1
|
Ratner MH, Farb DH. Probing the Neural Circuitry Targets of Neurotoxicants In Vivo Through High Density Silicon Probe Brain Implants. FRONTIERS IN TOXICOLOGY 2022; 4:836427. [PMID: 35548683 PMCID: PMC9081674 DOI: 10.3389/ftox.2022.836427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Adverse effects of drugs on the human nervous system are rarely possible to anticipate based on preclinical neurotoxicity data, thus propagating the centuries long single most important obstacle to drug discovery and development for disorders of the nervous system. An emerging body of evidence indicates that in vivo electrophysiology using chronically implanted high-density electrodes (ciHDE) in freely moving animals is a rigorous method with enhanced potential for use in translational research. In particular, the structure and function of the hippocampal trisynaptic circuit (HTC) is conserved from rodents to primates, including Homo sapiens, suggesting that the effects of therapeutic agents and other potential neurologically active agents, whether beneficial or adverse, are likely to translate across species when interrogated using a conserved neural circuitry platform. This review explores science advances in the rapidly moving field of in vivo ciHDE in animal models of learning and memory. For this reason we focus on the HTC, where substantial research has investigated neural circuitry level responses and specific behaviors that reflect memory permitting a test of the ground truth validity of the findings. Examples of changes in neural network activity induced by endogenous neurotoxicants associated with neurodegenerative diseases, as well as exogenous therapeutics, drugs, and neurotoxicants are presented. Several illustrative examples of relevant findings that involve longer range neural circuitry outside of the HTC are discussed. Lastly, the limitations of in vivo ciHDE as applied to preclinical neurotoxicology are discussed with a view toward leveraging circuitry level actions to enhance our ability to project the specificity of in vitro target engagement with the desired psychopharmacological or neurological outcome. At the same time, the goal of reducing or eliminating significant neurotoxic adverse events in human is the desired endpoint. We believe that this approach will lead to enhanced discovery of high value neuroactive therapeutics that target neural circuitry domains as their primary mechanism of action, thus enhancing their ultimate contribution toward discovery of precision therapeutics.
Collapse
Affiliation(s)
- Marcia H. Ratner
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Marcia H. Ratner,
| | - David H. Farb
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
2
|
Kavallieratos NG, Nika EP, Skourti A, Filintas CS, Goumenou TD. Short- and Long-Term Mortalities of Small and Large Larvae of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) on Concrete Surfaces Treated with Three Insecticides: Impact of Food. INSECTS 2022; 13:insects13040366. [PMID: 35447808 PMCID: PMC9027492 DOI: 10.3390/insects13040366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary In this study, we used etofenprox, deltamethrin, and the combination of piperonyl butoxide+acetamiprid+d-tetramethrin as surface treatments on concrete (with or without food) to evaluate the short- and long-term mortalities of the lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) small and large larvae. Concerning short-term mortality, etofenprox killed 97.8% and 80.0% of the small and large larvae, respectively, 7 days post-exposure on concrete without food. Deltamethrin caused complete (100.0%) mortality to small larvae without food (3 days post-exposure), small larvae with food, and large larvae without food (5 days post-exposure), and 98.9% mortality to large larvae with food after 5 days of exposure. Piperonyl butoxide+acetamiprid+d-tetramethrin killed all small larvae without food 5 days post-exposure. Concerning long-term mortality, all small larvae exposed to etofenprox died on concrete without food, while piperonyl butoxide+acetamiprid+d-tetramethrin caused 85.0% mortality to small larvae on concrete with food. Overall, deltamethrin was the most efficient active ingredient for the management