1
|
Cao H, Sethumadhavan K. Plant Polyphenol Gossypol Induced Cell Death and Its Association with Gene Expression in Mouse Macrophages. Biomolecules 2023; 13:biom13040624. [PMID: 37189372 DOI: 10.3390/biom13040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Gossypol is a complex plant polyphenol reported to be cytotoxic and anti-inflammatory, but little is known about its effect on gene expression in macrophages. The objective of this study was to explore gossypol’s toxicity and its effect on gene expression involved in the inflammatory response, glucose transport and insulin signaling pathways in mouse macrophages. Mouse RAW264.7 macrophages were treated with multiple concentrations of gossypol for 2–24 h. Gossypol toxicity was estimated by MTT assay and soluble protein content. qPCR analyzed the expression of anti-inflammatory tristetraprolin family (TTP/ZFP36), proinflammatory cytokine, glucose transporter (GLUT) and insulin signaling genes. Cell viability was greatly reduced by gossypol, accompanied with a dramatic reduction in soluble protein content in the cells. Gossypol treatment resulted in an increase in TTP mRNA level by 6–20-fold and increased ZFP36L1, ZFP36L2 and ZFP36L3 mRNA levels by 26–69-fold. Gossypol increased proinflammatory cytokine TNF, COX2, GM-CSF, INFγ and IL12b mRNA levels up to 39–458-fold. Gossypol treatment upregulated mRNA levels of GLUT1, GLUT3 and GLUT4 genes as well as INSR, AKT1, PIK3R1 and LEPR, but not APP genes. This study demonstrated that gossypol induced macrophage death and reduced soluble protein content, which was accompanied with the massive stimulation of anti-inflammatory TTP family and proinflammatory cytokine gene expression, as well as the elevation of gene expression involved in glucose transport and the insulin signaling pathway in mouse macrophages.
Collapse
|
2
|
Ye X, Song G, Huang S, Liang Q, Fang Y, Lian L, Zhu S. Caspase-1: A Promising Target for Preserving Blood–Brain Barrier Integrity in Acute Stroke. Front Mol Neurosci 2022; 15:856372. [PMID: 35370546 PMCID: PMC8971909 DOI: 10.3389/fnmol.2022.856372] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
The blood–brain barrier (BBB) acts as a physical and biochemical barrier that plays a fundamental role in regulating the blood-to-brain influx of endogenous and exogenous components and maintaining the homeostatic microenvironment of the central nervous system (CNS). Acute stroke leads to BBB disruption, blood substances extravasation into the brain parenchyma, and the consequence of brain edema formation with neurological impairment afterward. Caspase-1, one of the evolutionary conserved families of cysteine proteases, which is upregulated in acute stroke, mainly mediates pyroptosis and compromises BBB integrity via lytic cellular death and inflammatory cytokines release. Nowadays, targeting caspase-1 has been proven to be effective in decreasing the occurrence of hemorrhagic transformation (HT) and in attenuating brain edema and secondary damages during acute stroke. However, the underlying interactions among caspase-1, BBB, and stroke still remain ill-defined. Hence, in this review, we are concerned about the roles of caspase-1 activation and its associated mechanisms in stroke-induced BBB damage, aiming at providing insights into the significance of caspase-1 inhibition on stroke treatment in the near future.
Collapse
|
3
|
Zhong M, Huang Y, Zeng B, Xu L, Zhong C, Qiu J, Ye X, Chen M, Hu B, Ouyang D, He X. Induction of multiple subroutines of regulated necrosis in murine macrophages by natural BH3-mimetic gossypol. Acta Biochim Biophys Sin (Shanghai) 2021; 54:64-76. [PMID: 35130622 PMCID: PMC9909304 DOI: 10.3724/abbs.2021004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Macrophages are critical sentinel cells armed with multiple regulated necrosis pathways, including pyroptosis, apoptosis followed by secondary necrosis, and necroptosis, and are poised to undergo distinct form(s) of necrosis for tackling dangers of pathogenic infection or toxic exposure. The natural BH3-mimetic gossypol is a toxic phytochemical that can induce apoptosis and/or pyroptotic-like cell death, but what exact forms of regulated necrosis are induced remains largely unknown. Here we demonstrated that gossypol induces pyroptotic-like cell death in both unprimed and lipopolysaccharide-primed mouse bone marrow-derived macrophages (BMDMs), as evidenced by membrane swelling and ballooning accompanied by propidium iodide incorporation and lactic acid dehydrogenase release. Notably, gossypol simultaneously induces the activation of both pyroptotic and apoptotic (followed by secondary necrosis) pathways but only weakly activates the necroptosis pathway. Unexpectedly, gossypol-induced necrosis is independent of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, as neither inhibitor for the NLRP3 pathway nor NLRP3 deficiency protects the macrophages from the necrosis. Furthermore, necrotic inhibitors or even pan-caspase inhibitor alone does not or only partly inhibit such necrosis. Instead, a combination of inhibitors composed of pan-caspase inhibitor IDN-6556, RIPK3 inhibitor GSK'872 and NADPH oxidase inhibitor GKT137831 not only markedly inhibits the necrosis, with all apoptotic and pyroptotic pathways being blocked, but also attenuates gossypol-induced peritonitis in mice. Lastly, the activation of the NLRP3 pathway and apoptotic caspase-3 appears to be independent of each other. Collectively, gossypol simultaneously induces the activation of multiple subroutines of regulated necrosis in macrophages depending on both apoptotic and inflammatory caspases.
