesis and Chemoprevention Division, Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Md Meraj Ansari
- Heavy Metal and Clinical Toxicology Laboratory, Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammad Fareed
- Department of Environmental Health and Clinical Epidemiology, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Sarwat Sultana
- Molecular Carcinogenesis and Chemoprevention Division, Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India.
| |
Collapse
|
2
|
Roth RA, Kana O, Filipovic D, Ganey PE. Pharmacokinetic and toxicodynamic concepts in idiosyncratic, drug-induced liver injury. Expert Opin Drug Metab Toxicol 2022; 18:469-481. [PMID: 36003040 PMCID: PMC9484408 DOI: 10.1080/17425255.2022.2113379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Idiosyncratic drug-induced liver injury (IDILI) causes morbidity and mortality in patients and leads to curtailed use of efficacious pharmaceuticals. Unlike intrinsically toxic reactions, which depend on dose, IDILI occurs in a minority of patients at therapeutic doses. Much remains unknown about causal links among drug exposure, a mode of action, and liver injury. Consequently, numerous hypotheses about IDILI pathogenesis have arisen. AREAS COVERED Pharmacokinetic and toxicodynamic characteristics underlying current hypotheses of IDILI etiology are discussed and illustrated graphically. EXPERT OPINION Hypotheses to explain IDILI etiology all involve alterations in pharmacokinetics, which lead to plasma drug concentrations that rise above a threshold for toxicity, or in toxicodynamics, which result in a lowering of the toxicity threshold. Altered pharmacokinetics arise, for example, from changes in drug metabolism or from transporter polymorphisms. A lowered toxicity threshold can arise from drug-induced mitochondrial injury, accumulation of toxic endogenous factors or harmful immune responses. Newly developed, interactive freeware (DemoTox-PK; https://bit.ly/DemoTox-PK) allows the user to visualize how such alterations might lead to a toxic reaction. The illustrations presented provide a framework for conceptualizing idiosyncratic reactions and could serve as a stimulus for future discussion, education, and research into modes of action of IDILI.
Collapse
Affiliation(s)
- Robert A. Roth
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 49924
- ProbiTox LLC, Chapel Hill, NC 27514
| | - Omar Kana
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 49924
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824
| | - David Filipovic
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Patricia E. Ganey
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 49924
- ProbiTox LLC, Chapel Hill, NC 27514
| |
Collapse
|
3
|
Basili D, Reynolds J, Houghton J, Malcomber S, Chambers B, Liddell M, Muller I, White A, Shah I, Everett LJ, Middleton A, Bender A. Latent Variables Capture Pathway-Level Points of Departure in High-Throughput Toxicogenomic Data. Chem Res Toxicol 2022; 35:670-683. [PMID: 35333521 PMCID: PMC9019810 DOI: 10.1021/acs.chemrestox.1c00444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/28/2022]
Abstract
Estimation of points of departure (PoDs) from high-throughput transcriptomic data (HTTr) represents a key step in the development of next-generation risk assessment (NGRA). Current approaches mainly rely on single key gene targets, which are constrained by the information currently available in the knowledge base and make interpretation challenging as scientists need to interpret PoDs for thousands of genes or hundreds of pathways. In this work, we aimed to address these issues by developing a computational workflow to investigate the pathway concentration-response relationships in a way that is not fully constrained by known biology and also facilitates interpretation. We employed the Pathway-Level Information ExtractoR (PLIER) to identify latent variables (LVs) describing biological activity and then investigated in vitro LVs' concentration-response relationships using the ToxCast pipeline. We applied this methodology to a published transcriptomic concentration-response data set for 44 chemicals in MCF-7 cells and showed that our workflow can capture known biological activity and discriminate between estrogenic and antiestrogenic compounds as well as activity not aligning with the existing knowledge base, which may be relevant in a risk assessment scenario. Moreover, we were able to identify the known estrogen activity in compounds that are not well-established ER agonists/antagonists supporting the use of the workflow in read-across. Next, we transferred its application to chemical compounds tested in HepG2, HepaRG, and MCF-7 cells and showed that PoD estimates are in strong agreement with those estimated using a recently developed Bayesian approach (cor = 0.89) and in weak agreement with those estimated using a well-established approach such as BMDExpress2 (cor = 0.57). These results demonstrate the effectiveness of using PLIER in a concentration-response scenario to investigate pathway activity in a way that is not fully constrained by the knowledge base and to ease the biological interpretation and support the development of an NGRA framework with the ability to improve current risk assessment strategies for chemicals using new approach methodologies.
Collapse
Affiliation(s)
- Danilo Basili
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Joe Reynolds
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Jade Houghton
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Sophie Malcomber
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Bryant Chambers
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina 27711, United States
| | - Mark Liddell
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Iris Muller
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Andrew White
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Imran Shah
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina 27711, United States
| | - Logan J. Everett
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina 27711, United States
| | - Alistair Middleton
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Andreas Bender
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
4
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
5
|
Ding Y, Ma H, Xu Y, Yang F, Li Y, Shi F, Lu Y. Potentiation of flutamide-induced hepatotoxicity in mice by Xian-Ling-Gu-Bao through induction of CYP1A2. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114299. [PMID: 34090906 DOI: 10.1016/j.jep.2021.114299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xian-Ling-Gu-Bao (XLGB) Fufang is herbal formula widely used to treat osteoporosis and other bone disorders. Because of its commonality in the clinical use, there is a safety concern over the use of XLGB combined with other androgen deprivation therapy (ADT) drugs such as flutamide (FLU) that is associated with reduced bone density. To date, there have been no evaluations on the side effects of the drug-drug interaction between XLGB and FLU. AIM OF THE STUDY The present study was designed to investigate the hepatotoxicity in the context of the combined treatment of XLGB and FLU in a mouse model, and to determine whether the metabolic activation of FLU through induction of CYP1A2 plays a role in the increased hepatoxicity caused by the combination of XLGB and FLU. MATERIALS AND METHODS C57 mice were administered with either XLGB (6,160 mg/kg), FLU (300 mg/kg), or with the combination of the two drugs. Animals were treated with XLGB for 5 days before the combined administration of XLGB and FLU for another 4 days. The serum of mice from single or the combined administration groups was collected for biochemical analysis. The mouse liver was collected to examine liver morphological changes, evaluate liver coefficient, as well as determine the mRNA expression of P450 isozymes (Cyp1a2, Cyp3a11 and Cyp2c37). For metabolism analysis, mice were treated with XLGB, FLU, or the combination of XLGB and FLU for 24 h. The urine samples were collected for the analysis of FLU-NAC conjugate by UPLC-Q-Orbitrap MS. The liver microsomes were prepared from fresh livers to determine the activity of metabolizing enzyme CYP1A2. RESULTS The combined treatment of XLGB and FLU caused loss of mice body weight and elicited significant liver toxicity as evidenced by an increased liver coefficient and serum lactate dehydrogenase (LDH) activity as well as pathological changes of fatty lesion of liver tissue. FLU increased hepatic expression of Cyp1a2 mRNA that was further elevated in the liver of mice when administered with both FLU and XLGB. Treatment of FLU resulted in an increase in the expression of Cyp3a11 mRNA that was negated when mice were co-treated with FLU and XLGB. No significant difference in Cyp2c37 mRNA expression was observed among the different treatment groups as compared to the control. Analysis of metabolic activity showed that the combined administration caused a synergic effect in elevating the activity of the CYP1A2 enzyme. Mass spectrometry analysis identified the presence of FLU reactive metabolite derived FLU-NAC conjugate in the urine of mice treated with FLU. Strikingly, about a two-fold increase of the FLU-NAC conjugate was detected when treated with both FLU and XLGB, indicating an elevated amount of toxic metabolite produced from FLU in the present of XLGB. CONCLUSION FLU and XLGB co-treatment potentiated FLU-induced hepatoxicity. This increased hepatoxicity was mediated through the induction of CYP1A2 activity which in turn enhanced bioactivation of FLU leading to over production of FLU-NAC conjugate and oxidative stress. These results offer warnings about serious side effects of the FLU-XLGB interaction in the clinical practice.
Collapse
Affiliation(s)
- Yannan Ding
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China; Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Honghong Ma
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Yasha Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Feng Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Yi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Fuguo Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
6
|
Sha J, Hu K, Li T, Cao Z, Wan Y, Sun R, He H, Jiang G, Li Y, Li T, Ren B. Solubility determination, model correlation, solvent effect, molecular simulation and thermodynamic properties of flutamide in eleven pure solvents at different temperatures. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Nemeikaitė-Čėnienė A, Marozienė A, Misevičienė L, Tamulienė J, Yantsevich AV, Čėnas N. 5Flavoenzyme-catalyzed single-electron reduction of nitroaromatic antiandrogens: implications for their cytotoxicity. Free Radic Res 2021; 55:246-254. [PMID: 34098820 DOI: 10.1080/10715762.2021.1919304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The therapeutic action of nitroaromatic antiandrogens nilutamide and flutamide may be complicated by their cytotoxicity, whose mechanisms are still incomprehensively understood. In particular this concerns the enzymatic redox cycling of flutamide and its metabolites, and its impact on their cytotoxicity. In this work, we examined the single-electron reduction of nilutamide, flutamide, its metabolites 2-hydroxyflutamide and 4-nitro-3-trifluorormethyl-phenylamine, and a topical antiandrogen (3-amino-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl)-phenyl) propanamide by NADPH:cytochrome P-450 reductase and adrenodoxin reductase/adrenodoxin. The obtained steady-state bimolecular rate constants of oxidant reduction (kcat/Km) enabled to establish single-electron reduction midpoint potentials (E17) of compounds, -0.377 - -0.413 V, which were in line with enthalpies of formation of their free radicals, obtained by quantum mechanical calculations. Using murine hepatoma MH22a cells, the obtained cytotoxicity vs. E17 correlation based on the data of model nitroaromatic compounds shows that redox cycling and oxidative stress could be the main factor of cytotoxicity of nitroaromatic antiandrogens. Other minor cytotoxicity factors could be their redox metabolism involving NAD(P)H:quinone oxidoreductase (NQO1) and cytochromes P-450.
