1
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Dogliotti E, Francesconi K, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Risk assessment of small organoarsenic species in food. EFSA J 2024; 22:e8844. [PMID: 38957748 PMCID: PMC11217773 DOI: 10.2903/j.efsa.2024.8844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
The European Commission asked EFSA for a risk assessment on small organoarsenic species in food. For monomethylarsonic acid MMA(V), decreased body weight resulting from diarrhoea in rats was identified as the critical endpoint and a BMDL10 of 18.2 mg MMA(V)/kg body weight (bw) per day (equivalent to 9.7 mg As/kg bw per day) was calculated as a reference point (RP). For dimethylarsinic acid DMA(V), increased incidence in urinary bladder tumours in rats was identified as the critical endpoint. A BMDL10 of 1.1 mg DMA(V)/kg bw per day (equivalent to 0.6 mg As/kg bw per day) was calculated as an RP. For other small organoarsenic species, the toxicological data are insufficient to identify critical effects and RPs, and they could not be included in the risk assessment. For both MMA(V) and DMA(V), the toxicological database is incomplete and a margin of exposure (MOE) approach was applied for risk characterisation. The highest chronic dietary exposure to DMA(V) was estimated in 'Toddlers', with rice and fish meat as the main contributors across population groups. For MMA(V), the highest chronic dietary exposures were estimated for high consumers of fish meat and processed/preserved fish in 'Infants' and 'Elderly' age class, respectively. For MMA(V), an MOE of ≥ 500 was identified not to raise a health concern. For MMA(V), all MOEs were well above 500 for average and high consumers and thus do not raise a health concern. For DMA(V), an MOE of 10,000 was identified as of low health concern as it is genotoxic and carcinogenic, although the mechanisms of genotoxicity and its role in carcinogenicity of DMA(V) are not fully elucidated. For DMA(V), MOEs were below 10,000 in many cases across dietary surveys and age groups, in particular for some 95th percentile exposures. The Panel considers that this would raise a health concern.
Collapse
|
2
|
El-Ghiaty MA, El-Kadi AO. Arsenic: Various species with different effects on cytochrome P450 regulation in humans. EXCLI JOURNAL 2021; 20:1184-1242. [PMID: 34512225 PMCID: PMC8419240 DOI: 10.17179/excli2021-3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Arsenic is well-recognized as one of the most hazardous elements which is characterized by its omnipresence throughout the environment in various chemical forms. From the simple inorganic arsenite (iAsIII) and arsenate (iAsV) molecules, a multitude of more complex organic species are biologically produced through a process of metabolic transformation with biomethylation being the core of this process. Because of their differential toxicity, speciation of arsenic-based compounds is necessary for assessing health risks posed by exposure to individual species or co-exposure to several species. In this regard, exposure assessment is another pivotal factor that includes identification of the potential sources as well as routes of exposure. Identification of arsenic impact on different physiological organ systems, through understanding its behavior in the human body that leads to homeostatic derangements, is the key for developing strategies to mitigate its toxicity. Metabolic machinery is one of the sophisticated body systems targeted by arsenic. The prominent role of cytochrome P450 enzymes (CYPs) in the metabolism of both endobiotics and xenobiotics necessitates paying a great deal of attention to the possible effects of arsenic compounds on this superfamily of enzymes. Here we highlight the toxicologically relevant arsenic species with a detailed description of the different environmental sources as well as the possible routes of human exposure to these species. We also summarize the reported findings of experimental investigations evaluating the influence of various arsenicals on different members of CYP superfamily using human-based models.