Collapse
Affiliation(s)
- Meiyan Zhong
- Department of ImmunobiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yuanting Huang
- Department of ImmunobiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Bo Zeng
- Department of ImmunobiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Lihui Xu
- Department of Cell BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Chunsu Zhong
- Department of ImmunobiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Jiahao Qiu
- Department of ImmunobiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Xunjia Ye
- Department of ImmunobiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Mingye Chen
- Department of ImmunobiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Bo Hu
- Department of Nephrologythe First Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Dongyun Ouyang
- Department of ImmunobiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Xianhui He
- Department of ImmunobiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| |
Collapse
|
4
|
Zhao YY, Wu DM, He M, Zhang F, Zhang T, Liu T, Li J, Li L, Xu Y. Samotolisib Attenuates Acute Liver Injury Through Inhibiting Caspase-11-Mediated Pyroptosis Via Regulating E3 Ubiquitin Ligase Nedd4. Front Pharmacol 2021; 12:726198. [PMID: 34483936 PMCID: PMC8414251 DOI: 10.3389/fphar.2021.726198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/31/2021] [Indexed: 01/14/2023] Open
Abstract
Acute liver injury (ALI) is associated with poor survival in patients with sepsis. During sepsis, the liver is the main site of bacterial endotoxin-induced inflammation. Lipopolysaccharide (LPS) promotes caspase-4/5/11 activation, leading to pyroptosis, a major sepsis driver. This study aimed to identify novel drugs that can control hepatocyte caspase-4/5/11 activation during sepsis. We performed LPS-induced caspase-11 activation and pyroptosis in RAW 264.7 cells and established an LPS-induced ALI mouse model. We identified samotolisib (ST), a novel dual phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor, by screening a library of 441 pyroptosis compounds with known targets, which dose-dependently inhibited caspase-11 activation and N-terminal fragment of gasdermin D (GSDMD-NT) generation, reducing RAW 264.7 cell pyroptosis. In mice, ST preconditioning improved survival, attenuated LPS-induced serum alanine aminotransferase and aspartate aminotransferase activity, and inhibited severe liver inflammation and damage. Importantly, ST treatment activated Nedd4, which directly interacts with and mediates caspase-11 ubiquitination and degradation. This was largely abrogated by insulin-like growth factor 1. ST ameliorated LPS-induced hepatotoxicity by inhibiting caspase-11/GSDMD-NT pyroptosis signaling via regulating PI3K/AKT/mTOR/Nedd4 signaling. Hence, ST may play a key role in the prevention of liver injury in patients with sepsis.
Collapse
Affiliation(s)
- Yang-Yang Zhao
- Chengdu Medical College, Chengdu, China.,The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Dong-Ming Wu
- Chengdu Medical College, Chengdu, China.,The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Miao He
- Chengdu Medical College, Chengdu, China
| | | | | | - Teng Liu
- Chengdu Medical College, Chengdu, China
| | - Jin Li
- Chengdu Medical College, Chengdu, China
| | - Li Li
- Chengdu Medical College, Chengdu, China
| | - Ying Xu
- Chengdu Medical College, Chengdu, China.,The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
5
|
Isoorientin Attenuated the Pyroptotic Hepatocyte Damage Induced by Benzo[a]pyrene via ROS/NF-κB/NLRP3/Caspase-1 Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10081275. [PMID: 34439523 PMCID: PMC8389279 DOI: 10.3390/antiox10081275] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 01/29/2023] Open
Abstract
Isoorientin (Iso), a natural bioactive flavonoid, possesses significant anti-tumor and anti-oxidant activities. Benzo[a]pyrene (BaP) is a food processing injurant with carcinogenicity, teratogenicity, and genotoxicity. Our preliminary study demonstrates that Iso attenuated the pyroptotic hepatocyte damage induced by BaP; however, the molecular mechanism remains unknown. The present study showed that Iso reduced the increase caused by BaP in the overflow of LDH, NO, and the electrical conductivity and the protein expressions of GSDMD-N, IL-18, and IL-1β, further showing that Iso could reduced the pyroptotic damage in HL-7702 cells induced by BaP. Caspase-1 inhibitor (Z-VAD-FMK) inhibited the characteristic pyroptosis protein expressions of Caspase-1, GSDMD-N, IL-18, and IL-1β, showing that the classic pyroptosis pathway depending on Caspase-1 was caused by BaP in HL-7702 cells. Consistent with the effects of the NLRP3 inhibitor (MCC950), NF-κB inhibitor (PDTC), ROS, and mtROS inhibitor (NAC and Mito-TEMPO), Iso weakened the stimulatory effects of BaP on the levels of ROS, the nuclear localization of NF-κB, and the activation of NLRP3 inflammasome and the characteristic indices of pyroptosis, demonstrating that Iso could alleviate the BaP-induced pyroptotic hepatocytes injury through inhibiting the ROS/NF-κB/NLRP3/Caspase-1 signaling pathway, which provides a new perspective and strategy to prevent liver injury induced by BaP.
