1
|
Mimura I, Chen Z, Natarajan R. Epigenetic alterations and memory: key players in the development/progression of chronic kidney disease promoted by acute kidney injury and diabetes. Kidney Int 2024:S0085-2538(24)00918-9. [PMID: 39725223 DOI: 10.1016/j.kint.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 12/28/2024]
Abstract
Chronic kidney disease (CKD) is a highly prevalent global public health issue and can progress to renal failure. Survivors of acute kidney injury (AKI) have an increased risk of progressing to CKD by 8.8-fold and kidney failure by 3.1-fold. Further, 20% to 40% of individuals with diabetes will develop CKD, also known as diabetic kidney disease (DKD). Thus, preventing these kidney diseases can positively impact quality-of-life and life-expectancy outcomes for affected individuals. Frequent episodes of hyperglycemia and renal hypoxia are implicated in the pathophysiology of CKD. Prior periods of hyperglycemia/uncontrolled diabetes can result in development/progression of DKD even after achieving normoglycemia, a phenomenon known as metabolic memory or legacy effect. Similarly, in AKI, hypoxic memory is stored in renal cells even after recovery from the initial AKI episode and can transition to CKD. Epigenetic mechanisms involving DNA methylation, chromatin histone post-translational modifications, and noncoding RNAs are implicated in both metabolic and hypoxic memory, collectively known as "epigenetic memory." This epigenetic memory is generally reversible and provides a therapeutic avenue to ameliorate persistent disease progression due to hyperglycemia and hypoxia and prevent/ameliorate CKD progression. Indeed, therapeutic strategies targeting epigenetic memory are effective at preventing CKD development/progression in experimental models of AKI and DKD. Here, we review the latest in-depth evidence for epigenetic features in DKD and AKI, and in epigenetic memories of AKI-to-CKD transition or DKD development and progression, followed by translational and clinical implications of these epigenetic changes for the treatment of these widespread kidney disorders.
Collapse
Affiliation(s)
- Imari Mimura
- Division of Nephrology and Endocrinology, the University of Tokyo School of Medicine, Tokyo Japan.
| | - Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA.
| |
Collapse
|
2
|
Thompson LE, Joy MS. Understanding Cisplatin Pharmacokinetics and Toxicodynamics to Predict and Prevent Kidney Injury. J Pharmacol Exp Ther 2024; 391:399-414. [PMID: 39322416 PMCID: PMC11585315 DOI: 10.1124/jpet.124.002287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Cisplatin is a common platinum-based chemotherapeutic that induces acute kidney injury (AKI) in about 30% of patients. Pharmacokinetic/toxicodynamic (PKTD) models of cisplatin-induced AKI have been used to understand risk factors and evaluate potential mitigation strategies. While both traditional clinical biomarkers of kidney function [e.g., serum creatinine (SCr), blood urea nitrogen (BUN), estimated glomerular filtration rate (eGFR), and creatinine clearance (CrCl)] and newer subclinical biomarkers of kidney injury [e.g., urinary kidney injury molecule 1 (KIM-1), beta-2 microglobulin (B2M), neutrophil gelatinase-associated lipocalin (NGAL), calbindin, etc.] can be used to detect cisplatin-induced AKI, published PKTD models are limited to using only traditional clinical biomarkers. Previously identified risk factors for cisplatin nephrotoxicity have included dose, age, sex, race, body surface area, genetics, concomitant medications, and comorbid conditions. However, the relationships between concentrations and the pharmacokinetics (PK) of platinum and biomarkers of kidney injury have not been well elucidated. This review discusses the evaluation of cisplatin-induced nephrotoxicity in clinical studies, mouse models, and in vitro models, and examines the available human PK and toxicodynamic (TD) data. Improved understanding of the relationships between platinum PK and TD, in the presence of identified risk factors, will enable the prediction and prevention of cisplatin kidney injury. SIGNIFICANCE STATEMENT: As cisplatin treatment continues to cause AKI in a third of patients, it is critical to improve the understanding of the relationships between platinum PK and nephrotoxicity as assessed by traditional clinical and contemporary subclinical TD markers of kidney injury. Prediction and prevention of cisplatin-induced nephrotoxicity will be advanced by the evolving development of PKTD models that incorporate kidney injury biomarkers with enhanced sensitivity and include covariates that can impact risk of developing cisplatin-induced AKI.
Collapse
Affiliation(s)
- Lauren E Thompson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (L.E.T., M.S.J.), University of Colorado Cancer Center (M.S.J.), and Division of Renal Diseases and Hypertension (M.S.J.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (L.E.T., M.S.J.), University of Colorado Cancer Center (M.S.J.), and Division of Renal Diseases and Hypertension (M.S.J.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
3
|
Abdel-Wahab BA, Zafaar D, Habeeb MS, El-Shoura EAM. Nicorandil mitigates arsenic trioxide-induced lung injury via modulating vital signalling pathways SIRT1/PGC-1α/TFAM, JAK1/STAT3, and miRNA-132 expression. Br J Pharmacol 2024; 181:3215-3231. [PMID: 38741475 DOI: 10.1111/bph.16414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/13/2024] [Accepted: 03/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Nicorandil, a selective opener of potassium channels, used to treat angina, has drawn attention for its potential in mitigating lung injury, positioning it as a promising therapeutic approach to treat drug-induced lung toxicity. This study aimed to explore the protective role of nicorandil in arsenic trioxide (ATO)-induced lung injury and to elucidate the underlying mechanistic pathways. EXPERIMENTAL APPROACH We assessed the effects of nicorandil (15 mg·kg-1, p.o.) in a rat model of pulmonary injury induced by ATO (5 mg·kg-1, i.p.). The assessment included oxidative stress biomarkers, inflammatory cytokine levels, and other biomarkers, including sirtuin-1, sirtuin-3, STAT3, TFAM, and JAK in lung tissue. Histological examination using H&E staining and molecular investigations using western blotting and PCR techniques were conducted. KEY RESULTS In our model of lung injury, treatment with nicorandil ameliorated pathological changes as seen with H&E staining, reduced tissue levels of toxicity markers, and exerted significant antioxidant and anti-inflammatory actions. On a molecular level, treatment with nicorandil down-regulated JAK, STAT3, PPARγ, Nrf2, VEGF, p53, and micro-RNA 132 while up-regulating Sirt1, 3, TFAM, AMPK, and ERR-α in lung tissue. CONCLUSIONS AND IMPLICATIONS The results presented here show nicorandil as a significant agent in attenuating lung injury induced by ATO in a rodent model. Nonetheless, further clinical studies are warranted to strengthen these findings.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Dalia Zafaar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University of Technology, and Information, Cairo, Egypt
| | | | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| |
Collapse
|
4
|
Zhong S, Ma X, Jiang Y, Qiao Y, Zeng M, Huang L, Huang G, Zhao Y, Chen X. MicroRNA sequencing analysis reveals injury-induced immune responses of Scylla paramamosain against cheliped autotomy. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109055. [PMID: 37666314 DOI: 10.1016/j.fsi.2023.109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
During pond culture or intensive culture system of crabs (mainly Eriocheir sinensis, Portunus trituberculatus and Scylla paramamosain), high-density farming has typically contributed to a higher limb autotomy level in juvenile animals, especially in S. paramamosain which has a high level of cannibalism. Due to the high limb autotomy level, the survival and growth rates in S. paramamosain farming are restricted, which limit the growth of the mud crab farming industry. MicroRNAs (miRNAs) are small noncoding RNAs that regulate a series of biological processes including innate immune responses by post-transcriptional suppression of their target genes. MiRNAs are believed to be crucial for innate immune process of host wound healing. Many miRNAs have been verified to be required in host immune responses to repair wound and to defense pathogen after tissue damage. However, to our best knowledge, the miRNAs functions of crustacean innate immune reactions against injury induced by limb autotomy have not been studied yet. Here in this study, for the first time, miRNAs involved in the S. paramamosain immune reactions against injury induced by cheliped autotomy were obtained by high-throughput sequencing. A total of 575 miRNAs (518 known miRNAs and 57 novel predicted miRNAs) were obtained, of which 141 differentially expressed microRNAs (93 up-regulated microRNAs and 48 down-regulated microRNAs) were revealed to be modified against cheliped autotomy, and the qPCR results of randomly selected miRNAs confirmed the expression patterns in the miRNAs sequencing data. Numerous immune-related target genes associated with innate immune system were mediated by miRNAs to induce host humoral immune and cellular immune defense to minimize acute physical damage. Furthermore, the genes expression in hemolymph coagulation and melanization pathways, as well as Toll and Imd signaling pathways were mediated by miRNAs to activate host immune responses including melanization and antimicrobial peptides for rapid wound healing and killing invaded pathogens. These results will help to understand injury-induced immune responses in crabs and to develop an effective control strategy of autotomy rate in crabs farming.
Collapse
Affiliation(s)
- Shengping Zhong
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Engineering Technology Research Center for Marine Aquaculture, Guangxi Institute of Oceanology Co., Ltd., Beihai, 536000, China.
| | - Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Yan Jiang
- Guangxi Engineering Technology Research Center for Marine Aquaculture, Guangxi Institute of Oceanology Co., Ltd., Beihai, 536000, China
| | - Ying Qiao
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Mengqing Zeng
- Guangxi Engineering Technology Research Center for Marine Aquaculture, Guangxi Institute of Oceanology Co., Ltd., Beihai, 536000, China
| | - Lianghua Huang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Guoqiang Huang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530200, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530200, China.
| |
Collapse
|
5
|
Ejaz M, Usman SM, Amir S, Khan MJ. Holistic expression of miR-17-92 cluster in obesity, kidney diseases, cardiovascular diseases, and diabetes. Mol Biol Rep 2023; 50:6913-6925. [PMID: 37329480 DOI: 10.1007/s11033-023-08549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
miR-17-92 cluster encodes six micro RNAs (miRNAs) and plays a crucial role in the regulation of various cellular processes. Aberrant expression of this cluster may result in the onset of several diseases. Initially, the role of miR-17-92 cluster in tumorigenesis was discovered but recent research has also uncovered its role in other diseases. Members of the cluster may serve as potential biomarkers in the prognosis, diagnosis, and treatment of several diseases and their complications. In this article, we have reviewed the recent research carried out on the expression pattern of miR-17-92 cluster in non-communicable diseases i.e., obesity, cardiovascular diseases (CVD), kidney diseases (KD) and diabetes mellitus (DM). We examined miR-17-92 role in pathological processes and their potential importance as biomarkers. Each member of the cluster miR-17-92 was upregulated in obesity. miR-18a, miR-19b-3p, miR20a, and miR92a were significantly upregulated in CVD. An equal fraction of the cluster was dysregulated (upregulated and downregulated) in diabetes; however, miR-17-92 was downregulated in most studies on CKD.