Collapse
Affiliation(s)
| | | | - Lina Misevičienė
- Institute of Biochemistry of Vilnius University, Vilnius, Lithuania
| | - Jelena Tamulienė
- Institute of Theoretical Physics and Astronomy of Vilnius University, Vilnius, Lithuania
| | | | - Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Vilnius, Lithuania
| |
Collapse
|
8
|
Hastings KL, Green MD, Gao B, Ganey PE, Roth RA, Burleson GR. Beyond Metabolism: Role of the Immune System in Hepatic Toxicity. Int J Toxicol 2021; 39:151-164. [PMID: 32174281 DOI: 10.1177/1091581819898399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is primarily thought of as a metabolic organ; however, the liver is also an important mediator of immunological functions. Key perspectives on this emerging topic were presented in a symposium at the 2018 annual meeting of the American College of Toxicology entitled "Beyond metabolism: Role of the immune system in hepatic toxicity." Viral hepatitis is an important disease of the liver for which insufficient preventive vaccines exist. Host immune responses inadequately clear these viruses and often potentiate immunological inflammation that damages the liver. In addition, the liver is a key innate immune organ against bacterial infection. Hepatocytes and immune cells cooperatively control systemic and local bacterial infections. Conversely, bacterial infection can activate multiple types of immune cells and pathways to cause hepatocyte damage and liver injury. Finally, the immune system and specifically cytokines and drugs can interact in idiosyncratic drug-induced liver injury. This rare disease can result in a disease spectrum that ranges from mild to acute liver failure. The immune system plays a role in this disease spectrum.
Collapse
Affiliation(s)
| | | | - Bin Gao
- Laboratory of Liver Diseases, NIH, Bethesda, MD, USA
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Robert A Roth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gary R Burleson
- BRT-Burleson Research Technologies, Inc, Morrisville, NC, USA
| |
Collapse
|
9
|
Bicalutamide Elicits Renal Damage by Causing Mitochondrial Dysfunction via ROS Damage and Upregulation of HIF-1. Int J Mol Sci 2020; 21:ijms21093400. [PMID: 32403414 PMCID: PMC7247665 DOI: 10.3390/ijms21093400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Combined androgen blockade using bicalutamide (Bic) is a therapeutic choice for treating prostate cancer (PCa). However, even at regular clinical dosages, Bic frequently shows adverse effects associated with cardiovascular and renal damage. Previously, we found that Bic selectively damaged mesangial cells compared to tubular cells and in an in vivo rat model, we also found renal damage caused by Bic. In the present study, a rat mesangial cell model was used to further the investigation. Results indicated that Bic enhanced lactate dehydrogenase release, reactive oxygen species (ROS) production, lysosome population and kidney injury molecule-1 and decreased N-cadherin. Bic elicited mitochondrial swelling and reduced the mitochondrial potential, resulting in severe suppression of the oxygen consumption rate (OCR), maximum respiration and ATP production. The hypoxia-inducible factor (HIF)-1α transcriptional activity and messenger RNA were significantly upregulated in dose-dependent manners. The HIF-1α protein reached a peak value at 24 h then rapidly decayed. BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 and cleaved caspase-3 were dose-dependently upregulated by Bic (60 μM) and that eventually led to cell apoptosis. It is suggested that Bic induces renal damage via ROS and modulates HIF-1α pathway and clinically, some protective agents like antioxidants are recommended for co-treatment.
Collapse
|
10
|
Albadrany Y, Naser A. Coenzyme Q10 coadministration with diclofenac augmented impaired renal function in broiler chickens ( Gallus gallus domesticus). Vet World 2020; 13:642-648. [PMID: 32546906 PMCID: PMC7245702 DOI: 10.14202/vetworld.2020.642-648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/24/2020] [Indexed: 11/26/2022] Open
Abstract
Aim: This study aimed to investigate the effects of coenzyme Q10 (COQ10) and diclofenac coadministration on the hepatorenal function in broiler chickens (Gallus gallus domesticus). Materials and Methods: Birds (21 days old) were divided into six groups of eight birds each. The 1st group was the control, the 2nd group was treated orally with COQ10(30mg/kg b.wt), the 3rdand 4thgroups were treated intraperitoneally with diclofenac sodium at doses 1 and 2mg/kg b.wt, respectively, and the 5thand 6thgroups were treated with COQ10 (dose 30mg/kg b.wt, P.O.) and diclofenac sodium (dose 1mg/kg b.wt, I.P.) and COQ10 (dose 30mg/kg b.wt, P.O.) and diclofenac sodium (dose 2mg/kg b.wt, I.P.), respectively. The experiment lasted 5days. Twenty-four hours after the last administration, all the birds were sacrificed through cervical dislocation; blood samples were collected for serum biochemical analysis. Results: COQ10 induced a significant increase in aspartate aminotransferase (AST), urea, creatinine, sodium, potassium, and chloride, while diclofenac induced a significant increase in alanine aminotransferase (ALT), AST, total cholesterol, triglyceride, high-density lipoprotein, urea, creatinine, sodium, potassium, and chloride. However, when COQ10 and diclofenac were coadministered, we observed that COQ10 decreased the liver injury caused by diclofenac. However, COQ10 could not relieve the kidney injury caused by diclofenac, but worsened the impaired renal function. Conclusion: COQ10 protects the liver against diclofenac-induced liver injury while augmenting diclofenac-induced kidney injury.
Collapse
Affiliation(s)
- Yasser Albadrany
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq
| | - Ahmed Naser
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq
| |
Collapse
|
11
|
Eser Faki H, Tras B, Uney K. Alpha lipoic acid and vitamin E improve atorvastatin-induced mitochondrial dysfunctions in rats. Mitochondrion 2020; 52:83-88. [PMID: 32119925 DOI: 10.1016/j.mito.2020.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 02/27/2020] [Indexed: 01/01/2023]
Abstract
To determine the effects of alpha lipoic acid (ALA) and vitamin E (Vit E) on mitochondrial dysfunction caused by statins. A total of 38 Wistar Albino rats were used in this study. The control group received dimethyl sulfoxide. The atorvastatin (A) group received atorvastatin (10 mg/kg). The A + ALA group received atorvastatin (10 mg/kg) and ALA (100 mg/kg). The A + Vit E group was administered atorvastatin (10 mg/kg) and Vit E (100 mg/kg). The A + ALA + Vit E group was administered atorvastatin (10 mg/kg), ALA (100 mg/kg) and Vit E (100 mg/kg). All applications were administered simultaneously by gavage for 20 days. ATP level and complex I activity were measured from liver, muscle, heart, kidney and brain. Atorvastatin significantly decreased the ATP levels in heart and kidney, while a slight decrease was seen in liver, muscle and brain. Atorvastatin caused an insignificant decrease in the complex I activity in all tissues examined. ALA administration significantly improved the ATP levels in the liver, heart and kidney, while Vit E improved the ATP levels in all tissues except the muscle compared to Atorvastatin group. Single administration of both ALA and vit E ameliorated complex I activity in the muscle, heart, kidney and brain. The combination of ALA and Vit E significantly improved the ATP levels in the liver, heart, kidney and brain and also provided significant improvements the complex I activity in all tissues. The undesirable effects of Atorvastatin on mitochondrial functions in this study ameliorated by using ALA and/or Vit E alone and in combination.
Collapse
Affiliation(s)
- Hatice Eser Faki
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031 Konya, Turkey.
| | - Bunyamin Tras
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031 Konya, Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031 Konya, Turkey
| |
Collapse
|
12
|
CMCdG, a Novel Nucleoside Analog with Favorable Safety Features, Exerts Potent Activity against Wild-Type and Entecavir-Resistant Hepatitis B Virus. Antimicrob Agents Chemother 2019; 63:AAC.02143-18. [PMID: 30670420 DOI: 10.1128/aac.02143-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
We designed, synthesized, and characterized a novel nucleoside analog, (1S,3S,5S)-3-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-5-hydroxy-1-(hydroxymethyl)-2-methylene-cyclopentanecarbonitrile, or 4'-cyano-methylenecarbocyclic-2'-deoxyguanosine (CMCdG), and evaluated its anti-hepatitis B virus (anti-HBV) activity, safety, and related features. CMCdG's in vitro activity was determined using quantitative PCR and Southern blotting assays, and its cytotoxicity was determined with a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, while its in vivo activity and safety were determined in human liver-chimeric mice infected with wild-type HBV genotype Ce (HBVWT Ce) and an entecavir (ETV)-resistant HBV variant containing the amino acid substitutions L180M, S202G, and M204V (HBVETV-R L180M/S202G/M204V). CMCdG potently inhibited HBV production in HepG2.2.15 cells (50% inhibitory concentration [IC50], ∼30 nM) and HBVWT Ce plasmid-transfected Huh7 cells (IC50, 206 nM) and efficiently suppressed ETV-resistant HBVETV-R L180M/S202G/M204V (IC50, 2,657 nM), while it showed no or little cytotoxicity (50% cytotoxic concentration, >500 μM in most hepatocytic cells examined). Two-week peroral administration of CMCdG (1 mg/kg of body weight/day once a day [q.d.]) to HBVWT Ce-infected human liver-chimeric mice reduced the level of viremia by ∼2 logs. CMCdG also reduced the level of HBVETV-R L180M/S202G/M204V viremia by ∼1 log in HBVETV-R L180M/S202G/M204V-infected human liver-chimeric mice, while ETV (1 mg/kg/day q.d.) completely failed to reduce the viremia. None of the CMCdG-treated mice had significant drug-related changes in body weights or serum human albumin levels. Structural analyses using homology modeling, semiempirical quantum methods, and molecular dynamics revealed that although ETV triphosphate (TP) forms good van der Waals contacts with L180 and M204 of HBVWT Ce reverse transcriptase (RT), its contacts with the M180 substitution are totally lost in the HBVETV-R L180M/S202G/M204V RT complex. However, CMCdG-TP retains good contacts with both the HBVWT Ce RT and HBVETV-R L180M/S202G/M204V RT complexes. The present data warrant further studies toward the development of CMCdG as a potential therapeutic for patients infected with drug-resistant HBV and shed light on the further development of more potent and safer anti-HBV agents.