Collapse
|
6
|
Gou X, Xu D, Li F, Hou K, Fang W, Li Y. Pyroptosis in stroke-new insights into disease mechanisms and therapeutic strategies. J Physiol Biochem 2021; 77:511-529. [PMID: 33942252 DOI: 10.1007/s13105-021-00817-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Stroke is a common disease with high mortality and disability worldwide. Different forms of cell deaths, including apoptosis and necrosis, occur in ischemic or hemorrhagic brain tissue, among which pyroptosis, a newly discovered inflammation-related programmed cell death, is generally divided into two main pathways, the canonical inflammasome pathway and the non-canonical inflammasome pathway. Caspase-mediated pyroptosis requires the assembly of inflammasomes such as NLRP3, which leads to the release of inflammatory cytokines IL-1β and IL-18 through the pores formed in the plasma membrane by GSDMD followed by neuroinflammation. Recently, pyroptosis and its relationship with inflammation have attracted more and more attention in the study of cerebral ischemia or hemorrhage. In addition, many inhibitors of pyroptosis targeting caspase, NLRP3, and the upstream pathway have been found to reduce brain tissue damage after stroke. In this review, we mainly introduce the pathology of stroke, the molecular mechanism, and process of pyroptosis, as well as the pivotal roles of pyroptosis in stroke, in order to provide new insights for the treatment of stroke.
Collapse
Affiliation(s)
- Xue Gou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China
| | - Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China
| | - Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China
| | - Kai Hou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China.,Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Ye A, Li W, Zhou L, Ao L, Fang W, Li Y. Targeting pyroptosis to regulate ischemic stroke injury: Molecular mechanisms and preclinical evidences. Brain Res Bull 2020; 165:146-160. [PMID: 33065175 DOI: 10.1016/j.brainresbull.2020.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Stroke is one of the leading causes of death worldwide with limited therapies. After ischemic stroke occurs, a robust sterile inflammatory response happens and lasts for days and determines neurological prognosis. Pyroptosis is an inflammatory programmed cell death characterized by cleavage of pore-forming proteins gasdermins as a result of activating caspases and inflammasomes. It has morphological characteristics of rapid plasma-membrane rupture and release of proinflammatory intracellular contents as well as cytokines. Recent researches implicate pyroptosis involvement in the pathogenesis of ischemic stroke and inhibition of pyroptosis attenuates ischemic brain injury. In this review, we discussed molecular mechanisms of pyroptosis, evidences for pyroptosis involvement in different kinds of the central nervous system cells, as well as potential inhibitors for intervention of pyroptosis. Based on the review, we hypothesize the feasibility of therapeutic strategies targeting pyroptosis in the context of ischemic stroke.
Collapse
Affiliation(s)
- Anqi Ye
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wanting Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lin Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Luyao Ao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
8
|
Yu M, Wang Y, Li P, Li M, Gao X. Taurine attenuates gossypol-induced apoptosis of C2C12 mouse myoblasts via the GPR87-AMPK/AKT signaling. Amino Acids 2020; 52:1285-1298. [PMID: 32918616 DOI: 10.1007/s00726-020-02888-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 09/05/2020] [Indexed: 12/24/2022]
Abstract
Gossypol, a toxic polyphenol extracted from cotton seeds, is hazardous to human and animal health. Taurine is considered as an essential or semi-essential amino acid and has diverse cytoprotective effects. This study was aimed to investigate the protective effect and molecular mechanism of taurine against apoptosis of C2C12 mouse myoblasts induced by gossypol. C2C12 mouse myoblasts were exposed to gossypol (0, 1 nM, 10 nM, 100 nM, 1 μM, and 10 μM). Cell numbers were rapidly decreased with increasing concentrations of gossypol. Gossypol significantly induced apoptosis, decreased Bcl2 expression, and increased the protein levels of Bax and the cleaved caspase 3. Taurine (0.24 mM) treatment largely rescued the cell number decreased by gossypol, attenuated gossypol-induced cell apoptosis. GPR87 knockdown abolished the inhibition by taurine of cell apoptosis. Furthermore, GPR87 overexpression attenuated cell apoptosis induced by gossypol. Both taurine treatment and GPR87 overexpression stimulated AKT phosphorylation but inhibited AMPK phosphorylation, whereas gossypol had the opposite effects. Taurine treatment promoted GPR87 expression and subcellular localization and partially rescued the inhibition of gossypol on this expression. In summary, these data reveal that taurine attenuates gossypol-induced apoptosis of C2C12 mouse myoblasts via the GPR87-AMPK/AKT signaling.
