1
|
Fang T, Cao X, Shen B, Chen Z, Chen G. Injectable cold atmospheric plasma-activated immunotherapeutic hydrogel for enhanced cancer treatment. Biomaterials 2023; 300:122189. [PMID: 37307777 DOI: 10.1016/j.biomaterials.2023.122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Despite the promise of immune checkpoint blockade (ICB) for cancer treatment, challenges associated with this therapy still exist, including low response rates and severe side effects in patients. Here, we report a hydrogel-mediated combination therapy for enhanced ICB therapy. Specifically, cold atmospheric plasma (CAP), an ionized gas consisting of therapeutically effective reactive oxygen species (ROS) and reactive nitrogen species (RNS), can effectively induce cancer immunogenic cell death, releasing tumor-associated antigens in situ and initiating anti-tumor immune responses, which, therefore, can synergistically augment the efficacy of immune checkpoint inhibitors. To minimize the systemic toxicity of immune checkpoint inhibitors and improve the tissue penetration of CAP, an injectable Pluronic hydrogel was employed as a delivery method. Our results show that major long-lived ROS and RNS in CAP can be effectively persevered in Pluronic hydrogel and remain efficacious in inducing cancer immunogenic cell death after intratumoral injection. Our findings suggest that local hydrogel-mediated combination of CAP and ICB treatment can evoke both strong innate and adaptive, local and systemic anti-tumor immune responses, thereby inhibiting both tumor growth and potential metastatic spread.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada; School of Nursing, Tianjin Medical University, Tianjin, China
| | - Bingzheng Shen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Zhitong Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Center for Advanced Therapy, National Innovation Center for Advanced Medical Devices, Shenzhen, China.
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
2
|
Abstract
Tungsten is an emerging contaminant in the environment. Research has demonstrated that humans are exposed to high levels of tungsten in certain settings, primarily due to increased use of tungsten in industrial applications. However, our understanding of the potential human health risks of tungsten exposure is still limited. An important point we have learned about the toxicity profile of tungsten is that it is complex because tungsten can often augment the effects of other co-exposures or co-stressors, which could result in greater toxicity or more severe disease. This has shaped the tungsten toxicology field and the types of research questions being investigated. This has particularly been true when evaluating the toxicity profile of tungsten metal alloys in combination with cobalt. In this chapter, the current state of the tungsten toxicology field will be discussed focusing on data investigating tungsten carcinogenicity and other major toxicities including pulmonary, cardiometabolic, bone, and immune endpoints, either alone or in combination with other metals. Environmental and human monitoring data will also be discussed to highlight human populations most at risk of exposure to high concentrations of tungsten, the forms of tungsten present in each setting, and exposure levels in each population.
Collapse
Affiliation(s)
- Alicia M Bolt
- College of Pharmacy, Department of Pharmaceutical Sciences, The University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
3
|
Serum Indicators of Oxidative Damage from Embedded Metal Fragments in a Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5394303. [PMID: 35154566 PMCID: PMC8828353 DOI: 10.1155/2022/5394303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/04/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
Abstract
Injuries suffered in armed conflicts often result in embedded metal fragments. Standard surgical guidance recommends leaving embedded fragments in place except under certain circumstances in an attempt to avoid the potential morbidity that extensive surgery often brings. However, technological advances in weapon systems and insurgent use of improvised explosive devices now mean that practically any metal can be found in these types of wounds. Unfortunately, in many cases, the long-term toxicological properties of embedded metals are not known, further complicating treatment decisions. Because of concerns over embedded metal fragment injuries, the U.S. Departments of Defense and Veterans' Affairs developed a list of “metals of concern” for these types of injuries. In this study, we selected eight of these metals including tungsten, nickel, cobalt, iron, copper, aluminum, lead, and depleted uranium to investigate the long-term health effects using a rodent model developed in our Institute to study embedded fragment injuries. In this report, we show that metals surgically implanted into the gastrocnemius muscle of laboratory rats to simulate a shrapnel wound induce a variety of cytokines including IFN-γ, IL-4, IL-5, IL-6, IL-10, and IL-13. TNF-α and KC/GRO were not affected, and IL-1β was below the limit of detection. Serum levels of C-reactive protein were also affected, increasing with some metals and decreasing with others. The TBARS assay, an assessment of lipid peroxidation, demonstrated that implanted aluminum and lead increased markers of lipid peroxidation in serum. Taken together, the results suggest that serum cytokine levels, as well as other indicators of oxidative damage, may prove useful in identifying potential adverse health effects of embedded metals.
