1
|
Huang J, Mao J, Liu H, Li Z, Liang G, Zhang D, Yang J, Qin W, Wen P, Jiang Y, Mo Z. Association between exposure to arsenic, cadmium, and lead and chronic kidney disease: evidence from four practical statistical models. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:6. [PMID: 39614915 DOI: 10.1007/s10653-024-02318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Environmental exposure to arsenic (As), lead (Pb) and cadmium (Cd) may cause chronic kidney disease (CKD), with varying independent effects and unclear combined impact. This study aimed to evaluate these effects on CKD. METHODS 1,398 individuals were included. Urine arsenic (UAs) was determined by atomic fluorescence method. Urinary cadmium (UCd) and blood lead (BPb) levels were determined by graphite-furnace atomic absorption spectrometry. CKD was defined as an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73m2 or proteinuria. Generalized linear models (GLM), restricted cubic spline (RCS) models, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models were employed to study the independent and combined effects of exposure to As, Pb and Cd on CKD risk. RESULTS Compared with non-CKD subjects, UAs, UCd, BPb, and creatinine adjusted urinary cadmium (UCdCr) were all significantly higher in CKD subjects. Compared with the lowest quartiles, the ORs (95%CIs) of CKD risk in the highest quartiles were 2.09 (1.16-3.74) for UAs, 2.84(1.56-5.18) for UCd, and 1.79 (1.05-3.06) for UCdCr, respectively. UAs, UCd, and UCdCr were all significantly positively associated with CKD risk in p-trend tests. RCS models revealed non-linear links between UAs, UCd, UCdCr and CKD risk, while a linear dose-response existed for BPb and CKD risk. The OR (95%CI) in WQS models were 1.72 (1.25-2.36) with UAs being the highest weighing metal(loid). BKMR models showed co-exposure mixture linked to higher CKD risk when the ln-transformed metal(loid)s above their 55th percentile. The ln-transformed UAs and UCdCr was significantly positively associated with CKD risk when the other two ln-transformed metals levels were all fixed at their different percentile levels. Synergism between Cd and Pb was also apparent. CONCLUSIONS Single As, and Cd exposure were positively associated with an increased CKD risk. Co-exposure to As, Pb and Cd was positively associated with CKD risk, with As playing a dominant role.
Collapse
Affiliation(s)
- Jiongli Huang
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Jingying Mao
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Huilin Liu
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Zhongyou Li
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Guiyun Liang
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Dabiao Zhang
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Junchao Yang
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Wen Qin
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China
| | - Pingjing Wen
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Zhaoyu Mo
- Scientific Research Academy of Guangxi Environmental Protection, Nanning, 530022, China.
| |
Collapse
|
2
|
Abdollahzade N, Majidinia M, Babri S. Melatonin: a pleiotropic hormone as a novel potent therapeutic candidate in arsenic toxicity. Mol Biol Rep 2021; 48:6603-6618. [PMID: 34453671 DOI: 10.1007/s11033-021-06669-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Arsenic is a natural element which exists in the environment in inorganic and organic forms. In humans, the main reason for the toxicity of arsenic is its uptake via water sources. As polluted water and the problems associated with it can be found in many countries. Therefore, considering all these positive effects of melatonin, this review is aimed at melatonin supplementation therapy on arsenic toxicity which seems to be a suitable therapeutic agent to eliminate the adverse effects of arsenic. METHODS AND RESULTS It is seen in previous studies that chronic exposure to arsenic could cause serious dys functions of organs and induce different degrees of toxicities that is one of the first hazardous materials in the classification of substances by the United States Environmental Protection Agency so leads to costly cleanup operations burdening the economy. Arsenic harmfulness degree depends on the bioavailability, chemical form, valence state, detoxification, and metabolism of human body. The oxidative stress has a major role in arsenic-induced toxicity; on the other hand, it was discovered that melatonin is a powerful scavenger for free radical and it's an extensive-spectrum antioxidant. CONCLUSION Due to its highly lipophilic and small size properties, melatonin accesses all intracellular organs by easily passing via the cell membrane and prevents protein, DNA damage, and lipid peroxidation. In particular, melatonin, by protecting and reducing oxidative stress in mitochondria, can normalize homeostasis and mitochondrial function and ultimately prevent apoptosis and cell death.
Collapse
Affiliation(s)
- Naseh Abdollahzade
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Shirin Babri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Abstract
Exposure to arsenic in contaminated drinking water is a worldwide public health problem that affects more than 200 million people. Protein quality control constitutes an evolutionarily conserved mechanism for promoting proper folding of proteins, refolding of misfolded proteins, and removal of aggregated proteins, thereby maintaining homeostasis of the proteome (i.e., proteostasis). Accumulating lines of evidence from epidemiological and laboratory studies revealed that chronic exposure to inorganic arsenic species can elicit proteinopathies that contribute to neurodegenerative disorders, cancer, and type II diabetes. Here, we review the effects of arsenic exposure on perturbing various elements of the proteostasis network, including mitochondrial homeostasis, molecular chaperones, inflammatory response, ubiquitin-proteasome system, autophagy, as well as asymmetric segregation and axonal transport of misfolded proteins. We also discuss arsenic-induced disruptions of post-translational modifications of proteins, for example, ubiquitination, and their implications in proteostasis. Together, studies in the past few decades support that disruption of protein quality control may constitute an important mechanism underlying the arsenic-induced toxicity.
Collapse
|
4
|
Liu Y, Yuan Y, Xiao Y, Li Y, Yu Y, Mo T, Jiang H, Li X, Yang H, Xu C, He M, Guo H, Pan A, Wu T. Associations of plasma metal concentrations with the decline in kidney function: A longitudinal study of Chinese adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110006. [PMID: 31812020 DOI: 10.1016/j.ecoenv.2019.110006] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/16/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Metals are widespread pollutants in the environment which have been reported to be associated with kidney dysfunction in many existing epidemiological studies. However, most of the studies are cross-sectional design and mainly focus on several toxic metals including arsenic, lead and cadmium. Therefore, we conducted this prospective study within the Dongfeng-Tongji cohort to evaluate the associations of plasma multiple metals with the decline in kidney function among Chinese middle-aged and elderly. In total, 1434 participants free of chronic diseases at baseline were included in analysis. We measured baseline plasma concentrations of 23 metals and calculated estimated glomerular filtration rate (eGFR) using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation based on serum creatinine, age, sex and ethnicity. Bonferroni correction was used for multiple testing to reduce the probability of a type I error. Principal component analysis was conducted to evaluate the combined effect of multiple metal co-exposure. Most of the plasma metal concentrations were within the literature reported reference values, whereas the concentration of lead and nickel exceeded the guideline value. We found that plasma concentrations of aluminum, arsenic, barium, lead, molybdenum, rubidium, strontium, vanadium and zinc were significantly associated with the decline in kidney function measured by annual eGFR decline, rapid renal function decline (defined as an annual decline in eGFR ≥ 5 mL/min/1.73 m2) or incident eGFR < 60 mL/min/1.73 m2, with the adjusted beta coefficients (95% CI) for annual eGFR decline 0.50 (0.30, 0.69), 0.98 (0.74, 1.23), 0.56 (0.32, 0.79), 0.21 (0.03, 0.39), 0.35 (0.16, 0.54), 0.94 (0.71, 1.17), 0.37 (0.15, 0.60), 0.78 (0.54, 1.02), and 0.74 (0.57, 0.91), respectively. The metals exposures were linked with increased risks of impaired kidney function. Associations of principal components representing these metals with the decline in kidney function were significant and suggest a possible additional health risk by co-exposure. Participants engaged in manufacturing had higher plasma levels of several metals compared with those who had been involved in management- or administration-related work. Our findings suggest that exposure to multiple metals contribute to the decline in kidney function among the middle-aged and elderly. Co-exposure to multiple metals may have synergetic effect on the kidney function. Further studies are warranted to confirm our findings and clarify the potential mechanisms.