of both small and large larvae of A. diaperinus. Abstract The lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) is an important stored-product pest for the poultry industry as it is a vector of dangerous pathogens for humans. In the present study, we evaluated the short- and long-term mortalities of small and large larvae of A. diaperinus when they were exposed to concrete-covered Petri dishes treated with etofenprox, deltamethrin, and the combination of piperonyl butoxide+acetamiprid+d-tetramethrin. Small and large larvae were exposed to each insecticide applied on concrete surfaces with or without food. The short-term mortality was recorded after 1 day, 3 days, 5 days, and 7 days, while the long-term mortality was recorded 7 days after the transport of the larvae alive to pesticide-free concrete-covered dishes. Regarding short-term mortality levels, 97.8% and 80.0% of the small and large larvae, that were exposed to etofenprox without food, died after 7 days of exposure, respectively. Concerning deltamethrin, all tested small larvae were killed after 3 days (without food) and 5 days (with food) of exposure. For large larvae, deltamethrin caused 98.9% (with food) and 100.0% (without food) mortality levels after 5 days of exposure. The combination of piperonyl butoxide+acetamiprid+d-tetramethrin caused high mortality levels to small larvae, i.e., 84.4% and 100.0% on dishes with and without food, respectively, but low to moderate mortality levels to large larvae that did not exceed 67.8% after 7 days of exposure. Long-term mortality varied vastly among the tested insecticides. Etofenprox killed 100.0% of the small larvae on concrete without food, but 24.0% of the large larvae exposed to concrete containing food. Deltamethrin did not provide long-term mortality to large larvae when food was present. Piperonyl butoxide+acetamiprid+d-tetramethrin caused mortality rates that overall varied from 33.5% (large larvae on concrete with food) to 85.0% (small larvae on concrete with food). In conclusion, deltamethrin killed almost all exposed larvae at exposures of ≤5 days, regardless of their size and the presence of food on the concrete.
Collapse
|
3
|
Boukouvala MC, Kavallieratos NG. Etofenprox as grain protectant for the management of five key stored-product insect pests. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21547-21560. [PMID: 34761320 DOI: 10.1007/s11356-021-17212-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Etofenprox is a broad spectrum pyrethroid insecticide with low toxicity to mammals, fishes, and honeybees. In the present study it was evaluated as grain protectant against Ephestia kuehniella (Lepidoptera: Pyralidae) larvae, Prostephanus truncatus (Coleoptera: Bostrychidae) adults, Rhyzopertha dominica (Coleoptera: Bostrychidae) adults, Sitophilus oryzae (Coleoptera: Curculionidae) adults, and Tribolium confusum (Coleoptera: Tenebrionidae) larvae and adults. Etofenprox was applied at 0.1, 1, 5, and 10 ppm on wheat, or maize in the case of P. truncatus, and tested at different combinations of temperatures (20, 25, and 30 °C) and relative humidity (RH) levels (55 and 75%). Progeny production of the tested coleopteran adult species was also assessed. For E. kuehniella, after 21 days of exposure 75.6% of the exposed larvae were killed at 20 and 30 °C/55% RH. Mortality of P. truncatus adults reached 99.4 and 97.8% at 10 ppm of 55 and 75% RH, respectively, at 30 °C. For S. oryzae, after 21 days of exposure, mortality was moderate at both RH levels, even at the elevate doses, reaching 66.7% at 10 ppm at 20°C/75% RH. All R. dominica adults died 21 days post-exposure at 30°C/55% RH and 25 or 30°C/75% RH at 10 ppm. For T. confusum adults, mortality was 81.1% 10 ppm 21 days post-exposure at 20°C/75% RH. Etofenprox killed 99.4% of the exposed T. confusum larvae at 10 ppm respectively 14 days post-exposure at 25°C/55% RH. Concerning progeny production, complete suppression was recorded for P. truncatus, R. dominica, and T. confusum in various combinations of temperature/RH. Our findings indicate that etofenprox is a well-promising insecticide for the protection of stored grains. However, its performance differs among insect species and abiotic conditions.