Collapse
|
4
|
Miller K, McVeigh CM, Barr EB, Herbert GW, Jacquez Q, Hunter R, Medina S, Lucas SN, Ali AMS, Campen MJ, Bolt AM. Inhalation of tungsten metal particulates alters the lung and bone microenvironments following acute exposure. Toxicol Sci 2021; 184:286-299. [PMID: 34498067 DOI: 10.1093/toxsci/kfab109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inhalation of tungsten particulates is a relevant route of exposure in occupational and military settings. Exposure to tungsten alloys is associated with increased incidence of lung pathologies, including interstitial lung disease and cancer. We have demonstrated, oral exposure to soluble tungsten enhances breast cancer metastasis to the lungs through changes in the surrounding microenvironment. However, more research is required to investigate if changes in the lung microenvironment, following tungsten particulate exposure, can drive tumorigenesis or metastasis to the lung niche. This study examined if inhalation to environmentally relevant concentrations of tungsten particulates caused acute damage to the microenvironment in the lungs and/or systemically using a whole-body inhalation system. Twenty-four female BALB/c mice were exposed to Filtered Air, 0.60 mg/m3, or 1.7 mg/m3 tungsten particulates (< 1 µm) for 4 h. Tissue samples were collected at day 1 and 7 post-exposure. Tungsten accumulation in the lungs persisted up to 7 days post-exposure and produced acute changes to the lung microenvironment including increased macrophage and neutrophil infiltration, increased levels of pro-inflammatory cytokines IL-1β and CXCL1, and an increased percentage of activated fibroblasts (α-SMA+). Exposure to tungsten also resulted in systemic effects on the bone, including tungsten deposition and transient increases in gene expression of pro-inflammatory cytokines. Taken together, acute whole-body inhalation of tungsten particulates, at levels commonly observed in occupational and military settings, resulted in changes to the lung and bone microenvironments that may promote tumorigenesis or metastasis and be important molecular drivers of other tungsten-associated lung pathologies such as interstitial lung disease.
Collapse
Affiliation(s)
- Kara Miller
- College of Pharmacy, Department of Pharmaceutical Sciences, The University of New Mexico, Albuquerque, NM 87131
| | - Charlotte M McVeigh
- College of Pharmacy, Department of Pharmaceutical Sciences, The University of New Mexico, Albuquerque, NM 87131
| | - Edward B Barr
- College of Pharmacy, Department of Pharmaceutical Sciences, The University of New Mexico, Albuquerque, NM 87131
| | - Guy W Herbert
- College of Pharmacy, Department of Pharmaceutical Sciences, The University of New Mexico, Albuquerque, NM 87131
| | - Quiteria Jacquez
- College of Nursing, University of New Mexico, Albuquerque, NM, 87131
| | - Russell Hunter
- College of Pharmacy, Department of Pharmaceutical Sciences, The University of New Mexico, Albuquerque, NM 87131
| | - Sebastian Medina
- Department of Biology, New Mexico Highlands University, Las Vegas, NM, 87701
| | - Selita N Lucas
- College of Pharmacy, Department of Pharmaceutical Sciences, The University of New Mexico, Albuquerque, NM 87131
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, 87131
| | - Matthew J Campen
- College of Pharmacy, Department of Pharmaceutical Sciences, The University of New Mexico, Albuquerque, NM 87131
| | - Alicia M Bolt
- College of Pharmacy, Department of Pharmaceutical Sciences, The University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
5
|
Sachdeva S, Sharma A, Flora SJS. MiADMSA abrogates sodium tungstate-induced oxidative stress in rats. Drug Chem Toxicol 2021; 45:2448-2453. [PMID: 34348527 DOI: 10.1080/01480545.2021.1957560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tungsten (W) and its compounds have emerged as a relatively new area of environmental health concern in the last decade. Tungsten is environmentally benign due to its increasing use in armour-piercing munitions and as a replacement for lead in other ammunition. It has also been identified in various hazardous waste sites and therefore been proposed for inclusion in the Environmental Protection Agency National Priorities List. The major objective of this study was to evaluate the therapeutic efficacy of orally administered monoisoamyl 2, 3-dimercaptosuccinic acid (MiADMSA) against tungstate induced oxidative injury in blood, liver and kidneys of male Wistar rats. MiADMSA, a thiol chelator has gained wide recognition recently as a future chelating drug of choice specifically for arsenic and was chosen for this study as tungstate ions too have an affinity toward the -SH group thus, being less bioavailable in the body. We determined the effects of MiADMSA (50 mg/kg, p.o.) against sodium tungstate (500 ppm in drinking water, daily for 28 days) induced biochemical changes indicative of oxidative stress in blood, and other soft tissues of of male Wistar rats. Tungsten exposure led to an increased levels of Reactive Oxygen Species (ROS) in liver, kidney, spleen and blood accompanied also by an increase in TBARS levels. The GSH: GSSG ratio also showed a decrease on sodium tungstate intoxication. Treatment with MiADMSA restored most of the sodium tungstate-induced alterations in the biomarkers suggestive of oxidative stress. These preliminary results led us to conclude that sub-acute exposure to tungstate-induced oxidative stress could be effectively reduced by the administration of MiADMSA and thus might be a promising antidote for studying in detail its efficacy in reducing body tungstate burden and its excretion post tungstate exposure.