Collapse
Affiliation(s)
- Mengmeng Yu
- College of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Yang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Ping Li
- College of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Meng Li
- College of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingzhou, 434020, China.
| |
Collapse
|
9
|
Yokel RA, Tseng MT, Butterfield DA, Hancock ML, Grulke EA, Unrine JM, Stromberg AJ, Dozier AK, Graham UM. Nanoceria distribution and effects are mouse-strain dependent. Nanotoxicology 2020; 14:827-846. [DOI: 10.1080/17435390.2020.1770887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Robert A. Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Michael T. Tseng
- Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY, USA
| | | | - Matthew L. Hancock
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Eric A. Grulke
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Jason M. Unrine
- Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | - Uschi M. Graham
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
- CDC, NIOSH, Cincinnati, OH, USA
| |
Collapse
|
10
|
Yu J, Zhong B, Xiao Q, Du L, Hou Y, Sun HS, Lu JJ, Chen X. Induction of programmed necrosis: A novel anti-cancer strategy for natural compounds. Pharmacol Ther 2020; 214:107593. [PMID: 32492512 DOI: 10.1016/j.pharmthera.2020.107593] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
Cell death plays a critical role in organism development and the pathogenesis of diseases. Necrosis is considered a non-programmed cell death in an extreme environment. Recent advances have provided solid evidence that necrosis could be programmed and quite a few types of programmed necrosis, such as necroptosis, ferroptosis, pyroptosis, paraptosis, mitochondrial permeability transition-driven necrosis, and oncosis, have been identified. The specific biomarkers, detailed signaling, and precise pathophysiological importance of programmed necrosis are yet to be clarified, but these forms of necrosis provide novel strategies for the treatment of various diseases, including cancer. Natural compounds are a unique source of lead compounds for the discovery of anti-cancer drugs. Natural compounds can induce both apoptosis and programmed necrosis. In this review, we summarized the recent progress of programmed necrosis and introduced their natural inducers. Noptosis, which is a novel type of programmed necrosis that is strictly dependent on NAD(P)H: quinone oxidoreductase 1-derived oxidative stress was proposed. Furthermore, the anti-cancer strategies that take advantage of programmed necrosis and the main concerns from the scientific community in this regard were discussed.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Bingling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qingwen Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lida Du
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hong-Shuo Sun
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
11
|
Al Mamun A, Wu Y, Jia C, Munir F, Sathy KJ, Sarker T, Monalisa I, Zhou K, Xiao J. Role of pyroptosis in liver diseases. Int Immunopharmacol 2020; 84:106489. [PMID: 32304992 DOI: 10.1016/j.intimp.2020.106489] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
Abstract
Pyroptosis is known as a novel form of pro-inflammatory cell death program, which is exceptional from other types of cell death programs. Particularly, pyroptosis is characterized by Gasdermin family-mediated pore formation and subsequently cellular lysis, also release of several pro-inflammatory intracellular cytokines. In terms of mechanism, there are two signaling pathways involved in pyroptosis, including caspase-1, and caspase-4/5/11 mediated pathways. However, pyroptosis plays important roles in immune defense mechanisms. Recent studies have demonstrated that pyroptosis plays significant roles in the development of liver diseases. In our review, we have focused on the role of pyroptosis based on the molecular and pathophysiological mechanisms in the development of liver diseases. We have also highlighted targeting of pyroptosis for the therapeutic implications in liver diseases in the near future.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, China
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Kasfia Jahan Sathy
- Department of Pharmacy, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Tamanna Sarker
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Ilma Monalisa
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
12
|
Li X, He S, Gao C, Deng H, Liu Y, Li C, Yuan L, Luo Y. Isoorientin attenuates benzo[a]pyrene-induced liver injury by inhibiting autophagy and pyroptosis in vitro and vivo. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1638888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Xueyi Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Shenyuan He