Collapse
Affiliation(s)
- Yiyi Liu
- Department of Occupational and Environmental Health Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yu Yuan
- Department of Occupational and Environmental Health Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Yang Xiao
- Department of Occupational and Environmental Health Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yizhun Li
- Department of Occupational and Environmental Health Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yanqiu Yu
- Department of Occupational and Environmental Health Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Tingting Mo
- Department of Occupational and Environmental Health Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Haijing Jiang
- Department of Occupational and Environmental Health Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiulou Li
- Department of Cardiovascular Diseases, Dongfeng Central Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Handong Yang
- Department of Cardiovascular Diseases, Dongfeng Central Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Chengwei Xu
- Department of Cardiovascular Diseases, Dongfeng Central Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Meian He
- Department of Occupational and Environmental Health Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Huan Guo
- Department of Occupational and Environmental Health Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Tangchun Wu
- Department of Occupational and Environmental Health Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| |
Collapse
|
5
|
Sinha D, Prasad P. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J Appl Toxicol 2019; 40:87-131. [PMID: 31273810 DOI: 10.1002/jat.3823] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Groundwater arsenic (As) contamination is a global public health concern. The high level of As exposure (100-1000 μg/L or even higher) through groundwater has been frequently associated with serious public health hazards, e.g., skin disorders, cardiovascular diseases, respiratory problems, complications of gastrointestinal tract, liver and splenic ailments, kidney and bladder disorders, reproductive failure, neurotoxicity and cancer. However, reviews on low-level As exposure and the imperative health effects are far less documented. The World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA) has set the permissible standard of As in drinking water at 10 μg/L. Considering the WHO and USEPA guidelines, most of the developed countries have established standards at or below this guideline. Worldwide many countries including India have millions of aquifers with low-level As contamination (≤50 μg/L). The exposed population of these areas might not show any As-related skin lesions (hallmark of As toxicity particularly in a population consuming As contaminated groundwater >300 μg/L) but might be subclinically affected. This review has attempted to encompass the wide range of health effects associated with chronic low-level As exposure ≤50 μg/L and the probable mechanisms that might provide a better insight regarding the underlying cause of these clinical manifestations. Therefore, there is an urgent need to create mass awareness about the health effects of chronic low-level As exposure and planning of proper mitigation strategies.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Priyanka Prasad
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
6
|
Li D, Wei Y, Xu S, Niu Q, Zhang M, Li S, Jing M. A systematic review and meta-analysis of bidirectional effect of arsenic on ERK signaling pathway. Mol Med Rep 2018; 17:4422-4432. [PMID: 29328451 PMCID: PMC5802217 DOI: 10.3892/mmr.2018.8383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/21/2017] [Indexed: 01/05/2023] Open
Abstract
Arsenic is a toxic metal, which ultimately leads to cell apoptosis. ERK is considered a key transcriptional regulator of arsenic‑induced apoptosis. Due to a few controversial issues about arsenic‑mediated extracellular signal‑regulated MAP kinases (ERK) signaling, a meta‑analysis was performed. Subgroup analyses demonstrated that high doses (≥2 µmol/l) of arsenic increased the expression of Ras, ERK, ERK1, ERK2, phosphorylated (p)‑ERK, p‑ERK1, and p‑ERK2, while low doses (<2 µmol/l) decreased the expression of Ras, ERK1, p‑ERK, and p‑ERK2 when compared to control groups. Long term exposure (>24 h) to arsenic led to inhibition of expression of ERK1, p‑ERK1, and p‑ERK2, whereas short‑term exposure (≤24 h) triggered the expression of ERK1, ERK2, p‑ERK, p‑ERK1, and p‑ERK2. Furthermore, normal cells exposed to arsenic exhibited higher production levels of Ras and p‑ERK. Conversely, exposure of cancer cells to arsenic showed a lower level of production of Ras and p‑ERK as well as higher level of p‑ERK1 and p‑ERK2 as compared to control group. Short‑term exposure of normal cells to high doses of arsenic may promote ERK signaling pathway. In contrast, long‑term exposure of cancer cells to low doses of arsenic may inhibit ERK signaling pathway. This study may be helpful in providing a theoretical basis for the diverging result of arsenic adverse effects on one hand and therapeutic mechanisms on the other concerning arsenic‑induced apoptosis.
Collapse
Affiliation(s)
- Dongjie Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Yutao Wei
- Department of Cardiothoracic Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Shangzhi Xu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Qiang Niu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Mei Zhang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Shugang Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Mingxia Jing
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
7
|
Luo F, Zou Z, Liu X, Ling M, Wang Q, Wang Q, Lu L, Shi L, Liu Y, Liu Q, Zhang A. Enhanced glycolysis, regulated by HIF-1α via MCT-4, promotes inflammation in arsenite-induced carcinogenesis. Carcinogenesis 2017; 38:615-626. [PMID: 28419250 DOI: 10.1093/carcin/bgx034] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 04/06/2017] [Indexed: 12/14/2022] Open
Abstract
Arsenite is well established as a human carcinogen, but the molecular mechanisms leading to arsenite-induced carcinogenesis are complex and elusive. Accelerated glycolysis, a common process in tumor cells called the Warburg effect, is associated with various biological phenomena. However, the role of glycolysis induced by arsenite is unknown. We have found that, with chronic exposure to arsenite, L-02 cells undergo a metabolic shift to glycolysis. In liver cells exposed to arsenite, hypoxia inducible factor-1α (HIF-1α) and monocarboxylate transporter-4 (MCT-4) are over-expressed. MCT-4, directly mediated by HIF-1α, maintains a high level of glycolysis, and the enhanced glycolysis promotes pro-inflammatory properties, which are involved in arsenite carcinogenesis. In addition, serum lactate and cytokines are higher in arsenite-exposed human populations, and there is a positive correlation between them. Moreover, there is a positive relationship between lactate and cytokines with arsenic in hair. In sum, these findings indicate that MCT-4, mediated by HIF-1α, enhances the glycolysis induced by arsenite. Lactate, the end product of glycolysis, is released into the extracellular environment. The acidic microenvironment promotes production of pro-inflammatory cytokines, which contribute to arsenite-induced liver carcinogenesis. These results provide a link between the induction of glycolysis and inflammation in liver cells exposed to arsenite, and thus establish a previously unknown mechanism for arsenite-induced hepatotoxicity.
Collapse
Affiliation(s)
- Fei Luo
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Xinlu Liu
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Min Ling
- Jiangsu Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic of China
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Qi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Lu Lu
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Le Shi
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Yonglian Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Qizhan Liu
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| |
Collapse
|
8
|
Oliva-González C, Uresti-Rivera EE, Galicia-Cruz OG, Jasso-Robles FI, Gandolfi AJ, Escudero-Lourdes C. The tumor suppressor phosphatase and tensin homolog protein (PTEN) is negatively regulated by NF-κb p50 homodimers and involves histone 3 methylation/deacetylation in UROtsa cells chronically exposed to monomethylarsonous acid. Toxicol Lett 2017; 280:92-98. [PMID: 28823542 DOI: 10.1016/j.toxlet.2017.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 01/06/2023]
Abstract
UROtsa cells have been accepted as a model to study carcinogenicity mechanisms of arsenic-associated human bladder cancer. In vitro continuous exposure to monomethylarsonous acid (MMAIII), leads UROtsa cells to commit to malignant transformation. In this process, NF-κβ-associated inflammatory response seems to play an important role since this transcription factor activates some minutes after cells are exposed in vitro to MMAIII and keeps activated during the cellular malignant transformation. It is known that a slight decrease in the protein phosphatase and tensin homologue (PTEN) gene expression is enough for some cells to become malignantly transformed. Interestingly, this tumor suppressor has been proven to be negatively regulated by NF-κβ through binding to its gene promoter. Based on these observations we propose that NF-κβ may be involved in arsenic associated carcinogenesis through the negative regulation of PTEN gene expression. Changes in PTEN expression and the binding of p50 NF-κβ subunit to PTEN promoter were evaluated in UROtsa cells exposed for 4, 12, 20, or 24 wk to 50nM MMAIII. Results showed that MMAIII induced a significant decrease in PTEN expression around 20 wk exposure to MMAIII,which correlated with increased binding of p50 subunit to the PTEN promoter. Consistent with these results, ChIP assays also showed a significant decrease in H3 acetylation (H3ac) but an increase in the repression marks H3k9me3 and H327me3 in PTEN promoter when compared with not treated cells. These results suggest that the activation of NF-κβ by MMAIII may participate in UROtsa cells malignant transformation through the negative regulation of PTEN expression involving p50 homodimers-mediated chromatin remodeling around the PTEN promoter.
Collapse
Affiliation(s)
- C Oliva-González
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - E E Uresti-Rivera
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - O G Galicia-Cruz
- Laboratorio de Fisiología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico
| | - F I Jasso-Robles
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - A J Gandolfi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson AZ, USA
| | - C Escudero-Lourdes
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico.
| |
Collapse
|
9
|
Liu S, Wang F, Liu J, Jin P, Wang X, Yang L, Xi S. ATF2 partly mediated the expressions of proliferative factors and inhibited pro-inflammatory factors' secretion in arsenite-treated human uroepithelial cells. Toxicol Res (Camb) 2017; 6:468-476. [PMID: 30090515 PMCID: PMC6062379 DOI: 10.1039/c6tx00407e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/28/2017] [Indexed: 11/21/2022] Open
Abstract
Inorganic arsenic (iAs) could induce the expression of activating transcription factor-2 (ATF2) in the human urinary bladder epithelial cell line (SV-HUC-1 cells). ATF2, as a member of the bZIP transcription factor family, has been implicated in a transcriptional response leading to cell growth, migration and malignant tumor progression. However, little is known about the effects of ATF2 on proliferative factors in iAs treated human urothelial cells. In this study, ATF2 siRNA was employed to investigate the relationship between ATF2 activation and the expressions of proliferative factors, such as BCL2, cyclin D1, COX-2, MMP1 and PCNA, and pro-inflammatory factors (TNFα, TGFα and IL-8) in SV-HUC-1 cells. The results showed that low concentration arsenite increased the expressions of proliferative factors BCL2, cyclin D1, COX-2, MMP1 and PCNA in SV-HUC-1 cells, and ATF2 siRNA partly decreased the expressions of BCL2, cyclin D1, and COX-2. A neutralizing antibody of IL-8 was used for attenuating the levels of IL-8 and neutralizing antibody of IL-8 did not relieve the expressions of ATF2 and proliferative factors induced by arsenite in SV-HUC-1 cells. In addition, ATF2 knockdown did not decrease the expressions of pro-inflammatory cytokines induced by arsenite in SV-HUC-1 cells, but dramatically increased mRNA expressions of TNFα, TGFα and IL-8 under arsenite and non-arsenite conditions. In conclusion, our present study indicated that ATF2, but not IL-8, played a partial role in the expressions of proliferative factors induced by arsenite in human uroepithelial cells.