Collapse
|
13
|
Lin L, Liu Y, Fu S, Qu C, Li H, Ni J. Inhibition of Mitochondrial Complex Function-The Hepatotoxicity Mechanism of Emodin Based on Quantitative Proteomic Analyses. Cells 2019; 8:cells8030263. [PMID: 30897821 PMCID: PMC6468815 DOI: 10.3390/cells8030263] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Emodin is the main component of traditional Chinese medicines including rhubarb, Polygonum multiflorum, and Polygonum cuspidatum. It has confirmed hepatotoxicity and may be the main causative agent of liver damage associated with the above-mentioned traditional Chinese medicines. However, current research does not explain the mechanism of emodin in hepatotoxicity. In this study, L02 cells were used as a model to study the mechanism of emodin-induced hepatocyte apoptosis using quantitative proteomics, and the results were verified by Western blot. A total of 662 differentially expressed proteins were discovered and analyzed using Gene Ontology (GO) and pathway enrichment analysis. The results show that the oxidative phosphorylation pathway is highly represented. Abnormalities in this pathway result in impaired mitochondrial function and represent mitochondrial damage. This result is consistent with mitochondria membrane potential measurements. Analysis of differentially expressed proteins revealed that emodin mainly affects oxidative phosphorylation pathways by inhibiting the function of the mitochondrial respiratory chain complexes; the mitochondrial respiratory chain complex activity assay result also confirmed that emodin could inhibit the activity of all mitochondrial complexes. This results in an increase in caspase-3, a decrease in mitochondrial membrane potential (MMP,) an increase in reactive oxygen species (ROS), and disorders in ATP synthesis, etc., eventually leading to mitochondrial damage and hepatocyte apoptosis in vitro.
Collapse
Affiliation(s)
- Longfei Lin
- Institute Chinese materia medica china academy of Chinese medical sciences, Beijing 100700, China.
| | - Yuling Liu
- Institute Chinese materia medica china academy of Chinese medical sciences, Beijing 100700, China.
| | - Sai Fu
- Institute Chinese materia medica china academy of Chinese medical sciences, Beijing 100700, China.
| | - Changhai Qu
- School of Chinese material medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Hui Li
- Institute Chinese materia medica china academy of Chinese medical sciences, Beijing 100700, China.
| | - Jian Ni
- School of Chinese material medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
14
|
Tolosa L, Jiménez N, Pelechá M, Castell JV, Gómez-Lechón MJ, Donato MT. Long-term and mechanistic evaluation of drug-induced liver injury in Upcyte human hepatocytes. Arch Toxicol 2018; 93:519-532. [PMID: 30426164 DOI: 10.1007/s00204-018-2349-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022]
Abstract
Drug-induced liver injury (DILI) constitutes one of the most frequent reasons of restricted-use warnings as well as withdrawals of drugs in postmarketing and poses an important concern for the pharmaceutical industry. The current hepatic in vivo and in vitro models for DILI detection have shown clear limitations, mainly for studies of long-term hepatotoxicity. For this reason, we here evaluated the potential of using Upcytes human hepatocytes (UHH) for repeated-dose long-term exposure to drugs. The UHH were incubated with 15 toxic and non-toxic compounds for up to 21 days using a repeated-dose approach, and, in addition to conventional examination of effects on viability, the mechanisms implicated in cell toxicity were also assessed by means of high-content screening. The UHH maintained the expression and activity levels of drug-metabolizing enzymes for up to 21 days of culture and became more sensitive to the toxic compounds after extended exposures, showing inter-donor differences which would reflect variability among the population. The assay also allowed to detect the main mechanisms implicated in the toxicity of each drug as well as identifying special susceptibilities depending on the donor. UHH can be used for a long-term repeated detection of DILI at clinically relevant concentrations and also offers key mechanistic features of drug-induced hepatotoxicity. This system is therefore a promising tool in preclinical testing of human relevance that could help to reduce and/or replace animal testing for drug adverse effects.
Collapse
Affiliation(s)
- Laia Tolosa
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Nuria Jiménez
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - María Pelechá
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - José V Castell
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain
| | - Mª José Gómez-Lechón
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - M Teresa Donato
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain. .,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain.
| |
Collapse
|
15
|
McGill MR, Jaeschke H. Animal models of drug-induced liver injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1031-1039. [PMID: 31007174 DOI: 10.1016/j.bbadis.2018.08.037] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/18/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023]
Abstract
Drug-induced liver injury (DILI) presents unique challenges for consumers, clinicians, and regulators. It is the most common cause of acute liver failure in the US. It is also one of the most common reasons for termination of new drugs during pre-clinical testing and withdrawal of new drugs post-marketing. DILI is generally divided into two forms: intrinsic and idiosyncratic. Many of the challenges with DILI are due in large part to poor understanding of the mechanisms of toxicity. Although useful models of intrinsic DILI are available, they are frequently misused. Modeling idiosyncratic DILI presents greater challenges, but promising new models have recently been developed. The purpose of this manuscript is to provide a critical review of the most popular animal models of DILI, and to discuss the future of DILI research.
Collapse
Affiliation(s)
- Mitchell R McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hartmut Jaeschke
- Dept. of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
16
|
Flutamide Induces Hepatic Cell Death and Mitochondrial Dysfunction via Inhibition of Nrf2-Mediated Heme Oxygenase-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8017073. [PMID: 30057686 PMCID: PMC6051009 DOI: 10.1155/2018/8017073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/22/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Abstract
Flutamide is a widely used nonsteroidal antiandrogen for prostate cancer therapy, but its clinical application is restricted by the concurrent liver injury. Increasing evidence suggests that flutamide-induced liver injury is associated with oxidative stress, though the precise mechanism is poorly understood. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcription factor regulating endogenous antioxidants including heme oxygenase-1 (HO-1). This study was designed to delineate the role of Nrf2/HO-1 in flutamide-induced hepatic cell injury. Our results showed that flutamide concentration dependently induced cytotoxicity, hydrogen peroxide accumulation, and mitochondrial dysfunction as indicated by mitochondrial membrane potential loss and ATP depletion. The protein expression of Nrf2 and HO-1 was induced by flutamide at 12.5 μM but was downregulated by higher concentrations of flutamide. Silencing either Nrf2 or HO-1 was found to aggravate flutamide-induced hydrogen peroxide accumulation and mitochondrial dysfunction as well as inhibition of the Nrf2 pathway. Moreover, preinduction of HO-1 by Copp significantly attenuated flutamide-induced oxidative stress and mitochondrial dysfunction, while inhibition of HO-1 by Snpp aggravated these deleterious effects. These findings suggest that flutamide-induced hepatic cell death and mitochondrial dysfunction is assoicated with inhibition of Nrf2-mediated HO-1. Pharmacologic intervention of Nrf2/HO-1 may provide a promising therapeutic approach in flutamide-induced liver injury.
Collapse
|
17
|
Sanuki Y, Araki T, Nakazono O, Tsurui K. A rapid mitochondrial toxicity assay utilizing rapidly changing cell energy metabolism. J Toxicol Sci 2017; 42:349-358. [PMID: 28496041 DOI: 10.2131/jts.42.349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Drug-induced liver injury is a major cause of safety-related drug-marketing withdrawals. Several drugs have been reported to disrupt mitochondrial function, resulting in hepatotoxicity. The development of a simple and effective in vitro assay to identify the potential for mitochondrial toxicity is thus desired to minimize the risk of causing hepatotoxicity and subsequent drug withdrawal. An in vitro test method called the "glucose-galactose" assay is often used in drug development but requires prior-culture of cells over several passages for mitochondrial adaptation, thereby restricting use of the assay. Here, we report a rapid version of this method with the same predictability as the original method. We found that replacing the glucose in the medium with galactose resulted in HepG2 cells immediately shifting their energy metabolism from glycolysis to oxidative phosphorylation due to drastic energy starvation; in addition, the intracellular concentration of ATP was reduced by mitotoxicants when glucose in the medium was replaced with galactose. Using our proposed rapid method, mitochondrial dysfunction in HepG2 cells can be evaluated by drug exposure for one hour without a pre-culture step. This rapid assay for mitochondrial toxicity may be more suitable for high-throughput screening than the original method at an early stage of drug development.