Collapse
Affiliation(s)
- Sherry Sachdeva
- Division of Regulatory Toxicology, Defence Research and Development Establishment, Gwalior, India
| | - Ankita Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, India
| | - S J S Flora
- Division of Regulatory Toxicology, Defence Research and Development Establishment, Gwalior, India.,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, India
| |
Collapse
|
6
|
Kim J, Ren D, Gilbert JL. Cytotoxic effect of galvanically coupled magnesium-titanium particles on Escherichia coli. J Biomed Mater Res B Appl Biomater 2021; 109:2162-2173. [PMID: 33979012 DOI: 10.1002/jbm.b.34864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 02/04/2021] [Accepted: 04/28/2021] [Indexed: 11/06/2022]
Abstract
Orthopedic device-related infections (ODRIs) are difficult to control due to microbial biofilm formation and associated with high-level resistance to conventional antibiotics. In many cases, the only treatment option for ODRI is explantation. Previous studies have shown that application of cathodic potentials at the metal surface can eradicate biofilms, and Mg and Mg-Ti particles have the same effect as cathodic potentials. This study investigated the effects of Mg and Mg-Ti particles on established biofilms and planktonic cells E. coli. Bacterial cultures with developed biofilms or planktonic cells were treated with Mg or Mg-Ti particles, and the viability were assessed using flow cytometry or visual assessment methods (i.e., observation from SEM images and opacity of the solution). It was found that viability of biofilms treated with 16.67 mg/ml of Mg was 2.8 ± 0.96% at the end of 6-hr killing compared to untreated controls. This extent of killing was more significant compared to 24-hr grown biofilms treated with ofloxacin, an antibiotic known to be effective against these bacteria. Biofilms treated with 50 and 100 μg/ml of ofloxacin had 62 ± 4.6% and 52 ± 19.3% survival, respectively, where ofloxacin at these concentrations is known to kill planktonic counterparts very effectively. Inhibition zone tests revealed that biofilms within 2 mm of Mg or Mg-Ti particle clusters were effectively killed. These results demonstrated the potential of Mg or Mg-Ti particles in killing microbial biofilms and potential for controlling ODRI.
Collapse
Affiliation(s)
- Jua Kim
- Department of Biomedical and Chemical Engineering, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, USA.,Syracuse Biomaterials Institute, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, USA.,Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, USA.,Syracuse Biomaterials Institute, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, USA
| | - Jeremy L Gilbert
- Department of Biomedical and Chemical Engineering, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, USA.,Syracuse Biomaterials Institute, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, USA.,Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Clemson-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| |
Collapse
|
7
|
Nickel Carcinogenesis Mechanism: DNA Damage. Int J Mol Sci 2019; 20:ijms20194690. [PMID: 31546657 PMCID: PMC6802009 DOI: 10.3390/ijms20194690] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Nickel (Ni) is known to be a major carcinogenic heavy metal. Occupational and environmental exposure to Ni has been implicated in human lung and nasal cancers. Currently, the molecular mechanisms of Ni carcinogenicity remain unclear, but studies have shown that Ni-caused DNA damage is an important carcinogenic mechanism. Therefore, we conducted a literature search of DNA damage associated with Ni exposure and summarized known Ni-caused DNA damage effects. In vitro and vivo studies demonstrated that Ni can induce DNA damage through direct DNA binding and reactive oxygen species (ROS) stimulation. Ni can also repress the DNA damage repair systems, including direct reversal, nucleotide repair (NER), base excision repair (BER), mismatch repair (MMR), homologous-recombination repair (HR), and nonhomologous end-joining (NHEJ) repair pathways. The repression of DNA repair is through direct enzyme inhibition and the downregulation of DNA repair molecule expression. Up to now, the exact mechanisms of DNA damage caused by Ni and Ni compounds remain unclear. Revealing the mechanisms of DNA damage from Ni exposure may contribute to the development of preventive strategies in Ni carcinogenicity.