Collapse
Affiliation(s)
- Maheen Ejaz
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad Islamabad, Islamabad, 45550, Pakistan
| | - Syed Mohammad Usman
- Department of Biochemistry, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Saira Amir
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad Islamabad, Islamabad, 45550, Pakistan
| | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad Islamabad, Islamabad, 45550, Pakistan.
| |
Collapse
|
6
|
Fang S, Wang T, Weng L, Han X, Zheng R, Zhang H. Lung cancer-derived exosomal miR-132-3p contributed to interstitial lung disease development. World J Surg Oncol 2023; 21:205. [PMID: 37454094 DOI: 10.1186/s12957-023-03095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
PURPOSE Interstitial lung diseases (ILDs) have high morbidity and mortality and poor prognosis. The significance of microRNAs (miRNAs) was highlighted in ILDs development. Currently, we attempted to confirm the functions of lung cancer-derived exosomal miR-132-3p and reveal the underlying mechanism. METHOD Characteristics of exosomes were verified by transmission electron microscope (TEM), nanoparticle tracking analysis, and Western blot assay. Exosome uptake for the normal human lung fibroblasts (NHLF) was assessed using a PKH67 staining assay. MTT and colony formation assays were applied to examine the proliferation abilities of NHLF. The interaction between miR-132-3p and sprouty1 (SPRY1) was confirmed by a luciferase reporter assay. RESULTS Lung cancer-derived exosomes promoted normal human lung fibroblast activation. Exosome inhibitor GW4869 reversed the effects of Exo on NHLF. Subsequently, miR-132-3p in lung cancer-derived exosomes activated the normal human lung fibroblast and promoted interstitial lung disease development ex vivo. Next, SPRY1 was verified to be the binding protein of miR-132-3p, and sh-SPRY1 abrogated the effects of the miR-132-3p inhibitor on NHLF. CONCLUSION Exosomal miR-132-3p from A549 cells accelerated the development of interstitial lung disease through binding to SPRY1, which might serve as an important target for ILDs.
Collapse
Affiliation(s)
- Sufang Fang
- Respiratory Department, Fuzhou Pulmonary Hospital of Fujian Province, the Teaching Hospital of Fujian Medical University, Fuzhou, 350008, China
| | - Ting Wang
- Respiratory Department, Fuzhou Pulmonary Hospital of Fujian Province, the Teaching Hospital of Fujian Medical University, Fuzhou, 350008, China
| | - Ling Weng
- Respiratory Department, Fuzhou Pulmonary Hospital of Fujian Province, the Teaching Hospital of Fujian Medical University, Fuzhou, 350008, China
| | - Ximei Han
- Respiratory Department, Fuzhou Pulmonary Hospital of Fujian Province, the Teaching Hospital of Fujian Medical University, Fuzhou, 350008, China
| | - Rongshan Zheng
- Respiratory Department, Fuzhou Pulmonary Hospital of Fujian Province, the Teaching Hospital of Fujian Medical University, Fuzhou, 350008, China
| | - Hongying Zhang
- Respiratory Department, Fuzhou Pulmonary Hospital of Fujian Province, the Teaching Hospital of Fujian Medical University, Fuzhou, 350008, China.
| |
Collapse
|
7
|
Williams AC, Singh V, Liu P, Kriegel AJ. Liquid Biopsies Poorly miRror Renal Ischemia-Reperfusion Injury. Noncoding RNA 2023; 9:ncrna9020024. [PMID: 37104006 PMCID: PMC10141369 DOI: 10.3390/ncrna9020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Acute kidney injury (AKI) is the rapid reduction in renal function. It is often difficult to detect at an early stage. Biofluid microRNAs (miRs) have been proposed as novel biomarkers due to their regulatory role in renal pathophysiology. The goal of this study was to determine the overlap in AKI miRNA profiles in the renal cortex, urine, and plasma samples collected from a rat model of ischemia-reperfusion (IR)-induced AKI. Bilateral renal ischemia was induced by clamping the renal pedicles for 30 min, followed by reperfusion. Urine was then collected over 24 h, followed by terminal blood and tissue collection for small RNA profiling. Differentially expressed (IR vs. sham) miRs within the urine and renal cortex sample types demonstrated a strong correlation in normalized abundance regardless of injury (IR and sham: R2 = 0.8710 and 0.9716, respectively). Relatively few miRs were differentially expressed in multiple samples. Further, there were no differentially expressed miRs with clinically relevant sequence conservation common between renal cortex and urine samples. This project highlights the need for a comprehensive analysis of potential miR biomarkers, including analysis of pathological tissues and biofluids, with the goal of identifying the cellular origin of altered miRs. Analysis at earlier timepoints is needed to further evaluate clinical potential.
Collapse
Affiliation(s)
- Adaysha C. Williams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vaishali Singh
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Alison J. Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Yang Q, Wang X, Li H, Yin X, Liu H, Hu W, Qing Y, Ding L, Yang L, Li Z, Sun H. Integrative analysis of renal microRNA and mRNA to identify hub genes and pivotal pathways associated with cyclosporine-induced acute kidney injury in mice. Hum Exp Toxicol 2023; 42:9603271231215499. [PMID: 37950702 DOI: 10.1177/09603271231215499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
Cyclosporine (CsA) is an immunosuppressive agent that often causes acute kidney injury (AKI) in children. The specific mechanisms underlying CsA-induced AKI are currently unknown. This study used an integrated network analysis of microRNA (miRNA) and mRNA expression profiles, biochemical and pathological analyses to further investigate these potential mechanisms of CsA-induced AKI. Small RNA sequence analysis identified 25 differentially expressed miRNAs, RNA sequencing analysis identified 4,109 differentially expressed mRNAs. We obtained a total of 4,367 target genes from the 25 differentially expressed miRNAs based on three algorithms, including the Mirdb, Mirtarbase, and TargetScan. 971 target genes overlapped between the 4,367 target genes and 4,109 differentially expressed mRNAs were identified for further bioinformatics analysis. Finally, 30 hub genes and two main modules were recognized. Functional enrichment analysis of 30 hub genes indicated that inflammation and epithelial-mesenchymal transition (EMT) related genes were mainly concentrated together. Pathway analysis revealed that the PI3K-Akt signaling pathway plays an integral role in CsA-induced AKI. Network analysis identified 3 important miRNAs, mmu-miR-17b-5p, mmu-miR-19b-3p, and mmu-mir-423-5p that may further promote the development of inflammatory responses and EMT by mediating a complex network of factors. Our research provides a clearer understanding the molecular mechanism of this specific drug-induced AKI by CsA use, which is useful for discovering potential targets for gene therapies, and drug development in CsA-induced AKI.
Collapse
Affiliation(s)
- Qiaoling Yang
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xunjiang Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjing Li
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatrics, Hunan Children's Hospital, Changsha, China
| | - Xuedong Yin
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongxia Liu
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Hu
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lili Ding
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiling Li
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huajun Sun
- Department of Pharmacy, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Xu D, Di K, Fan B, Wu J, Gu X, Sun Y, Khan A, Li P, Li Z. MicroRNAs in extracellular vesicles: Sorting mechanisms, diagnostic value, isolation, and detection technology. Front Bioeng Biotechnol 2022; 10:948959. [PMID: 36324901 PMCID: PMC9618890 DOI: 10.3389/fbioe.2022.948959] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short, single-stranded, noncoding RNAs, with a length of about 18–22 nucleotides. Extracellular vesicles (EVs) are derived from cells and play a vital role in the development of diseases and can be used as biomarkers for liquid biopsy, as they are the carriers of miRNA. Existing studies have found that most of the functions of miRNA are mainly realized through intercellular transmission of EVs, which can protect and sort miRNAs. Meanwhile, detection sensitivity and specificity of EV-derived miRNA are higher than those of conventional serum biomarkers. In recent years, EVs have been expected to become a new marker for liquid biopsy. This review summarizes recent progress in several aspects of EVs, including sorting mechanisms, diagnostic value, and technology for isolation of EVs and detection of EV-derived miRNAs. In addition, the study reviews challenges and future research avenues in the field of EVs, providing a basis for the application of EV-derived miRNAs as a disease marker to be used in clinical diagnosis and even for the development of point-of-care testing (POCT) platforms.
Collapse
Affiliation(s)
- Dongjie Xu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Kaili Di
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Boyue Fan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinrui Gu
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifan Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), Southeast University, Nanjing, China
| | - Peng Li
- College of Animal Science, Yangtze University, Jingzhou, China
- *Correspondence: Peng Li, ; Zhiyang Li,
| | - Zhiyang Li
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Peng Li, ; Zhiyang Li,
| |
Collapse
|
10
|
Jantawongsri K, Nørregaard RD, Bach L, Dietz R, Sonne C, Jørgensen K, Lierhagen S, Ciesielski TM, Jenssen BM, Waugh CA, Eriksen R, Nowak B, Anderson K. Effects of exposure to environmentally relevant concentrations of lead (Pb) on expression of stress and immune-related genes, and microRNAs in shorthorn sculpins (Myoxocephalus scorpius). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1068-1077. [PMID: 36006498 PMCID: PMC9458575 DOI: 10.1007/s10646-022-02575-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Old lead-zinc (Pb-Zn) mining sites in Greenland have increased the environmental concentration of Pb in local marine organisms, including the shorthorn sculpin. Organ metal concentrations and histopathology have been used in environmental monitoring programs to evaluate metal exposure and subsequent effects in shorthorn sculpins. So far, no study has reported the impact of heavy metals on gene expression involved in metal-related stress and immune responses in sculpins. The aim of this study was to investigate the effect of exposure to environmentally relevant waterborne Pb (0.73 ± 0.35 μg/L) on hepatic gene expression of metallothionein (mt), immunoglobulin M (igm), and microRNAs (miRNAs; mir132 and mir155) associated with immune responses in the shorthorn sculpin compared to a control group. The mt and igm expression were upregulated in the Pb-exposed group compared to the control group. The transcripts of mir132 and mir155 were not different in sculpins between the Pb-exposed and control group; however, miRNA levels were significantly correlated with Pb liver concentrations. Furthermore, there was a positive correlation between liver Pb concentrations and igm, and a positive relationship between igm and mir155. The results indicate that exposure to Pb similar to those concentrations reported in in marine waters around Greenland Pb-Zn mine sites influences the mt and immune responses in shorthorn sculpins. This is the first study to identify candidate molecular markers in the shorthorn sculpins exposed to waterborne environmentally relevant Pb suggesting mt and igm as potential molecular markers of exposure to be applied in future assessments of the marine environment near Arctic mining sites.