Collapse
Affiliation(s)
- Maria C Boukouvala
- Department of Crop Science, Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, 75 Iera Odos str., 11855, Athens, Attica, Greece.
| | - Nickolas G Kavallieratos
- Department of Crop Science, Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, 75 Iera Odos str., 11855, Athens, Attica, Greece.
| |
Collapse
|
4
|
Rogerio CB, Carvalho Abrantes D, de Oliveira JL, Ribeiro de Araújo D, Germano da Costa T, de Lima R, Fernandes Fraceto L. Cellulose Hydrogels Containing Geraniol and Icaridin Encapsulated in Zein Nanoparticles for Arbovirus Control. ACS APPLIED BIO MATERIALS 2022; 5:1273-1283. [PMID: 35167254 DOI: 10.1021/acsabm.1c01286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The most important arboviruses are those that cause dengue, yellow fever, chikungunya, and Zika, for which the main vector is the Aedes aegypti mosquito. The use of repellents is an important way to combat mosquito-borne pathogens. In this work, a safe method of protection employing a repellent was developed based on a slow release system composed of zein nanoparticles containing the active agents icaridin and geraniol incorporated in a cellulose gel matrix. Analyses were performed to characterize the nanoparticles and the gel formulation. The nanoparticles containing the repellents presented a hydrodynamic diameter of 229 ± 9 nm, polydispersity index of 0.38 ± 0.10, and zeta potential of +29.4 ± 0.8 mV. The efficiencies of encapsulation in the zein nanoparticles exceeded 85% for icaridin and 98% for geraniol. Rheological characterization of the gels containing nanoparticles and repellents showed that the viscoelastic characteristic of hydroxypropylmethylcellulose gel was preserved. Release tests demonstrated that the use of nanoparticles in combination with the gel matrix led to improved performance of the formulations. Atomic force microscopy analyses enabled visualization of the gel network containing the nanoparticles. Cytotoxicity assays using 3T3 and HaCaT cell cultures showed low toxicity profiles for the active agents and the nanoparticles. The results demonstrated the potential of these repellent systems to provide prolonged protection while decreasing toxicity.
Collapse
Affiliation(s)
- Carolina B Rogerio
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Daniele Carvalho Abrantes
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Jhones L de Oliveira
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo 14884-900, Brazil
| | | | - Tais Germano da Costa
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo 18023-000, Brazil
| | - Renata de Lima
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo 18023-000, Brazil
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| |
Collapse
|
5
|
Seralini GE, Jungers G. Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs). Toxicol Rep 2021; 8:1538-1557. [PMID: 34430217 PMCID: PMC8365328 DOI: 10.1016/j.toxrep.2021.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Endocrine disruption (ED) and endocrine disruptors (EDs) emerged as scientific concepts in 1995, after numerous chemical pollutants were found to be responsible for reproductive dysfunction. The World Health Organization established in the United Nations Environment Programme a list of materials, plasticizers, pesticides, and various pollutants synthesized from petrochemistry that impact not only reproduction, but also hormonal functions, directly or indirectly. Cells communicate via either chemical or electrical signals transmitted within the endocrine or nervous systems. To investigate whether hormone disruptors may also interfere directly or indirectly with the development or functioning of the nervous system through either a neuroendocrine or a more general mechanism, we examined the scientific literature to ascertain the effects of EDs on the nervous system, specifically in the categories of neurotoxicity, cognition, and behaviour. To date, we demonstrated that all of the 177 EDs identified internationally by WHO are known to have an impact on the nervous system. Furthermore, the precise mechanisms underlying this neurodisruption have also been established. It was previously believed that EDs primarily function via the thyroid. However, this study presents substantial evidence that approximately 80 % of EDs operate via other mechanisms. It thus outlines a novel concept: EDs are also neurodisruptors (NDs) and can be collectively termed endocrine and nervous disruptors (ENDs). Most of ENDs are derived from petroleum residues, and their various mechanisms of action are similar to those of "spam" in electronic communications technologies. Therefore, ENDs can be considered as an instance of spam in a biological context.