Collapse
Affiliation(s)
- Shengnan Liu
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Fei Wang
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Jieyu Liu
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Peiyu Jin
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Xiaoyan Wang
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Li Yang
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| | - Shuhua Xi
- Department of Environmental and Occupational Health , School of Public Health , China Medical University , No. 77 Puhe Road , Shenyang North New Area , Shenyang , Liaoning Province 110122 , People's Republic of China .
| |
Collapse
|
10
|
Goodale BC, Rayack EJ, Stanton BA. Arsenic alters transcriptional responses to Pseudomonas aeruginosa infection and decreases antimicrobial defense of human airway epithelial cells. Toxicol Appl Pharmacol 2017. [PMID: 28625800 DOI: 10.1016/j.taap.2017.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arsenic contamination of drinking water and food threatens the health of hundreds of millions of people worldwide by increasing the risk of numerous diseases. Arsenic exposure has been associated with infectious lung disease in epidemiological studies, but it is not yet understood how ingestion of low levels of arsenic increases susceptibility to bacterial infection. Accordingly, the goal of this study was to examine the effect of arsenic on gene expression in primary human bronchial epithelial (HBE) cells and to determine if arsenic altered epithelial cell responses to Pseudomonas aeruginosa, an opportunistic pathogen. Bronchial epithelial cells line the airway surface, providing a physical barrier and serving critical roles in antimicrobial defense and signaling to professional immune cells. We used RNA-seq to define the transcriptional response of HBE cells to Pseudomonas aeruginosa, and investigated how arsenic affected HBE gene networks in the presence and absence of the bacterial challenge. Environmentally relevant levels of arsenic significantly changed the expression of genes involved in cellular redox homeostasis and host defense to bacterial infection, and decreased genes that code for secreted antimicrobial factors such as lysozyme. Using pathway analysis, we identified Sox4 and Nrf2-regulated gene networks that are predicted to mediate the arsenic-induced decrease in lysozyme secretion. In addition, we demonstrated that arsenic decreased lysozyme in the airway surface liquid, resulting in reduced lysis of Microccocus luteus. Thus, arsenic alters the expression of genes and proteins in innate host defense pathways, thereby decreasing the ability of the lung epithelium to fight bacterial infection.
Collapse
Affiliation(s)
- Britton C Goodale
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States.
| | - Erica J Rayack
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States
| |
Collapse
|
11
|
Phookphan P, Navasumrit P, Waraprasit S, Promvijit J, Chaisatra K, Ngaotepprutaram T, Ruchirawat M. Hypomethylation of inflammatory genes (COX2, EGR1, and SOCS3) and increased urinary 8-nitroguanine in arsenic-exposed newborns and children. Toxicol Appl Pharmacol 2016; 316:36-47. [PMID: 28025110 DOI: 10.1016/j.taap.2016.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023]
Abstract
Early-life exposure to arsenic increases risk of developing a variety of non-malignant and malignant diseases. Arsenic-induced carcinogenesis may be mediated through epigenetic mechanisms and pathways leading to inflammation. Our previous study reported that prenatal arsenic exposure leads to increased mRNA expression of several genes related to inflammation, including COX2, EGR1, and SOCS3. This study aimed to investigate the effects of arsenic exposure on promoter DNA methylation and mRNA expression of these inflammatory genes (COX2, EGR1, and SOCS3), as well as the generation of 8-nitroguanine, which is a mutagenic DNA lesion involved in inflammation-related carcinogenesis. Prenatally arsenic-exposed newborns had promoter hypomethylation of COX2, EGR1, and SOCS3 in cord blood lymphocytes (p<0.01). A follow-up study in these prenatally arsenic-exposed children showed a significant hypomethylation of these genes in salivary DNA (p<0.01). In vitro experiments confirmed that arsenite treatment at short-term high doses (10-100μM) and long-term low doses (0.5-1μM) in human lymphoblasts (RPMI 1788) caused promoter hypomethylation of these genes, which was in concordance with an increase in their mRNA expression. Additionally, the level of urinary 8-nitroguanine was significantly higher (p<0.01) in exposed newborns and children, by 1.4- and 1.8-fold, respectively. Arsenic accumulation in toenails was negatively correlated with hypomethylation of these genes and positively correlated with levels of 8-nitroguanine. These results indicated that early-life exposure to arsenic causes hypomethylation of COX2, EGR1, and SOCS3, increases mRNA expression of these genes, and increases 8-nitroguanine formation. These effects may be linked to mechanisms of arsenic-induced inflammation and cancer development later in life.
Collapse
Affiliation(s)
- Preeyaphan Phookphan
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Post-graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health, Toxicology (EHT), Office of the Higher Education Commission, Ministry of Education, Thailand
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Post-graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health, Toxicology (EHT), Office of the Higher Education Commission, Ministry of Education, Thailand
| | - Somchamai Waraprasit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | - Jeerawan Promvijit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | - Krittinee Chaisatra
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand
| | | | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health, Toxicology (EHT), Office of the Higher Education Commission, Ministry of Education, Thailand.
| |
Collapse
|
12
|
Farr SE, Chess-Williams R, McDermott CM. Gemcitabine: Selective cytotoxicity, induction of inflammation and effects on urothelial function. Toxicol Appl Pharmacol 2016; 316:1-9. [PMID: 28007550 DOI: 10.1016/j.taap.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/24/2022]
Abstract
Intravesical gemcitabine has recently been introduced for the treatment of superficial bladder cancer and has a favourable efficacy and toxicity profile in comparison to mitomycin c (MMC), the most commonly used chemotherapeutic agent. The aim of this study was to assess the cytotoxic potency of gemcitabine in comparison to MMC in urothelial cell lines derived from non-malignant (UROtsa) and malignant (RT4 and T24) tissues to assess selectivity. Cells were treated with gemcitabine or mitomycin C at concentrations up to the clinical doses for 1 or 2h respectively (clinical duration). Treatment combined with hyperthermia was also examined. Cell viability, ROS formation, urothelial function (ATP, acetylcholine and PGE2 release) and secretion of inflammatory cytokines were assessed. Gemcitabine displayed a high cytotoxic selectivity for the two malignant cell lines (RT4, T24) compared to the non-malignant urothelial cells (UROtsa, proliferative and non-proliferative). In contrast, the cytotoxic effects of MMC were non-selective with equivalent potency in each of the cell lines. The cytotoxic effect of gemcitabine in the malignant cell lines was associated with an elevation in free radical formation and was significantly decreased in the presence of an equilibrative nucleoside transporter inhibitor. Transient changes in urothelial ATP and PGE2 release were observed, with significant increase in release of interleukin-6, interleukin-8 and interleukin-1β from urothelial cells treated with gemcitabine. The selectivity of gemcitabine for malignant urothelial cells may account for the less frequent adverse urological effects with comparison to other commonly used chemotherapeutic agents.