Collapse
Affiliation(s)
- Yosuke Sanuki
- Laboratory for Safety Assessment and ADME, Pharmaceuticals Research Center, Asahi Kasei Pharma Corp
| | - Tetsuro Araki
- Laboratory for Safety Assessment and ADME, Pharmaceuticals Research Center, Asahi Kasei Pharma Corp
| | - Osamu Nakazono
- Laboratory for Safety Assessment and ADME, Pharmaceuticals Research Center, Asahi Kasei Pharma Corp
| | - Kazuyuki Tsurui
- Laboratory for Safety Assessment and ADME, Pharmaceuticals Research Center, Asahi Kasei Pharma Corp
| |
Collapse
|
18
|
Tolosa L, Jiménez N, Pérez G, Castell JV, Gómez-Lechón MJ, Donato MT. Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury. Arch Toxicol 2017; 92:383-399. [PMID: 28762043 PMCID: PMC5773651 DOI: 10.1007/s00204-017-2036-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
Drug-induced liver injury (DILI) has a considerable impact on human health and is a major challenge in drug safety assessments. DILI is a frequent cause of liver injury and a leading reason for post-approval drug regulatory actions. Considerable variations in the expression levels of both cytochrome P450 (CYP) and conjugating enzymes have been described in humans, which could be responsible for increased susceptibility to DILI in some individuals. We herein explored the feasibility of the combined use of HepG2 cells co-transduced with multiple adenoviruses that encode drug-metabolising enzymes, and a high-content screening assay to evaluate metabolism-dependent drug toxicity and to identify metabolic phenotypes with increased susceptibility to DILI. To this end, HepG2 cells with different expression levels of specific drug-metabolism enzymes (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, GSTM1 and UGT2B7) were exposed to nine drugs with reported hepatotoxicity. A panel of pre-lethal mechanistic parameters (mitochondrial superoxide production, mitochondrial membrane potential, ROS production, intracellular calcium concentration, apoptotic nuclei) was used. Significant differences were observed according to the level of expression and/or the combination of several drug-metabolism enzymes in the cells created ad hoc according to the enzymes implicated in drug toxicity. Additionally, the main mechanisms implicated in the toxicity of the compounds were also determined showing also differences between the different types of cells employed. This screening tool allowed to mimic the variability in drug metabolism in the population and showed a highly efficient system for predicting human DILI, identifying the metabolic phenotypes associated with increased DILI risk, and indicating the mechanisms implicated in their toxicity.
Collapse
Affiliation(s)
- Laia Tolosa
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Nuria Jiménez
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Gabriela Pérez
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - José V Castell
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain
| | - M José Gómez-Lechón
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - M Teresa Donato
- Unidad de Hepatología Experimental, Torre A, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av Fernando Abril Martorell 106, 46026, Valencia, Spain. .,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain.
| |
Collapse
|
19
|
Weaver RJ, Betts C, Blomme EAG, Gerets HHJ, Gjervig Jensen K, Hewitt PG, Juhila S, Labbe G, Liguori MJ, Mesens N, Ogese MO, Persson M, Snoeys J, Stevens JL, Walker T, Park BK. Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury. Expert Opin Drug Metab Toxicol 2017; 13:767-782. [PMID: 28604124 DOI: 10.1080/17425255.2017.1341489] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The liver is an important target for drug-induced toxicities. Early detection of hepatotoxic drugs requires use of well-characterized test systems, yet current knowledge, gaps and limitations of tests employed remains an important issue for drug development. Areas Covered: The current state of the science, understanding and application of test systems in use for the detection of drug-induced cytotoxicity, mitochondrial toxicity, cholestasis and inflammation is summarized. The test systems highlighted herein cover mostly in vitro and some in vivo models and endpoint measurements used in the assessment of small molecule toxic liabilities. Opportunities for research efforts in areas necessitating the development of specific tests and improved mechanistic understanding are highlighted. Expert Opinion: Use of in vitro test systems for safety optimization will remain a core activity in drug discovery. Substantial inroads have been made with a number of assays established for human Drug-induced Liver Injury. There nevertheless remain significant gaps with a need for improved in vitro tools and novel tests to address specific mechanisms of human Drug-Induced Liver Injury. Progress in these areas will necessitate not only models fit for application, but also mechanistic understanding of how chemical insult on the liver occurs in order to identify translational and quantifiable readouts for decision-making.
Collapse
Affiliation(s)
- Richard J Weaver
- a Research & Biopharmacy, Institut de Recherches Internationales Servier , Suresnes , France
| | - Catherine Betts
- b Pathology Sciences, Drug Safety and Metabolism , AstraZeneca R&D , Cambridge , UK
| | | | - Helga H J Gerets
- d Non Clinical Development, Chemin du Foriest , UCB BioPharma SPRL , Braine L'Alleud , Belgium
| | | | - Philip G Hewitt
- f Non-Clinical Development, Merck KGaA , Darmstadt , Germany
| | - Satu Juhila
- g In Vitro Biology , Orion Pharma , Espoo , Finland
| | - Gilles Labbe
- h Investigative Toxicology, Preclinical Safety , Sanofi R&D , Paris , France
| | | | - Natalie Mesens
- i Preclinical Development & Safety, Janssen (Pharmaceutical Companies of Johnson & Johnson) Turnhoutseweg 30 , Beerse , Belgium
| | - Monday O Ogese
- j Pathology Sciences, Drug Safety and Metabolism , AstraZeneca R&D , Cambridge , UK
| | - Mikael Persson
- k Innovative Medicines and Early Clinical Development, Drug Safety and Metabolism, Discovery Safety , AstraZeneca R&D , Mölndal , Sweden
| | - Jan Snoeys
- l Pharmacokinetics Dynamics & Metabolism, Janssen (Pharmaceutical Companies of Johnson & Johnson) Turnhoutseweg 30 , Beerse , Belgium
| | - James L Stevens
- m Dept of Toxicology , Lilly Research Laboratories, Eli Lilly and Company , Indianapolis , Indiana , USA
| | - Tracy Walker
- n Investigative Safety & Drug Metabolism , GlaxoSmithKline, David Jack Centre for Research and Development , Ware , Herts , Hertfordshire, UK
| | - B Kevin Park
- o Institute of Translational Medicine , University of Liverpool , Liverpool , UK
| |
Collapse
|
20
|
de Gregorio LS, Franco-Belussi L, Gomes FR, de Oliveira C. Flutamide effects on morphology of reproductive organs and liver of Neotropical Anura, Rhinella schneideri. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:181-189. [PMID: 27152939 DOI: 10.1016/j.aquatox.2016.04.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
Water contamination is one of the factors influencing the decline of amphibians. Flutamide is an antiandrogenic medicine that occurs as water contaminant. This compound especially affects the reproductive organs, but it can also show hepatotoxic effects. The Bufonidae family has a peculiar organ named Bidder's organ, considered by some authors as a rudimentary ovary, but capable to respond to some external stimuli. This study investigated flutamide effects on testes and Bidder's organ germ cells, liver pigmentation, and sexual hormones levels in Rhinella schneideri males. We randomly divided 15 males in three groups (N=5): two groups were injected with flutamide, at 1 and 5mg/kg, while the control group received only mineral oil, for 7days. After euthanasia, blood samples were collected and the organs were sent to histological routine. In the testes, both treatments caused an increase in spermatogonia and spermatocytes, and a decrease in spermatozoa and locular area. In the Bidder's organ, the final diplotene oocytes increased, but the initial diplotene, degrading and atresic oocytes reduced in both treatments. The lipofuscin in the Bidder's organ was not affected. In the liver, melanin and lipofuscin increased only for the 1mg/kg flutamide treatment. The 5mg/kg treatment did not affect the liver. Serum testosterone and estradiol levels did not vary compared with the control group. This compound has antiandrogenic activity, which can affect the spermatogenetic process. The decrease in degrading and atresic Bidderian oocytes indicated that flutamide could stimulate the organ, retarding the degradation processes. The increase in liver melanin, which has protective role, and lipofuscin, a sign of degradation, indicates that flutamide cause hepatotoxic effects. So we conclude that flutamide negatively affects the testes, especially by reducing the sperm area, and the liver, inducing cell degradation and producing protective responses. Furthermore, the compound encourages lower degradation rates of the Bidder's organ germ cells.
Collapse
Affiliation(s)
- Lara S de Gregorio
- Graduate Program in Animal Biology, UNESP-Universidade Estadual Paulista, Biology Department, Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto (Ibilce), Brazil.
| | - Lilian Franco-Belussi
- UNESP-Universidade Estadual Paulista, Biology Department, Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto (Ibilce), Brazil
| | - Fernando R Gomes
- USP-Universidade de São Paulo, Instituto de Biociências, Physiology Department, São Paulo, Brazil
| | - Classius de Oliveira
- UNESP-Universidade Estadual Paulista, Biology Department, Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto (Ibilce), Brazil
| |
Collapse
|
21
|
Saito J, Okamura A, Takeuchi K, Hanioka K, Okada A, Ohata T. High content analysis assay for prediction of human hepatotoxicity in HepaRG and HepG2 cells. Toxicol In Vitro 2016; 33:63-70. [PMID: 26921665 DOI: 10.1016/j.tiv.2016.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/27/2016] [Accepted: 02/23/2016] [Indexed: 01/02/2023]
Abstract
Drug-induced liver injury (DILI) results in the termination of drug development or withdrawal of a drug from the market. The establishment of a predictive, high-throughput preclinical test system to evaluate potential clinical DILI is therefore required. Here, we established a high content analysis (HCA) assay in human hepatocyte cell lines such as the HepaRG with normal expression levels of CYP enzymes and HepG2 with extremely low expression levels of CYP enzymes. Clinical DILI or non-DILI compounds were evaluated for reactive oxygen species (ROS) production, glutathione (GSH) consumption, and mitochondrial membrane potential (MMP) attenuation. A proportion of DILI compounds induced ROS generation, GSH depletion, and MMP dysfunction, which was consistent with reported mechanisms of DILI of these compounds. In particular, DILI compounds that deplete GSH via reactive metabolites exhibited a more marked decrease in intracellular GSH or increase in ROS production in HepaRG cells than in HepG2 cells. Comparison of the two cell lines with different levels of CYP expression might help clarify the contribution of metabolism to hepatocyte toxicity. These results suggest that the HCA assay in HepaRG and HepG2 cells might help improve the accuracy of evaluating clinical DILI potential during drug screening.