Collapse
Affiliation(s)
- Mahmoud A. El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O.S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Arsenic exposure: A public health problem leading to several cancers. Regul Toxicol Pharmacol 2019; 110:104539. [PMID: 31765675 DOI: 10.1016/j.yrtph.2019.104539] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
Arsenic, a metalloid and naturally occurring element, is one of the most abundant elements in the earth's crust. Water is contaminated by arsenic through natural sources (underground water, minerals and geothermal processes) and anthropogenic sources such as mining, industrial processes, and the production and use of pesticides. Humans are exposed to arsenic mainly by drinking contaminated water, and secondarily through inhalation and skin contact. Arsenic exposure is associated with the development of vascular disease, including stroke, ischemic heart disease and peripheral vascular disease. Also, arsenic increases the risk of tumors of bladder, lungs, kidneys and liver, according to the International Agency for Research on Cancer and the Food and Drug Administration. Once ingested, an estimated 70-90% of inorganic arsenic is absorbed by the gastrointestinal tract and widely distributed through the blood to different organs, primarily to the liver, kidneys, lungs and bladder and secondarily to muscle and nerve tissue. Arsenic accumulates in the organs, especially in the liver. Its excretion mostly takes place through urination. The toxicokinetics of arsenic depends on the duration of exposure, pathway of ingestion, physicochemical characteristics of the compound, and affected biological species. The present review outlines of arsenic toxic effects focusing on different cancer types whit highest prevalence's by exposure to this metalloid and signaling pathways of carcinogenesis.
Collapse
|
4
|
Fan C, Liu G, Long Y, Rosen B, Cai Y. Thiolation in arsenic metabolism: a chemical perspective. Metallomics 2019; 10:1368-1382. [PMID: 30207373 DOI: 10.1039/c8mt00231b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent years, methylated thioarsenicals have been widely detected in various biological and environmental matrices, suggesting their broad involvement and biological importance in arsenic metabolism. However, very little is known about the formation mechanism of methylated thioarsenicals and the relation between arsenic methylation and thiolation processes. It is timely and necessary to summarize and synthesize the reported information on thiolated arsenicals for an improved understanding of arsenic thiolation. To this end, we examined the proposed formation pathways of methylated oxoarsenicals and thioarsenicals from a chemical perspective and proposed a novel arsenic metabolic scheme, in which arsenic thiolation is integrated with methylation (instead of being separated from methylation as currently reported). We suggest in the new scheme that protein-bound pentavalent arsenicals are critical intermediates that connect methylation and thiolation, with protein binding of pentavalent methylated thioarsenical being a key step for arsenic thiolation. This informative review on arsenic thiolation from the chemical perspective will be helpful to better understand the arsenic metabolism at the molecular level and the toxicological effects of arsenic species.
Collapse
Affiliation(s)
- Changjun Fan
- Department of Chemistry & Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA.
| | | | | | | | | |
Collapse
|
5
|
Lee H, Kim YT, Jeong S, Yoon HO. Preparation of DMMTAV and DMDTAV Using DMAV for Environmental Applications: Synthesis, Purification, and Confirmation. J Vis Exp 2018. [PMID: 29578528 DOI: 10.3791/56603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Dimethylated thioarsenicals such as dimethylmonothioarsinic acid (DMMTAV) and dimethyldithioarsinic acid (DMDTAV), which are produced by the metabolic pathway of dimethylarsinic acid (DMAV) thiolation, have been recently found in the environment as well as human organs. DMMTAV and DMDTAV can be quantified to determine the ecological effects of dimethylated thioarsenicals and their stability in environmental media. The synthesis method for these compounds is unstandardized, making replicating previous studies challenging. Furthermore, there is a lack of information about storage techniques, including storage of compounds without species transformation. Moreover, because only limited information about synthesis methods is available, there may be experimental difficulties in synthesizing standard chemicals and performing quantitative analysis. The protocol presented herein provides a practically modified synthesis method for the dimethylated thioarsenicals, DMMTAV and DMDTAV, and will help in the quantification of species separation analysis using high performance liquid chromatography in conjunction with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The experimental steps of this procedure were modified by focusing on the preparation of chemical reagents, filtration methods, and storage.