Collapse
Affiliation(s)
- Stefanie E Farr
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland 4229, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland 4229, Australia
| | - Catherine M McDermott
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland 4229, Australia.
| |
Collapse
|
13
|
Cortical Astrocytes Acutely Exposed to the Monomethylarsonous Acid (MMAIII) Show Increased Pro-inflammatory Cytokines Gene Expression that is Consistent with APP and BACE-1: Over-expression. Neurochem Res 2016; 41:2559-2572. [DOI: 10.1007/s11064-016-1968-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/02/2016] [Accepted: 05/28/2016] [Indexed: 01/24/2023]
|
14
|
Escudero-Lourdes C. Toxicity mechanisms of arsenic that are shared with neurodegenerative diseases and cognitive impairment: Role of oxidative stress and inflammatory responses. Neurotoxicology 2016; 53:223-235. [DOI: 10.1016/j.neuro.2016.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/21/2022]
|
15
|
Liu G, Sun Q, Zhu M, Sun L, Wang Z, Li H, Li Z, Chen Y, Yin H, Lin X. Nickel exposure and prevalent albuminuria and β2-microglobulinuria: evidence from a population-based study. J Epidemiol Community Health 2015; 70:437-43. [PMID: 26612876 DOI: 10.1136/jech-2015-205994] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 11/07/2015] [Indexed: 11/03/2022]
Abstract
BACKGROUND High exposure to nickel could induce renal dysfunction in rodents and occupational workers. However, little is known about the effects of non-occupational exposure to nickel on renal health in the general population. We aimed to examine the associations of urinary nickel concentrations with albuminuria and β2-microglobulinuria in Chinese adults. METHODS 2115 non-institutionalised Chinese men and women aged 55-76 years from Beijing and Shanghai were included. Urinary nickel concentrations were assessed by inductively coupled plasma mass spectroscopy. Plasma uric acid, urea nitrogen, C reactive protein and urinary albumin, β2-microglobulin and creatinine were measured. Albuminuria was defined as urinary albumin ≥30 mg/g creatinine, and β2-microglobulinuria was defined as urinary β2-microglobulin ≥200 µg/g creatinine. RESULTS Median concentration of urinary nickel was 3.95 μg/g creatinine (IQR: 2.57-6.71 μg/g creatinine), and prevalence of albuminuria, β2-microglobulinuria and both albuminuria and β2-microglobulinuria was 22.1%, 24.5% and 9.7%, respectively. Comparing the highest with the lowest quartile of urinary nickel, the ORs (95% CIs) were 1.99 (1.46 to 2.78) for albuminuria, 1.44 (1.07 to 1.95) for β2-microglobulinuria, and 2.95 (1.74 to 4.97) for both albuminuria and β2-microglobulinuria, after adjustment for demographic characteristics, lifestyle behaviours, body mass index, hypertension and diabetes. The association remained significant when further controlling for inflammatory markers or other heavy metals (all p trend <0.05). CONCLUSIONS This study suggested that urinary nickel levels were positively associated with albuminuria and β2-microglobulinuria in Chinese men and women, who had relatively low background nickel exposure. More prospective studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Gang Liu
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China
| | - Qi Sun
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Mingjiang Zhu
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China
| | - Liang Sun
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhen Wang
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China
| | - Huaixing Li
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China
| | - Zi Li
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China
| | - Huiyong Yin
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China
| | - Xu Lin
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Notch EG, Goodale BC, Barnaby R, Coutermarsh B, Berwin B, Taylor VF, Jackson BP, Stanton BA. Monomethylarsonous Acid (MMAIII) Has an Adverse Effect on the Innate Immune Response of Human Bronchial Epithelial Cells to Pseudomonas aeruginosa. PLoS One 2015; 10:e0142392. [PMID: 26554712 PMCID: PMC4640536 DOI: 10.1371/journal.pone.0142392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/21/2015] [Indexed: 01/10/2023] Open
Abstract
Arsenic is the number one contaminant of concern with regard to human health according to the World Health Organization. Epidemiological studies on Asian and South American populations have linked arsenic exposure with an increased incidence of lung disease, including pneumonia, and chronic obstructive pulmonary disease, both of which are associated with bacterial infection. However, little is known about the effects of low dose arsenic exposure, or the contributions of organic arsenic to the innate immune response to bacterial infection. This study examined the effects on Pseudomonas aeruginosa (P. aeruginosa) induced cytokine secretion by human bronchial epithelial cells (HBEC) by inorganic sodium arsenite (iAsIII) and two major metabolites, monomethylarsonous acid (MMAIII) and dimethylarsenic acid (DMAV), at concentrations relevant to the U.S. population. Neither iAsIII nor DMAV altered P. aeruginosa induced cytokine secretion. By contrast, MMAIII increased P. aeruginosa induced secretion of IL-8, IL-6 and CXCL2. A combination of iAsIII, MMAIII and DMAV (10 pbb total) reduced IL-8 and CXCL1 secretion. These data demonstrate for the first time that exposure to MMAIII alone, and a combination of iAsIII, MMAIII and DMAV at levels relevant to the U.S. may have negative effects on the innate immune response of human bronchial epithelial cells to P. aeruginosa.
Collapse
Affiliation(s)
- Emily G. Notch
- Department of Microbiology and Immunology, Center for Environmental Health Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts, United States of America
- * E-mail:
| | - Britton C. Goodale
- Department of Microbiology and Immunology, Center for Environmental Health Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Roxanna Barnaby
- Department of Microbiology and Immunology, Center for Environmental Health Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Bonita Coutermarsh
- Department of Microbiology and Immunology, Center for Environmental Health Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Brent Berwin
- Department of Microbiology and Immunology, Center for Environmental Health Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Vivien F. Taylor
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Center for Environmental Health Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
17
|
Landrigan PJ, Wright RO, Cordero JF, Eaton DL, Goldstein BD, Hennig B, Maier RM, Ozonoff DM, Smith MT, Tukey RH. The NIEHS Superfund Research Program: 25 Years of Translational Research for Public Health. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:909-18. [PMID: 25978799 PMCID: PMC4590764 DOI: 10.1289/ehp.1409247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/12/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND The Superfund Research Program (SRP) is an academically based, multidisciplinary, translational research program that for 25 years has sought scientific solutions to health and environmental problems associated with hazardous waste sites. SRP is coordinated by the National Institute of Environmental Health Sciences (NIEHS). It supports multi-project grants, undergraduate and postdoctoral training programs, individual research grants, and Small Business Innovation Research (SBIR) and Technology Transfer Research (STTR) grants. RESULTS SRP has had many successes: discovery of arsenic's toxicity to the developing human central nervous system; documentation of benzene toxicity to hematologic progenitor cells in human bone marrow; development of novel analytic techniques such as the luciferase expression assay and laser fragmentation fluorescence spectroscopy; demonstration that PCBs can cause developmental neurotoxicity at low levels and alter the genomic characteristics of sentinel animals; elucidation of the neurodevelopmental toxicity of organophosphate insecticides; documentation of links between antimicrobial agents and alterations in hormone response; discovery of biological mechanisms through which environmental chemicals may contribute to obesity, atherosclerosis, diabetes, and cancer; tracking the health and environmental effects of the attacks on the World Trade Center and Hurricane Katrina; and development of novel biological and engineering techniques to facilitate more efficient and lower-cost remediation of hazardous waste sites. CONCLUSION SRP must continue to address the legacy of hazardous waste in the United States, respond to new issues caused by rapid advances in technology, and train the next generation of leaders in environmental health science while recognizing that most of the world's worst toxic hot spots are now located in low- and middle-income countries.
Collapse
|
18
|
Zheng LY, Umans JG, Yeh F, Francesconi KA, Goessler W, Silbergeld EK, Bandeen-Roche K, Guallar E, Howard BV, Weaver VM, Navas-Acien A. The association of urine arsenic with prevalent and incident chronic kidney disease: evidence from the Strong Heart Study. Epidemiology 2015; 26:601-12. [PMID: 25929811 PMCID: PMC4844343 DOI: 10.1097/ede.0000000000000313] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Few studies have evaluated associations between low to moderate arsenic levels and chronic kidney disease (CKD). The objective was to evaluate the associations of inorganic arsenic exposure with prevalent and incident CKD in American Indian adults. METHODS We evaluated the associations of inorganic arsenic exposure with CKD in American Indians who participated in the Strong Heart Study in 3,851 adults ages 45-74 years in a cross-sectional analysis, and 3,119 adults with follow-up data in a prospective analysis. Inorganic arsenic, monomethylarsonate, and dimethylarsinate were measured in urine at baseline. CKD was defined as estimated glomerular filtration rate ≤ 60 ml/min/1.73 m, kidney transplant or dialysis. RESULTS CKD prevalence was 10.3%. The median (IQR) concentration of inorganic plus methylated arsenic species (total arsenic) in urine was 9.7 (5.8, 15.7) μg/L. The adjusted odds ratio (OR; 95% confidence interval) of prevalent CKD for an interquartile range in total arsenic was 0.7 (0.6, 0.8), mostly due to an inverse association with inorganic arsenic (OR: 0.4 [0.3, 0.4]). Monomethylarsonate and dimethylarsinate were positively associated with prevalent CKD after adjustment for inorganic arsenic (OR: 3.8 and 1.8). The adjusted hazard ratio of incident CKD for an IQR in sum of inorganic and methylated arsenic was 1.2 (1.03, 1.41). The corresponding HRs for inorganic arsenic, monomethylarsonate, and dimethylarsinate were 1.0 (0.9, 1.2), 1.2 (1.00, 1.3), and 1.2 (1.0, 1.4). CONCLUSIONS The inverse association of urine inorganic arsenic with prevalent CKD suggests that kidney disease affects excretion of inorganic arsenic. Arsenic species were positively associated with incident CKD. Studies with repeated measures are needed to further characterize the relation between arsenic and kidney disease development.