Collapse
|
8
|
Comparative Assessment of Tungsten Toxicity in the Absence or Presence of Other Metals. TOXICS 2018; 6:toxics6040066. [PMID: 30423906 PMCID: PMC6315525 DOI: 10.3390/toxics6040066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 02/03/2023]
Abstract
Tungsten is a refractory metal that is used in a wide range of applications. It was initially perceived that tungsten was immobile in the environment, supporting tungsten as an alternative for lead and uranium in munition and military applications. Recent studies report movement and detection of tungsten in soil and potable water sources, increasing the risk of human exposure. In addition, experimental research studies observed adverse health effects associated with exposure to tungsten alloys, raising concerns on tungsten toxicity with questions surrounding the safety of exposure to tungsten alone or in mixtures with other metals. Tungsten is commonly used as an alloy with nickel and cobalt in many applications to adjust hardness and thermal and electrical conductivity. This review addresses the current state of knowledge in regard to the mechanisms of toxicity of tungsten in the absence or presence of other metals with a specific focus on mixtures containing nickel and cobalt, the most common components of tungsten alloy.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Tungsten is an emerging environmental toxicant, yet our understanding of the potential risks of exposure on human health is still limited. RECENT FINDINGS In this review, we will discuss populations most at risk of exposure to high concentrations of tungsten. In addition, we will highlight what is known about the toxicity profile of tungsten compounds, based on epidemiological, in vitro, and in vivo studies, focusing on bone, immune, pulmonary, and cancer outcomes. Of note, emerging evidence indicates that tungsten can augment the effects of other stimulants, stressors, and toxicants. Of particular importance may be tungsten-cobalt mixtures that seem to be more toxic than either metal alone. This is important because it means that we cannot just evaluate the toxicity of tungsten in isolation. Finally, we still have limited information of how many of the in vitro and in vivo findings translate to human populations, so it will be important to conduct epidemiology studies in highly exposed populations to adequately address the potential risks of tungsten exposure on human health. Together, we discuss recent findings that support further investigation into the toxicities of tungsten alone and in combination with other metals.
Collapse
|
10
|
Kim J, Gilbert JL. The effect of cell density, proximity, and time on the cytotoxicity of magnesium and galvanically coupled magnesium-titanium particles in vitro. J Biomed Mater Res A 2018; 106:1428-1439. [PMID: 29322635 DOI: 10.1002/jbm.a.36334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/07/2017] [Accepted: 01/05/2018] [Indexed: 11/10/2022]
Abstract
Magnesium (Mg) and galvanically coupled magnesium-titanium (Mg-Ti) particles in vitro have been reported previously to kill cells in a dosage-dependent manner. Mg-Ti particles kill cells more effectively than Mg alone, due to the galvanic effect of Mg and Ti. This study further investigated the in vitro cytotoxicity of Mg and Mg-Ti in terms of particle concentration, cell density, time, and proximity. Cell density has an effect on cell viability only at low particle concentrations (below 250 µg/mL), where cell viability dropped only for lower cell densities (5000-10,000 cells/cm2 ) and not for higher cell densities (20,000-30,000 cells/cm2 ), showing that the particles cannot kill if there are more cells present. Cytotoxicity of Mg and Mg-Ti particles is quick and temporary, where the particles kill cells only during particle corrosion (first 24 h). Depending on the percentage of surviving cells, particle concentrations, and ongoing corrosion activity, the remaining live cells either proliferated and recovered, or just remained viable and quiescent. The particle killing is also proximity-dependent, where cell viability was significantly higher for cells far away from the particles (greater than ∼1 mm) compared to those close to the particles (less than ∼1 mm). Although the increase of pH does affect cell viability negatively, it is not the sole killing factor since cell viability is significantly dependent on particle type and proximity but not pH. Mg and Mg-Ti particles used in this study are large enough to prevent direct cell phagocytosis so that the cell killing effect may be attributed to solely electrochemical reactions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1428-1439, 2018.