Collapse
Affiliation(s)
- Hosub Lee
- Korea Basic Science Institute, Seoul Center
| | - Youn-Tae Kim
- Natural Science Research Institute, Yonsei University
| | | | - Hye-On Yoon
- Korea Basic Science Institute, Seoul Center;
| |
Collapse
|
6
|
Jeong S, Lee H, Kim YT, Yoon HO. Development of a simultaneous analytical method to determine arsenic speciation using HPLC-ICP-MS: Arsenate, arsenite, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and dimethylmonothioarsinic acid. Microchem J 2017. [DOI: 10.1016/j.microc.2017.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Leese E, Clench M, Morton J, Gardiner PHE, Carolan VA. The Investigation of Unexpected Arsenic Compounds Observed in Routine Biological Monitoring Urinary Speciation Analysis. TOXICS 2017; 5:E12. [PMID: 29051444 PMCID: PMC5606668 DOI: 10.3390/toxics5020012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 01/19/2023]
Abstract
This study investigates the identity of two unexpected arsenic species found separately in a number of urine samples sent to the Health and Safety Executive's Health and Safety Laboratory for arsenic speciation (arsenobetaine, AB; arsenite, As3+; arsenate, As5+; monomethylarsonic acid, MMA5+; and dimethylarsinic acid, DMA5+). Micro liquid chromatography coupled to inductively coupled plasma mass spectrometry (µLC-ICP-MS) and electrospray time of flight tandem mass spectrometry (ESI-QqTOF-MS/MS) were used to identify the two arsenic peaks by comparison to several characterized arsenicals: arsenocholine, AC; trimethyl arsine oxide, TMAO; dimethylarsenoacetate, DMAA; dimethylarsenoethanol, DMAE; thio-dimethylarsinate, thio-DMA; thio-dimethylarsenoacetate, thio-DMAA and thio-dimethylarsenoethanol, thio-DMAE. The results from both the ICP-MS and ESI-QqTOF-MS/MS investigations indicate that the unexpected arsenic species termed peak 1 was thio-DMA. While the unexpected arsenic species termed peak 2 has yet to be identified, this investigation shows that it was not AC, TMAO, DMAA, DMAE, thio-DMA, thio-DMAA or thio-DMAE. This study demonstrates the incidence of unexpected arsenic species in both routine and non-routine urine samples from both workers and hospital patients.
Collapse
Affiliation(s)
- Elizabeth Leese
- Health and Safety Executive, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK.
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK.
| | - Malcolm Clench
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK.
| | - Jackie Morton
- Health and Safety Executive, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK.
| | - Philip H E Gardiner
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK.
| | - Vikki A Carolan
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK.
| |
Collapse
|
8
|
Ollson CJ, Smith E, Herde P, Juhasz AL. Influence of co-contaminant exposure on the absorption of arsenic, cadmium and lead. CHEMOSPHERE 2017; 168:658-666. [PMID: 27836265 DOI: 10.1016/j.chemosphere.2016.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 05/05/2023]
Abstract
Incidental ingestion of contaminated soil and dust is a major pathway for human exposure to many inorganic contaminants. To date, exposure research has focused on arsenic (As), cadmium (Cd) and lead (Pb), however, these studies have typically assessed metal(loid) bioavailability individually, even when multiple elements are present in the same matrix. As a consequence, it is unclear whether interactions between these elements occur within the gastro-intestinal tract, which may impact absorption and accumulation. In this study, the influence of contaminant co-exposure was assessed using a mouse bioassay and soluble forms of As, Cd and Pb supplied in mouse chow as individual, binary and tertiary elemental combinations. Arsenic urinary excretion and Pb-liver accumulation were unaffected by As-Pb co-exposure (1-10 mg As kg-1 and 3-30 mg Pb kg-1) while Cd-kidney accumulation was unaffected by the presence of As and/or Pb. However, Cd co-exposure decreased As urinary excretion and increased Pb-liver accumulation. It was hypothesized that Cd influenced arsenate absorption as a consequence of the impairment of phosphate transporters. Although the reason for increasing Pb-liver accumulation following Cd co-exposure is unclear, enhanced Pb accumulation may occur as a result of transport protein overexpression or changes in divalent metal compartmentalization.