Collapse
Affiliation(s)
- Laura Y. Zheng
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jason G. Umans
- MedStar Health Research Institute and Georgetown University, Washington DC, USA
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC, USA
| | - Fawn Yeh
- College of Public Health, University of Oklahoma, Oklahoma City, OK, USA
| | - Kevin A. Francesconi
- Institute of Chemistry – Analytical Chemistry, Karl-Franzens University, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry – Analytical Chemistry, Karl-Franzens University, Graz, Austria
| | - Ellen K Silbergeld
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Karen Bandeen-Roche
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Area of Epidemiology and Population Genetics, National Center for Cardiovascular Research (CNIC), Madrid, Spain
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Barbara V. Howard
- MedStar Health Research Institute and Georgetown University, Washington DC, USA
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC, USA
| | - Virginia M. Weaver
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Area of Epidemiology and Population Genetics, National Center for Cardiovascular Research (CNIC), Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
19
|
Fei W, Chen W, Shengnan L, Huihui W, Shuhua X, Guifan S. Inflammatory cytokine COX-2 mediated cell proliferation through increasing cyclin D1 expression induced by inorganic arsenic in SV-HUC-1 human uroepithelial cells. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00196j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inorganic arsenic promotes SV-HUC-1 cells proliferation.
Collapse
Affiliation(s)
- Wang Fei
- Department of Occupational and Environmental Health
- Liaoning Provincial Key Lab of Arsenic Biological Effect and Poisoning
- School of Public Health
- China Medical University
- Shenyang
| | - Wang Chen
- Department of Occupational and Environmental Health
- Liaoning Provincial Key Lab of Arsenic Biological Effect and Poisoning
- School of Public Health
- China Medical University
- Shenyang
| | - Liu Shengnan
- Department of Occupational and Environmental Health
- Liaoning Provincial Key Lab of Arsenic Biological Effect and Poisoning
- School of Public Health
- China Medical University
- Shenyang
| | - Wang Huihui
- Department of Occupational and Environmental Health
- Liaoning Provincial Key Lab of Arsenic Biological Effect and Poisoning
- School of Public Health
- China Medical University
- Shenyang
| | - Xi Shuhua
- Department of Occupational and Environmental Health
- Liaoning Provincial Key Lab of Arsenic Biological Effect and Poisoning
- School of Public Health
- China Medical University
- Shenyang
| | - Sun Guifan
- Department of Occupational and Environmental Health
- Liaoning Provincial Key Lab of Arsenic Biological Effect and Poisoning
- School of Public Health
- China Medical University
- Shenyang
| |
Collapse
|
20
|
Xuan X, Li S, Lou X, Zheng X, Li Y, Wang F, Gao Y, Zhang H, He H, Zeng Q. Stat3 promotes invasion of esophageal squamous cell carcinoma through up-regulation of MMP2. Mol Biol Rep 2014; 42:907-15. [DOI: 10.1007/s11033-014-3828-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/10/2014] [Indexed: 01/06/2023]
|
21
|
Liu S, Sun Q, Wang F, Zhang L, Song Y, Xi S, Sun G. Arsenic induced overexpression of inflammatory cytokines based on the human urothelial cell model in vitro and urinary secretion of individuals chronically exposed to arsenic. Chem Res Toxicol 2014; 27:1934-42. [PMID: 25257954 DOI: 10.1021/tx5002783] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chronic persistent inflammation could play an important role in the pathogenesis of some malignancies, and inflammation is a critical factor for bladder cancer development. In this study, we measured urine levels of transforming growth factor-α (TGF-α), tumor necrosis factor-α (TNF-α), and IL-8 in arsenic exposure workers and expressions of inflammatory cytokines in human urothelial cells in vivo and in vitro. We found the concentrations of IL-8, TNF-α, and TGF-α presented in urine were significantly elevated in the high urinary arsenic workers compared with the low urinary arsenic workers. Multiple regression analysis showed that the urinary IL-8 level was significantly positively associated with urinary iAs concentration after adjusting for the confounding effects of age, employed years, body mass index (BMI), smoking, alcohol, and seafood consumption in recent 3 days. Urinary TNF-α and TGF-α levels were also significantly positively associated with urinary iAs concentration, and SMI. TGF-α level was negatively associated with age after adjusting for the confounding effects. Consistent with the results in vivo, mRNA expressions of TNF-α, TGF-α, and IL-8 and protein expressions of TGF-α, TGF-β1, and IL-8 were significantly elevated in SV-HUC-1 cells after exposure to lower concentrations of arsenite for 24h as compared to the control group. These data indicated that arsenic increased the secretion of inflammatory factors and IL-8, TNF-α, and TGF-α expression may be a useful biomarker of the effect of arsenic exposure.
Collapse
Affiliation(s)
- Shengnan Liu
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University , District of Heping, North Er Road, No. 92, Shenyang City, China , 110001
| | | | | | | | | | | | | |
Collapse
|
22
|
Zheng L, Kuo CC, Fadrowski J, Agnew J, Weaver VM, Navas-Acien A. Arsenic and Chronic Kidney Disease: A Systematic Review. Curr Environ Health Rep 2014; 1:192-207. [PMID: 25221743 PMCID: PMC4159179 DOI: 10.1007/s40572-014-0024-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In epidemiologic studies, high arsenic exposure has been associated with adverse kidney disease outcomes. We performed a systematic review of the epidemiologic evidence of the association between arsenic and various kidney disease outcomes. The search period was January 1966 through January 2014. Twenty-five papers (comprising 24 studies) meeting the search criteria were identified and included in this review. In most studies, arsenic exposure was assessed by measurement of urine concentrations or with an ecological indicator. There was a generally positive association between arsenic and albuminuria and proteinuria outcomes. There was mixed evidence of an association between arsenic exposure and chronic kidney disease (CKD), β-2 microglobulin (β2MG), and N-acetyl-β-D-glucosaminidase (NAG) outcomes. There was evidence of a positive association between arsenic exposure and kidney disease mortality. Assessment of a small number of studies with three or more categories showed a clear dose-response association between arsenic and prevalent albuminuria and proteinuria, but not with CKD outcomes. Eight studies lacked adjustment for possible confounders, and two had small study populations. The evaluation of the causality of the association between arsenic exposure and kidney disease outcomes is limited by the small number of studies, lack of study quality, and limited prospective evidence. Because of the high prevalence of arsenic exposure worldwide, there is a need for additional well-designed epidemiologic and mechanistic studies of arsenic and kidney disease outcomes.
Collapse
Affiliation(s)
- Laura Zheng
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Chin-Chi Kuo
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeffrey Fadrowski
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jackie Agnew
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Virginia M. Weaver
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
23
|
Proinflammatory effect of trivalent arsenical species in a co-culture of Caco-2 cells and peripheral blood mononuclear cells. Arch Toxicol 2014; 89:555-64. [PMID: 24862236 DOI: 10.1007/s00204-014-1271-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/13/2014] [Indexed: 12/21/2022]
Abstract
Chronic exposure to inorganic arsenic (As) is associated with type 2 diabetes, cardiovascular diseases and cancer. Ingested inorganic As is transformed within the gastrointestinal tract and can give rise to more toxic species such as monomethylarsonous acid [MMA(III)] and dimethylarsinous acid [DMA(III)]. Thus, the intestinal epithelium comes into contact with toxic arsenical species, and the effects of such exposure upon epithelial function are not clear. The present study has evaluated the effect of 1 µM arsenite [As(III)], 0.1 µM MMA(III) and 1 µM DMA(III) upon the release of cytokines [interleukin-6 (IL6), IL8, tumor necrosis factor alpha (TNFα)], using a compartmentalized co-culture model with differentiated Caco-2 cells in the apical compartment and peripheral blood mononuclear cells in the basolateral compartment. In addition, the combined effect of arsenical species and lipopolysaccharide (LPS), both added into the apical compartment, has been analyzed. The results indicate that exposure to the arsenical forms induces a proinflammatory response. An increase in cytokine secretion into the basolateral compartment was observed, particularly as regards TNFα (up to 1,600 %). The cytokine levels on the apical side also increased, though to a lesser extent. As/LPS co-exposure significantly affected the proinflammatory response as compared to treatment with As alone. Treatment with DMA(III) and As/LPS co-exposure increased the permeability of the intestinal monolayer. In addition, As/LPS treatments enhanced As(III) and MMA(III) transport through the intestinal monolayer.