Collapse
Affiliation(s)
- Jua Kim
- Department of Biomedical and Chemical Engineering, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, 13244.,Syracuse Biomaterials Institute, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, 13244
| | - Jeremy L Gilbert
- Department of Biomedical and Chemical Engineering, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, 13244.,Syracuse Biomaterials Institute, College of Engineering and Computer Science, Syracuse University, Syracuse, New York, 13244.,Department of Bioengineering, Clemson University, Clemson, South Carolina, 29634.,Clemson-Medical University of South Carolina Combined Program in Bioengineering, Charleston, South Carolina, 20425
| |
Collapse
|
11
|
Cheung AC, Banerjee S, Cherian JJ, Wong F, Butany J, Gilbert C, Overgaard C, Syed K, Zywiel MG, Jacobs JJ, Mont MA. Systemic cobalt toxicity from total hip arthroplasties. Bone Joint J 2016; 98-B:6-13. [PMID: 26733509 DOI: 10.1302/0301-620x.98b1.36374] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recently, the use of metal-on-metal articulations in total hip arthroplasty (THA) has led to an increase in adverse events owing to local soft-tissue reactions from metal ions and wear debris. While the majority of these implants perform well, it has been increasingly recognised that a small proportion of patients may develop complications secondary to systemic cobalt toxicity when these implants fail. However, distinguishing true toxicity from benign elevations in cobalt ion levels can be challenging. The purpose of this two part series is to review the use of cobalt alloys in THA and to highlight the following related topics of interest: mechanisms of cobalt ion release and their measurement, definitions of pathological cobalt ion levels, and the pathophysiology, risk factors and treatment of cobalt toxicity. Historically, these metal-on-metal arthroplasties are composed of a chromium-cobalt articulation. The release of cobalt is due to the mechanical and oxidative stresses placed on the prosthetic joint. It exerts its pathological effects through direct cellular toxicity. This manuscript will highlight the pathophysiology of cobalt toxicity in patients with metal-on-metal hip arthroplasties. Take home message: Patients with new or evolving hip symptoms with a prior history of THA warrant orthopaedic surgical evaluation. Increased awareness of the range of systemic symptoms associated with cobalt toxicity, coupled with prompt orthopaedic intervention, may forestall the development of further complications. Cite this article: Bone Joint J 2016;98-B:6–13.
Collapse
Affiliation(s)
- A. C. Cheung
- University of Toronto, 200
Elizabeth Street, Toronto, Ontario, M5G
2C4, Canada
| | - S. Banerjee
- Sinai Hospital of Baltimore, 2401 West
Belvedere Avenue, Baltimore, Maryland, USA
| | - J. J. Cherian
- Sinai Hospital of Baltimore, 2401 West
Belvedere Avenue, Baltimore, Maryland, USA
| | - F. Wong
- University of Toronto, 200
Elizabeth Street, Toronto, Ontario, M5G
2C4, Canada
| | - J. Butany
- University of Toronto, 200
Elizabeth Street, Toronto, Ontario, M5G
2C4, Canada
| | - C. Gilbert
- University of Toronto, 200
Elizabeth Street, Toronto, Ontario, M5G
2C4, Canada
| | - C. Overgaard
- University of Toronto, 200
Elizabeth Street, Toronto, Ontario, M5G
2C4, Canada
| | - K. Syed
- University of Toronto, 100
College Street Room 302, Toronto, Ontario, M5G
1L5, Canada
| | - M. G. Zywiel
- University of Toronto, 100
College Street Room 302, Toronto, Ontario, M5G
1L5, Canada
| | - J. J. Jacobs
- Rush
University, 1611 W. Harrison St., Suite
400, Chicago, IL60612, USA
| | - M. A. Mont
- Sinai Hospital of Baltimore, 2401 West
Belvedere Avenue, Baltimore, Maryland, USA
| |
Collapse
|
12
|
The Role of the Component Metals in the Toxicity of Military-Grade Tungsten Alloy. TOXICS 2015; 3:499-514. [PMID: 29051474 PMCID: PMC5606641 DOI: 10.3390/toxics3040499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 01/16/2023]
Abstract
Tungsten-based composites have been recommended as a suitable replacement for depleted uranium. Unfortunately, one of these mixtures composed of tungsten (W), nickel (Ni) and cobalt (Co) induced rhabdomyosarcomas when implanted into the leg muscle of laboratory rats and mice to simulate a shrapnel wound. The question arose as to whether the neoplastic effect of the mixture could be solely attributed to one or more of the metal components. To investigate this possibility, pellets with one or two of the component metals replaced with an identical amount of the biologically-inert metal tantalum (Ta) were manufactured and implanted into the quadriceps of B6C3F₁ mice. The mice were followed for two years to assess potential adverse health effects. Implantation with WTa, CoTa or WNiTa resulted in decreased survival, but not to the level reported for WNiCo. Sarcomas in the implanted muscle were found in 20% of the CoTa-implanted mice and 5% of the WTa- and WCoTa-implanted rats and mice, far below the 80% reported for WNiCo-implanted mice. The data obtained from this study suggested that no single metal is solely responsible for the neoplastic effects of WNiCo and that a synergistic effect of the three metals in tumor development was likely.
Collapse
|
13
|
Elemental tungsten, tungsten–nickel alloys and shotgun ammunition: resolving issues of their relative toxicity. EUR J WILDLIFE RES 2015. [DOI: 10.1007/s10344-015-0979-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Harris RM, Williams TD, Waring RH, Hodges NJ. Molecular basis of carcinogenicity of tungsten alloy particles. Toxicol Appl Pharmacol 2015; 283:223-33. [PMID: 25620057 DOI: 10.1016/j.taap.2015.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/10/2015] [Accepted: 01/13/2015] [Indexed: 11/18/2022]
Abstract
The tungsten alloy of 91% tungsten, 6% nickel and 3% cobalt (WNC 91-6-3) induces rhabdomyosarcoma when implanted into a rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91-6-3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91-6-3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91-6-3 occurred in rat but not in human cells. In both rat and human cells, the transcriptional response to WNC 91-6-3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97-2-1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97-2-1 elicited similar responses to WNC 91-6-3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes.