Collapse
Affiliation(s)
- Cameron J Ollson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), Salisbury South, SA 5106, Australia.
| | - Euan Smith
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Paul Herde
- South Australian Health and Medical Research Institute, Gilles Plains, SA 5086, Australia
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
9
|
Kim YT, Lee H, Yoon HO, Woo NC. Kinetics of Dimethylated Thioarsenicals and the Formation of Highly Toxic Dimethylmonothioarsinic Acid in Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11637-11645. [PMID: 27701855 DOI: 10.1021/acs.est.6b02656] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dimethylmonothioarsinic acid (DMMTAV) is a highly toxic, thiolated analogue of dimethylarsinic acid (DMAV). In comparison, a further thiolated analogue, dimethyldithioarsinic acid (DMDTAV), and DMAV both exhibit lower toxicity. To understand the environmental conditions responsible for forming DMMTAV, the kinetics of DMAV thiolation are examined. The thiolation of DMAV is pH-dependent and consists of two consecutive first-order reactions under excess sulfide conditions. The first thiolation of DMAV to form DMMTAV is faster than the second one to DMDTAV. DMMTAV is therefore an intermediate. The first reaction is first-order in H2S at pH 6.0 and 20 °C; therefore, the overall reaction is second-order and the rate coefficient in this condition is 0.0780 M-1 s-1. The rate coefficient significantly decreases at pH 8.0, indicating that H2S(aq) triggers the thiolation of DMAV. The second reaction rate is significantly decreased at pH 2.5; therefore, reaction under strongly acidic conditions leads to accumulation of highly toxic DMMTAV in the early stages of thiolation. The transformation of DMDTAV to DMMTAV is catalyzed in the presence of ferric iron. Formation of DMMTAV should be considered when assessing risk posed by arsenic under sulfidic or sulfate reducing conditions.
Collapse
Affiliation(s)
- Youn-Tae Kim
- Department of Earth System Sciences, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Natural Science Research Institute, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hosub Lee
- Seoul Center, Korea Basic Science Institute , 6-7 Inchon-ro 22-gil, Seongbuk-gu, Seoul 02855, Republic of Korea
| | - Hye-On Yoon
- Seoul Center, Korea Basic Science Institute , 6-7 Inchon-ro 22-gil, Seongbuk-gu, Seoul 02855, Republic of Korea
| | - Nam C Woo
- Department of Earth System Sciences, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
10
|
Chen B, Lu X, Arnold LL, Cohen SM, Le XC. Identification of Methylated Dithioarsenicals in the Urine of Rats Fed with Sodium Arsenite. Chem Res Toxicol 2016; 29:1480-7. [DOI: 10.1021/acs.chemrestox.6b00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Baowei Chen
- MOE Key Laboratory
of Aquatic Product Safety, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
- Analytical and Environmental Toxicology Division, Department
of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
- South China Sea Resource Exploitation and Protection Collaborative
Innovation Center, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
| | - Xiufen Lu
- Analytical and Environmental Toxicology Division, Department
of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Lora L. Arnold
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135, United States
| | - Samuel M. Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135, United States
| | - X. Chris Le
- Analytical and Environmental Toxicology Division, Department
of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
11
|
Stice S, Liu G, Matulis S, Boise LH, Cai Y. Determination of multiple human arsenic metabolites employing high performance liquid chromatography inductively coupled plasma mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1009-1010:55-65. [PMID: 26708625 PMCID: PMC4748725 DOI: 10.1016/j.jchromb.2015.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/05/2015] [Indexed: 02/01/2023]
Abstract
During the metabolism of different arsenic-containing compounds in human, a variety of metabolites are produced with significantly varying toxicities. Currently available analytical methods can only detect a limited number of human metabolites in biological samples during one run due to their diverse characteristics. In addition, co-elution of species is often unnoticeable with most detection techniques leading to inaccurate metabolic profiles and assessment of toxicity. A high performance liquid chromatography inductively coupled mass spectrometry (HPLC-ICP-MS) method was developed that can identify thirteen common arsenic metabolites possibly present in human with special attention dedicated to thiolated or thiol conjugated arsenicals. The thirteen species included in this study are arsenite (As(III)), arsino-glutathione (As(GS)3), arsenate (As(V)), monomethylarsonous acid (MMA(III)), monomethylarsino-glutathione (MMA(III)(GS) 2), monomethylarsonic acid (MMA(V)), dimethylarsinous acid (DMA(III) (from DMA(III)I)), S-(dimethylarsinic)cysteine (DMA(III) (Cys)), dimethylarsino-glutathione (DMA(III)(GS)), dimethylarsinic acid (DMA(V)), dimethylmonothioarsinic acid (DMMTA(V)), dimethyldithioarsinic acid (DMDTA(V)), dimethylarsinothioyl glutathione (DMMTA(V)(GS)). The developed method was applied for the analysis of cancer cells that were incubated with darinaparsin (DMA(III)(GS)), a novel chemotherapeutic agent for refractory malignancies, and the arsenic metabolic profile obtained was compared to results using a previously developed method. This method provides a useful analytical tool which is much needed in unequivocally identifying the arsenicals formed during the metabolism of environmental arsenic exposure or therapeutic arsenic administration.