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Chunxia Gao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Hong Deng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Cuiqin Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Li Yuan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Ying Luo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| |
Collapse
|
13
|
PKHB1 Tumor Cell Lysate Induces Antitumor Immune System Stimulation and Tumor Regression in Syngeneic Mice with Tumoral T Lymphoblasts. JOURNAL OF ONCOLOGY 2019; 2019:9852361. [PMID: 31275386 PMCID: PMC6582786 DOI: 10.1155/2019/9852361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/27/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
Acute lymphocytic leukemia (ALL) is the most common pediatric cancer. Currently, treatment options for patients with relapsed and refractory ALL mostly rely on immunotherapies. However, hematological cancers are commonly associated with a low immunogenicity and immune tolerance, which may contribute to leukemia relapse and the difficulties associated with the development of effective immunotherapies against this disease. We recently demonstrated that PKHB1, a TSP1-derived CD47 agonist peptide, induces immunogenic cell death (ICD) in T cell ALL (T-ALL). Cell death induced by PKHB1 on T-ALL cell lines and their homologous murine, L5178Y-R (T-murine tumor lymphoblast cell line), induced damage-associated molecular patterns (DAMPs) exposure and release. Additionally, a prophylactic vaccination with PKHB1-treated L5178Y-R cells prevented tumor establishment in vivo in all the cases. Due to the immunogenic potential of PKHB1-treated cells, in this study we assessed their ability to induce antitumor immune responses ex vivo and in vivo in an established tumor. We first confirmed the selectivity of cell death induced by PKBH1 in tumor L5178Y-R cells and observed that calreticulin exposure increased when cell death increased. Then, we found that the tumor cell lysate (TCL) obtained from PKHB1-treated L5178YR tumor cells (PKHB1-TCL) was able to induce, ex vivo, dendritic cells maturation, cytokine production, and T cell antitumor responses. Finally, our results show that in vivo, PKHB1-TCL treatment induces tumor regression in syngeneic mice transplanted with L5178Y-R cells, increasing their overall survival and protecting them from further tumor establishment after tumor rechallenge. Altogether our results highlight the immunogenicity of the cell death induced by PKHB1 activation of CD47 as a potential therapeutic tool to overcome the low immunogenicity and immune tolerance in T-ALL.
Collapse
|
14
|
Schruf E, Schroeder V, Kuttruff CA, Weigle S, Krell M, Benz M, Bretschneider T, Holweg A, Schuler M, Frick M, Nicklin P, Garnett JP, Sobotta MC. Human lung fibroblast-to-myofibroblast transformation is not driven by an LDH5-dependent metabolic shift towards aerobic glycolysis. Respir Res 2019; 20:87. [PMID: 31072408 PMCID: PMC6507142 DOI: 10.1186/s12931-019-1058-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease characterized by aberrant fibroblast activation and progressive fibrotic remodelling of the lungs. Though the exact pathophysiological mechanisms of IPF remain unknown, TGF-β1 is thought to act as a main driver of the disease by mediating fibroblast-to-myofibroblast transformation (FMT). Recent reports have indicated that a metabolic shift towards aerobic glycolysis takes place during FMT and that metabolic shifts can directly influence aberrant cell function. This has led to the hypothesis that inhibition of lactate dehydrogenase 5 (LDH5), an enzyme responsible for converting pyruvate into lactate, could constitute a therapeutic concept for IPF. METHODS In this study, we investigated the potential link between aerobic glycolysis and FMT using a potent LDH5 inhibitor (Compound 408, Genentech). Seahorse analysis was performed to determine the effect of Compound 408 on TGF-β1-driven glycolysis in WI-38 fibroblasts. TGF-β1-mediated FMT was measured by quantifying α-smooth muscle actin (α-SMA) and fibronectin in primary human lung fibroblasts following treatment with Compound 408. Lactate and pyruvate levels in the cell culture supernatant were assessed by LC-MS/MS. In addition to pharmacological LDH5 inhibition, the effect of siRNA-mediated knockdown of LDHA and LDHB on FMT was examined. RESULTS We show that treatment of lung fibroblasts with Compound 408 efficiently inhibits LDH5 and attenuates the TGF-β1-mediated metabolic shift towards aerobic glycolysis. Additionally, we demonstrate that LDH5 inhibition has no significant effect on TGF-β1-mediated FMT in primary human lung fibroblasts by analysing α-SMA fibre formation and fibronectin expression. CONCLUSIONS Our data strongly suggest that while LDH5 inhibition can prevent metabolic shifts in fibroblasts, it has no influence on FMT and therefore glycolytic dysregulation is unlikely to be the sole driver of FMT.