Collapse
Affiliation(s)
- Robert M Harris
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim D Williams
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Rosemary H Waring
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Nikolas J Hodges
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
15
|
Emond CA, Vergara VB, Lombardini ED, Mog SR, Kalinich JF. Induction of Rhabdomyosarcoma by Embedded Military-Grade Tungsten/Nickel/Cobalt Not by Tungsten/Nickel/Iron in the B6C3F1 Mouse. Int J Toxicol 2014; 34:44-54. [DOI: 10.1177/1091581814565038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Continued improvements in the ballistic properties of military munitions have led to metal formulations for which little are known about the long-term health effects. Previously we have shown that a military-grade tungsten alloy comprised of tungsten, nickel, and cobalt, when embedded into the leg muscle of F344 rats to simulate a fragment wound, induces highly aggressive metastatic rhabdomyosarcomas. An important follow-up when assessing a compound’s carcinogenic potential is to test it in a second rodent species. In this study, we assessed the health effects of embedded fragments of 2 military-grade tungsten alloys, tungsten/nickel/cobalt and tungsten/nickel/iron, in the B6C3F1 mouse. Implantation of tungsten/nickel/cobalt pellets into the quadriceps muscle resulted in the formation of a rhabdomyosarcoma around the pellet. Conversely, implantation of tungsten/nickel/iron did not result in tumor formation. Unlike what was seen in the rat model, the tumors induced by the tungsten/nickel/cobalt did not exhibit aggressive growth patterns and did not metastasize.
Collapse
Affiliation(s)
- Christy A. Emond
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - Vernieda B. Vergara
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - Eric D. Lombardini
- Division of Comparative Pathology, Veterinary Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
- Current address: Comparative Pathology and Research Veterinary Medicine Department, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Steven R. Mog
- Division of Comparative Pathology, Veterinary Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
- Current address: Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - John F. Kalinich
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
16
|
Kaur MP, Guggenheim EJ, Pulisciano C, Akbar S, Kershaw RM, Hodges NJ. Cellular accumulation of Cys326-OGG1 protein complexes under conditions of oxidative stress. Biochem Biophys Res Commun 2014; 447:12-8. [PMID: 24680828 PMCID: PMC4005915 DOI: 10.1016/j.bbrc.2014.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 01/03/2023]
Abstract
Novel use of BiFC to study a component of base excision repair pathway. First time that OGG1 complex formation has been observed inside of cells. Complexes restricted to the Cys326 variant and conditions of oxidative stress. Evidence supports role of OGG1 dimer formation in reduced repair capacity.
The common Ser326Cys polymorphism in the base excision repair protein 8-oxoguanine glycosylase 1 is associated with a reduced capacity to repair oxidative DNA damage particularly under conditions of intracellular oxidative stress and there is evidence that Cys326-OGG1 homozygous individuals have increased susceptibility to specific cancer types. Indirect biochemical studies have shown that reduced repair capacity is related to OGG1 redox modification and also possibly OGG1 dimer formation. In the current study we have used bimolecular fluorescence complementation to study for the first time a component of the base excision repair pathway and applied it to visualise accumulation of Cys326-OGG1 protein complexes in the native cellular environment. Fluorescence was observed both within and around the cell nucleus, was shown to be specific to cells expressing Cys326-OGG1 and only occurred in cells under conditions of cellular oxidative stress following depletion of intracellular glutathione levels by treatment with buthionine sulphoximine. Furthermore, OGG1 complex formation was inhibited by incubation of cells with the thiol reducing agents β-mercaptoethanol and dithiothreitol and the antioxidant dimethylsulfoxide indicating a causative role for oxidative stress in the formation of OGG1 cellular complexes. In conclusion, this study has provided for the first time evidence of redox sensitive Cys326-OGG1 protein accumulation in cells under conditions of intracellular oxidative stress that may be related to the previously reported reduced repair capacity of Cys326-OGG1 specifically under conditions of oxidative stress.