Collapse
Affiliation(s)
- Gilles-Eric Seralini
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| | - Gerald Jungers
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| |
Collapse
|
6
|
Boukouvala MC, Kavallieratos NG. Evaluation of Two Formulations of Chlorantraniliprole as Maize Protectants for the Management of Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae). INSECTS 2021; 12:insects12030194. [PMID: 33668782 PMCID: PMC7996257 DOI: 10.3390/insects12030194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae) is a major insect pest of stored maize and dried tubers of cassava, but also a wood-boring species. In the current study, we evaluated two chlorantraniliprole formulations, WG (wettable granule) and SC (suspension concentrate), as maize protectants against P. truncatus adults at 20, 25 and 30 °C. Both formulations performed similarly. The highest mortality was noted in chlorantraniliprole WG, at 10 ppm and 30 °C (98.9%), followed by chlorantraniliprole SC (96.1%), at the same dose and temperature. WG formulation was more effective at 10 ppm and 25 °C (92.8%) than SC formulation (89.4%). No progeny production was noted on maize treated the WG formulation at 20 and 30 °C. The SC formulation caused complete offspring suppression at 10 ppm at all three tested temperatures. The results indicate that chlorantraniliprole is an effective compound with a high insecticidal activity against T. truncatus that depends on temperature, dose and exposure. Abstract The larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae) is one of the most destructive insect pests of stored maize and dried tubers of cassava, and a wood-boring species. In the present study, we examined two chlorantraniliprole formulations, WG (wettable granule) with 350 g/kg active ingredient (a.i.) and SC (suspension concentrate) with 200 g/L a.i., as maize protectants against P. truncatus adults. Chlorantraniliprole formulations were applied as solutions at 0.01, 0.1, 1 and 10 ppm, and tested at 20, 25 and 30 °C. Both formulations performed similarly. After 7 days of exposure, the overall mortality provided by both formulations was very low (<17%). Seven days later, mortality was remarkably increased on maize treated with 1 and 10 ppm at 25 and 30 °C for both formulations. The highest mortality was noted in chlorantraniliprole WG, at 10 ppm and 30 °C (98.9%), followed by chlorantraniliprole SC (96.1%), at the same dose and temperature. WG formulation was more effective at 10 ppm and 25 °C (92.8%) than SC formulation (89.4%). No progeny production was noted on maize treated with the WG formulation at 20 and 30 °C. The SC formulation caused complete offspring suppression at 10 ppm at all three tested temperatures. The results of the present work indicate that chlorantraniliprole is an effective compound with a high insecticidal activity against T. truncatus on stored maize that depends on temperature, dose and exposure interval. The fact that chlorantraniliprole is a broad-spectrum insecticide, exhibiting low toxicity to mammals and beneficial arthropods, could be a valuable management tool in storage facilities.
Collapse
|
7
|
Tsatsakis A, Docea AO, Constantin C, Calina D, Zlatian O, Nikolouzakis TK, Stivaktakis PD, Kalogeraki A, Liesivuori J, Tzanakakis G, Neagu M. Genotoxic, cytotoxic, and cytopathological effects in rats exposed for 18 months to a mixture of 13 chemicals in doses below NOAEL levels. Toxicol Lett 2019; 316:154-170. [PMID: 31521832 DOI: 10.1016/j.toxlet.2019.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022]
Abstract
The present study investigates the genotoxic and cytotoxic effects of long term exposure to low doses of a mixture consisting of methomyl, triadimefon, dimethoate, glyphosate, carbaryl, methyl parathion, aspartame, sodium benzoate, EDTA, ethylparaben, buthylparaben, bisphenol A and acacia gum in rats. Four groups of ten Sprangue Dawley rats (5 males and 5 females per group) were exposed for 18 months to the mixture in doses of 0xNOAEL, 0.0025xNOAEL, 0.01xNOAEL and 0.05xNOAEL (mg/kg bw/day). After 18 months of exposure, the rats were sacrificed and their organs were harvested. Micronuclei frequency was evaluated in bone marrow erythrocytes whereas the organs were cytopathologically examined by the touch preparation technique. The exposure to the mixture caused a genotoxic effect identified only in females. Cytopathological examination showed specific alterations of tissue organization in a tissue-type dependent manner. The observed effects were dose-dependent and correlated to various tissue parameters. Specifically, testes samples revealed degenerative and cellularity disorders, liver hepatocytes exhibited decreased glycogen deposition whereas degenerative changes were present in gastric cells. Lung tissue presented increased inflammatory cells infiltration and alveolar macrophages with enhanced phagocytic activity, whereas brain tissue exhibited changes in glial and astrocyte cells' numbers. In conclusion, exposure to very low doses of the tested mixture for 18 months induces genotoxic effects as well as monotonic cytotoxic effects in a tissue-dependent manner.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece; Spin-Off Toxplus S.A., 71601, Heraklion, Greece.