Collapse
Affiliation(s)
- Khattapan Jantawongsri
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, TAS, 7250, Australia.
| | - Rasmus Dyrmose Nørregaard
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Lis Bach
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Rune Dietz
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Christian Sonne
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Kasper Jørgensen
- Den Blå Planet, National Aquarium Denmark, Jacob Fortlingsvej 1, DK-2770, Kastrup, Copenhagen, Denmark
| | - Syverin Lierhagen
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Tomasz Maciej Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Bjørn Munro Jenssen
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
- Department of Arctic Technology, The University Centre in Svalbard, P.O. Box 156, NO-9171, Longyearbyen, Svalbard, Norway
| | - Courtney Alice Waugh
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
- Faculty of Biosciences and Aquaculture, Nord University, NO-7729, Steinkjer, Norway
| | - Ruth Eriksen
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, TAS, 7250, Australia
- CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Hobart, TAS, 7004, Australia
| | - Barbara Nowak
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, TAS, 7250, Australia
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Kelli Anderson
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, TAS, 7250, Australia
| |
Collapse
|
11
|
Mahtal N, Lenoir O, Tinel C, Anglicheau D, Tharaux PL. MicroRNAs in kidney injury and disease. Nat Rev Nephrol 2022; 18:643-662. [PMID: 35974169 DOI: 10.1038/s41581-022-00608-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by degrading or repressing the translation of their target messenger RNAs. As miRNAs are critical regulators of cellular homeostasis, their dysregulation is a crucial component of cell and organ injury. A substantial body of evidence indicates that miRNAs are involved in the pathophysiology of acute kidney injury (AKI), chronic kidney disease and allograft damage. Different subsets of miRNAs are dysregulated during AKI, chronic kidney disease and allograft rejection, which could reflect differences in the physiopathology of these conditions. miRNAs that have been investigated in AKI include miR-21, which has an anti-apoptotic role, and miR-214 and miR-668, which regulate mitochondrial dynamics. Various miRNAs are downregulated in diabetic kidney disease, including the miR-30 family and miR-146a, which protect against inflammation and fibrosis. Other miRNAs such as miR-193 and miR-92a induce podocyte dedifferentiation in glomerulonephritis. In transplantation, miRNAs have been implicated in allograft rejection and injury. Further work is needed to identify and validate miRNAs as biomarkers of graft function and of kidney disease development and progression. Use of combinations of miRNAs together with other molecular markers could potentially improve diagnostic or predictive power and facilitate clinical translation. In addition, targeting specific miRNAs at different stages of disease could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Nassim Mahtal
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France
| | - Olivia Lenoir
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| | - Claire Tinel
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation Adulte, Hôpital Necker-Enfants Malades, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, Inserm, Université Paris Cité, Paris, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center - PARCC, Inserm, Université Paris Cité, Paris, France.
| |
Collapse
|
12
|
Aomatsu A, Kaneko S, Yanai K, Ishii H, Ito K, Hirai K, Ookawara S, Kobayashi Y, Sanui M, Morishita Y. MicroRNA expression profiling in acute kidney injury. Transl Res 2022; 244:1-31. [PMID: 34871811 DOI: 10.1016/j.trsl.2021.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/05/2023]
Abstract
The aim of this study was to identify miRNAs that regulate AKI and develop their applications as diagnostic biomarkers and therapeutic agents. First, kidney tissues from two different AKI mouse models, namely, AKI induced by the administration of lipopolysaccharide (LPS) causing sepsis (LPS-AKI mice) and AKI induced by renal ischemia-reperfusion injury (IRI-AKI mice), were exhaustively screened for their changes of miRNA expression compared with that of control mice by microarray analysis followed by quantitative RT-PCR. The initial profiling newly identified miRNA-5100, whose expression levels significantly decreased in kidneys in both LPS-AKI mice and IRI-AKI mice. Next, the administration of miRNA-5100-mimic conjugated with a nonviral vector, polyethylenimine nanoparticles (PEI-NPs), via the tail vein significantly induced miRNA-5100 overexpression in the kidney and prevented the development of IRI-AKI mice by inhibiting several apoptosis pathways in vivo. Furthermore, serum levels of miRNA-5100 in patients with AKI were identified as significantly lower than those of healthy subjects. ROC analysis showed that the serum expression level of miRNA-5100 can identify AKI (cut-off value 0.14, AUC 0.96, sensitivity 1.00, specificity 0.833, p<0.05). These results suggest that miRNA-5100 regulates AKI and may be useful as a novel diagnostic biomarker and therapeutic target for AKI.
Collapse
Affiliation(s)
- Akinori Aomatsu
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan; Division of Intensive Care Unit, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Shohei Kaneko
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Katsunori Yanai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Hiroki Ishii
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kiyonori Ito
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yasuma Kobayashi
- Department of Anesthesia, Saitama Children's Medical Center, Saitama, Japan
| | - Masamitsu Sanui
- Division of Intensive Care Unit, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.
| |
Collapse
|
13
|
Grimes JA, Lourenço BN, Coleman AE, Rissi DR, Schmiedt CW. MicroRNAs are differentially expressed in the serum and renal tissues of cats with experimentally induced chronic kidney disease: a preliminary study. Am J Vet Res 2022; 83:426-433. [PMID: 35239506 DOI: 10.2460/ajvr.21.08.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify differentially expressed microRNA in the serum and renal tissues of cats with experimentally induced chronic kidney disease (CKD). SAMPLE Banked renal tissues and serum from 4 cats. PROCEDURES Cats previously underwent 90-minute unilateral ischemia with delayed contralateral nephrectomy 3 months after ischemia. Tissues were collected from the contralateral kidney at the time of nephrectomy and from the ischemic kidney 6 months after nephrectomy (study end). Serum was collected prior to ischemia (baseline serum) and at study end (end point serum). Total RNA was isolated from tissues and serum, and microRNA sequencing was performed with differential expression analysis between the contralateral and ischemic kidney and baseline and end point serum. RESULTS 20 microRNAs were differentially expressed between ischemic and contralateral kidneys, and 52 microRNAs were differentially expressed between end point and baseline serum. Five microRNAs were mutually differentially expressed between ischemic and contralateral kidneys and baseline and end point serum, with 4 (mir-21, mir-146, mir-199, and mir-235) having increased expression in both the ischemic kidney and end point serum and 1 (mir-382) having increased expression in the ischemic kidney and decreased expression in end point serum. Predicted target search for these microRNA revealed multiple genes previously shown to be involved in the pathogenesis of feline CKD, including hypoxia-inducible factor-1α, transforming growth factor-β, hepatocyte growth factor, fibronectin, and vascular endothelial growth factor A. CLINICAL RELEVANCE MicroRNAs were differentially expressed after CKD induction in this preliminary study. Regulation of renal fibrosis in feline CKD may occur through microRNA regulation of mRNAs of pro- and anti-fibrotic genes.
Collapse
Affiliation(s)
- Janet A Grimes
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Bianca N Lourenço
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Amanda E Coleman
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Daniel R Rissi
- Athens Veterinary Diagnostic Laboratory, Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Chad W Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| |
Collapse
|
14
|
Mortoglou M, Buha Djordjevic A, Djordjevic V, Collins H, York L, Mani K, Valle E, Wallace D, Uysal-Onganer P. Role of microRNAs in response to cadmium chloride in pancreatic ductal adenocarcinoma. Arch Toxicol 2022; 96:467-485. [PMID: 34905088 PMCID: PMC8837568 DOI: 10.1007/s00204-021-03196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal and aggressive malignancies with a 5-year survival rate less than 9%. Early detection is particularly difficult due to the lack of symptoms even in advanced stages. microRNAs (miRs/miRNAs) are small (~ 18-24 nucleotides), endogenous, non-coding RNAs, which are involved in the pathogenesis of several malignancies including PDAC. Alterations of miR expressions can lead to apoptosis, angiogenesis, and metastasis. The role of environmental pollutants such as cadmium (Cd) in PDAC has been suggested but not fully understood. This study underlines the role of miRs (miR-221, miR-155, miR-126) in response to cadmium chloride (CdCl2) in vitro. Lethal concentration (LC50) values for CdCl2 resulted in a toxicity series of AsPC-1 > HPNE > BxPC-3 > Panc-1 = Panc-10.5. Following the treatment with CdCl2, miR-221 and miR-155 were significantly overexpressed, whereas miR-126 was downregulated. An increase in epithelial-mesenchymal transition (EMT) via the dysregulation of mesenchymal markers such as Wnt-11, E-cadherin, Snail, and Zeb1 was also observed. Hence, this study has provided evidence to suggest that the environmental pollutant Cd can have a significant role in the development of PDAC, suggesting a significant correlation between miRs and Cd exposure during PDAC progression. Further studies are needed to investigate the precise role of miRs in PDAC progression as well as the role of Cd and other environmental pollutants.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| | | | | | - Hunter Collins
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Lauren York
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Katherine Mani
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Elizabeth Valle
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - David Wallace
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| |
Collapse
|
15
|
Identification of miRNAs Involved in Liver Injury Induced by Chronic Exposure to Cadmium. Toxicology 2022; 469:153133. [DOI: 10.1016/j.tox.2022.153133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022]
|
16
|
Abstract
Epigenetics examines heritable changes in DNA and its associated proteins except mutations in gene sequence. Epigenetic regulation plays fundamental roles in kidney cell biology through the action of DNA methylation, chromatin modification via epigenetic regulators and non-coding RNA species. Kidney diseases, including acute kidney injury, chronic kidney disease, diabetic kidney disease and renal fibrosis are multistep processes associated with numerous molecular alterations even in individual kidney cells. Epigenetic alterations, including anomalous DNA methylation, aberrant histone alterations and changes of microRNA expression all contribute to kidney pathogenesis. These changes alter the genome-wide epigenetic signatures and disrupt essential pathways that protect renal cells from uncontrolled growth, apoptosis and development of other renal associated syndromes. Molecular changes impact cellular function within kidney cells and its microenvironment to drive and maintain disease phenotype. In this chapter, we briefly summarize epigenetic mechanisms in four kidney diseases including acute kidney injury, chronic kidney disease, diabetic kidney disease and renal fibrosis. We primarily focus on current knowledge about the genome-wide profiling of DNA methylation and histone modification, and epigenetic regulation on specific gene(s) in the pathophysiology of these diseases and the translational potential of identifying new biomarkers and treatment for prevention and therapy. Incorporating epigenomic testing into clinical research is essential to elucidate novel epigenetic biomarkers and develop precision medicine using emerging therapies.
Collapse
|
17
|
Small RNA sequencing evaluation of renal microRNA biomarkers in dogs with X-linked hereditary nephropathy. Sci Rep 2021; 11:17437. [PMID: 34465843 PMCID: PMC8408228 DOI: 10.1038/s41598-021-96870-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/21/2021] [Indexed: 12/16/2022] Open
Abstract
Dogs with X-linked hereditary nephropathy (XLHN) are an animal model for Alport syndrome in humans and progressive chronic kidney disease (CKD). Using mRNA sequencing (mRNA-seq), we have characterized the gene expression profile affecting the progression of XLHN; however, the microRNA (miRNA, miR) expression remains unknown. With small RNA-seq and quantitative RT-PCR (qRT-PCR), we used 3 small RNA-seq analysis tools (QIAGEN OmicSoft Studio, miRDeep2, and CPSS 2.0) to profile differentially expressed renal miRNAs, top-ranked miRNA target genes, and enriched biological processes and pathways in CKD progression. Twenty-three kidney biopsies were collected from 5 dogs with XLHN and 4 age-matched, unaffected littermates at 3 clinical time points (T1: onset of proteinuria, T2: onset of azotemia, and T3: advanced azotemia). We identified up to 23 differentially expressed miRNAs at each clinical time point. Five miRNAs (miR-21, miR-146b, miR-802, miR-142, miR-147) were consistently upregulated in affected dogs. We identified miR-186 and miR-26b as effective reference miRNAs for qRT-PCR. This study applied small RNA-seq to identify differentially expressed miRNAs that might regulate critical pathways contributing to CKD progression in dogs with XLHN.