Collapse
Affiliation(s)
- Szabina Stice
- Department of Chemistry & Biochemistry, FL International University, 11200 SW 8th St., Miami, FL 33199, United States
| | - Guangliang Liu
- Department of Chemistry & Biochemistry, FL International University, 11200 SW 8th St., Miami, FL 33199, United States
| | - Shannon Matulis
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States
| | - Yong Cai
- Department of Chemistry & Biochemistry, FL International University, 11200 SW 8th St., Miami, FL 33199, United States; Southeast Environmental Research Center, FL International University, Miami, FL 33199, United States.
| |
Collapse
|
12
|
Fleming DE, Groves JW, Gherase MR, George GN, Pickering IJ, Ponomarenko O, Langan G, Spallholz JE, Alauddin M, Ahsan H, Ahmed S, La Porte PF. Soft tissue measurement of arsenic and selenium in an animal model using portable X-ray fluorescence. Radiat Phys Chem Oxf Engl 1993 2015. [DOI: 10.1016/j.radphyschem.2015.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Shimoda Y, Kurosawa H, Kato K, Endo Y, Yamanaka K, Endo G. Proposal for novel metabolic pathway of highly toxic dimethylated arsenics accompanied by enzymatic sulfuration, desulfuration and oxidation. J Trace Elem Med Biol 2015; 30:129-36. [PMID: 25559201 DOI: 10.1016/j.jtemb.2014.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/27/2014] [Accepted: 12/13/2014] [Indexed: 11/19/2022]
Abstract
The International Agency for Research on Cancer (IARC) has concluded that dimethylarsinic acid [(CH3)2AsO(OH), DMA(V)], a main metabolite of inorganic arsenic, is responsible for carcinogenesis in urinary bladder and lung in rodents, and various modes of carcinogenic action have been proposed. One theory concerning the mode of action is that the biotransformation of dimethylarsinous acid [(CH3)2AsOH, DMA(III)] from DMA(V) plays an important role in the carcinogenesis by way of reactive oxygen species (ROS) production. Furthermore, dimethylmonothioarsinic acid [(CH3)2AsS(OH), DMMTA(V)], a metabolite of DMA(V), has also been noted because of its higher toxicity. However, the metabolic mechanisms of formation and disappearance of DMA(III) and DMMTA(V), and their toxicity are not fully understood. Thus, the purpose of the present study was to clarify the mechanism of metabolic formation of DMMTA(V) and DMA(V) from DMA(III). The in vitro transformation of arsenicals by treatment with liver homogenate from rodents and sulfur transferase was detected by HPLC-ICP-MS and HPLC-tandem MS. DMMTA(V) is produced from DMA(III) but not DMA(V) by cellular fractions from mouse liver homogenates and by rhodanese from bovine liver in the presence of thiosulfate, a sulfur donor. Not only DMMTA(V) thus produced but also DMA(III) are re-converted into DMA(V) by an in vitro addition of S9 mix. These findings indicate that the metabolic process not only of DMA(III) to DMA(V) or DMMTA(V) but also of DMMTA(V) to DMA(V) consists of a complicated mode of interaction between monooxygenase including cytochrome P450 (CYP) and/or sulfur transferase.