Collapse
Affiliation(s)
- Junichiro Saito
- Drug Safety Research Laboratories, Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan.
| | - Ai Okamura
- Drug Safety Research Laboratories, Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | - Kenichiro Takeuchi
- Drug Safety Research Laboratories, Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | - Kenichi Hanioka
- Drug Safety Research Laboratories, Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | - Akinobu Okada
- Drug Safety Research Laboratories, Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | - Takeji Ohata
- Research Program Management Office, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| |
Collapse
|
22
|
Early transcriptional changes in cardiac mitochondria during chronic doxorubicin exposure and mitigation by dexrazoxane in mice. Toxicol Appl Pharmacol 2016; 295:68-84. [PMID: 26873546 DOI: 10.1016/j.taap.2016.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/24/2022]
Abstract
Identification of early biomarkers of cardiotoxicity could help initiate means to ameliorate the cardiotoxic actions of clinically useful drugs such as doxorubicin (DOX). Since DOX has been shown to target mitochondria, transcriptional levels of mitochondria-related genes were evaluated to identify early candidate biomarkers in hearts of male B6C3F1 mice given a weekly intravenous dose of 3mg/kg DOX or saline (SAL) for 2, 3, 4, 6, or 8 weeks (6, 9, 12, 18, or 24 mg/kg cumulative DOX doses, respectively). Also, a group of mice was pretreated (intraperitoneally) with the cardio-protectant, dexrazoxane (DXZ; 60 mg/kg) 30 min before each weekly dose of DOX or SAL. At necropsy a week after the last dose, increased plasma concentrations of cardiac troponin T (cTnT) were detected at 18 and 24 mg/kg cumulative DOX doses, whereas myocardial alterations were observed only at the 24 mg/kg dose. Of 1019 genes interrogated, 185, 109, 140, 184, and 451 genes were differentially expressed at 6, 9, 12, 18, and 24 mg/kg cumulative DOX doses, respectively, compared to concurrent SAL-treated controls. Of these, expression of 61 genes associated with energy metabolism and apoptosis was significantly altered before and after occurrence of myocardial injury, suggesting these as early genomics markers of cardiotoxicity. Much of these DOX-induced transcriptional changes were attenuated by pretreatment of mice with DXZ. Also, DXZ treatment significantly reduced plasma cTnT concentration and completely ameliorated cardiac alterations induced by 24 mg/kg cumulative DOX. This information on early transcriptional changes during DOX treatment may be useful in designing cardioprotective strategies targeting mitochondria.
Collapse
|
23
|
Teppner M, Boess F, Ernst B, Pahler A. Biomarkers of Flutamide-Bioactivation and Oxidative Stress In Vitro and In Vivo. Drug Metab Dispos 2016; 44:560-9. [DOI: 10.1124/dmd.115.066522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/06/2016] [Indexed: 11/22/2022] Open
|
24
|
Teppner M, Böss F, Ernst B, Pähler A. Application of lipid peroxidation products as biomarkers for flutamide-induced oxidative stress in vitro. Toxicol Lett 2015; 238:53-9. [DOI: 10.1016/j.toxlet.2015.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/24/2015] [Accepted: 08/04/2015] [Indexed: 12/12/2022]
|
25
|
Vijay V, Han T, Moland CL, Kwekel JC, Fuscoe JC, Desai VG. Sexual dimorphism in the expression of mitochondria-related genes in rat heart at different ages. PLoS One 2015; 10:e0117047. [PMID: 25615628 PMCID: PMC4304718 DOI: 10.1371/journal.pone.0117047] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Moreover, sex and age are considered major risk factors in the development of CVDs. Mitochondria are vital for normal cardiac function, and regulation of mitochondrial structure and function may impact susceptibility to CVD. To identify potential role of mitochondria in sex-related differences in susceptibility to CVD, we analyzed the basal expression levels of mitochondria-related genes in the hearts of male and female rats. Whole genome expression profiling was performed in the hearts of young (8-week), adult (21-week), and old (78-week) male and female Fischer 344 rats and the expression of 670 unique genes related to various mitochondrial functions was analyzed. A significant (p<0.05) sexual dimorphism in expression levels of 46, 114, and 41 genes was observed in young, adult and old rats, respectively. Gene Ontology analysis revealed the influence of sex on various biological pathways related to cardiac energy metabolism at different ages. The expression of genes involved in fatty acid metabolism was significantly different between the sexes in young and adult rat hearts. Adult male rats also showed higher expression of genes associated with the pyruvate dehydrogenase complex compared to females. In young and adult hearts, sexual dimorphism was not noted in genes encoding oxidative phosphorylation. In old rats, however, a majority of genes involved in oxidative phosphorylation had higher expression in females compared to males. Such basal differences between the sexes in cardiac expression of genes associated with energy metabolism may indicate a likely involvement of mitochondria in susceptibility to CVDs. In addition, female rats showed lower expression levels of apoptotic genes in hearts compared to males at all ages, which may have implications for better preservation of cardiac mass in females than in males.
Collapse
Affiliation(s)
- Vikrant Vijay
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Tao Han
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Carrie L. Moland
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Joshua C. Kwekel
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - James C. Fuscoe
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Varsha G. Desai
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Flutamide-induced cytotoxicity and oxidative stress in an in vitro rat hepatocyte system. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:398285. [PMID: 25371773 PMCID: PMC4211152 DOI: 10.1155/2014/398285] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/01/2014] [Accepted: 09/20/2014] [Indexed: 11/17/2022]
Abstract
Flutamide (FLU) is a competitive antagonist of the androgen receptor which has been reported to induce severe liver injury in some patients. Several experimental models suggested that an episode of inflammation during drug treatment predisposes animals to tissue injury. The molecular cytotoxic mechanisms of FLU in isolated rat hepatocytes using an in vitro oxidative stress inflammation system were investigated in this study. When a nontoxic hydrogen peroxide (H2O2) generating system (glucose/glucose oxidase) with peroxidase or iron(II) [Fe(II)] (to partly simulate in vivo inflammation) was added to the hepatocytes prior to the addition of FLU, increases in FLU-induced cytotoxicity and lipid peroxidation (LPO) were observed that were decreased by 6-N-propyl-2-thiouracil or deferoxamine, respectively. N-Acetylcysteine decreased FLU-induced cytotoxicity in this system. Potent antioxidants, for example, Trolox ((±)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), resveratrol (3,5,4′-trihydroxy-trans-stilbene), and DPPD (N,N′-diphenyl-1,4-phenylenediamine) also significantly decreased FLU-induced cytotoxicity and LPO and increased mitochondrial membrane potential (MMP) and glutathione (GSH) levels in the H2O2 generating system with peroxidase. TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl), a known reactive oxygen species (ROS) scavenger and superoxide dismutase mimetic, also significantly decreased toxicity caused by FLU in this system. These results raise the possibility that the presence or absence of inflammation may be another susceptibility factor for drug-induced hepatotoxicity.
Collapse
|
27
|
Hydroxyflutamide alters the characteristics of live boar spermatozoa. Theriogenology 2014; 82:988-96. [DOI: 10.1016/j.theriogenology.2014.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/10/2014] [Accepted: 07/10/2014] [Indexed: 11/23/2022]
|
28
|
Li N, Oquendo E, Capaldi RA, Robinson JP, He YD, Hamadeh HK, Afshari CA, Lightfoot-Dunn R, Narayanan PK. A systematic assessment of mitochondrial function identified novel signatures for drug-induced mitochondrial disruption in cells. Toxicol Sci 2014; 142:261-73. [PMID: 25163676 DOI: 10.1093/toxsci/kfu176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial perturbation has been recognized as a contributing factor to various drug-induced organ toxicities. To address this issue, we developed a high-throughput flow cytometry-based mitochondrial signaling assay to systematically investigate mitochondrial/cellular parameters known to be directly impacted by mitochondrial dysfunction: mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (ROS), intracellular reduced glutathione (GSH) level, and cell viability. Modulation of these parameters by a training set of compounds, comprised of established mitochondrial poisons and 60 marketed drugs (30 nM to 1mM), was tested in HL-60 cells (a human pro-myelocytic leukemia cell line) cultured in either glucose-supplemented (GSM) or glucose-free (containing galactose/glutamine; GFM) RPMI-1640 media. Post-hoc bio-informatic analyses of IC50 or EC50 values for all parameters tested revealed that MMP depolarization in HL-60 cells cultured in GSM was the most reliable parameter for determining mitochondrial dysfunction in these cells. Disruptors of mitochondrial function depolarized MMP at concentrations lower than those that caused loss of cell viability, especially in cells cultured in GSM; cellular GSH levels correlated more closely to loss of viability in vitro. Some mitochondrial respiratory chain inhibitors increased mitochondrial ROS generation; however, measuring an increase in ROS alone was not sufficient to identify mitochondrial disruptors. Furthermore, hierarchical cluster analysis of all measured parameters provided confirmation that MMP depletion, without loss of cell viability, was the key signature for identifying mitochondrial disruptors. Subsequent classification of compounds based on ratios of IC50s of cell viability:MMP determined that this parameter is the most critical indicator of mitochondrial health in cells and provides a powerful tool to predict whether novel small molecule entities possess this liability.