Collapse
|
18
|
Han S, Lin F, Ruan Y, Zhao S, Yuan R, Ning J, Jiang K, Xie J, Li H, Li C, Rao T, Yu W, Xia Y, Zhou X, Cheng F. miR-132-3p promotes the cisplatin-induced apoptosis and inflammatory response of renal tubular epithelial cells by targeting SIRT1 via the NF-κB pathway. Int Immunopharmacol 2021; 99:108022. [PMID: 34339961 DOI: 10.1016/j.intimp.2021.108022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Cisplatin is a highly effective and broad-spectrum anticancer drug for the clinical treatment of solid tumors. However, it causes acute kidney injury (AKI) in patients with cancer. Consequently, its clinical application is limited. The occurrence, development, and prognosis of AKI are closely associated with microRNA (miRNA), which needs validation as a biomarker, especially for the early stages of cisplatin-induced AKI. An example of miRNA is miR-132-3p, which plays important roles in inflammatory responses, cell proliferation, and apoptosis in a variety of diseases. However, variations in its expression, potential mechanisms, and downstream targets in cisplatin-induced AKI remain unclear. This study aimed to investigate the functions of miR-132-3p in cisplatin-induced AKI. Sequencing and qRT-PCR revealed that miR-132-3p was significantly upregulated in cisplatin-induced AKI models of mouse and human proximal renal tubular epithelial (HK-2) cells. Apoptosis and inflammatory responses were significantly suppressed by the inhibition of the miR-132-3p expression in cisplatin-stimulated HK-2 cells, and this suppression was blocked by miR-132-3p mimics. Bioinformatics and dual luciferase reporter gene assay identified the 3'- UTR of SIRT1 mRNA as a direct target of miR-132-3p. RNA-FISH and immunofluorescence co-localization demonstrated that miR-132-3p and SIRT1 directly combined and interacted in the cytoplasm of HK-2 cells. Mechanistically, the SIRT1 expression was suppressed and the NF-κB signaling pathway was activated by the upregulation of miR-132-3p in cisplatin-induced AKI. By contrast, the SIRT1 expression was upregulated after the inhibition of miR-132-3p. The ratios of p-p65/p65 and p-IκBα/IκBα were significantly reduced, and the expression levels of inflammatory biomarkers and apoptotic proteins induced by cisplatin were obviously attenuated. Our results suggested that miR-132-3p exacerbated cisplatin-induced AKI by negatively regulating SIRT1 and activating the NF-κB signaling pathway. Therefore, targeting miR-132-3p might be a potential adjuvant therapy for ameliorating AKI in cisplatin-treated patients.
Collapse
Affiliation(s)
- Shangting Han
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Run Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kun Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinna Xie
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Haoyong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
19
|
Róka B, Tod P, Kaucsár T, Bukosza ÉN, Vörös I, Varga ZV, Petrovich B, Ágg B, Ferdinandy P, Szénási G, Hamar P. Delayed Contralateral Nephrectomy Halted Post-Ischemic Renal Fibrosis Progression and Inhibited the Ischemia-Induced Fibromir Upregulation in Mice. Biomedicines 2021; 9:biomedicines9070815. [PMID: 34356879 PMCID: PMC8301422 DOI: 10.3390/biomedicines9070815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Ischemia reperfusion (IR) is the leading cause of acute kidney injury (AKI) and results in predisposition to chronic kidney disease. We demonstrated that delayed contralateral nephrectomy (Nx) greatly improved the function of the IR-injured kidney and decelerated fibrosis progression. Our aim was to identify microRNAs (miRNA/miR) involved in this process. (2) Methods: NMRI mice were subjected to 30 min of renal IR and one week later to Nx/sham surgery. The experiments were conducted for 7-28 days after IR. On day 8, multiplex renal miRNA profiling was performed. Expression of nine miRNAs was determined with qPCR at all time points. Based on the target prediction, plexin-A2 and Cd2AP were measured by Western blot. (3) Results: On day 8 after IR, the expression of 20/1195 miRNAs doubled, and 9/13 selected miRNAs were upregulated at all time points. Nx reduced the expression of several ischemia-induced pro-fibrotic miRNAs (fibromirs), such as miR-142a-duplex, miR-146a-5p, miR-199a-duplex, miR-214-3p and miR-223-3p, in the injured kidneys at various time points. Plexin-A2 was upregulated by IR on day 10, while Cd2AP was unchanged. (4) Conclusion: Nx delayed fibrosis progression and decreased the expression of ischemia-induced fibromirs. The protein expression of plexin-A2 and Cd2AP is mainly regulated by factors other than miRNAs.
Collapse
Affiliation(s)
- Beáta Róka
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Pál Tod
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Kaucsár
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Éva Nóra Bukosza
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Imre Vörös
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, 1089 Budapest, Hungary
| | - Balázs Petrovich
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-20-825-9751
| |
Collapse
|
20
|
Petrillo F, Iervolino A, Angrisano T, Jelen S, Costanzo V, D’Acierno M, Cheng L, Wu Q, Guerriero I, Mazzarella MC, De Falco A, D’Angelo F, Ceccarelli M, Caraglia M, Capasso G, Fenton RA, Trepiccione F. Dysregulation of Principal Cell miRNAs Facilitates Epigenetic Regulation of AQP2 and Results in Nephrogenic Diabetes Insipidus. J Am Soc Nephrol 2021; 32:1339-1354. [PMID: 33727367 PMCID: PMC8259636 DOI: 10.1681/asn.2020010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/02/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs), formed by cleavage of pre-microRNA by the endoribonuclease Dicer, are critical modulators of cell function by post-transcriptionally regulating gene expression. METHODS Selective ablation of Dicer in AQP2-expressing cells (DicerAQP2Cre+ mice) was used to investigate the role of miRNAs in the kidney collecting duct of mice. RESULTS The mice had severe polyuria and nephrogenic diabetes insipidus, potentially due to greatly reduced AQP2 and AQP4 levels. Although epithelial sodium channel levels were decreased in cortex and increased in inner medulla, amiloride-sensitive sodium reabsorption was equivalent in DicerAQP2Cre+ mice and controls. Small-RNA sequencing and proteomic analysis revealed 31 and 178 significantly regulated miRNAs and proteins, respectively. Integrated bioinformatic analysis of the miRNAome and proteome suggested alterations in the epigenetic machinery and various transcription factors regulating AQP2 expression in DicerAQP2Cre+ mice. The expression profile and function of three miRNAs (miR-7688-5p, miR-8114, and miR-409-3p) whose predicted targets were involved in epigenetic control (Phf2, Kdm5c, and Kdm4a) or transcriptional regulation (GATA3, GATA2, and ELF3) of AQP2 were validated. Luciferase assays could not demonstrate direct interaction of AQP2 or the three potential transcription factors with miR-7688-5p, miR-8114, and miR-409-3p. However, transfection of respective miRNA mimics reduced AQP2 expression. Chromatin immunoprecipitation assays demonstrated decreased Phf2 and significantly increased Kdm5c interactions at the Aqp2 gene promoter in DicerAQP2Cre+ mice, resulting in decreased RNA Pol II association. CONCLUSIONS Novel evidence indicates miRNA-mediated epigenetic regulation of AQP2 expression.
Collapse
Affiliation(s)
- Federica Petrillo
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anna Iervolino
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Sabina Jelen
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Vincenzo Costanzo
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | | | - Lei Cheng
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ilaria Guerriero
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | | | - Alfonso De Falco
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Fulvio D’Angelo
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Michele Ceccarelli
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Electrical Engineering and Information Technology (DIETI) University of Naples “Federico II”, Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovambattista Capasso
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Francesco Trepiccione
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
21
|
Loren P, Saavedra N, Saavedra K, Zambrano T, Moriel P, Salazar LA. Epigenetic Mechanisms Involved in Cisplatin-Induced Nephrotoxicity: An Update. Pharmaceuticals (Basel) 2021; 14:ph14060491. [PMID: 34063951 PMCID: PMC8223972 DOI: 10.3390/ph14060491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is an antineoplastic drug used for the treatment of many solid tumors. Among its various side effects, nephrotoxicity is the most detrimental. In recent years, epigenetic regulation has emerged as a modulatory mechanism of cisplatin-induced nephrotoxicity, involving non-coding RNAs, DNA methylation and histone modifications. These epigenetic marks alter different signaling pathways leading to damage and cell death. In this review, we describe how different epigenetic modifications alter different pathways leading to cell death by apoptosis, autophagy, necroptosis, among others. The study of epigenetic regulation is still under development, and much research remains to fully determine the epigenetic mechanisms underlying cell death, which will allow leading new strategies for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (N.S.); (K.S.)
| | - Nicolás Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (N.S.); (K.S.)
| | - Kathleen Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (N.S.); (K.S.)
| | - Tomás Zambrano
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Patricia Moriel
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083970, SP, Brazil;
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (N.S.); (K.S.)
- Correspondence: ; Tel.: +56-452-596-724
| |
Collapse
|
22
|
Patel K, Chandrasegaran S, Clark IM, Proctor CJ, Young DA, Shanley DP. TimiRGeN: R/Bioconductor package for time series microRNA-mRNA integration and analysis. Bioinformatics 2021; 37:3604-3609. [PMID: 33993215 PMCID: PMC8545325 DOI: 10.1093/bioinformatics/btab377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Motivation The analysis of longitudinal datasets and construction of gene regulatory networks (GRNs) provide a valuable means to disentangle the complexity of microRNA (miRNA)–mRNA interactions. However, there are no computational tools that can integrate, conduct functional analysis and generate detailed networks from longitudinal miRNA–mRNA datasets. Results We present TimiRGeN, an R package that uses time point-based differential expression results to identify miRNA–mRNA interactions influencing signaling pathways of interest. miRNA–mRNA interactions can be visualized in R or exported to PathVisio or Cytoscape. The output can be used for hypothesis generation and directing in vitro or further in silico work such as GRN construction. Availability and implementation TimiRGeN is available for download on Bioconductor (https://bioconductor.org/packages/TimiRGeN) and requires R v4.0.2 or newer and BiocManager v3.12 or newer. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- K Patel
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon-Tyne, NE4 5PL, UK
| | - S Chandrasegaran
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon-Tyne, NE4 5PL, UK
| | - I M Clark
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - C J Proctor
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon-Tyne, NE4 5PL, UK
| | - D A Young
- Life Science Centre, Biosciences Institute, Newcastle University, Newcastle, upon, UK Tyne, NE1 4EP
| | - D P Shanley
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon-Tyne, NE4 5PL, UK
| |
Collapse
|
23
|
Chen J, Lai W, Deng Y, Liu M, Dong M, Liu Z, Wang T, Li X, Zhao Z, Yin X, Yang J, Yu R, Liu L. MicroRNA-363-3p promotes apoptosis in response to cadmium-induced renal injury by down-regulating phosphoinositide 3-kinase expression. Toxicol Lett 2021; 345:12-23. [PMID: 33857584 DOI: 10.1016/j.toxlet.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/09/2022]
Abstract
We previously determined that specific microRNAs (miRNAs) are involved in renal pathophysiological occurrences induced by cadmium (Cd) in rats. This study expands our studies on miRNAs, determining their role in Cd-induced nephrotoxicity in occupational workers. We performed miRNA microarray analyses of blood and urine samples from patients diagnosed as occupational chronic Cd poisoning (OCCP) with abnormally elevated concentrations of urinary beta-2-microglobulin (U-β2-MG), an indicator of tubular proteinuria. We also performed in vitro bioinformatics-based investigations of apoptosis-related genes targeted by miRNAs involved in the biological response to Cd exposure. We tested five differentially expressed miRNAs and determined a significant increase of sera miR-363-3p. Also, we determined that miR-363-3p increase is associated with phosphoinositide 3-kinase (PI3K) down-regulation and the suppressed proliferation and enhanced apoptosis of renal tubule epithelial cells. The obtained results suggest miR-363-3p involvement in the pathophysiology of Cd-induced renal injury in humans and maybe considered for possible interventional therapeutic strategies for Cd-associated kidney damage.