Collapse
Affiliation(s)
- Yasuyo Shimoda
- Laboratory of Environmental Toxicology and Carcinogenesis, Nihon University School of Pharmacy, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Hidetoshi Kurosawa
- Laboratory of Environmental Toxicology and Carcinogenesis, Nihon University School of Pharmacy, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, Nihon University School of Pharmacy, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Yoko Endo
- Research Center for Occupational Poisoning, Kansai Rosai Hospital, Hyogo 660-8511, Japan
| | - Kenzo Yamanaka
- Laboratory of Environmental Toxicology and Carcinogenesis, Nihon University School of Pharmacy, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan.
| | - Ginji Endo
- Department of Preventive Medicine and Environmental Health, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| |
Collapse
|
14
|
Wang QQ, Thomas DJ, Naranmandura H. Importance of being thiomethylated: formation, fate, and effects of methylated thioarsenicals. Chem Res Toxicol 2015; 28:281-9. [PMID: 25531277 DOI: 10.1021/tx500464t] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although inorganic arsenic has long been recognized as a potent toxicant and carcinogen in humans, recent evidence shows that at least some of its effects are mediated by methylated metabolites. Elucidating the conversion of inorganic arsenic to mono-, di-, and trimethylated species has provided insights into the enzymology of this pathway and identified genetic and environmental factors that influence the susceptibility of individuals to this metalloid's adverse health effects. Notably, almost all work on the formation, fate, and effects of methylated arsenicals has focused on oxoarsenicals in which arsenic is bound to one or more oxygen atoms. However, thioarsenicals are a class of arsenicals in which a sulfur atom has replaced one or more oxygens that are bound to arsenic. Thioarsenicals have been identified as urinary metabolites in humans and other animals following exposure to inorganic arsenic. Studies find that methylated thioarsenicals exhibit kinetic behavior and toxicological properties that distinguish them from methylated oxoarsenicals. This perspective considers that formation, fate, and effects of methylated thioarsenicals with an emphasis on examining the linkages between the molecular processes that underlie both methylation and thiolation reactions. Integrating this information will provide a more comprehensive view of the relationship between the metabolism of arsenic and the risk posed by chronic exposure to this environmental contaminant.
Collapse
Affiliation(s)
- Qian Qian Wang
- Department of Toxicology, School of Medicine and Public Health, ‡College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, China
| | | | | |
Collapse
|
15
|
Tokumoto M, Kutsukake N, Yamanishi E, Katsuta D, Anan Y, Ogra Y. Arsenic (+3 oxidation state) methyltransferase is a specific but replaceable factor against arsenic toxicity. Toxicol Rep 2014; 1:589-595. [PMID: 28962272 PMCID: PMC5598430 DOI: 10.1016/j.toxrep.2014.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 01/31/2023] Open
Abstract
AS3MT catalyzed the methylation of arsenic. Selenium and tellurium were not methylated in the presence of AS3MT. AS3MT knockdown had no effect on the cytotoxicity of arsenic.