Collapse
Affiliation(s)
- Eva Schruf
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Victoria Schroeder
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Christian A Kuttruff
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany.,Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Sabine Weigle
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany.,Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Martin Krell
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Maryke Benz
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Tom Bretschneider
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Alexander Holweg
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Michael Schuler
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - Manfred Frick
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany.,Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Paul Nicklin
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany
| | - James P Garnett
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany.
| | - Mirko C Sobotta
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
15
|
Ulus G, Koparal AT, Baysal K, Yetik Anacak G, Karabay Yavaşoğlu NÜ. The anti-angiogenic potential of (±) gossypol in comparison to suramin. Cytotechnology 2018; 70:1537-1550. [PMID: 30123923 DOI: 10.1007/s10616-018-0247-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Cotton, a staple fiber that grows around the seeds of the cotton plants (Gossypium), is produced throughout the world, and its by products, such as cotton fibers, cotton-seed oil, and cottonseed proteins, have a variety of applications. Cotton-seed contains gossypol, a natural phenol compound. (±)-Gossypol is a yellowish polyphenol that is derived from different parts of the cotton plant and contains potent anticancer properties. Tumor growth and metastasis are mainly related to angiogenesis; therefore, anti-angiogenic therapy targets the new blood vessels that provide oxygen and nutrients to actively proliferating tumor cells. The aim of the present study was to evaluate the anti-angiogenic potential of (±)-gossypol in vitro. (±)-Gossypol has anti-proliferative effects on cancer cell lines; however, its anti-angiogenic effects on normal cells have not been studied. Anti-proliferative activities of gossypol assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, anti-angiogenic activities using tube formation assay, and cell migration inhibition capability using a wound-healing assay on human umbilical vein endothelial cells (HUVECs) were revealed. (±)-Gossypol displayed the following potent anti-angiogenic activities in vitro: it inhibited the cell viability of HUVECs, it inhibited the migration of HUVECs, and disrupted endothelial tube formation in a dose-dependent manner. In addition, the anti-angiogenic effects of (±)-gossypol were investigated in ovo in a model using a chick chorioallantoic membrane (CAM). Decreases in capillary density were assessed and scored. (±)-Gossypol showed dose-dependent anti-angiogenic effects on CAM. These findings suggest that (±)-gossypol can be used as a new anti-angiogenic agent.
Collapse
Affiliation(s)
- Gönül Ulus
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey.
| | - A Tansu Koparal
- Department of Biology, Faculty of Science, Anadolu University, Eskisehir, Turkey
| | - Kemal Baysal
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Günay Yetik Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | | |
Collapse
|
16
|
Li CG, Yan L, Jing YY, Xu LH, Liang YD, Wei HX, Hu B, Pan H, Zha QB, Ouyang DY, He XH. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling. Oncotarget 2018; 8:95-109. [PMID: 27980220 PMCID: PMC5352208 DOI: 10.18632/oncotarget.13921] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022] Open
Abstract
The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling.
Collapse
Affiliation(s)
- Chen-Guang Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Yan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yan-Yun Jing
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yi-Dan Liang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hong-Xia Wei
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Bo Hu
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hao Pan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
17
|
Liu W, Chen Y, Meng J, Wu M, Bi F, Chang C, Li H, Zhang L. Ablation of caspase-1 protects against TBI-induced pyroptosis in vitro and in vivo. J Neuroinflammation 2018; 15:48. [PMID: 29458437 PMCID: PMC5817788 DOI: 10.1186/s12974-018-1083-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/31/2018] [Indexed: 11/10/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a critical public health and socioeconomic problem throughout the world. Inflammation-induced secondary injury is one of the vital pathogenic parameters of TBI. Molecular signaling cascades of pyroptosis, a specific type of cellular necrosis, are key drivers of TBI-induced inflammation. Methods In this study, mice with genetically ablated caspase-1 (caspase-1−/−) were subjected to controlled cortical impact injury in vivo, and primary neuron deficient in caspase-1 through siRNA knockdown and pharmacologic inhibition was stimulated by mechanical scratch, equiaxial stretch, and LPS/ATP in vitro. We evaluated the effects of caspase-1 deficiency on neurological deficits, inflammatory factors, histopathology, cell apoptosis, and pyroptosis. Results During the acute post-injury period (0–48 h) in vivo, motor deficits, anti-inflammatory cytokines (TGF-β and IL-10), pro-inflammatory cytokines (IFN-γ, IL-1β, and IL-18), and blood lactate dehydrogenase (LDH), as well as pyroptosis-related proteins (caspase-1, caspase-1 fragments, caspase-11 and GSDMD), were increased. Caspase-1 was activated in the cortex of TBI mice. Inflammatory activation was more profound in injured wild-type mice than in caspase-1−/− mice. In vitro, mechanical scratch, equiaxial stretch, and LPS/ATP-induced neuron pyroptosis, apoptosis, LDH release, and increased expression of inflammatory factors. The effects of mechanical and inflammatory stress were reduced through inhibition of caspase-1 activity through siRNA knockdown and pharmacologic inhibition. Conclusion Collectively, these data demonstrate that pyroptosis is involved in neuroinflammation and neuronal injury after TBI, and ablation of caspase-1 inhibits TBI-induced pyroptosis. Our findings suggest that caspase-1 may be a potential target for TBI therapy. Electronic supplementary material The online version of this article (10.1186/s12974-018-1083-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Liu
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, People's Republic of China. .,Department of Medical Science Research Center, Shaanxi Fourth People Hospital, Xi'an, 710043, People's Republic of China.