Collapse
Affiliation(s)
- Jiabin Chen
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Weina Lai
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China; Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong, China
| | - Yaotang Deng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Min Liu
- Dongguan Maternal and Child Healthcare Hospital, Dongguan, 523700, Guangdong, China
| | - Ming Dong
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Zhidong Liu
- Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, 516008, Guangdong, China
| | - Ting Wang
- Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, 516008, Guangdong, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Zhiqiang Zhao
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Xiao Yin
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Jinmei Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Rian Yu
- Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong, China
| | - Lili Liu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China.
| |
Collapse
|
24
|
Differential Expression of Urinary Exosomal Small RNAs in Idiopathic Membranous Nephropathy. BIOMED RESEARCH INTERNATIONAL 2021; 2020:3170927. [PMID: 33457405 PMCID: PMC7785370 DOI: 10.1155/2020/3170927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/02/2020] [Accepted: 12/13/2020] [Indexed: 11/18/2022]
Abstract
Background Idiopathic membranous nephropathy (IMN) is a major cause of adult nephrotic syndromes, and reliable noninvasive biomarkers for diagnosis and monitoring are urgently needed. In this study, we performed small RNA (sRNA) sequencing to explore sRNA profiles of urinary exosomes derived from IMN patients and healthy controls (CON) to provide clues for identifying novel noninvasive sRNA biomarkers for IMN. Methods Urine samples were collected from five healthy controls and six patients with IMN. High-throughput sequencing was used to screen sRNA expression profiles of urinary exosomes from patients with IMN in two independent cohorts. Results Urinary exosomes were successfully isolated and used to obtain exosomal sRNAs. We screened 131 differentially expressed miRNAs, including 28 specifically expressed miRNAs, then explored the top 10 specifically expressed miRNAs in all IMN individuals. The specifically expressed miRNAs and differentially expressed miRNAs provide potential biomarkers for IMN. Additionally, we discovered numerous sRNAs derived from genomic repetitive sequences, which could represent an exciting new area of research. Conclusion Herein, we revealed significant differences in expression profiles of urinary exosomal miRNAs and repetitive region-derived sRNAs between patients with IMN and healthy controls. The findings could facilitate the development of potential molecular targets for membranous nephropathy.
Collapse
|
25
|
Expressions and related mechanisms of miR-212 and KLF4 in rats with acute kidney injury. Mol Cell Biochem 2021; 476:1741-1749. [PMID: 33428060 DOI: 10.1007/s11010-020-04016-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
Acute kidney injury (AKI) occurs in 30%-70% of critically ill patients. Multiple organ failure (MOF), which is most often secondary to hypotension and septicemia, is a global public health problem. The prognosis of patients is poor. Currently, there is no specific therapeutic method. Finding new therapeutic targets is significant to improve the prognosis of AKI patients. This study explores expressions and related mechanisms of miR-212 and Kruppel-like factor 4 (KLF4) in rats with AKI. Sixty Wistar rats were randomly divided into 6 groups: Control group, sham operation group, model group, miR-212-agomir group, miR-212-antagomir group, miR-212-agomir+APTO-253 (joint group), n = 10. The expressions of miR-212, KLF4, inflammatory factors [tumor necrosis factor α (TNF-α), interleukin 6 (IL-6)], oxidative stress factors [superoxide dismutase (SOD), malondialdehyde (MDA)], and apoptosis-related proteins (bax, bcl-2) in renal tissue of rats were detected, and the relationship between miR-212 and KLF4 and the severity of AKI in rats were analyzed. The expression level of miR-212 increased (P < 0.05) and the expression level of KLF4 decreased (P < 0.05) in renal tissue of rats with AKI. miR-212 was negatively correlated with KLF4 expression (P < 0.05). MiR-212 was positively correlated with expressions of TNF-α, IL-6, MDA, and bax (P < 0.05), negatively correlated with expressions of SOD and bcl-2 (P < 0.05), KLF4 was negatively correlated with expressions of TNF-α, IL-6, MDA and bax (P < 0.05), and positively correlated with expressions of SOD and bcl-2 (P < 0.05). MiR-212 mimics can inhibit the luciferase activity of Wt-KLF4 (P < 0.05), and miR-212 inhibitor can promote the luciferase activity of Wt-KLF4 (P < 0.05). Down-regulation of miR-212 plays a protective role by targeting up-regulation of KLF4 to inhibit renal tissue inflammation, oxidative stress, and apoptosis in rats with AKI, which may be a potential target for clinical treatment of AKI in the future.
Collapse
|
26
|
Gu S, Dai J, Qu T, He Z. Emerging Roles of MicroRNAs and Long Noncoding RNAs in Cadmium Toxicity. Biol Trace Elem Res 2020; 195:481-490. [PMID: 31422539 DOI: 10.1007/s12011-019-01859-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023]
Abstract
Metal cadmium (Cd) and its compounds are ubiquitous industrial and environmental pollutants and they have been believed to exert severe damage to multiple organs and tissues. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are the two most common noncoding RNAs and have pivotal roles in various cellular and physiological processes. Since the importance of miRNAs and lncRNAs in Cd toxicity has been widely recognized, we focus our interests on the current researches of miRNAs and lncRNAs as well as their regulation roles in Cd toxicity. In this paper, the keywords "cadmium" in combination with "miRNA" or "LncRNA" or "noncoding RNA" was used to retrieve relevant articles in PubMed, EMbase, CNKI, Wan Fang, and CBM databases. The literatures which contained the above keywords and carried out in animals (in vivo and in vitro) have been collected, collated, analyzed, and summarized. Our summary results showed that hundreds of miRNAs and lncRNAs are involved in the Cd toxicity, which have been demonstrated as multiple organ injury, reproductive toxicity, malignant transformation, and abnormal repair of DNA damage. In this paper, we also discussed the blank in present research field of Cd toxicity as well as suggested some ideas for future study in Cd toxicity.
Collapse
Affiliation(s)
- Shiyan Gu
- Department of Environmental and Occupational Health, Faculty of Public Health, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China.
| | - Jiao Dai
- Qujing Medical College, Qujing, Yunnan, China
| | - Tengjiao Qu
- Department of Environmental and Occupational Health, Faculty of Public Health, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China
| | - Zuoshun He
- Department of Environmental and Occupational Health, Faculty of Public Health, Dali University, No. 22, Wanhua Road, Dali, 671000, Yunnan, People's Republic of China.
| |
Collapse
|
27
|
Gao X, Xu D, Li S, Wei Z, Li S, Cai W, Mao N, Jin F, Li Y, Yi X, Liu H, Xu H, Yang F. Pulmonary Silicosis Alters MicroRNA Expression in Rat Lung and miR-411-3p Exerts Anti-fibrotic Effects by Inhibiting MRTF-A/SRF Signaling. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:851-865. [PMID: 32464548 PMCID: PMC7256439 DOI: 10.1016/j.omtn.2020.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
To identify potential therapeutic targets for pulmonary fibrosis induced by silica, we studied the effects of this disease on the expression of microRNAs (miRNAs) in the lung. Rattus norvegicus pulmonary silicosis models were used in conjunction with high-throughput screening of lung specimens to compare the expression of miRNAs in control and pulmonary silicosis tissues. A total of 70 miRNAs were found to be differentially expressed between control and pulmonary silicosis tissues. This included 41 miRNAs that were upregulated and 29 that were downregulated relative to controls. Among them, miR-292-5p, miR-155-3p, miR-1193-3p, miR-411-3p, miR-370-3p, and miR-409a-5p were found to be similarly altered in rat lung and transforming growth factor (TGF)-β1-induced cultured fibroblasts. Using miRNA mimics and inhibitors, we found that miR-1193-3p, miR-411-3p, and miR-370-3p exhibited potent anti-fibrotic effects, while miR-292-5p demonstrated pro-fibrotic effects in TGF-β1-stimulated lung fibroblasts. Moreover, we also found that miR-411-3p effectively reduced pulmonary silicosis in the mouse lung by regulating Mrtfa expression, as demonstrated using biochemical and histological assays. In conclusion, our findings indicate that miRNA expression is perturbed in pulmonary silicosis and suggest that therapeutic interventions targeting specific miRNAs might be effective in the treatment of this occupational disease.
Collapse
Affiliation(s)
- Xuemin Gao
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Dingjie Xu
- Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Shumin Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Zhongqiu Wei
- Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Shifeng Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Wenchen Cai
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Na Mao
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Fuyu Jin
- Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Yaqian Li
- Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Xue Yi
- Department of Basic Medicine, Fujian Collaborative Innovation Center for Accurate Medicine of Respiratory Diseases, Xiamen Medical College, Xiamen, 361023 Fujian, China
| | - Heliang Liu
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Hong Xu
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China.
| | - Fang Yang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China.
| |
Collapse
|
28
|
miR-146a Mimics Ameliorates Traumatic Brain Injury Involving JNK and NF-κB Signaling Pathway. Neuromolecular Med 2020; 22:484-492. [DOI: 10.1007/s12017-020-08599-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
|
29
|
Wallace DR, Taalab YM, Heinze S, Tariba Lovaković B, Pizent A, Renieri E, Tsatsakis A, Farooqi AA, Javorac D, Andjelkovic M, Bulat Z, Antonijević B, Buha Djordjevic A. Toxic-Metal-Induced Alteration in miRNA Expression Profile as a Proposed Mechanism for Disease Development. Cells 2020; 9:cells9040901. [PMID: 32272672 PMCID: PMC7226740 DOI: 10.3390/cells9040901] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Toxic metals are extensively found in the environment, households, and workplaces and contaminate food and drinking water. The crosstalk between environmental exposure to toxic metals and human diseases has been frequently described. The toxic mechanism of action was classically viewed as the ability to dysregulate the redox status, production of inflammatory mediators and alteration of mitochondrial function. Recently, growing evidence showed that heavy metals might exert their toxicity through microRNAs (miRNA)—short, single-stranded, noncoding molecules that function as positive/negative regulators of gene expression. Aberrant alteration of the endogenous miRNA has been directly implicated in various pathophysiological conditions and signaling pathways, consequently leading to different types of cancer and human diseases. Additionally, the gene-regulatory capacity of miRNAs is particularly valuable in the brain—a complex organ with neurons demonstrating a significant ability to adapt following environmental stimuli. Accordingly, dysregulated miRNAs identified in patients suffering from neurological diseases might serve as biomarkers for the earlier diagnosis and monitoring of disease progression. This review will greatly emphasize the effect of the toxic metals on human miRNA activities and how this contributes to progression of diseases such as cancer and neurodegenerative disorders (NDDs).
Collapse
Affiliation(s)
- David R. Wallace
- School of Biomedical Science, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA;
| | - Yasmeen M. Taalab
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Dakahlia Governate 35516, Egypt or
- Institute of Forensic and Traffic Medicine, University of Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany;
| | - Sarah Heinze
- Institute of Forensic and Traffic Medicine, University of Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany;
| | - Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia; (B.T.L.); (A.P.)
| | - Alica Pizent
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia; (B.T.L.); (A.P.)
| | - Elisavet Renieri
- Centre of Toxicology Science and Research, University of Crete, School of Medicine, 71601 Heraklion, Greece; (E.R.); (A.T.)
| | - Aristidis Tsatsakis
- Centre of Toxicology Science and Research, University of Crete, School of Medicine, 71601 Heraklion, Greece; (E.R.); (A.T.)
| | | | - Dragana Javorac
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Milena Andjelkovic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Zorica Bulat
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Biljana Antonijević
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
- Correspondence:
| |
Collapse
|
30
|
Yu FB, Sheng J, Yu JM, Liu JH, Qin XX, Mou B. MiR-19a-3p regulates the Forkhead box F2-mediated Wnt/β-catenin signaling pathway and affects the biological functions of colorectal cancer cells. World J Gastroenterol 2020; 26:627-644. [PMID: 32103872 PMCID: PMC7029353 DOI: 10.3748/wjg.v26.i6.627] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/03/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies worldwide.