Collapse
Affiliation(s)
- Nianyu Li
- Department of Comparative Biology and Safety Sciences, Amgen, Amgen Court West 1201, Seattle, Washington 98119
| | | | | | - J Paul Robinson
- Purdue University Cytometry Laboratories, Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Yudong D He
- Department of Comparative Biology and Safety Sciences, Amgen, Amgen Court West 1201, Seattle, Washington 98119
| | - Hisham K Hamadeh
- Department of Comparative Biology and Safety Sciences, Amgen, 1 Amgen Center Dr, Thousand Oaks, California 91320-1799
| | - Cynthia A Afshari
- Department of Comparative Biology and Safety Sciences, Amgen, 1 Amgen Center Dr, Thousand Oaks, California 91320-1799
| | - Ruth Lightfoot-Dunn
- Department of Comparative Biology and Safety Sciences, Amgen, 1 Amgen Center Dr, Thousand Oaks, California 91320-1799
| | - Padma Kumar Narayanan
- Department of Comparative Biology and Safety Sciences, Amgen, Amgen Court West 1201, Seattle, Washington 98119
| |
Collapse
|
29
|
Legendre A, Jacques S, Dumont F, Cotton J, Paullier P, Fleury MJ, Leclerc E. Investigation of the hepatotoxicity of flutamide: Pro-survival/apoptotic and necrotic switch in primary rat hepatocytes characterized by metabolic and transcriptomic profiles in microfluidic liver biochips. Toxicol In Vitro 2014; 28:1075-87. [DOI: 10.1016/j.tiv.2014.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 02/08/2023]
|
30
|
Chen S, Michels D, Culpepper E. Nonsurgical management of hyperadrenocorticism in ferrets. Vet Clin North Am Exot Anim Pract 2014; 17:35-49. [PMID: 24274921 DOI: 10.1016/j.cvex.2013.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Several medical therapeutic options are available for the management of the clinical signs of adrenal disease in ferrets. Many of these medical modalities seem to be well tolerated and are a suitable alternative to adrenalectomy, especially for ferrets that are not surgical candidates. However, drugs that are currently available only manage the symptoms and do not provide a cure for the diseased adrenal gland, which may continue to enlarge. The medical management of urinary obstruction caused by prostatic enlargement and nonregenerative anemia caused by hyperestrogenism are also discussed in this article.
Collapse
Affiliation(s)
- Sue Chen
- Gulf Coast Avian & Exotics, Gulf Coast Veterinary Specialists, 1111 West Loop South, Suite 110, Houston, TX 77027, USA.
| | | | | |
Collapse
|
31
|
Abstract
Drug-induced liver injury (DILI) represents a broad spectrum of liver manifestations. However, the most common manifestation is hepatocyte death following drug intake. DILI can be predictable and dose dependent with a notable example of acetaminophen toxicity. Idiosyncratic DILI occurs in an unpredictable fashion at low frequencies, implying that environmental and genetic factors alter the susceptibility of individuals to the insult (drugs).
Collapse
Affiliation(s)
| | - Neil Kaplowitz
- Corresponding author. Tel.: +1 323 442 5576; fax: +1 323 442 3243.
| |
Collapse
|
32
|
Laifenfeld D, Qiu L, Swiss R, Park J, Macoritto M, Will Y, Younis HS, Lawton M. Utilization of causal reasoning of hepatic gene expression in rats to identify molecular pathways of idiosyncratic drug-induced liver injury. Toxicol Sci 2013; 137:234-48. [PMID: 24136188 DOI: 10.1093/toxsci/kft232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Drug-induced liver injury (DILI) represents a leading cause of acute liver failure. Although DILI can be discovered in preclinical animal toxicology studies and/or early clinical trials, some human DILI reactions, termed idiosyncratic DILI (IDILI), are less predictable, occur in a small number of individuals, and do not follow a clear dose-response relationship. The emergence of IDILI poses a critical health challenge for patients and a financial challenge for the pharmaceutical industry. Understanding the cellular and molecular mechanisms underlying IDILI is key to the development of models that can assess potential IDILI risk. This study used Reverse Causal Reasoning (RCR), a method to assess activation of molecular signaling pathways, on gene expression data from rats treated with IDILI or pharmacologic/chemical comparators (NON-DILI) at the maximum tolerated dose to identify mechanistic pathways underlying IDILI. Detailed molecular networks involved in mitochondrial injury, inflammation, and endoplasmic reticulum (ER) stress were found in response to IDILI drugs but not negative controls (NON-DILI). In vitro assays assessing mitochondrial or ER function confirmed the effect of IDILI compounds on these systems. Together our work suggests that using gene expression data can aid in understanding mechanisms underlying IDILI and can guide in vitro screening for IDILI. Specifically, RCR should be considered for compounds that do not show evidence of DILI in preclinical animal studies positive for mitochondrial dysfunction and ER stress assays, especially when the therapeutic index toward projected human maximum drug plasma concentration is low.
Collapse
|
33
|
Lee YH, Goh WWB, Ng CK, Raida M, Wong L, Lin Q, Boelsterli UA, Chung MCM. Integrative toxicoproteomics implicates impaired mitochondrial glutathione import as an off-target effect of troglitazone. J Proteome Res 2013; 12:2933-45. [PMID: 23659346 PMCID: PMC3805328 DOI: 10.1021/pr400219s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Troglitazone,
a first-generation thiazolidinedione of antihyperglycaemic
properties, was withdrawn from the market due to unacceptable idiosyncratic
hepatotoxicity. Despite intensive research, the underlying mechanism
of troglitazone-induced liver toxicity remains unknown. Here we report
the use of the Sod2+/– mouse model of silent mitochondrial oxidative-stress-based
and quantitative mass spectrometry-based proteomics to track the mitochondrial
proteome changes induced by physiologically relevant troglitazone
doses. By quantitative untargeted proteomics, we first globally profiled
the Sod2+/– hepatic
mitochondria proteome and found perturbations including GSH metabolism
that enhanced the toxicity of the normally nontoxic troglitazone.
Short- and long-term troglitazone administration in Sod2+/– mouse led to a mitochondrial
proteome shift from an early compensatory response to an eventual
phase of intolerable oxidative stress, due to decreased mitochondrial
glutathione (mGSH) import protein, decreased dicarboxylate ion carrier
(DIC), and the specific activation of ASK1-JNK and FOXO3a with prolonged
troglitazone exposure. Furthermore, mapping of the detected proteins
onto mouse specific protein-centered networks revealed lipid-associated
proteins as contributors to overt mitochondrial and liver injury when
under prolonged exposure to the lipid-normalizing troglitazone. By
integrative toxicoproteomics, we demonstrated a powerful systems approach
in identifying the collapse of specific fragile nodes and activation
of crucial proteome reconfiguration regulators when targeted by an
exogenous toxicant.
Collapse
Affiliation(s)
- Yie Hou Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Corsini A, Ganey P, Ju C, Kaplowitz N, Pessayre D, Roth R, Watkins PB, Albassam M, Liu B, Stancic S, Suter L, Bortolini M. Current challenges and controversies in drug-induced liver injury. Drug Saf 2013. [PMID: 23137150 DOI: 10.2165/11632970-000000000-00000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current key challenges and controversies encountered in the identification of potentially hepatotoxic drugs and the assessment of drug-induced liver injury (DILI) are covered in this article. There is substantial debate over the classification of DILI itself, including the definition and validity of terms such as 'intrinsic' and 'idiosyncratic'. So-called idiosyncratic DILI is typically rare and requires one or more susceptibility factors in individuals. Consequently, it has been difficult to reproduce in animal models, which has limited the understanding of its underlying mechanisms despite numerous hypotheses. Advances in predictive models would also help to enable preclinical elimination of drug candidates and development of novel biomarkers. A small number of liver laboratory tests have been routinely used to help identify DILI, but their interpretation can be limited and confounded by multiple factors. Improved preclinical and clinical biomarkers are therefore needed to accurately detect early signals of liver injury, distinguish drug hepatotoxicity from other forms of liver injury, and differentiate mild from clinically important liver injury. A range of potentially useful biomarkers are emerging, although so far most have only been used preclinically, with only a few validated and used in the clinic for specific circumstances. Advances in the development of genomic biomarkers will improve the prediction and detection of hepatic injury in future. Establishing a definitive clinical diagnosis of DILI can be difficult, since it is based on circumstantial evidence by excluding other aetiologies and, when possible, identifying a drug-specific signature. DILI signals based on standard liver test abnormalities may be affected by underlying diseases such as hepatitis B and C, HIV and cancer, as well as the concomitant use of hepatotoxic drugs to treat some of these conditions. Therefore, a modified approach to DILI assessment is justified in these special populations and a suggested framework is presented that takes into account underlying disease when evaluating DILI signals in individuals. Detection of idiosyncratic DILI should, in some respects, be easier in the postmarketing setting compared with the clinical development programme, since there is a much larger and more varied patient population exposure over longer timeframes. However, postmarketing safety surveillance is currently limited by the quantity and quality of information available to make an accurate diagnosis, the lack of a control group and the rarity of cases. The pooling of multiple healthcare databases, which could potentially contain different types of patient data, is advised to address some of these deficiencies.
Collapse
Affiliation(s)
- Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universit degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Han D, Dara L, Win S, Than TA, Yuan L, Abbasi SQ, Liu ZX, Kaplowitz N. Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria. Trends Pharmacol Sci 2013; 34:243-53. [PMID: 23453390 DOI: 10.1016/j.tips.2013.01.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/23/2013] [Accepted: 01/30/2013] [Indexed: 12/13/2022]
Abstract
Drugs that cause liver injury often 'stress' mitochondria and activate signal transduction pathways important in determining cell survival or death. In most cases, hepatocytes adapt to the drug-induced stress by activating adaptive signaling pathways, such as mitochondrial adaptive responses and nuclear factor erythroid 2-related factor 2 (Nrf-2), a transcription factor that upregulates antioxidant defenses. Owing to adaptation, drugs alone rarely cause liver injury, with acetaminophen (APAP) being the notable exception. Drug-induced liver injury (DILI) usually involves other extrinsic factors, such as the adaptive immune system, that cause 'stressed' hepatocytes to become injured, leading to idiosyncratic DILI, the rare and unpredictable adverse drug reaction in the liver. Hepatocyte injury, due to drug and extrinsic insult, causes a second wave of signaling changes associated with adaptation, cell death, and repair. If the stress and injury reach a critical threshold, then death signaling pathways such as c-Jun N-terminal kinase (JNK) become dominant and hepatocytes enter a failsafe mode to undergo self-destruction. DILI can be seen as an active process involving recruitment of death signaling pathways that mediate cell death rather than a passive process due to overwhelming biochemical injury. In this review, we highlight the role of signal transduction pathways, which frequently involve mitochondria, in the development of DILI.