| | - Yuhua Chen
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, People's Republic of China. .,Department of Medical Science Research Center, Shaanxi Fourth People Hospital, Xi'an, 710043, People's Republic of China.
| | - Jiao Meng
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, People's Republic of China.,Department of Medical Science Research Center, Shaanxi Fourth People Hospital, Xi'an, 710043, People's Republic of China
| | - Minfei Wu
- Department of Orthopedics, Jilin University Second Hospital, Changchun, 8974617, People's Republic of China
| | - Fangfang Bi
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, People's Republic of China.,Department of Medical Science Research Center, Shaanxi Fourth People Hospital, Xi'an, 710043, People's Republic of China
| | - Cuicui Chang
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, People's Republic of China.,Department of Medical Science Research Center, Shaanxi Fourth People Hospital, Xi'an, 710043, People's Republic of China
| | - Hua Li
- Department of Medical Science Research Center, Shaanxi Fourth People Hospital, Xi'an, 710043, People's Republic of China
| | - Liangjun Zhang
- Department of Medical Science Research Center, Shaanxi Fourth People Hospital, Xi'an, 710043, People's Republic of China
| |
Collapse
|
18
|
Pizato N, Luzete BC, Kiffer LFMV, Corrêa LH, de Oliveira Santos I, Assumpção JAF, Ito MK, Magalhães KG. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep 2018; 8:1952. [PMID: 29386662 PMCID: PMC5792438 DOI: 10.1038/s41598-018-20422-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
The implication of inflammation in pathophysiology of several type of cancers has been under intense investigation. Omega-3 fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. Pyroptosis is an inflammation related cell death and so far, the function of docosahexaenoic acid (DHA) in pyroptosis cell death has not been described. This study investigated the role of DHA in triggering pyroptosis activation in breast cancer cells. MDA-MB-231 breast cancer cells were supplemented with DHA and inflammation cell death was analyzed. DHA-treated breast cancer cells triggered increased caspase-1and gasdermin D activation, enhanced IL-1β secretion, translocated HMGB1 towards the cytoplasm, and membrane pore formation when compared to untreated cells, suggesting DHA induces pyroptosis programmed cell death in breast cancer cells. Moreover, caspase-1 inhibitor (YVAD) could protect breast cancer cells from DHA-induced pyroptotic cell death. In addition, membrane pore formation showed to be a lysosomal damage and ROS formation-depended event in breast cancer cells. DHA triggered pyroptosis cell death in MDA-MB-231by activating several pyroptosis markers in these cells. This is the first study that shows the effect of DHA triggering pyroptosis programmed cell death in breast cancer cells and it could improve the understanding of the omega-3 supplementation during breast cancer treatment.
Collapse
Affiliation(s)
- Nathalia Pizato
- Department of Nutrition, University of Brasilia, Brasilia, 70910-900, Brazil
| | | | | | - Luís Henrique Corrêa
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, 70910-900, Brazil
| | | | - Marina Kiyomi Ito
- Department of Nutrition, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia, 70910-900, Brazil.
| |
Collapse
|
19
|
Liu Y, Jing YY, Zeng CY, Li CG, Xu LH, Yan L, Bai WJ, Zha QB, Ouyang DY, He XH. Scutellarin Suppresses NLRP3 Inflammasome Activation in Macrophages and Protects Mice against Bacterial Sepsis. Front Pharmacol 2018; 8:975. [PMID: 29375379 PMCID: PMC5767189 DOI: 10.3389/fphar.2017.00975] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/20/2017] [Indexed: 01/09/2023] Open
Abstract
The NLRP3 inflammasome plays a critical role in mediating the innate immune defense against pathogenic infections, but aberrant activation of NLRP3 inflammasome has been linked to a variety of inflammatory diseases. Thus targeting the NLRP3 inflammasome represents a promising therapeutic for the treatment of such diseases. Scutellarin is a flavonoid isolated from Erigeron breviscapus (Vant.) Hand.-Mazz. and has been reported to exhibit potent anti-inflammatory activities, but the underlying mechanism is only partly understood. In this study, we aimed to investigate whether scutellarin could affect the activation of NLRP3 inflammasome in macrophages. The results showed that scutellarin dose-dependently reduced caspase-1 activation and decreased mature interleukin-1β (IL-1β) release in lipopolysaccharide (LPS)-primed macrophages upon ATP or nigericin stimulation, indicating that scutellarin inhibited NLRP3 inflammasome activation in macrophages. Consistent with this, scutellarin also suppressed pyroptotic cell death in LPS-primed macrophages treated with ATP or nigericin. ATP or nigericin-induced ASC speck formation and its oligomerization were blocked by scutellarin pre-treatment. Intriguingly, scutellarin augmented PKA-specific phosphorylation of NLRP3 in LPS-primed macrophages, which was completely blocked by selective PKA inhibitor H89, suggesting that PKA signaling had been involved in the action of scutellarin to suppress NLRP3 inflammasome activation. Supporting this, the inhibitory effect of scutellarin on NLRP3 inflammasome activation was completely counteracted by H89 or adenyl cyclase inhibitor MDL12330A. As NLRP3-dependent release of IL-1β has a critical role in sepsis, the in vivo activity of scutellarin was assayed in a mouse model of bacterial sepsis, which was established by intraperitoneally injection of a lethal dose of viable Escherichia coli. Oral administration of scutellarin significantly improved the survival of mice with bacterial sepsis. In line with this, scutellarin treatment significantly reduced serum IL-1β levels and attenuated the infiltration of inflammatory cells in the liver of E. coli-infected mice. These data indicated that scutellarin suppressed NLRP3 inflammasome activation in macrophages by augmenting PKA signaling, highlighting its potential therapeutic application for treating NLRP3-related inflammatory diseases.