Collapse
|
24
|
Medeiros M, Le TM, Troup D, Novak P, Gandolfi AJ. Expression Of Selected Pathway-Marker Genes In Human Urothelial Cells Exposed Chronically To A Non-Cytotoxic Concentration Of Monomethylarsonous Acid. Toxicol Rep 2014; 1:421-434. [PMID: 25177542 PMCID: PMC4144464 DOI: 10.1016/j.toxrep.2014.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 11/28/2022] Open
Abstract
Bladder cancer has been associated with chronic arsenic exposure. Monomethylarsonous acid [MMA(III)] is a metabolite of inorganic arsenic and has been shown to transform an immortalized urothelial cell line (UROtsa) at concentrations 20-fold less than arsenite. MMA(III) was used as a model arsenical to examine the mechanisms of arsenical-induced transformation of urothelium. A previous microarray analysis revealed only minor changes in gene expression at one and two months of chronic exposure to MMA(III), contrasting with substantial changes observed at three months of exposure. To address the lack of information between two and three months of exposure (the critical period of transformation), the expression of select pathway marker genes was measured by PCR array analysis on a weekly basis. Cell proliferation rate, anchorage-independent growth, and tumorigenicity in SCID mice were also assessed to determine the early, persistent phenotypic changes and their association with the changes in expression of these selected marker genes. A very similar pattern of alterations in these genes was observed when compared to the microarray results, and suggested that early perturbations in cell signaling cascades, immunological pathways, cytokine expression, and MAPK pathway are particularly important in driving malignant transformation. These results showed a strong association between the acquired phenotypic changes that occurred as early as one to two months of chronic MMA(III) exposure, and the observed gene expression pattern that is indicative of the earliest stages in carcinogenesis.
Collapse
Affiliation(s)
- Matthew Medeiros
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States
| | - Tam Minh Le
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States
| | - Daniel Troup
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States
| | - Petr Novak
- Biology Centre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice, 37005, Czech Republic
| | - A. Jay Gandolfi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
25
|
Cohen SM, Arnold LL, Beck BD, Lewis AS, Eldan M. Evaluation of the carcinogenicity of inorganic arsenic. Crit Rev Toxicol 2013; 43:711-52. [DOI: 10.3109/10408444.2013.827152] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Wu CC, Chen MC, Huang YK, Huang CY, Lai LA, Chung CJ, Shiue HS, Pu YS, Lin YC, Han BC, Wang YH, Hsueh YM. Environmental tobacco smoke and arsenic methylation capacity are associated with urothelial carcinoma. J Formos Med Assoc 2013; 112:554-60. [PMID: 23871550 DOI: 10.1016/j.jfma.2013.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/13/2013] [Accepted: 05/21/2013] [Indexed: 11/25/2022] Open
|
27
|
Xu Y, Zhao Y, Xu W, Luo F, Wang B, Li Y, Pang Y, Liu Q. Involvement of HIF-2α-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells. Toxicol Appl Pharmacol 2013; 272:542-50. [PMID: 23811328 DOI: 10.1016/j.taap.2013.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/23/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
Abstract
Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested a link between inflammation and lung cancer; however, it is unknown if arsenite-induced inflammation causally contributes to arsenite-caused malignant transformation of cells. In this study, we investigated the molecular mechanisms underlying inflammation during neoplastic transformation induced in human bronchial epithelial (HBE) cells by chronic exposure to arsenite. The results showed that, on acute or chronic exposure to arsenite, HBE cells over-expressed the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β). The data also indicated that HIF-2α was involved in arsenite-induced inflammation. Moreover, IL-6 and IL-8 were essential for the malignant progression of arsenite-transformed HBE cells. Thus, these experiments show that HIF-2α mediates arsenite-induced inflammation and that such inflammation is involved in arsenite-induced malignant transformation of HBE cells. The results provide a link between the inflammatory response and the acquisition of a malignant transformed phenotype by cells chronically exposed to arsenite and thus establish a previously unknown mechanism for arsenite-induced carcinogenesis.
Collapse
Affiliation(s)
- Yuan Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wu CC, Huang YK, Chung CJ, Huang CY, Pu YS, Shiue HS, Lai LA, Lin YC, Su CT, Hsueh YM. Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma. Toxicol Appl Pharmacol 2013; 272:30-6. [PMID: 23727622 DOI: 10.1016/j.taap.2013.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/19/2013] [Accepted: 05/20/2013] [Indexed: 01/08/2023]
Abstract
Chronic exposure to arsenic can generate reactive oxidative species, which can induce certain proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8). TNF-α, IL-6 and IL-8 have been shown to be involved in the development and progression of various cancers, including bladder cancer. This study aimed to investigate the joint effect of the polymorphism of TNF-α -308 G/A, IL-6 -174 G/C, IL-8 -251 T/A and urinary arsenic profiles on urothelial carcinoma (UC) risk. This study evaluated 300 pathologically-confirmed cases of UC and 594 cancer-free controls. Urinary arsenic species were detected using high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphism of TNF-α -308 G/A, IL-6 -174 G/C and IL-8 -251 T/A was determined using polymerase chain reaction-restriction fragment length polymorphism. The joint effects on UC risk were estimated by odds ratios and 95% confidence intervals using unconditional logistic regression. We found that the TNF-α -308 A/A and IL-8 -251 T/T polymorphisms were significantly associated with UC. Moreover, significant dose-response joint effect of TNF-α -308 A/A or IL-8 -251 T/T genotypes and arsenic methylation indices were seen to affect UC risk. The present results also showed a significant increase in UC risk in subjects with the IL-8 -251 T/T genotype for each SD increase in urinary total arsenic and MMA%. In contrast, a significant decrease in UC risk was found in subjects who carried the IL-8 -251 T/T genotype for each SD increase in DMA%.
Collapse
Affiliation(s)
- Chia-Chang Wu
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan; Department of Urology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Johnen G, Rozynek P, von der Gathen Y, Bryk O, Zdrenka R, Johannes C, Weber DG, Igwilo-Okuefuna OB, Raiko I, Hippler J, Brüning T, Dopp E. Cross-contamination of a UROtsa stock with T24 cells--molecular comparison of different cell lines and stocks. PLoS One 2013; 8:e64139. [PMID: 23691160 PMCID: PMC3656924 DOI: 10.1371/journal.pone.0064139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/08/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND UROtsa is an authentic, immortalized human urothelial cell line that is used to study the effects of metals and other toxic substances, mostly in the context of bladder cancer carcinogenesis. Unusual properties on the molecular level of a provided UROtsa cell line stock prompted us to verify its identity. METHODS UROtsa cell line stocks from different sources were tested on several molecular levels and compared with other cell lines. MicroRNA and mRNA expression was determined by Real-Time PCR. Chromosome numbers were checked and PCR of different regions of the large T-antigen was performed. DNA methylation of RARB, PGR, RASSF1, CDH1, FHIT, ESR1, C1QTNF6, PTGS2, SOCS3, MGMT, and LINE1 was analyzed by pyrosequencing and compared with results from the cell lines RT4, T24, HeLa, BEAS-2B, and HepG2. Finally, short tandem repeat (STR) profiling was applied. RESULTS All tested UROtsa cell line stocks lacked large T-antigen. STR analysis unequivocally identified our main UROtsa stock as the bladder cancer cell line T24, which was different from two authentic UROtsa stocks that served as controls. Analysis of DNA methylation patterns and RNA expression confirmed their differences. Methylation pattern and mRNA expression of the contaminating T24 cell line showed moderate changes even after long-term culture of up to 56 weeks, whereas miRNAs and chromosome numbers varied markedly. CONCLUSIONS It is important to check the identity of cell lines, especially those that are not distributed by major cell banks. However, for some cell lines STR profiles are not available. Therefore, new cell lines should either be submitted to cell banks or at least their STR profile determined and published as part of their initial characterization. Our results should help to improve the identification of UROtsa and other cells on different molecular levels and provide information on the use of urothelial cells for long-term experiments.
Collapse
Affiliation(s)
- Georg Johnen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, IPA, Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mechanisms by which interleukin-6 attenuates cell invasion and tumorigenesis in human bladder carcinoma cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:791212. [PMID: 23762858 PMCID: PMC3671296 DOI: 10.1155/2013/791212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/23/2013] [Indexed: 12/27/2022]
Abstract
Interleukin-6, a multifunctional cytokine, contributes to tumor cell proliferation and differentiation. However, the biological mechanisms that are affected by the expression of interleukin-6 in bladder cancer cells remain unclear. We evaluated the effects of interleukin-6 expression in human bladder carcinoma cells in vitro and in vivo. The results of interleukin-6-knockdown experiments in T24 cells and interleukin-6-overexpression experiments in HT1376 cells revealed that interleukin-6 reduced cell proliferation, migration, and invasion in vitro. Xenograft animal studies indicated that the overexpression of interleukin-6 downregulated tumorigenesis of bladder cells and that interleukin-6 knockdown reversed this effect. The results of RT-PCR, immunoblotting, and reporter assays indicated that the overexpression of interleukin-6 upregulated the expression of the mammary serine protease inhibitor (MASPIN), N-myc downstream gene 1 (NDRG1), and KAI1 proteins in HT1376 cells and that interleukin-6 knockdown reduced the expression of these proteins in T24 cells. In addition, results of immunoblotting assays revealed that interleukin-6 modulated epithelial-mesenchymal transitions by upregulating the expression of the E-cadherin, while downregulation N-cadherin and vimentin proteins. Our results suggest that the effects of interleukin-6 on the regulation of epithelial-mesenchymal transitions and the expressions of the MASPIN, NDRG1, and KAI1 genes attribute to the modulation of tumorigenesis in human bladder carcinoma cells.