Collapse
Affiliation(s)
- Derick Han
- University of Southern California Research Center for Liver Diseases and Southern California Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-9121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang Y, Lin Z, Liu Z, Harris S, Kelly R, Zhang J, Ge W, Chen M, Borlak J, Tong W. A unifying ontology to integrate histological and clinical observations for drug-induced liver injury. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1180-7. [PMID: 23395088 DOI: 10.1016/j.ajpath.2012.12.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/30/2012] [Accepted: 12/04/2012] [Indexed: 12/17/2022]
Abstract
Drug-induced liver injury (DILI) may present any morphologic characteristic of acute or chronic liver disease with no standardized terminology in place. Defining lexemes of DILI histopathology would allow the development of advanced knowledge discovery and data mining tools for across comparisons of publicly available information. For these purposes, a DILI ontology (DILIo) was developed by using the Unified Medical Language System tool and the standardized terminology of the Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT). The DILIo was entrained on findings of 114 US Food and Drug Administration-approved drugs by extracting all clinically DILI-related histopathologic descriptions for 1082 liver biopsy samples, which were then analyzed using the Unified Medical Language System MetaMap and subsequently mapped to the SNOMED CT. The DILIo provides a standard means to describe and organize liver injury induced by drugs, enabling comparative analysis of drugs within and across histopathologic terms. The analysis showed that flutamide, troglitazone, diclofenac, isoniazid, and tamoxifen were reported to have the most diverse histopathologic observations in liver biopsy. Necrosis, cholestasis, fatty degeneration, fibrosis, infiltrate, and hepatic necrosis were the most frequent terms used as descriptors of histopathologic features of DILI. In conclusion, DILIo entrains different algorithms for an efficient meta-analysis of published findings for an improved understanding of mechanisms and clinical characteristics of DILI.
Collapse
Affiliation(s)
- Yuping Wang
- Divisions of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Hynes J, Nadanaciva S, Swiss R, Carey C, Kirwan S, Will Y. A high-throughput dual parameter assay for assessing drug-induced mitochondrial dysfunction provides additional predictivity over two established mitochondrial toxicity assays. Toxicol In Vitro 2012; 27:560-9. [PMID: 23147640 DOI: 10.1016/j.tiv.2012.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 12/16/2022]
Abstract
Mitochondrial toxicity is a major reason for safety-related compound attrition and post-market drug withdrawals, highlighting the necessity for higher-throughput screens that can identify this mechanism of toxicity during the early stages of drug discovery. Here, we present the validation of a 384-well dual parameter plate-based assay capable of measuring oxygen consumption and extracellular acidification in intact cells simultaneously. The assay showed good reproducibility and robustness and is suitable for use with both suspension cells and adherent cells. To determine if the assay provides additional value in detecting mitochondrial toxicity over existing platforms, 200 commercially available drugs were tested in the assay using HL60 suspension cells as well as in two conventional mitochondrial toxicity assays: an oxygen consumption assay that uses isolated mitochondria and a cell-based assay that uses HepG2 cells grown in glucose and galactose media. The combination of the dual parameter assay and the isolated mitochondrial oxygen consumption assay identified more compounds that caused mitochondrial impairment than any other combination of the three assays or each of the three assays on its own. Furthermore, novel information was obtained from the dual parameter assay on drugs not previously reported to cause mitochondrial impairment.
Collapse
|
39
|
Choucha Snouber L, Bunescu A, Naudot M, Legallais C, Brochot C, Dumas ME, Elena-Herrmann B, Leclerc E. Metabolomics-on-a-chip of hepatotoxicity induced by anticancer drug flutamide and Its active metabolite hydroxyflutamide using HepG2/C3a microfluidic biochips. Toxicol Sci 2012; 132:8-20. [PMID: 22843567 DOI: 10.1093/toxsci/kfs230] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We used the recently introduced "metabolomics-on-a-chip" approach to test secondary drug toxicity in bioartificial organs. Bioartificial organs cultivated in microfluidic culture conditions provide a beneficial environment, in which the cellular cytoprotective mechanisms are enhanced, compared with Petri dish culture conditions. We investigated the metabolic response of HepG2/C3a cells exposed to flutamide, an anticancer prodrug, and hydroxyflutamide (HF), its active metabolite, in a microfluidic biochip. The cellular response was analyzed by (1)H nuclear magnetic resonance spectroscopy to identify cell-specific molecule-response markers. The metabolic response to flutamide results in a disruption of glucose homeostasis and in mitochondrial dysfunctions. This flutamide-specific metabolic response was illustrated by a reduction of the extracellular glucose and fructose consumptions and a general reduction of the tricarboxylic acid cycle activity leading to the reduction of the consumption of several amino acids. We also found a higher production of 3-hydroxybutyrate and lactate, and the reduction of the albumin production compared with controls. The toxic metabolic signature associated with the active metabolite HF was illustrated by a high-energy demand and an increase in several amino acid metabolism. Finally, for both molecules, the hepatotoxicity was correlated to the glutathione (GSH) metabolism illustrated by the levels of the 2-hydroxybutyrate and pyroglutamate productions and the increase of the glutamate and glycine productions. Thus, the entire set of results contributed to extract specific mechanistic toxic signatures and their relation to hepatotoxicity, which appeared consistent with literature reports. As new finding of HepG2/C3a cells hepatotoxicity, we propose a metabolic network with a related list of metabolite variations to describe the GSH depletion when followed by a cell death for the HepG2/C3a cells cultivated in our polydimethylsiloxane microfluidic biochips. Our findings illustrate the potential of metabolomics-on-a-chip as an in vitro alternative method for predictive toxicology.
Collapse
Affiliation(s)
- Leila Choucha Snouber
- Université de Technologie de Compiègne, Centre de Recherche de Royallieu, Compiègne Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hill A, Mesens N, Steemans M, Xu JJ, Aleo MD. Comparisons between in vitro whole cell imaging and in vivo zebrafish-based approaches for identifying potential human hepatotoxicants earlier in pharmaceutical development. Drug Metab Rev 2012; 44:127-40. [PMID: 22242931 DOI: 10.3109/03602532.2011.645578] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug-induced liver injury (DILI) is a major cause of attrition during both the early and later stages of the drug development and marketing process. Reducing or eliminating drug-induced severe liver injury, especially those that lead to liver transplants or death, would be tremendously beneficial for patients. Therefore, developing new pharmaceuticals that have the highest margins and attributes of hepatic safety would be a great accomplishment. Given the current low productivity of pharmaceutical companies and the high costs of bringing new medicines to market, any early screening assay(s) to identify and eliminate pharmaceuticals with the potential to cause severe liver injury in humans would be of economic value as well. The present review discusses the background, proof-of-concept, and validation studies associated with high-content screening (HCS) by two major pharmaceutical companies (Pfizer Inc and Jansen Pharmaceutical Companies of Johnson & Johnson) for detecting compounds with the potential to cause human DILI. These HCS assays use fluorescent-based markers of cell injury in either human hepatocytes or HepG2 cells. In collaboration with Evotec, an independent contract lab, these two companies also independently evaluated larval zebrafish as an early-stage in vivo screen for hepatotoxicity in independently conducted, blinded assessments. Details about this model species, the need for bioanalysis, and, specifically, the outcome of the phenotypic-based zebrafish screens are presented. Comparing outcomes in zebrafish against both HCS assays suggests an enhanced detection for hepatotoxicants of most DILI concern when used in combination with each other, based on the U.S. Food and Drug Administration DILI classification list.
Collapse
Affiliation(s)
- Adrian Hill
- Evotec Ltd., Abingdon, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Lee TW, Delongchamp RR. A Method for Gene Group Analysis and Its Application. KOREAN JOURNAL OF APPLIED STATISTICS 2012. [DOI: 10.5351/kjas.2012.25.2.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Xue T, Luo P, Zhu H, Zhao Y, Wu H, Gai R, Wu Y, Yang B, Yang X, He Q. Oxidative stress is involved in Dasatinib-induced apoptosis in rat primary hepatocytes. Toxicol Appl Pharmacol 2012; 261:280-91. [PMID: 22538170 DOI: 10.1016/j.taap.2012.04.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 04/06/2012] [Accepted: 04/07/2012] [Indexed: 01/23/2023]
Abstract
Dasatinib, a multitargeted inhibitor of BCR-ABL and SRC kinases, exhibits antitumor activity and extends the survival of patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). However, some patients suffer from hepatotoxicity, which occurs through an unknown mechanism. In the present study, we found that Dasatinib could induce hepatotoxicity both in vitro and in vivo. Dasatinib reduced the cell viability of rat primary hepatocytes, induced the release of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in vitro, and triggered the ballooning degeneration of hepatocytes in Sprague-Dawley rats in vivo. Apoptotic markers (chromatin condensation, cleaved caspase-3 and cleaved PARP) were detected to indicate that the injury induced by Dasatinib in hepatocytes in vitro was mediated by apoptosis. This result was further validated in vivo using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. Here we found that Dasatinib dramatically increased the level of reactive oxygen species (ROS) in hepatocytes, reduced the intracellular glutathione (GSH) content, attenuated the activity of superoxide dismutase (SOD), generated malondialdehyde (MDA), a product of lipid peroxidation, decreased the mitochondrial membrane potential, and activated nuclear factor erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinases (MAPK) related to oxidative stress and survival. These results confirm that oxidative stress plays a pivotal role in Dasatinib-mediated hepatotoxicity. N-acetylcysteine (NAC), a typical antioxidant, can scavenge free radicals, attenuate oxidative stress, and protect hepatocytes against Dasatinib-induced injury. Thus, relieving oxidative stress is a viable strategy for reducing Dasatinib-induced hepatotoxicity.