Inorganic metalloids, such as arsenic (As), antimony (Sb), selenium (Se), and tellurium (Te), are methylated in biota. In particular, As, Se, and Te are methylated and excreted in urine. The biomethylation is thought to be a means to detoxify the metalloids. The methylation of As is catalyzed by arsenic (+3 oxidation state) methyltransferase (AS3MT). However, it is still unclear whether AS3MT catalyzes the methylation of the other metalloids. It is also unclear whether other factors catalyze the As methylation instead of AS3MT. Recombinant human AS3MT (rhAS3MT) was prepared and used in the in vitro methylation of As, Se, and Te. As, but not Se and Te, was specifically methylated in the presence of rhAS3MT. Then, siRNA targeting AS3MT was introduced into human hepatocarcinoma (HepG2) cells. Although AS3MT protein expression was completely silenced by the gene knockdown, no increase in As toxicity was found in the HepG2 cells transfected with AS3MT-targeting siRNA. We conclude that AS3MT catalyzes the methylation of As and not other biomethylatable metalloids, such as Se and Te. We speculate that other methylation enzyme(s) also catalyze the methylation of As in HepG2 cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Yasumitsu Ogra
- Corresponding author. Tel.: +81 42 721 1563; fax: +81 42 721 1563
| |
Collapse
|
16
|
Kulshrestha A, Jarouliya U, Prasad GBKS, Flora SJS, Bisen PS. Arsenic-induced abnormalities in glucose metabolism: Biochemical basis and potential therapeutic and nutritional interventions. World J Transl Med 2014; 3:96-111. [DOI: 10.5528/wjtm.v3.i2.96] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/21/2014] [Accepted: 07/17/2014] [Indexed: 02/05/2023] Open
Abstract
Health hazards due to the consumption of heavy metals such as arsenic have become a worldwide problem. Metabolism of arsenic produces various intermediates which are more toxic and cause toxicity. Arsenic exposure results in impairment of glucose metabolism, insulin secretion in pancreatic β-cells, altered gene expressions and signal transduction, and affects insulin-stimulated glucose uptake in adipocytes or skeletal muscle cells. Arsenic toxicity causes abnormalities in glucose metabolism through an increase in oxidative stress. Arsenic interferes with the sulfhydryl groups and phosphate groups present in various enzymes involved in glucose metabolism including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, and contributes to their impairment. Arsenic inhibits glucose transporters present in the cell membrane, alters expression of genes involved in glucose metabolism, transcription factors and inflammatory cytokines which stimulate oxidative stress. Some theories suggest that arsenic exposure under diabetic conditions inhibits hyperglycemia. However, the exact mechanism behind the behavior of arsenic as an antagonist or synergist on glucose homeostasis and insulin secretion is not yet fully understood. The present review delineates the relationship between arsenic and the biochemical basis of its relationship to glucose metabolism. This review also addresses potential therapeutic and nutritional interventions for attenuating arsenic toxicity. Several other potential nutritional supplements are highlighted in the review that could be used to combat arsenic toxicity.
Collapse
|
17
|
Abstract
Arsenic has received considerable attention in the world, since it can lead to a multitude of toxic effects and has been recognized as a human carcinogen causing cancers. Here, we focus on the current state of knowledge regarding the proposed mechanisms of arsenic biotransformation, with a little about cellular uptake, toxicity and clinical utilization of arsenicals. Since pentavalent methylated metabolites were found in animal urine after exposure to iAs(III), methylation was considered to be a detoxification process, but the discovery of methylated trivalent intermediates and thioarsenicals in urine has diverted the view and gained much interest regarding arsenic biotransformation. To further investigate the partially understood phenomena relating to arsenic toxicity and the uses of arsenic as a drug, it is important to elucidate the exact pathways involved in metabolism of this metalloid, as the toxicity and the clinical uses of arsenic can be best recognized in context of its biotransformation. Thereby, in this perspective, we have focused on arsenic metabolic pathways including three proposed mechanisms: a classic pathway by Challenger in 1945, followed by a new metabolic pathway proposed by Hayakawa in 2005 involving arsenic-glutathione complexes, while the third is a new reductive methylation pathway that is proposed by our group involving As-protein complexes. According to previous and present in vivo and in vitro experiments, we conclude that the methylation reaction takes place with simultaneous reductive rather than stepwise oxidative methylation. In addition, production of pentavalent methylated arsenic metabolites are suggested to be as the end product of metabolism, rather than intermediates.