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | - Carolina Constantin
- Department of Immunology, Victor Babes National Institute of Pathology, Bucharest, Romania; Department of Pathology Dept. Colentina Clinical Hospital, Bucharest, Romania.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | - Ovidiu Zlatian
- Department of Microbiology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | | | - Polychronis D Stivaktakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece.
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, Heraklion, Crete, Greece.
| | | | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003, Heraklion, Greece.
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, Bucharest, Romania; Department of Pathology Dept. Colentina Clinical Hospital, Bucharest, Romania.
| |
Collapse
|
8
|
Vasylieva N, Barnych B, Wan D, El-Sheikh ESA, Nguyen HM, Wulff H, McMahen R, Strynar M, Gee SJ, Hammock BD. Hydroxy-fipronil is a new urinary biomarker of exposure to fipronil. ENVIRONMENT INTERNATIONAL 2017; 103:91-98. [PMID: 28343720 PMCID: PMC5432128 DOI: 10.1016/j.envint.2017.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 06/01/2023]
Abstract
Occupational medical surveillance is highly desirable in manufacturing facilities where exposure to chemicals is significant. The insecticide fipronil is generally considered safe for humans but with increasing use, exposure to fipronil is of concern. Identification of urinary metabolites of fipronil may allow development of affordable, cheap and rapid procedures for human exposure evaluation. In this study we developed a fast and easy approach for synthesis of hydroxy-fipronil, a potential urinary metabolite of fipronil. This standard was used to develop a sensitive analytical LC-MS/MS method with a limit of quantification (LOQ) of 0.4ng/mL. Fipronil sulfone, a known metabolite, and hydroxy-fipronil were quantified in urine samples from rats treated with a fipronil containing diet. Fipronil sulfone concentration centered around 20ng/mL, while the concentration of hydroxy-fipronil was dose-dependent ranging in 10-10,000ng/mL and thus being a more sensitive marker of fipronil exposure. A fipronil immunoassay with cross-reactivity to hydroxy-fipronil showed a good correlation in signal intensity with LC-MS data. It was also used to demonstrate the applicability of the method for sample screening in the evaluation of exposure levels.
Collapse
Affiliation(s)
- Natalia Vasylieva
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Bogdan Barnych
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Debin Wan
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | | | - Hai M Nguyen
- Department of Pharmacology, University of California Davis, Davis, CA 95616, United States
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, CA 95616, United States
| | - Rebecca McMahen
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, United States
| | - Mark Strynar
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, United States
| | - Shirley J Gee
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
9
|
Huo QW, Tabassum S, Misrani AA, Long C. Recording EEG in Freely Moving Neonatal Rats Using a Novel Method. J Vis Exp 2017. [PMID: 28605362 DOI: 10.3791/55489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
EEG is a useful method to detect electrical activity in the brain. Moreover, it is a widely used diagnostic tool for various neurological conditions, such as epilepsy and neurodegenerative disorders. However, it is technically difficult to obtain EEG recordings in neonates as it requires specialized handling and great care. Here, we present a novel method to record EEG in neonatal rat pups (P8-P15). We designed a simple and reliable electrode using computer pin loci; it can be easily implanted into the skull of a rat pup to record high-quality EEG signals in the normal and epileptic brain. Pups were given an intraperitoneal (i.p.) injection of the neurotoxin kainic acid (KA) to induce epileptic seizures. The surgical implantation performed in this procedure is less expensive than other EEG procedures for neonates. This method allows one to record high-quality and stable EEG signals for more than 1 week. Furthermore, this procedure can also be applied to adult rats and mice to study epilepsy or other neurological disorders.