AIM To explore the expression of microRNA miR-19a-3p and Forkhead box F2 (FOXF2) in patients with CRC and the relevant mechanisms.
METHODS Sixty-two CRC patients admitted to the hospital were enrolled into the study group, and sixty healthy people from the same period were assigned to the control group. Elbow venous blood was sampled from the patients and healthy individuals, and blood serum was saved for later analysis. MiR-19a-3p mimics, miR-19a-3p inhibitor, miR-negative control, small interfering-FOXF2, and short hairpin-FOXF2 were transfected into HT29 and HCT116 cells. Then quantitative polymerase chain reaction was performed to quantify the expression of miR-19a-3p and FOXF2 in HT29 and HCT116 cells, and western blot (WB) analysis was conducted to evaluate the levels of FOXF2, glycogen synthase kinase 3 beta (GSK-3β), phosphorylated GSK-3β (p-GSK-3β), β-catenin, p-β-catenin, α-catenin, N-cadherin, E-cadherin, and vimentin. The MTT, Transwell, and wound healing assays were applied to analyze cell proliferation, invasion, and migration, respectively, and the dual luciferase reporter assay was used to determine the correlation of miR-19a-3p with FOXF2.
RESULTS The patients showed high serum levels of miR-19a-3p and low levels of FOXF2, and the area under the curves of miR-19a-3p and FOXF2 were larger than 0.8. MiR-19a-3p and FOXF2 were related to sex, tumor size, age, tumor-node-metastasis staging, lymph node metastasis, and differentiation of CRC patients. Silencing of miR-19a-3p and overexpression of FOXF2 suppressed the epithelial-mesenchymal transition, invasion, migration, and proliferation of cells. WB analysis revealed that silencing of miR-19a-3p and FOXF2 overexpression significantly suppressed the expression of p-GSK-3β, β-catenin, N-cadherin, and vimentin; and increased the levels of GSK-3β, p-β-catenin, α-catenin, and E-cadherin. The dual luciferase reporter assay confirmed that there was a targeted correlation of miR-19a-3p with FOXF2. In addition, a rescue experiment revealed that there were no differences in cell proliferation, invasion, and migration in HT29 and HCT116 cells co-transfected with miR-19a-3p-mimics+sh-FOXF2 and miR-19a-3p-inhibitor+si-FOXF2 compared to the miR-negative control group.
CONCLUSION Inhibiting miR-19a-3p expression can upregulate the FOXF2-mediated Wnt/β-catenin signaling pathway, thereby affecting the epithelial-mesenchymal transition, proliferation, invasion, and migration of cells. Thus, miR-19a-3p is likely to be a therapeutic target in CRC.
Collapse
Affiliation(s)
- Fu-Bing Yu
- Department of Gastroenterology, The Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021, Yunnan Province, China
| | - Juan Sheng
- Department of Gastroenterology, The Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021, Yunnan Province, China
| | - Jia-Man Yu
- Department of Clinical Laboratory, The Geriatrics Hospital of Yunnan Province, Kunming 650011, Yunnan Province, China
| | - Jing-Hua Liu
- Department of Gastroenterology, The Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021, Yunnan Province, China
| | - Xiang-Xin Qin
- Department of Clinical Nutrition, The Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021, Yunnan Province, China
| | - Bo Mou
- Department of Clinical Nutrition, The Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021, Yunnan Province, China
| |
Collapse
|
31
|
Lemaire J, Van der Hauwaert C, Savary G, Dewaeles E, Perrais M, Lo Guidice JM, Pottier N, Glowacki F, Cauffiez C. Cadmium-Induced Renal Cell Toxicity Is Associated With MicroRNA Deregulation. Int J Toxicol 2020; 39:103-114. [DOI: 10.1177/1091581819899039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cadmium is an environmental pollutant well known for its nephrotoxic effects. Nevertheless, mechanisms underlying nephrotoxicity continue to be elucidated. MicroRNAs (miRNAs) have emerged in recent years as modulators of xenobiotic-induced toxicity. In this context, our study aimed at elucidating whether miRNAs are involved in renal proximal tubular toxicity induced by cadmium exposure. We showed that cadmium exposure, in 2 distinct renal proximal tubular cell models (renal proximal tubular epithelial cell [RPTEC]/human telomerase reverse transcriptase [hTERT] and human kidney-2), resulted in cytotoxicity associated with morphological changes, overexpression of renal injury markers, and induction of apoptosis and inflammation processes. Cadmium exposure also resulted in miRNA modulation, including the significant upregulation of 38 miRNAs in RPTEC/hTERT cells. Most of these miRNAs are known to target genes whose coding proteins are involved in oxidative stress, inflammation, and apoptosis, leading to tissue remodeling. In conclusion, this study provides a list of dysregulated miRNAs which may play a role in the pathophysiology of cadmium-induced kidney damages and highlights promising cadmium molecular biomarkers that warrants to be further evaluated.
Collapse
Affiliation(s)
- J. Lemaire
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - C. Van der Hauwaert
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
- Département de la Recherche en Santé, CHU Lille, Lille, France
| | - G. Savary
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - E. Dewaeles
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - M. Perrais
- UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Université de Lille, Lille, France
| | - J. M. Lo Guidice
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - N. Pottier
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
- Service de Toxicologie et Génopathies, CHU Lille, Lille, France
| | - F. Glowacki
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
- Service de Néphrologie, CHU Lille, Lille, France
| | - C. Cauffiez
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| |
Collapse
|
32
|
Xiang X, Guo C, Tang C, Cai J, Dong Z. Epigenetic Regulation in Kidney Toxicity: Insights From Cisplatin Nephrotoxicity. Semin Nephrol 2019; 39:152-158. [PMID: 30827338 DOI: 10.1016/j.semnephrol.2018.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nephrotoxicity, as a result of the exposure of kidney to endogenous and exogenous toxins, is an important factor for acute kidney injury and the development of progressive chronic kidney disease. Cisplatin is among the most widely studied kidney toxicants. In the past decade, epigenetic regulation has emerged as a notable pathogenic mechanism in cisplatin nephrotoxicity, including DNA methylation, histone modification, and noncoding RNAs. In this review, we use cisplatin nephrotoxicity as an example to highlight the epigenetic alteration, function, and underlying mechanism in kidney toxicity. The study of epigenetic regulation in kidney toxicity is still in its infancy, and further investigation will bring new insights for the development of novel diagnostic biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Chunyuan Guo
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Charlie Norwood VA Medical Center, Augusta, GA
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Juan Cai
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Charlie Norwood VA Medical Center, Augusta, GA.
| |
Collapse
|
33
|
miR-146b-5p has a sex-specific role in renal and cardiac pathology in a rat model of chronic kidney disease. Kidney Int 2019; 96:1332-1345. [PMID: 31668631 DOI: 10.1016/j.kint.2019.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/25/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022]
Abstract
Chronic kidney disease presents a complex and distinct pathological landscape in men and women, yet this difference is poorly understood. microRNAs are powerful molecular regulators of pathophysiology in the kidney and other organs. We previously reported a significant upregulation of miR-146b-5p in the 5/6 nephrectomy rat model of chronic kidney disease. Here we investigated the sex-specific contribution of miR-146b-5p to renocardiac pathology by generating a novel miR-146b-/- rat and characterized the expression of miR-146b-5p in both wild-type and knockout animals. The 5/6 nephrectomy or sham surgery was performed on rats of each genotype and sex. Renal pathology was examined through gross histology, plasma and urinary analysis of electrolytes and metabolites, and by chronic blood pressure monitoring. Cardiac pathology was monitored via echocardiography and pressure-volume analysis. The miR-146b-/- rats show functional knockout of miR-146b-5p in both the kidney and heart. While 5/6 nephrectomy induced tissue hypertrophy, miR-146b-/- female rats displayed exacerbated renal hypertrophy. Additionally, miR-146b-/- female rats exhibited a marked elevation of renal fibrosis and significant renal dysfunction yet lower blood pressure and less pronounced cardiac remodeling. These phenotypic differences were not exhibited in miR-146b-/- male rats. Ovariectomy ameliorated renal pathology and abolished genotypic differences. In vitro examination of transforming growth factor-β signaling in combination with miR-146b-5p manipulation supports a role for miR-146b-5p in mediating the protective benefit of estrogen from renal pathologies. Thus, our data highlight an important role of miR-146b-5p in modulating kidney disease progression and provide new avenues for the study of sex-specific pathology.
Collapse
|
34
|
Pavkovic M, Pantano L, Gerlach CV, Brutus S, Boswell SA, Everley RA, Shah JV, Sui SH, Vaidya VS. Multi omics analysis of fibrotic kidneys in two mouse models. Sci Data 2019; 6:92. [PMID: 31201317 PMCID: PMC6570759 DOI: 10.1038/s41597-019-0095-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Kidney fibrosis represents an urgent unmet clinical need due to the lack of effective therapies and an inadequate understanding of the molecular pathogenesis. We have generated a comprehensive and combined multi-omics dataset (proteomics, mRNA and small RNA transcriptomics) of fibrotic kidneys that is searchable through a user-friendly web application: http://hbcreports.med.harvard.edu/fmm/ . Two commonly used mouse models were utilized: a reversible chemical-induced injury model (folic acid (FA) induced nephropathy) and an irreversible surgically-induced fibrosis model (unilateral ureteral obstruction (UUO)). mRNA and small RNA sequencing, as well as 10-plex tandem mass tag (TMT) proteomics were performed with kidney samples from different time points over the course of fibrosis development. The bioinformatics workflow used to process, technically validate, and combine the single omics data will be described. In summary, we present temporal multi-omics data from fibrotic mouse kidneys that are accessible through an interrogation tool (Mouse Kidney Fibromics browser) to provide a searchable transcriptome and proteome for kidney fibrosis researchers.