Collapse
Affiliation(s)
- Kanwal Rehman
- Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310561, China
| | | |
Collapse
|
18
|
Maull EA, Ahsan H, Edwards J, Longnecker MP, Navas-Acien A, Pi J, Silbergeld EK, Styblo M, Tseng CH, Thayer KA, Loomis D. Evaluation of the association between arsenic and diabetes: a National Toxicology Program workshop review. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1658-70. [PMID: 22889723 PMCID: PMC3548281 DOI: 10.1289/ehp.1104579] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 08/10/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Diabetes affects an estimated 346 million persons globally, and total deaths from diabetes are projected to increase > 50% in the next decade. Understanding the role of environmental chemicals in the development or progression of diabetes is an emerging issue in environmental health. In 2011, the National Toxicology Program (NTP) organized a workshop to assess the literature for evidence of associations between certain chemicals, including inorganic arsenic, and diabetes and/or obesity to help develop a focused research agenda. This review is derived from discussions at that workshop. OBJECTIVES Our objectives were to assess the consistency, strength/weaknesses, and biological plausibility of findings in the scientific literature regarding arsenic and diabetes and to identify data gaps and areas for future evaluation or research. The extent of the existing literature was insufficient to consider obesity as an outcome. DATA SOURCES, EXTRACTION, AND SYNTHESIS Studies related to arsenic and diabetes or obesity were identified through PubMed and supplemented with relevant studies identified by reviewing the reference lists in the primary literature or review articles. CONCLUSIONS Existing human data provide limited to sufficient support for an association between arsenic and diabetes in populations with relatively high exposure levels (≥ 150 µg arsenic/L in drinking water). The evidence is insufficient to conclude that arsenic is associated with diabetes in lower exposure (< 150 µg arsenic/L drinking water), although recent studies with better measures of outcome and exposure support an association. The animal literature as a whole was inconclusive; however, studies using better measures of diabetes-relevant end points support a link between arsenic and diabetes.
Collapse
Affiliation(s)
- Elizabeth A Maull
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Naranmandura H, Chen X, Tanaka M, Wang WW, Rehman K, Xu S, Chen Z, Chen SQ, Suzuki N. Release of Apoptotic Cytochrome c From Mitochondria by Dimethylarsinous Acid Occurs Through Interaction With Voltage-Dependent Anion Channel In Vitro. Toxicol Sci 2012; 128:137-46. [DOI: 10.1093/toxsci/kfs154] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
20
|
Marchiset-Ferlay N, Savanovitch C, Sauvant-Rochat MP. What is the best biomarker to assess arsenic exposure via drinking water? ENVIRONMENT INTERNATIONAL 2012; 39:150-71. [PMID: 22208756 DOI: 10.1016/j.envint.2011.07.015] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 07/12/2011] [Accepted: 07/25/2011] [Indexed: 05/18/2023]
Abstract
Arsenic (As) is a ubiquitous element. The current WHO guideline for As in drinking water is 10 μg/L. Furthermore, about 130 million people have only access to drinking water containing more than 10 g As/L. Although numerous studies have shown the related adverse effects of As, sensitive appropriate biomarkers are still required for studies of environmental epidemiology. A review of the literature has shown that various biomarkers are used for such research. Their limits and advantages are highlighted in this paper: (i) the detection of As or its derivatives in the blood is an indication of the dose ingested but it is not evidence of chronic intoxication. (ii) The detection of As in urine is an indispensible procedure because it is a good marker for internal dose. It has been demonstrated to correlate well for a number of chronic effects related to As levels in drinking water. However confounding factors must be taken into account to avoid misinterpretation and this may require As speciation. (iii) As in the hair and nails reflects the level of long term exposure but it is difficult to relate the level with the dose ingested. (iv) Some studies showed a correlation between urinary As and urinary and blood porphyrins. However, it is difficult to use only porphyrins as a biomarker in a population survey carried out without doing further studies. (v) Genotoxic effects are based on the characterization of these potential effects. Most studies have detected increases in DNA damage, sister chromatid exchange, micronuclei or chromosomal aberrations in populations exposed to As in drinking water. Micronuclei assay is the technique of choice to follow these populations, because it is sensitive and easy to use. To conclude, whatever epidemiological studies are, the urinary and toenail biomarkers are useful to provide indications of internal dose. Moreover, micronuclei assay can be complementary use as biomarker of early effects.
Collapse
Affiliation(s)
- Nathalie Marchiset-Ferlay
- Université d'Auvergne, Faculté de Pharmacie, Laboratoire Santé Publique et Environnement, 28 Place Henri Dunant, BP 38, F-63001 Clermont-Ferrand Cedex, France.
| | | | | |
Collapse
|