Collapse
|
31
|
Wang H, Xi S, Xu Y, Wang F, Zheng Y, Li B, Li X, Zheng Q, Sun G. Sodium arsenite induces cyclooxygenase-2 expression in human uroepithelial cells through MAPK pathway activation and reactive oxygen species induction. Toxicol In Vitro 2013; 27:1043-8. [PMID: 23376440 DOI: 10.1016/j.tiv.2013.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 10/22/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
Arsenic can induce reactive oxygen species (ROS) leading to oxidative stress and carcinogenesis. Bladder is one of the major target organs of arsenic, and cyclooxygenase-2 (COX-2) may play an important role in arsenic-induced bladder cancer. However, the mechanism by which arsenic induces COX-2 in bladder cells remains unclear. This study aimed at investigating arsenic-mediated intracellular redox status and signaling cascades leading to COX-2 induction in human uroepithelial cells (SV-HUC-1). SV-HUC-1 cells were exposed to sodium arsenite and COX-2 expression, mitogen-activated protein kinase (MAPK) phosphorylation, glutathione (GSH) levels, ROS induction and Nrf2 expression were quantified. Our results demonstrate that arsenite (1-10 μM) elevates COX-2 expression, GSH levels, ROS and Nrf2 expression. Arsenite treatment for 24h stimulates phosphorylation of ERK and p38, but not JNK in SV-HUC-1 cells. Induction of Cox-2 mRNA levels by arsenite was attenuated by inhibitors of ERK, p38 and JNK. Arsenite-induced ROS generation and COX-2 expression were significantly attenuated by treatment with melatonin (a ROS scavenger), but enhanced by DL-buthionine-(S, R)-sulfoximine (BSO, an inhibitor of gamma-glutamylcysteine synthetase (γ-GCS) resulting in lower GSH and increased ROS levels). These data indicate that arsenite promotes an induction of ROS, which results in an induction of COX-2 expression through activation of the MAPK pathway.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zheng LY, Umans JG, Tellez-Plaza M, Yeh F, Francesconi KA, Goessler W, Silbergeld EK, Guallar E, Howard BV, Weaver VM, Navas-Acien A. Urine arsenic and prevalent albuminuria: evidence from a population-based study. Am J Kidney Dis 2012; 61:385-94. [PMID: 23142528 DOI: 10.1053/j.ajkd.2012.09.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/27/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Long-term arsenic exposure is a major global health problem. However, few epidemiologic studies have evaluated the association of arsenic with kidney measures. Our objective was to evaluate the cross-sectional association between inorganic arsenic exposure and albuminuria in American Indian adults from rural areas of Arizona, Oklahoma, and North and South Dakota. STUDY DESIGN Cross-sectional. SETTING & PARTIPANTS: Strong Heart Study locations in Arizona, Oklahoma, and North and South Dakota. 3,821 American Indian men and women aged 45-74 years with urine arsenic and albumin measurements. PREDICTOR Urine arsenic. OUTCOMES Urine albumin-creatinine ratio and albuminuria status. MEASUREMENTS Arsenic exposure was estimated by measuring total urine arsenic and urine arsenic species using inductively coupled plasma mass spectrometry (ICPMS) and high-performance liquid chromatography-ICPMS, respectively. Urine albumin was measured by automated nephelometric immunochemistry. RESULTS The prevalence of albuminuria (albumin-creatinine ratio ≥30 mg/g) was 30%. Median value for the sum of inorganic and methylated arsenic species was 9.7 (IQR, 5.8-15.6) μg per gram of creatinine. Multivariable-adjusted prevalence ratios of albuminuria (albumin-creatinine ratio ≥30 mg/g) comparing the 3 highest to lowest quartiles of the sum of inorganic and methylated arsenic species were 1.16 (95% CI, 1.00-1.34), 1.24 (95% CI, 1.07-1.43), and 1.55 (95% CI, 1.35-1.78), respectively (P for trend <0.001). The association between urine arsenic and albuminuria was observed across all participant subgroups evaluated and was evident for both micro- and macroalbuminuria. LIMITATIONS The cross-sectional design cannot rule out reverse causation. CONCLUSIONS Increasing urine arsenic concentrations were cross-sectionally associated with increased albuminuria in a rural US population with a high burden of diabetes and obesity. Prospective epidemiologic and mechanistic evidence is needed to understand the role of arsenic as a kidney disease risk factor.
Collapse
Affiliation(s)
- Laura Y Zheng
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bailey KA, Wallace K, Smeester L, Thai SF, Wolf DC, Edwards SW, Fry RC. Transcriptional Modulation of the ERK1/2 MAPK and NF-κB Pathways in Human Urothelial Cells After Trivalent Arsenical Exposure: Implications for Urinary Bladder Cancer. JOURNAL OF CANCER RESEARCH UPDATES 2012; 1:57-68. [PMID: 23487506 PMCID: PMC3593739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chronic exposure to drinking water contaminated with inorganic arsenic (iAs) is associated with an increased risk of urinary bladder (UB) cancers in humans. The exact role of specific iAs metabolite(s) in As-mediated carcinogenesis remains largely unknown. Experimental evidence suggests that trivalent arsenicals, namely arsenite (iAsIII) and two of its metabolites, monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII), are possible proximate UB carcinogens. Here, we used a transcriptomics approach to examine perturbed molecular pathways in a human urothelial cell line (UROtsa) after short-term exposure to iAsIII, MMAIII and DMAIII. Molecular pathways containing genes that encode proteins implicated in UB cancer development were perturbed by both MMAIII and DMAIII. These pathways included those of the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK 1/2 MAPK) and nuclear factor kappa beta (NF-κB). Together, these results may inform the current understanding of effects in the UB induced by acute As exposure and the relationship of these effects with As-mediated carcinogenesis.
Collapse
Affiliation(s)
- Kathryn A. Bailey
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Kathleen Wallace
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Sheau-Fung Thai
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Douglas C. Wolf
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Stephen W. Edwards
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Druwe IL, Sollome JJ, Sanchez-Soria P, Hardwick RN, Camenisch TD, Vaillancourt RR. Arsenite activates NFκB through induction of C-reactive protein. Toxicol Appl Pharmacol 2012; 261:263-70. [PMID: 22521605 DOI: 10.1016/j.taap.2012.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 12/11/2022]
Abstract
C-reactive protein (CRP) is an acute phase protein in humans. Elevated levels of CRP are produced in response to inflammatory cytokines and are associated with atherosclerosis, hypertension, cardiovascular disease and insulin resistance. Exposure to inorganic arsenic, a common environmental toxicant, also produces cardiovascular disorders, namely atherosclerosis and is associated with insulin-resistance. Inorganic arsenic has been shown to contribute to cardiac toxicities through production of reactive oxygen species (ROS) that result in the activation of NFκB. In this study we show that exposure of the hepatic cell line, HepG2, to environmentally relevant levels of arsenite (0.13 to 2 μM) results in elevated CRP expression and secretion. ROS analysis of the samples showed that a minimal amount of ROS are produced by HepG2 cells in response to these concentrations of arsenic. In addition, treatment of FvB mice with 100 ppb sodium arsenite in the drinking water for 6 months starting at weaning age resulted in dramatically higher levels of CRP in both the liver and inner medullary region of the kidney. Further, mouse Inner Medullary Collecting Duct cells (mIMCD-4), a mouse kidney cell line, were stimulated with 10 ng/ml CRP which resulted in activation of NFκB. Pretreatment with 10 nM Y27632, a known Rho-kinase inhibitor, prior to CRP exposure attenuated NFκB activation. These data suggest that arsenic causes the expression and secretion of CRP and that CRP activates NFκB through activation of the Rho-kinase pathway, thereby providing a novel pathway by which arsenic can contribute to metabolic syndrome and cardiovascular disease.