Collapse
Affiliation(s)
- Mira Pavkovic
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Medicine - Renal Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Lorena Pantano
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Cory V Gerlach
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Medicine - Renal Division, Brigham and Women's Hospital, Boston, MA, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sergine Brutus
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sarah A Boswell
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Robert A Everley
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jagesh V Shah
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Medicine - Renal Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Shannan H Sui
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Vishal S Vaidya
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
- Department of Medicine - Renal Division, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
35
|
Guo C, Dong G, Liang X, Dong Z. Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications. Nat Rev Nephrol 2019; 15:220-239. [PMID: 30651611 PMCID: PMC7866490 DOI: 10.1038/s41581-018-0103-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a major public health concern associated with high morbidity and mortality. Despite decades of research, the pathogenesis of AKI remains incompletely understood and effective therapies are lacking. An increasing body of evidence suggests a role for epigenetic regulation in the process of AKI and kidney repair, involving remarkable changes in histone modifications, DNA methylation and the expression of various non-coding RNAs. For instance, increases in levels of histone acetylation seem to protect kidneys from AKI and promote kidney repair. AKI is also associated with changes in genome-wide and gene-specific DNA methylation; however, the role and regulation of DNA methylation in kidney injury and repair remains largely elusive. MicroRNAs have been studied quite extensively in AKI, and a plethora of specific microRNAs have been implicated in the pathogenesis of AKI. Emerging research suggests potential for microRNAs as novel diagnostic biomarkers of AKI. Further investigation into these epigenetic mechanisms will not only generate novel insights into the mechanisms of AKI and kidney repair but also might lead to new strategies for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Chunyuan Guo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Xinling Liang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
36
|
Chronic exposure to ethylenethiourea induces kidney injury and polycystic kidney in mice. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-019-0007-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Chen T, Wang C, Yu H, Ding M, Zhang C, Lu X, Zhang CY, Zhang C. Increased urinary exosomal microRNAs in children with idiopathic nephrotic syndrome. EBioMedicine 2018; 39:552-561. [PMID: 30467011 PMCID: PMC6355644 DOI: 10.1016/j.ebiom.2018.11.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/07/2018] [Accepted: 11/10/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Urinary exosomal miRNAs are gaining increasing attention for their potential as ideal non-invasive biomarkers for kidney diseases; however, little is known about their diagnostic ability for paediatric nephrotic syndrome (NS). This study explored the clinical value of urinary exosomal miRNAs for paediatric idiopathic NS. METHODS Urine samples were collected from 129 NS children and 126 age-/sex-matched healthy controls. The miRNA profile of urinary exosomes was analysed by high-throughput Illumina sequencing via synthesis (SBS) technology followed by verification with a quantitative reverse-transcription polymerase chain reaction (RT-qPCR) assay arranged in two independent cohorts. Additionally, paired urine samples from 65 of these patients were collected before and after treatment. FINDINGS The Illumina SBS identified 30 markedly increased urinary exosomal miRNAs in NS children compared with controls (≥ 5-fold, P < .05). Fifteen miRNAs were selected for further investigation, of which 5 (miR-194-5p, miR-146b-5p, miR-378a-3p, miR-23b-3p and miR-30a-5p) were verified by RT-qPCR to be significantly and steadily increased in NS (> 3-fold, P < .01) and markedly reduced during the clinical remission period (P < .001). Moreover, the concentrations of miR-194-5p and miR-23b-3p were significantly positively correlated with the urine protein content and were markedly higher in the high urine protein group than in the low urine protein group (P < .001 and P < .01, respectively). INTERPRETATIONS We identified 5 altered urinary exosomal miRNAs in NS children with disease progression and treatment. These urinary exosomal miRNAs could be promising and non-invasive potential biomarker candidates for diagnosing, monitoring and stratifying paediatric NS. FUND: National Natural Science Foundation of China; Fund of State Key Laboratory of Analytical Chemistry for Life Science; National Basic Research Programme of China; Foundation of Jiangsu Provincial Medical Youth Talent.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Clinical Laboratory, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, School of Life Sciences, Nanjing, China
| | - Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, School of Life Sciences, Nanjing, China
| | - Hanqing Yu
- Department of Clinical Laboratory, Nanjing Children's Hospital, Nanjing, China
| | - Meng Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, School of Life Sciences, Nanjing, China
| | - Cuiping Zhang
- Department of Clinical Laboratory, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing, China
| | - Xiaolan Lu
- Department of Clinical Laboratory, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, School of Life Sciences, Nanjing, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, School of Life Sciences, Nanjing, China.
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, Nanjing School of Clinical Medicine, Southern Medical University, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advance Research Institute of Life Sciences, Nanjing University, School of Life Sciences, Nanjing, China.
| |
Collapse
|
38
|
Nabity MB, Polli JW, Vaidya V, Krolewski A, Glaab WE. New Frontiers: Approaches to Understand the Mechanistic Basis of Renal Toxicity. Toxicol Pathol 2018; 46:1002-1005. [PMID: 30189777 DOI: 10.1177/0192623318798599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A scientific session entitled "New Frontiers: Approaches to Understand the Mechanistic Basis of Renal Toxicity" focused on novel biomarkers to monitor kidney injury both preclinically and clinically, as well as providing mechanistic insight of the induced injury. Further, the role and impact of kidney membrane transporters in drug-induced kidney toxicity provided additional considerations when understanding kidney injury and the complex role of drug transporters in either sensitivity or resistance to drug-induced injury. The onset of nephropathy in diabetic patients was also presented, focusing on the quest to discover novel biomarkers that would differentiate diabetic populations more susceptible to nephropathy and renal failure. The session highlighted exciting new research areas and novel biomarkers that will enhance our understanding of kidney injury and provide tools for ensuring patient safety clinically.
Collapse
Affiliation(s)
- Mary B Nabity
- 1 Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | | | - Andrzej Krolewski
- 4 Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
39
|
Mohseni Z, Spaanderman MEA, Oben J, Calore M, Derksen E, Al-Nasiry S, de Windt LJ, Ghossein-Doha C. Cardiac remodeling and pre-eclampsia: an overview of microRNA expression patterns. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 52:310-317. [PMID: 28466998 DOI: 10.1002/uog.17516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Pre-eclampsia (PE) is strongly associated with heart failure (HF) later in life. During PE pregnancy, the left ventricle undergoes concentric remodeling which often persists after delivery. This aberrant remodeling can induce a molecular signature that can be evaluated in terms of microRNAs (miRNAs) and which may help to explain the associated increased risk of HF. For this review, we performed a literature search of PubMed (National Center for Biotechnology Information), identifying studies on miRNA expression in concentric remodeling and on miRNA expression in PE. The miRNA data were stratified based on origin (isolated from humans or animals and from tissue or the circulation) and both datasets compared in order to generate a list of miRNA expression patterns in concentric remodeling and in PE. The nine miRNAs identified in both concentric remodeling and PE-complicated pregnancy were: miR-1, miR-18, miR-21, miR-29b, miR-30, miR-125b, miR-181b, miR-195 and miR-499-5p. We found five of these miRNAs (miR-18, miR-21, miR-125b, miR-195 and miR-499-5p) to be upregulated in both PE pregnancy and cardiac remodeling and two (miR-1 and miR-30) to be downregulated in both; the remaining two miRNAs (miR-29b and miR-181b) showed upregulation during PE but downregulation in cardiac remodeling. This innovative approach may be a step towards finding relevant biomarkers for complicated pregnancy and elucidating their relationship with remote cardiovascular disease. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Z Mohseni
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - M E A Spaanderman
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - J Oben
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - M Calore
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - E Derksen
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - S Al-Nasiry
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - L J de Windt
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - C Ghossein-Doha
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| |
Collapse
|
40
|
Chromogenic In Situ Hybridization Methods for microRNA Biomarker Monitoring of Drug Safety and Efficacy. Methods Mol Biol 2018; 1641:399-412. [PMID: 28748477 DOI: 10.1007/978-1-4939-7172-5_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Disease research and treatment development have turned to the impact and utility of microRNA. The dynamic and highly specific expression of these molecular regulators can be used to predict and monitor disease progression as well as therapeutic treatment efficacy and safety, thus aiding decisions in patient care. In situ hybridization (ISH) of biopsy material has become a routine clinical pathology procedure for monitoring gene structure, expression, and sample characterization. For ribonucleic acid (RNA), determining cell source and level of expression of these biomarkers gives insight into the cellular function and physiopathology. Identification and monitoring of microRNA biomarkers are made possible through locked nucleic acid (LNA)™-based detection probes. LNA™ enhances the sensitivity and specificity of target binding, most profoundly so for the short, highly similar, microRNA sequences. We present a robust 1-day ISH protocol for formalin-fixed, paraffin-embedded (FFPE) tissue sections based on microRNA-specific LNA™ detection probes which can be labeled with digoxigenin (DIG) or 6-carboxyfluorescein (FAM) and detected through enzyme-linked specific antibodies that catalyze substrates into deposited chromogen products at the target RNA site. The variety of haptens and detection reagents in combination with LNA™ chemistry offer flexibility and ease to multiple target assessment of therapeutic response.
Collapse
|
41
|
Fay MJ, Alt LAC, Ryba D, Salamah R, Peach R, Papaeliou A, Zawadzka S, Weiss A, Patel N, Rahman A, Stubbs-Russell Z, Lamar PC, Edwards JR, Prozialeck WC. Cadmium Nephrotoxicity Is Associated with Altered MicroRNA Expression in the Rat Renal Cortex. TOXICS 2018; 6:E16. [PMID: 29543730 PMCID: PMC5874789 DOI: 10.3390/toxics6010016] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 11/25/2022]
Abstract
Cadmium (Cd) is a nephrotoxic environmental pollutant that causes a generalized dysfunction of the proximal tubule characterized by polyuria and proteinuria. Even though the effects of Cd on the kidney have been well-characterized, the molecular mechanisms underlying these effects have not been fully elucidated. MicroRNAs (miRNAs) are small non-coding RNAs that regulate cellular and physiologic function by modulating gene expression at the post-transcriptional level. The goal of the present study was to determine if Cd affects renal cortex miRNA expression in a well-established animal model of Cd-induced kidney injury. Male Sprague-Dawley rats were treated with subcutaneous injections of either isotonic saline or CdCl₂ (0.6 mg/kg) 5 days a week for 12 weeks. The 12-week Cd-treatment protocol resulted in kidney injury as determined by the development of polyuria and proteinuria, and a significant increase in the urinary biomarkers Kim-1, β₂ microglobulin and cystatin C. Total RNA was isolated from the renal cortex of the saline control and Cd treated animals, and differentially expressed miRNAs were identified using µParafloTM microRNA microarray analysis. The microarray results demonstrated that the expression of 44 miRNAs were significantly increased and 54 miRNAs were significantly decreased in the Cd treatment group versus the saline control (t-test, p ≤ 0.05, N = 6 per group). miR-21-5p, miR-34a-5p, miR-146b-5p, miR-149-3p, miR-224-5p, miR-451-5p, miR-1949, miR-3084a-3p, and miR-3084c-3p demonstrated more abundant expression and a significant two-fold or greater increased expression in the Cd-treatment group versus the saline control group. miR-193b-3p, miR-455-3p, and miR-342-3p demonstrated more abundant expression and a significant two-fold or greater decreased expression in the Cd-treatment group versus the saline control group. Real-time PCR validation demonstrated (1) a significant (t-test, p ≤ 0.05, N = 6 per group) increase in expression in the Cd-treated group for miR-21-5p (2.7-fold), miR-34a-5p (10.8-fold), miR-146b-5p (2-fold), miR-224-5p (10.2-fold), miR-3084a-3p (2.4-fold), and miR-3084c-3p (3.3-fold) and (2) a significant (t-test, p ≤ 0.05, N = 6 per group) 52% decrease in miR-455-3p expression in the Cd-treatment group. These findings demonstrate that Cd significantly alters the miRNA expression profile in the renal cortex and raises the possibility that dysregulated miRNA expression may play a role in the pathophysiology of Cd-induced kidney injury. In addition, these findings raise the possibility that Cd-dysregulated miRNAs might be used as urinary biomarkers of Cd exposure or Cd-induced kidney injury.