Collapse
Affiliation(s)
- Qing-Wei Huo
- School of Life Sciences, South China Normal University
| | | | | | - Cheng Long
- School of Life Sciences, South China Normal University; Brain Science Institute, South China Normal University;
| |
Collapse
|
10
|
Acute Exposure to Pacific Ciguatoxin Reduces Electroencephalogram Activity and Disrupts Neurotransmitter Metabolic Pathways in Motor Cortex. Mol Neurobiol 2016; 54:5590-5603. [PMID: 27613284 DOI: 10.1007/s12035-016-0093-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022]
Abstract
Ciguatera fish poisoning (CFP) is a common human food poisoning caused by consumption of ciguatoxin (CTX)-contaminated fish affecting over 50,000 people worldwide each year. CTXs are classified depending on their origin from the Pacific (P-CTXs), Indian Ocean (I-CTXs), and Caribbean (C-CTXs). P-CTX-1 is the most toxic CTX known and the major source of CFP causing an array of neurological symptoms. Neurological symptoms in some CFP patients last for several months or years; however, the underlying electrophysiological properties of acute exposure to CTXs remain unknown. Here, we used CTX purified from ciguatera fish sourced in the Pacific Ocean (P-CTX-1). Delta and theta electroencephalography (EEG) activity was reduced remarkably in 2 h and returned to normal in 6 h after a single exposure. However, second exposure to P-CTX-1 induced not only a further reduction in EEG activities but also a 2-week delay in returning to baseline EEG values. Ciguatoxicity was detected in the brain hours after the first and second exposure by mouse neuroblastoma assay. The spontaneous firing rate of single motor cortex neuron was reduced significantly measured by single-unit recording with high spatial resolution. Expression profile study of neurotransmitters using targeted profiling approach based on liquid chromatography-tandem mass spectrometry revealed an imbalance between excitatory and inhibitory neurotransmitters in the motor cortex. Our study provides a possible link between the brain oscillations and neurotransmitter release after acute exposure to P-CTX-1. Identification of EEG signatures and major metabolic pathways affected by P-CTX-1 provides new insight into potential biomarker development and therapeutic interventions.
Collapse
|
11
|
McMahen RL, Strynar MJ, Dagnino S, Herr DW, Moser VC, Garantziotis S, Andersen EM, Freeborn DL, McMillan L, Lindstrom AB. Identification of fipronil metabolites by time-of-flight mass spectrometry for application in a human exposure study. ENVIRONMENT INTERNATIONAL 2015; 78:16-23. [PMID: 25687022 PMCID: PMC5247556 DOI: 10.1016/j.envint.2015.01.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 05/04/2023]
Abstract
Fipronil is a phenylpyrazole insecticide commonly used in residential and agricultural applications. To understand more about the potential risks for human exposure associated with fipronil, urine and serum from dosed Long Evans adult rats (5 and 10mg/kg bw) were analyzed to identify metabolites as potential biomarkers for use in human biomonitoring studies. Urine from treated rats was found to contain seven unique metabolites, two of which had not been previously reported-M4 and M7 which were putatively identified as a nitroso compound and an imine, respectively. Fipronil sulfone was confirmed to be the primary metabolite in rat serum. The fipronil metabolites identified in the respective matrices were then evaluated in matched human urine (n=84) and serum (n=96) samples from volunteers with no known pesticide exposures. Although no fipronil or metabolites were detected in human urine, fipronil sulfone was present in the serum of approximately 25% of the individuals at concentrations ranging from 0.1 to 4ng/mL. These results indicate that many fipronil metabolites are produced following exposures in rats and that fipronil sulfone is a useful biomarker in human serum. Furthermore, human exposure to fipronil may occur regularly and require more extensive characterization.