Collapse
Affiliation(s)
- Ingrid L Druwe
- Department of Pharmacology & Toxicology, The University of Arizona College of Pharmacy, Tucson, AZ 85721, USA
| | | | | | | | | | | |
Collapse
|
35
|
Association of glutathione S-transferase Ω 1-1 polymorphisms (A140D and E208K) with the expression of interleukin-8 (IL-8), transforming growth factor beta (TGF-β), and apoptotic protease-activating factor 1 (Apaf-1) in humans chronically exposed to arsenic in drinking water. Arch Toxicol 2012; 86:857-68. [DOI: 10.1007/s00204-012-0802-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 01/12/2012] [Indexed: 12/18/2022]
|
36
|
Escudero-Lourdes C, Wu T, Camarillo JM, Gandolfi AJ. Interleukin-8 (IL-8) over-production and autocrine cell activation are key factors in monomethylarsonous acid [MMA(III)]-induced malignant transformation of urothelial cells. Toxicol Appl Pharmacol 2012; 258:10-8. [PMID: 22015448 PMCID: PMC3254786 DOI: 10.1016/j.taap.2011.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/30/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
The association between chronic human exposure to arsenicals and bladder cancer development is well recognized; however, the underlying molecular mechanisms have not been fully determined. We propose that inflammatory responses can play a pathogenic role in arsenic-related bladder carcinogenesis. In previous studies, it was demonstrated that chronic exposure to 50 nM monomethylarsenous acid [MMA(III)] leads to malignant transformation of an immortalized model of urothelial cells (UROtsa), with only 3 mo of exposure necessary to trigger the transformation-related changes. In the three-month window of exposure, the cells over-expressed pro-inflammatory cytokines (IL-1β, IL-6 and IL-8), consistent with the sustained activation of NFKβ and AP1/c-jun, ERK2, and STAT3. IL-8 was over-expressed within hours after exposure to MMA(III), and sustained over-expression was observed during chronic exposure. In this study, we profiled IL-8 expression in UROtsa cells exposed to 50 nM MMA(III) for 1 to 5 mo. IL-8 expression was increased mainly in cells after 3 mo MMA(III) exposure, and its production was also found increased in tumors derived from these cells after heterotransplantation in SCID mice. UROtsa cells do express both receptors, CXCR1 and CXCR2, suggesting that autocrine cell activation could be important in cell transformation. Supporting this observation and consistent with IL-8 over-expression, CXCR1 internalization was significantly increased after three months of exposure to MMA(III). The expression of MMP-9, cyclin D1, bcl-2, and VGEF was significantly increased in cells exposed to MMA(III) for 3 mo, but these mitogen-activated kinases were significantly decreased after IL-8 gene silencing, together with a decrease in cell proliferation rate and in anchorage-independent colony formation. These results suggest a relevant role of IL-8 in MMA(III)-induced UROtsa cell transformation.
Collapse
Affiliation(s)
- C Escudero-Lourdes
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico.
| | | | | | | |
Collapse
|
37
|
Ahirwar DK, Manchanda PK, Mittal RD, Bid HK. BCG response prediction with cytokine gene variants and bladder cancer: where we are? J Cancer Res Clin Oncol 2011; 137:1729-38. [PMID: 21932129 DOI: 10.1007/s00432-011-1056-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 08/30/2011] [Indexed: 12/20/2022]
Abstract
PURPOSE Bladder cancer (BC) is one of the most widespread cancers afflicting men and women and also has major philosophical impact on health care worldwide. Despite elaborate characterization of the risk factors and treatment options, BC is still a major epidemiological problem worldwide and its incidence lingers to upswing each year. Over the last three decades, intravesical immunotherapy with the biological response modifier Mycobacterium bovis-Bacillus Calmette Guerin (BCG) has been established as the most effective adjuvant treatment for averting local recurrences and tumor progression following transurethral resection of non-muscle-invasive bladder cancer. DESIGN AND METHODS PUBMED database was searched for articles, and manuscripts were selected that provided data regarding the correlation of BCG therapy and its response with different cytokine gene variants. RESULTS It is not clear how Bacillus Calmette-Guerin (BCG) works to treat BC. It may stimulate an immune response or cause inflammation of the bladder wall that destroys cancer cells within the bladder. Lot of reports indicated the correlation of various cytokines with respect to BCG therapy in BC, but the exact mechanism is under debate. CONCLUSION Research continues to establish the most effectual strain of BCG and the best dosage schedule for the treatment for bladder cancer but, on the other hand, a very critical part of this therapy to find out the correlation of different cytokine with BCG therapy, which will give a better insights not only the mechanism but also a better therapeutic options.
Collapse
Affiliation(s)
- Dinesh Kumar Ahirwar
- Andrology and IVF Laboratories, University of Utah, Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
38
|
Medeiros M, Zheng X, Novak P, Wnek SM, Chyan V, Escudero-Lourdes C, Gandolfi AJ. Global gene expression changes in human urothelial cells exposed to low-level monomethylarsonous acid. Toxicology 2011; 291:102-12. [PMID: 22108045 DOI: 10.1016/j.tox.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/13/2011] [Accepted: 11/08/2011] [Indexed: 02/06/2023]
Abstract
Bladder cancer has been associated with chronic arsenic exposure. Monomethylarsonous acid [MMA(III)] is a metabolite of inorganic arsenic and has been shown to transform an immortalized urothelial cell line (UROtsa) at concentrations 20-fold less than arsenite. MMA(III) was used as a model arsenical to examine the mechanisms of arsenical-induced transformation of urothelium. A microarray analysis was performed to assess the transcriptional changes in UROtsa during the critical window of chronic 50nM MMA(III) exposure that leads to transformation at 3 months of exposure. The analysis revealed only minor changes in gene expression at 1 and 2 months of exposure, contrasting with substantial changes observed at 3 months of exposure. The gene expression changes at 3 months were analyzed showing distinct alterations in biological processes and pathways such as a response to oxidative stress, enhanced cell proliferation, anti-apoptosis, MAPK signaling, as well as inflammation. Twelve genes selected as markers of these particular biological processes were used to validate the microarray and these genes showed a time-dependent changes at 1 and 2 months of exposure, with the most substantial changes occurring at 3 months of exposure. These results indicate that there is a strong association between the acquired phenotypic changes that occur with chronic MMA(III) exposure and the observed gene expression patterns that are indicative of a malignant transformation. Although the substantial changes that occur at 3 months of exposure may be a consequence of transformation, there are common occurrences of altered biological processes between the first 2 months of exposure and the third, which may be pivotal in driving transformation.
Collapse
Affiliation(s)
- Matthew Medeiros
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States.
| | | | | | | | | | | | | |
Collapse
|
39
|
Bourdonnay E, Morzadec C, Fardel O, Vernhet L. Arsenic increases lipopolysaccharide-dependent expression of interleukin-8 gene by stimulating a redox-sensitive pathway that strengthens p38-kinase activation. Mol Immunol 2011; 48:2069-78. [DOI: 10.1016/j.molimm.2011.06.443] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 01/23/2023]
|
40
|
Flora SJS. Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 2011; 51:257-81. [PMID: 21554949 DOI: 10.1016/j.freeradbiomed.2011.04.008] [Citation(s) in RCA: 551] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 03/18/2011] [Accepted: 04/04/2011] [Indexed: 12/12/2022]
Abstract
This review summarizes the literature describing the molecular mechanisms of arsenic-induced oxidative stress, its relevant biomarkers, and its relation to various diseases, including preventive and therapeutic strategies. Arsenic alters multiple cellular pathways including expression of growth factors, suppression of cell cycle checkpoint proteins, promotion of and resistance to apoptosis, inhibition of DNA repair, alterations in DNA methylation, decreased immunosurveillance, and increased oxidative stress, by disturbing the pro/antioxidant balance. These alterations play prominent roles in disease manifestation, such as carcinogenicity, genotoxicity, diabetes, cardiovascular and nervous systems disorders. The exact molecular and cellular mechanisms involved in arsenic toxicity are rather unrevealed. Arsenic alters cellular glutathione levels either by utilizing this electron donor for the conversion of pentavalent to trivalent arsenicals or directly binding with it or by oxidizing glutathione via arsenic-induced free radical generation. Arsenic forms oxygen-based radicals (OH(•), O(2)(•-)) under physiological conditions by directly binding with critical thiols. As a carcinogen, it acts through epigenetic mechanisms rather than as a classical mutagen. The carcinogenic potential of arsenic may be attributed to activation of redox-sensitive transcription factors and other signaling pathways involving nuclear factor κB, activator protein-1, and p53. Modulation of cellular thiols for protection against reactive oxygen species has been used as a therapeutic strategy against arsenic. N-acetylcysteine, α-lipoic acid, vitamin E, quercetin, and a few herbal extracts show prophylactic activity against the majority of arsenic-mediated injuries in both in vitro and in vivo models. This review also updates the reader on recent advances in chelation therapy and newer therapeutic strategies suggested to treat arsenic-induced oxidative damage.
Collapse
Affiliation(s)
- Swaran J S Flora
- Division of Pharmacology & Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
41
|
Calatayud M, Devesa V, Montoro R, Vélez D. In vitro study of intestinal transport of arsenite, monomethylarsonous acid, and dimethylarsinous acid by Caco-2 cell line. Toxicol Lett 2011; 204:127-33. [DOI: 10.1016/j.toxlet.2011.04.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 11/16/2022]
|
42
|
Banerjee M, Bhattacharjee P, Giri AK. Arsenic-induced Cancers: A Review with Special Reference to Gene, Environment and Their Interaction. Genes Environ 2011. [DOI: 10.3123/jemsge.33.128] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|