Collapse
Affiliation(s)
- Michael J Fay
- Department of Biomedical Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
- Department of Pharmacology, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Lauren A C Alt
- Department of Biomedical Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Dominika Ryba
- Department of Biomedical Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Ribhi Salamah
- Department of Biomedical Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Ryan Peach
- Department of Biomedical Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Alexander Papaeliou
- Department of Biomedical Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Sabina Zawadzka
- Department of Biomedical Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Andrew Weiss
- Department of Biomedical Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Nil Patel
- Department of Biomedical Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Asad Rahman
- Department of Biomedical Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Zyaria Stubbs-Russell
- Department of Biomedical Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Peter C Lamar
- Department of Pharmacology, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Joshua R Edwards
- Department of Pharmacology, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | - Walter C Prozialeck
- Department of Pharmacology, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| |
Collapse
|
42
|
Kölling M, Genschel C, Kaucsar T, Hübner A, Rong S, Schmitt R, Sörensen-Zender I, Haddad G, Kistler A, Seeger H, Kielstein JT, Fliser D, Haller H, Wüthrich R, Zörnig M, Thum T, Lorenzen J. Hypoxia-induced long non-coding RNA Malat1 is dispensable for renal ischemia/reperfusion-injury. Sci Rep 2018; 8:3438. [PMID: 29467431 PMCID: PMC5821887 DOI: 10.1038/s41598-018-21720-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/09/2018] [Indexed: 12/27/2022] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury (AKI). Non-coding RNAs are crucially involved in its pathophysiology. We identified hypoxia-induced long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) to be upregulated in renal I/R injury. We here elucidated the functional role of Malat1 in vitro and its potential contribution to kidney injury in vivo. Malat1 was upregulated in kidney biopsies and plasma of patients with AKI, in murine hypoxic kidney tissue as well as in cultured and ex vivo sorted hypoxic endothelial cells and tubular epithelial cells. Malat1 was transcriptionally activated by hypoxia-inducible factor 1-α. In vitro, Malat1 inhibition reduced proliferation and the number of endothelial cells in the S-phase of the cell cycle. In vivo, Malat1 knockout and wildtype mice showed similar degrees of outer medullary tubular epithelial injury, proliferation, capillary rarefaction, inflammation and fibrosis, survival and kidney function. Small-RNA sequencing and whole genome expression analysis revealed only minor changes between ischemic Malat1 knockout and wildtype mice. Contrary to previous studies, which suggested a prominent role of Malat1 in the induction of disease, we did not confirm an in vivo role of Malat1 concerning renal I/R-injury.
Collapse
Affiliation(s)
- Malte Kölling
- Department of Nephrology, University Hospital, Zürich, Switzerland.,Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Celina Genschel
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - Anika Hübner
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Roland Schmitt
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | | | - George Haddad
- Department of Nephrology, University Hospital, Zürich, Switzerland
| | - Andreas Kistler
- Department of Internal Medicine, Cantonal Hospital Frauenfeld, Frauenfeld, Switzerland
| | - Harald Seeger
- Department of Nephrology, University Hospital, Zürich, Switzerland
| | - Jan T Kielstein
- Department of Nephrology, Städtisches Klinikum Braunschweig GmbH, Braunschweig, Germany
| | - Danilo Fliser
- Saarland University Medical Centre, Homburg/Saar, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Rudolf Wüthrich
- Department of Nephrology, University Hospital, Zürich, Switzerland
| | - Martin Zörnig
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, London, UK.,Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
| | - Johan Lorenzen
- Department of Nephrology, University Hospital, Zürich, Switzerland.
| |
Collapse
|
43
|
Abstract
Novel tissue injury biomarkers have recently been identified that outperform or add value to the conventional safety biomarkers. These novel biomarkers have enhanced sensitivity and/or specificity in monitoring drug-induced tissue injury in a variety of tissues, included liver, kidney, and skeletal muscle. Among these novel biomarkers, microRNAs (miRNAs) are one type in particular that have received much attention in recent years. These microRNAs are short, endogenous noncoding nucleic acids that are involved in modulation and regulation of mRNA transcripts. Other attributes of miRNAs are that they exist in tissues at high abundance, and individual miRNAs can be highly tissue-specific. These miRNAs can be readily assayed in blood, urine, or cerebral spinal fluid, making them attractive as accessible biomarkers of tissue injury. Further, the miRNA processing involves embedding the miRNA within a protein complex, making them stable in plasma upon leakage from injured tissues. This review article will highlight the discovery of tissue-specific miRNAs and their evolution as novel toxicity biomarkers in recent years.
Collapse
|
44
|
Abstract
Organ damage and resulting pathologies often involve multiple deregulated pathways. MicroRNAs (miRNAs) are short, non-coding RNAs that regulate a multitude of genes at the post-transcriptional level. Since their discovery over two decades ago, miRNAs have been established as key players in the molecular mechanisms of mammalian biology including the maintenance of normal homeostasis and the regulation of disease pathogenesis. In recent years, there has been substantial progress in innovative techniques to measure miRNAs along with advances in targeted delivery of agents modulating their expression. This has expanded the scope of miRNAs from being important mediators of cell signaling to becoming viable quantitative biomarkers and therapeutic targets. Currently, miRNA therapeutics are in clinical trials for multiple disease areas and vast numbers of patents have been filed for miRNAs involved in various pathological states. In this review, we summarize miRNAs involved in organ injury and repair, specifically with regard to organs that are the most susceptible to injury: the liver, heart and kidney. In addition, we review the current state of knowledge on miRNA biology, miRNA biomarkers and nucleotide-based therapeutics designed to target miRNAs to prevent organ injury and promote repair.
Collapse
Affiliation(s)
- Cory V Gerlach
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vishal S Vaidya
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Institutes of Medicine, Room 562, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
45
|
Abstract
MicroRNAs are small, noncoding, RNAs known for their powerful modulation of molecular processes, making them a major focus for studying pathological mechanisms. The human miR-146 family of microRNAs consists of two member genes, MIR146A and MIR146B These two microRNAs are located on different chromosomes and exhibit differential regulation in many cases. However, they are nearly identical in sequence, sharing a seed region, and are thus predicted to target the same set of genes. A large proportion of the microRNA (miR)-146 literature focuses on its role in regulating the innate immune response in the context of various pathologies by modulating two widely studied target genes in the toll-like receptor signaling cascade. A growing subset of the literature reports a role of miR-146 in cardiovascular and renal disease, and data suggest there is exciting potential for miR-146 as a diagnostic and therapeutic target. Nevertheless, the published literature is confounded by unclear and imprecise language concerning the specific effects of the two miR-146 family members. The present review will compare the genomic origin and regulation of miR-146a and miR-146b, discuss some approaches to overcome analytical and experimental challenges, and summarize findings in major areas of miR-146 research. Moving forward, careful evaluation of miR-146a/b specificity in analytical and experimental approaches will aid researchers in elucidating the functional relevance of differential regulation of the miR-146 family members in health and disease.
Collapse
Affiliation(s)
- Mark R Paterson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
46
|
Fan PC, Chen CC, Chen YC, Chang YS, Chu PH. MicroRNAs in acute kidney injury. Hum Genomics 2016; 10:29. [PMID: 27608623 PMCID: PMC5016954 DOI: 10.1186/s40246-016-0085-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) is an important clinical issue that is associated with significant morbidity and mortality. Despite research advances over the past decades, the complex pathophysiology of AKI is not fully understood. The regulatory mechanisms underlying post-AKI repair and fibrosis have not been clarified either. Furthermore, there is no definitively effective treatment for AKI. MicroRNAs (miRNAs) are endogenous single-stranded noncoding RNAs of 19~23 nucleotides that have been shown to be crucial to the post-transcriptional regulation of various cellular biological functions, including proliferation, differentiation, metabolism, and apoptosis. In addition to being fundamental to normal development and physiology, miRNAs also play important roles in various human diseases. In AKI, some miRNAs appear to act pathogenically by promoting inflammation, apoptosis, and fibrosis, while others may act protectively by exerting anti-inflammatory, anti-apoptotic, anti-fibrotic, and pro-angiogenic effects. Thus, miRNAs have not only emerged as novel biomarkers for AKI; they also hold promise to be potential therapeutic targets.
Collapse
Affiliation(s)
- Pei-Chun Fan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chun Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Chang Chen
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taipei, Taiwan. .,Healthcare Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taipei, Taiwan. .,Heart Failure Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taipei, Taiwan. .,Department of Cardiology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 199 Tung Hwa North Road, Taipei, 105, Taiwan.
| |
Collapse
|
47
|
Bockmeyer CL, Säuberlich K, Wittig J, Eßer M, Roeder SS, Vester U, Hoyer PF, Agustian PA, Zeuschner P, Amann K, Daniel C, Becker JU. Comparison of different normalization strategies for the analysis of glomerular microRNAs in IgA nephropathy. Sci Rep 2016; 6:31992. [PMID: 27553688 PMCID: PMC4995590 DOI: 10.1038/srep31992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/01/2016] [Indexed: 01/10/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) have been used for normalization in glomerular microRNA (miRNA) quantification without confirmation of validity. Our aim was to identify glomerular reference miRNAs in IgA nephropathy. We compared miRNAs in human paraffin-embedded renal biopsies from patients with cellular-crescentic IgA-GN (n = 5; crescentic IgA-GN) and non-crescentic IgA-GN (n = 5; IgA-GN) to mild interstitial nephritis without glomerular abnormalities (controls, n = 5). Laser-microdissected glomeruli were used for expression profiling of 762 miRNAs by low-density TaqMan arrays (cards A and B). The comparison of different normalization methods (GeNormPlus, NormFinder, global mean and snoRNAs) in crescentic IgA-GN, IgA-GN and controls yielded similar results. However, levels of significance and the range of relative expression differed. In median, two normalization methods demonstrated similar results. GeNormPlus and NormFinder gave different top ranked reference miRNAs. Stability ranking for snoRNAs varied between cards A and B. In conclusion, we suggest the geometric mean of the most stable reference miRNAs found in GeNormPlus (miR-26b-5p), NormFinder (miR-28-5p) and snoRNAs (RNU44) as reference. It should be considered that significant differences could be missed using one particular normalization method. As a starting point for glomerular miRNA studies in IgA nephropathy we provide a library of miRNAs.
Collapse
Affiliation(s)
- Clemens L Bockmeyer
- Department of Nephropathology, Friedrich Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany.,Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Karen Säuberlich
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Juliane Wittig
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Marc Eßer
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Sebastian S Roeder
- Department of Nephropathology, Friedrich Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Udo Vester
- Children's Hospital, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Peter F Hoyer
- Children's Hospital, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Putri A Agustian
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Philip Zeuschner
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
48
|
Abstract
Drug-induced kidney injury (DIKI) is a severe complication in hospitalized patients associated with higher probabilities of developing progressive chronic kidney disease or end-stage renal diseases. Furthermore, DIKI is a problem during preclinical and clinical phases of drug development leading to high rates of project terminations. Understanding the molecular perturbations caused by DIKI would pave the way for a new class of therapeutics to mitigate the damage. Yet, another approach to ameliorate DIKI is identifying sensitive and specific translational biomarkers that outperform the current diagnostic analytes like serum creatinine and facilitate early diagnosis. MicroRNAs (miRNAs), a class of non-coding RNAs, are increasingly being recognized to have a two-pronged approach toward DIKI management: 1) miRNAs have a regulatory role in gene expression and signaling pathways thereby making them novel interventional targets and 2) miRNAs enable diagnosis and prognosis of DIKI because of their stable presence in biofluids. In this review, apart from summarizing the literature on miRNAs in DIKI, we report small RNA sequencing results showing miRNA expression profiles at baseline in normal kidney samples from mice and humans. Additionally, we also compared the miRNA expression in biopsies of normal human kidneys to patients with acute tubular necrosis, and found 76 miRNAs significantly downregulated and 47 miRNAs upregulated (FDR adjusted p<0.05, +/-2-fold change). In summary, we highlight the transformative potential of miRNAs in therapeutics and translational medicine with a focus on drug-induced kidney damage.
Collapse
Affiliation(s)
- Mira Pavkovic
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, United States; Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, United States
| | - Vishal S Vaidya
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, United States; Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| |
Collapse
|