Collapse
Affiliation(s)
- M P Kaur
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - E J Guggenheim
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - C Pulisciano
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - S Akbar
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - R M Kershaw
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - N J Hodges
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
17
|
1H NMR spectroscopic analysis detects metabolic disturbances in rat urine on acute exposure to heavy metal tungsten alloy based metals salt. Chem Biol Interact 2014; 211:20-8. [DOI: 10.1016/j.cbi.2013.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/13/2013] [Accepted: 12/30/2013] [Indexed: 02/02/2023]
|
18
|
Tyrrell J, Galloway TS, Abo-Zaid G, Melzer D, Depledge MH, Osborne NJ. High urinary tungsten concentration is associated with stroke in the National Health and Nutrition Examination Survey 1999-2010. PLoS One 2013; 8:e77546. [PMID: 24244278 PMCID: PMC3823878 DOI: 10.1371/journal.pone.0077546] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/09/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In recent years there has been an exponential increase in tungsten demand, potentially increasing human exposure to the metal. Currently, the toxicology of tungsten is poorly understood, but mounting evidence suggests that both the elemental metal and its alloys have cytotoxic effects. Here, we investigate the association between tungsten and cardiovascular disease (CVD) or stroke using six waves of the National Health and Nutrition Examination Survey (NHANES). METHODS We investigated associations using crude and adjusted logistic regression models in a cohort of 8614 adults (18-74 years) with 193 reported stroke diagnoses and 428 reported diagnoses of CVD. We also stratified our data to characterize associations in a subset of younger individuals (18-50 years). RESULTS Elevated tungsten concentrations were strongly associated with an increase in the prevalence of stroke, independent of typical risk factors (Odds Ratio (OR): 1.66, 95% Confidence Interval (95% CI): 1.17, 2.34). The association between tungsten and stroke in the young age category was still evident (OR: 2.17, 95% CI: 1.33, 3.53). CONCLUSION This study represents the most comprehensive analysis of the human health effects of tungsten to date. Individuals with higher urinary tungsten concentrations have double the odds of reported stroke. We hypothesize that the pathological pathway resulting from tungsten exposure may involve oxidative stress.
Collapse
Affiliation(s)
- Jessica Tyrrell
- European Centre for Environment and Human Health, University of Exeter Medical School, Truro, United Kingdom
| | - Tamara S. Galloway
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Ghada Abo-Zaid
- European Centre for Environment and Human Health, University of Exeter Medical School, Truro, United Kingdom
| | - David Melzer
- Epidemiology and Public Health, University of Exeter Medical School, Exeter, United Kingdom
| | - Michael H. Depledge
- European Centre for Environment and Human Health, University of Exeter Medical School, Truro, United Kingdom
| | - Nicholas J. Osborne
- European Centre for Environment and Human Health, University of Exeter Medical School, Truro, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes. Toxicol Appl Pharmacol 2013; 271:196-205. [DOI: 10.1016/j.taap.2013.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 12/14/2022]
|
20
|
Sachdeva S, Kushwaha P, Flora SJS. Effects of sodium tungstate on oxidative stress enzymes in rats. Toxicol Mech Methods 2013; 23:519-27. [DOI: 10.3109/15376516.2013.787132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Schuster B, Roszell L, Murr L, Ramirez D, Demaree J, Klotz B, Rosencrance A, Dennis W, Bao W, Perkins E, Dillman J, Bannon D. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys. Toxicol Appl Pharmacol 2012; 265:128-38. [DOI: 10.1016/j.taap.2012.08.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/17/2012] [Accepted: 08/27/2012] [Indexed: 11/25/2022]
|
22
|
Shankar H, Cummings C. Ultrasound imaging of embedded shrapnel facilitates diagnosis and management of myofascial pain syndrome. Pain Pract 2012; 13:405-8. [PMID: 23094652 DOI: 10.1111/papr.12002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/05/2012] [Indexed: 12/01/2022]
Abstract
Trigger points can result from a variety of inciting events including muscle overuse, trauma, mechanical overload, and psychological stress. When the myofascial trigger points occur in cervical musculature, they have been known to cause headaches. Ultrasound imaging is being increasingly used for the diagnosis and interventional management of various painful conditions. A veteran was referred to the pain clinic for management of his severe headache following a gunshot wound to the neck with shrapnel embedded in the neck muscles a few years prior to presentation. He had no other comorbid conditions. Physical examination revealed a taut band in the neck. An ultrasound imaging of the neck over the taut band revealed the deformed shrapnel located within the levator scapulae muscle along with an associated trigger point in the same muscle. Ultrasound guided trigger point injection, followed by physical therapy resolved his symptoms. This is a unique report of embedded shrapnel and coexisting myofascial pain syndrome revealed by ultrasound imaging. The association between shrapnel and myofascial pain syndrome requires further investigation.