Collapse
Affiliation(s)
- Rebecca L McMahen
- ORISE fellow at the United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, United States
| | - Mark J Strynar
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, United States.
| | - Sonia Dagnino
- ORISE fellow at the United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, United States
| | - David W Herr
- United States Environmental Protection Agency, National Health and Environmental Effects Research Lab, Research Triangle Park, NC, United States
| | - Virginia C Moser
- United States Environmental Protection Agency, National Health and Environmental Effects Research Lab, Research Triangle Park, NC, United States
| | - Stavros Garantziotis
- National Institute for Environmental and Health Sciences, Research Triangle Park, NC, United States
| | - Erik M Andersen
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, United States
| | - Danielle L Freeborn
- United States Environmental Protection Agency, National Health and Environmental Effects Research Lab, Research Triangle Park, NC, United States
| | - Larry McMillan
- National Caucus and Center on Black Aged Employee, United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, United States
| | - Andrew B Lindstrom
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, United States
| |
Collapse
|
12
|
Moser VC, Stewart N, Freeborn DL, Crooks J, MacMillan DK, Hedge JM, Wood CE, McMahen RL, Strynar MJ, Herr DW. Assessment of serum biomarkers in rats after exposure to pesticides of different chemical classes. Toxicol Appl Pharmacol 2014; 282:161-74. [PMID: 25497286 DOI: 10.1016/j.taap.2014.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/03/2014] [Accepted: 11/26/2014] [Indexed: 11/25/2022]
Abstract
There is increasing emphasis on the use of biomarkers of adverse outcomes in safety assessment and translational research. We evaluated serum biomarkers and targeted metabolite profiles after exposure to pesticides (permethrin, deltamethrin, imidacloprid, carbaryl, triadimefon, fipronil) with different neurotoxic actions. Adult male Long-Evans rats were evaluated after single exposure to vehicle or one of two doses of each pesticide at the time of peak effect. The doses were selected to produce similar magnitude of behavioral effects across chemicals. Serum or plasma was analyzed using commercial cytokine/protein panels and targeted metabolomics. Additional studies of fipronil used lower doses (lacking behavioral effects), singly or for 14 days, and included additional markers of exposure and biological activity. Biomarker profiles varied in the number of altered analytes and patterns of change across pesticide classes, and discriminant analysis could separate treatment groups from control. Low doses of fipronil produced greater effects when given for 14 days compared to a single dose. Changes in thyroid hormones and relative amounts of fipronil and its sulfone metabolite also differed between the dosing regimens. Most cytokine changes reflected alterations in inflammatory responses, hormone levels, and products of phospholipid, fatty acid, and amino acid metabolism. These findings demonstrate distinct blood-based analyte profiles across pesticide classes, dose levels, and exposure duration. These results show promise for detailed analyses of these biomarkers and their linkages to biological pathways.
Collapse
Affiliation(s)
- Virginia C Moser
- Neurotoxicology Branch/Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Nicholas Stewart
- Neurotoxicology Branch/Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Danielle L Freeborn
- Neurotoxicology Branch/Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - James Crooks
- Analytical Chemistry Research Core/Research Cores Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Denise K MacMillan
- Analytical Chemistry Research Core/Research Cores Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Joan M Hedge
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Charles E Wood
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Rebecca L McMahen
- ORISE fellow, Human Exposure and Atmospheric Sciences Division, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Mark J Strynar
- Human Exposure and Atmospheric Sciences Division, National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - David W Herr
- Neurotoxicology Branch/Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|