Collapse
Affiliation(s)
- Tao Xue
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 2012; 44:88-106. [PMID: 22229890 DOI: 10.3109/03602532.2011.602688] [Citation(s) in RCA: 656] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatotoxicity is a serious problem during drug development and for the use of many established drugs. For example, acetaminophen overdose is currently the most frequent cause of acute liver failure in the United States and Great Britain. Evaluation of the mechanisms of drug-induced liver injury indicates that mitochondria are critical targets for drug toxicity, either directly or indirectly through the formation of reactive metabolites. The consequence of these modifications is generally a mitochondrial oxidant stress and peroxynitrite formation, which leads to structural alterations of proteins and mitochondrial DNA and, eventually, to the opening of mitochondrial membrane permeability transition (MPT) pores. MPT pore formation results in a collapse of mitochondrial membrane potential and cessation of adenosine triphosphate synthesis. In addition, the release of intermembrane proteins, such as apoptosis-inducing factor and endonuclease G, and their translocation to the nucleus, leads to nuclear DNA fragmentation. Together, these events trigger necrotic cell death. Alternatively, the release of cytochrome c and other proapoptotic factors from mitochondria can promote caspase activation and apoptotic cell death. Drug toxicity can also induce an inflammatory response with the formation of reactive oxygen species by Kupffer cells and neutrophils. If not properly detoxified, these extracellularly generated oxidants can diffuse into hepatocytes and trigger mitochondrial dysfunction and oxidant stress, which then induces MPT and necrotic cell death. This review addresses the formation of oxidants and the defense mechanisms available for cells and applies this knowledge to better understand mechanisms of drug hepatotoxicity, especially acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, 66160, USA.
| | | | | |
Collapse
|
44
|
Ng W, Lobach AR, Zhu X, Chen X, Liu F, Metushi IG, Sharma A, Li J, Cai P, Ip J, Novalen M, Popovic M, Zhang X, Tanino T, Nakagawa T, Li Y, Uetrecht J. Animal Models of Idiosyncratic Drug Reactions. CURRENT CONCEPTS IN DRUG METABOLISM AND TOXICOLOGY 2012; 63:81-135. [DOI: 10.1016/b978-0-12-398339-8.00003-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Williams CD, Jaeschke H. Role of innate and adaptive immunity during drug-induced liver injury. Toxicol Res (Camb) 2012; 1:161. [DOI: 10.1039/c2tx20032e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
46
|
Lee T, Manjanatha MG, Aidoo A, Moland CL, Branham WS, Fuscoe JC, Ali AA, Desai VG. Expression analysis of hepatic mitochondria-related genes in mice exposed to acrylamide and glycidamide. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:324-339. [PMID: 22480170 DOI: 10.1080/15287394.2012.668160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Acrylamide (AA) is an industrial chemical that has been extensively investigated for central nervous system (CNS), reproductive, and genetic toxicity. However, AA effects on the liver, a major organ of drug metabolism, have not been adequately explored. In addition, the role of mitochondria in AA-mediated toxicity is still unclear. Changes in expression levels of genes associated with hepatic mitochondrial function of male transgenic Big Blue (BB) mice administered 500 mg/L AA or an equimolar concentration (600 mg/L) of its reactive metabolite glycidamide (GA) in drinking water for 3 and 4 wk, respectively, were examined. Transcriptional profiling of 542 mitochondria-related genes indicated a significant downregulation of genes associated with the 3-beta-hydroxysteroid dehydrogenase family in AA- and GA-treated mice, suggesting a possible role of both chemicals in altering hepatic steroid metabolism in BB mice. In addition, genes associated with lipid metabolism were altered by both treatments. Interestingly, only the parental compound (AA) significantly induced expression levels of genes associated with oxidative phosphorylation, in particular ATP synthase, which correlated with elevated ATP levels, indicating an increased energy demand in liver during AA exposure. Acrylamide-treated mice also showed significantly higher activity of glutathione S-transferase in association with decreased levels of reduced glutathione (GSH), which may imply an enhanced rate of conjugation of AA with GSH in liver. These results suggest different hepatic mechanisms of action of AA and GA and provide important insights into the involvement of mitochondria during their exposures.
Collapse
Affiliation(s)
- Taewon Lee
- Department of Information and Mathematics, Korea University, Jochiwon, Chungnam, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pessayre D, Fromenty B, Berson A, Robin MA, Lettéron P, Moreau R, Mansouri A. Central role of mitochondria in drug-induced liver injury. Drug Metab Rev 2011; 44:34-87. [PMID: 21892896 DOI: 10.3109/03602532.2011.604086] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A frequent mechanism for drug-induced liver injury (DILI) is the formation of reactive metabolites that trigger hepatitis through direct toxicity or immune reactions. Both events cause mitochondrial membrane disruption. Genetic or acquired factors predispose to metabolite-mediated hepatitis by increasing the formation of the reactive metabolite, decreasing its detoxification, or by the presence of critical human leukocyte antigen molecule(s). In other instances, the parent drug itself triggers mitochondrial membrane disruption or inhibits mitochondrial function through different mechanisms. Drugs can sequester coenzyme A or can inhibit mitochondrial β-oxidation enzymes, the transfer of electrons along the respiratory chain, or adenosine triphosphate (ATP) synthase. Drugs can also destroy mitochondrial DNA, inhibit its replication, decrease mitochondrial transcripts, or hamper mitochondrial protein synthesis. Quite often, a single drug has many different effects on mitochondrial function. A severe impairment of oxidative phosphorylation decreases hepatic ATP, leading to cell dysfunction or necrosis; it can also secondarily inhibit ß-oxidation, thus causing steatosis, and can also inhibit pyruvate catabolism, leading to lactic acidosis. A severe impairment of β-oxidation can cause a fatty liver; further, decreased gluconeogenesis and increased utilization of glucose to compensate for the inability to oxidize fatty acids, together with the mitochondrial toxicity of accumulated free fatty acids and lipid peroxidation products, may impair energy production, possibly leading to coma and death. Susceptibility to parent drug-mediated mitochondrial dysfunction can be increased by factors impairing the removal of the toxic parent compound or by the presence of other medical condition(s) impairing mitochondrial function. New drug molecules should be screened for possible mitochondrial effects.
Collapse
Affiliation(s)
- Dominique Pessayre
- INSERM, U, Centre de Recherche Bichat Beaujon CRB, Faculté de Médecine Xavier-Bichat, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
48
|
Higuchi S, Kobayashi M, Yano A, Tsuneyama K, Fukami T, Nakajima M, Yokoi T. Involvement of Th2 cytokines in the mouse model of flutamide-induced acute liver injury. J Appl Toxicol 2011; 32:815-22. [PMID: 21735453 DOI: 10.1002/jat.1706] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/10/2011] [Accepted: 05/10/2011] [Indexed: 02/03/2023]
Abstract
Drug-induced liver injury is a growing concern for pharmaceutical companies and patients because numerous drugs have been linked to hepatotoxicity and it is the most common reason for a drug to be withdrawn. Flutamide rarely causes liver dysfunction in humans, and immune allergic reactions have been suggested in some cases. In this study, we investigated the mechanisms of flutamide-induced liver injury in BALB/c mice. Plasma alanine aminotransferase and aspartate aminotransferase levels were significantly increased 3, 6 and 9 h after flutamide (1500 mg kg⁻¹ , p.o.) administration. The biomarker for oxidative stress was not changed, but Th2-dominant immune-related factors, such as interleukin (IL)-4, IL-5, STAT6 and GATA-binding protein (GATA)-3, were induced in flutamide-administered mice. The pre-administration of monoclonal-IL-4 antibody suppressed the hepatotoxicity of flutamide. In addition, we investigated the effect of 13,14-dihydro-15-keto-PGD₂ (DK-PGD₂; 10 µg per mouse, i.p.) administration on flutamide-induced acute liver injury. Coadministration of DK-PGD₂ and flutamide resulted in a significant increase in alanine aminotransferase and a remarkable increase of macrophage inflammatory protein-2. In conclusion, we demonstrated that flutamide-induced acute liver injury is mediated by Th2-dominant immune responses in mice.
Collapse
Affiliation(s)
- Satonori Higuchi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Roth RA, Ganey PE. Animal models of idiosyncratic drug-induced liver injury—Current status. Crit Rev Toxicol 2011; 41:723-39. [DOI: 10.3109/10408444.2011.575765] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Ramachandran A, Lebofsky M, Weinman SA, Jaeschke H. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 2011; 251:226-33. [PMID: 21241727 DOI: 10.1016/j.taap.2011.01.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/03/2011] [Accepted: 01/06/2011] [Indexed: 02/09/2023]
Abstract
UNLABELLED Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. The objective of this investigation was to evaluate the functional consequences of partial SOD2-deficiency (SOD2+/-) on intracellular signaling mechanisms of necrotic cell death after APAP overdose. Treatment of C57Bl/6J wild type animals with 200mg/kg APAP resulted in liver injury as indicated by elevated plasma alanine aminotransferase activities (2870±180U/L) and centrilobular necrosis at 6h. In addition, increased tissue glutathione disulfide (GSSG) levels and GSSG-to-GSH ratios, delayed mitochondrial GSH recovery, and increased mitochondrial protein carbonyls and nitrotyrosine protein adducts indicated mitochondrial oxidant stress. In addition, nuclear DNA fragmentation (TUNEL assay) correlated with translocation of Bax to the mitochondria and release of apoptosis-inducing factor (AIF). Furthermore, activation of c-jun-N-terminal kinase (JNK) was documented by the mitochondrial translocation of phospho-JNK. SOD2+/- mice showed 4-fold higher ALT activities and necrosis, an enhancement of all parameters of the mitochondrial oxidant stress, more AIF release and more extensive DNA fragmentation and more prolonged JNK activation. CONCLUSIONS the impaired defense against mitochondrial superoxide formation in SOD2+/- mice prolongs JNK activation after APAP overdose and consequently further enhances the mitochondrial oxidant stress leading to exaggerated mitochondrial dysfunction, release of intermembrane proteins with nuclear DNA fragmentation and more necrosis.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|