Collapse
Affiliation(s)
- Hariharan Shankar
- Department of Anesthesiology, Clement Zablocki VA Medical Center & Medical College of Wisconsin, Milwaukee, Wisconsin 53295, USA.
| | | |
Collapse
|
23
|
Comparison of size and geography of airborne tungsten particles in Fallon, Nevada, and Sweet Home, Oregon, with implications for public health. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2012; 2012:509458. [PMID: 22523506 PMCID: PMC3317226 DOI: 10.1155/2012/509458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/21/2011] [Indexed: 12/02/2022]
Abstract
To improve understanding of possible connections between airborne tungsten and public health, size and geography of airborne tungsten particles collected in Fallon, Nevada, and Sweet Home, Oregon, were compared. Both towns have industrial tungsten facilities, but only Fallon has experienced a cluster of childhood leukemia. Fallon and Sweet Home are similar to one another by their particles of airborne tungsten being generally small in size. Meteorologically, much, if not most, of residential Fallon is downwind of its hard metal facility for at least some fraction of time at the annual scale, whereas little of residential Sweet Home is downwind of its tungsten facility. Geographically, most Fallon residents potentially spend time daily within an environment containing elevated levels of airborne tungsten. In contrast, few Sweet Home residents potentially spend time daily within an airborne environment with elevated levels of airborne tungsten. Although it cannot be concluded from environmental data alone that elevated airborne tungsten causes childhood leukemia, the lack of excessive cancer in Sweet Home cannot logically be used to dismiss the possibility of airborne tungsten as a factor in the cluster of childhood leukemia in Fallon. Detailed modeling of all variables affecting airborne loadings of heavy metals would be needed to legitimately compare human exposures to airborne tungsten in Fallon and Sweet Home.
Collapse
|
24
|
Roedel EQ, Cafasso DE, Lee KW, Pierce LM. Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles. Toxicol Appl Pharmacol 2012; 259:74-86. [DOI: 10.1016/j.taap.2011.12.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 01/06/2023]
|
25
|
Witten ML, Sheppard PR, Witten BL. Tungsten toxicity. Chem Biol Interact 2011; 196:87-8. [PMID: 22182474 DOI: 10.1016/j.cbi.2011.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 11/22/2011] [Accepted: 12/03/2011] [Indexed: 11/28/2022]
Abstract
There is emerging evidence that tungsten has toxic health effects. We summarize the recent tungsten toxicity research in this short review. Tungsten is widely used in many commercial and military applications because it has the second highest melting temperature of any element. Consequently, it is important to elucidate the potential health effects of tungsten.
Collapse
Affiliation(s)
- Mark L Witten
- Odyssey Research Institute, 7032 East Rosewood Street, Tucson, AZ 85710-1236, United States
| | | | | |
Collapse
|
26
|
Patel E, Lynch C, Ruff V, Reynolds M. Co-exposure to nickel and cobalt chloride enhances cytotoxicity and oxidative stress in human lung epithelial cells. Toxicol Appl Pharmacol 2011; 258:367-75. [PMID: 22172632 DOI: 10.1016/j.taap.2011.11.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/23/2011] [Accepted: 11/25/2011] [Indexed: 12/19/2022]
Abstract
Nickel and cobalt are heavy metals found in land, water, and air that can enter the body primarily through the respiratory tract and accumulate to toxic levels. Nickel compounds are known to be carcinogenic to humans and animals, while cobalt compounds produce tumors in animals and are probably carcinogenic to humans. People working in industrial and manufacturing settings have an increased risk of exposure to these metals. The cytotoxicity of nickel and cobalt has individually been demonstrated; however, the underlying mechanisms of co-exposure to these heavy metals have not been explored. In this study, we investigated the effect of exposure of H460 human lung epithelial cells to nickel and cobalt, both alone and in combination, on cell survival, apoptotic mechanisms, and the generation of reactive oxygen species and double strand breaks. For simultaneous exposure, cells were exposed to a constant dose of 150 μM cobalt or nickel, which was found to be relatively nontoxic in single exposure experiments. We demonstrated that cells exposed simultaneously to cobalt and nickel exhibit a dose-dependent decrease in survival compared to the cells exposed to a single metal. The decrease in survival was the result of enhanced caspase 3 and 7 activation and cleavage of poly (ADP-ribose) polymerase. Co-exposure increased the production of ROS and the formation of double strand breaks. Pretreatment with N-acetyl cysteine alleviated the toxic responses. Collectively, this study demonstrates that co-exposure to cobalt and nickel is significantly more toxic than single exposure and that toxicity is related to the formation of ROS and DSB.
Collapse
Affiliation(s)
- Eshan Patel
- Department of Biology, Washington College, 300 Washington Ave., Chestertown, MD 21620, USA
| | | | | | | |
Collapse
|
27
|
Exposure to tungsten induces DNA damage and apoptosis in developing B lymphocytes. Leukemia 2011; 25:1900-4. [DOI: 10.1038/leu.2011.160] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|