Collapse
Affiliation(s)
- Yi Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yan-Yun Jing
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chen-Ying Zeng
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chen-Guang Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Yan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wen-Jing Bai
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Zha QB, Wei HX, Li CG, Liang YD, Xu LH, Bai WJ, Pan H, He XH, Ouyang DY. ATP-Induced Inflammasome Activation and Pyroptosis Is Regulated by AMP-Activated Protein Kinase in Macrophages. Front Immunol 2016; 7:597. [PMID: 28018360 PMCID: PMC5149551 DOI: 10.3389/fimmu.2016.00597] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/30/2016] [Indexed: 01/12/2023] Open
Abstract
Adenosine triphosphate (ATP) is released by bacteria and host cells during bacterial infection as well as sterile tissue injury, acting as an inducer of inflammasome activation. Previous studies have shown that ATP treatment leads to AMP-activated protein kinase (AMPK) activation. However, it is unclear whether AMPK signaling has been involved in the regulation of ATP-induced inflammasome activation and subsequent pyroptosis. In this study, we aimed to investigate this issue in lipopolysaccharide-activated murine macrophages. Our results showed that AMPK signaling was activated in murine macrophages upon ATP treatment, which was accompanied by inflammasome activation and pyroptosis as evidenced by rapid cell membrane rupture as well as mature interleukin (IL)-1β and active caspase-1p10 release. The ATP-induced inflammasome activation and pyroptosis were markedly suppressed by an AMPK inhibitor compound C or small-interfering RNA-mediated knockdown of AMPKα, but could be greatly enhanced by metformin (a well-known AMPK agonist). Importantly, metformin administration increased the mortality of mice with bacterial sepsis, which was likely because metformin treatment enhanced the systemic inflammasome activation as indicated by elevated serum and hepatic IL-1β levels. Collectively, these data indicated that the AMPK signaling positively regulated ATP-induced inflammasome activation and pyroptosis in macrophages, highlighting the possibility of AMPK-targeting therapies for inflammatory diseases involving inflammasome activation.
Collapse
Affiliation(s)
- Qing-Bing Zha
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University , Guangzhou , China
| | - Hong-Xia Wei
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou , China
| | - Chen-Guang Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou , China
| | - Yi-Dan Liang
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou , China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University , Guangzhou , China
| | - Wen-Jing Bai
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou , China
| | - Hao Pan
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou , China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou , China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University , Guangzhou , China
| |
Collapse
|
21
|
Liang YD, Bai WJ, Li CG, Xu LH, Wei HX, Pan H, He XH, Ouyang DY. Piperine Suppresses Pyroptosis and Interleukin-1β Release upon ATP Triggering and Bacterial Infection. Front Pharmacol 2016; 7:390. [PMID: 27812336 PMCID: PMC5071324 DOI: 10.3389/fphar.2016.00390] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/06/2016] [Indexed: 11/20/2022] Open
Abstract
Piperine is a phytochemical present in black pepper (Piper nigrum Linn) and other related herbs, possessing a wide array of pharmacological activities including anti-inflammatory effects. Previously, we demonstrated that piperine has therapeutic effects on bacterial sepsis in mice, but the underlying mechanism has not been fully elucidated. In this study, we aimed to investigate the influences of piperine on pyroptosis in murine macrophages. The results showed that piperine dose-dependently inhibited ATP-induced pyroptosis, thereby suppressing interleukin-1β (IL-1β) or high mobility group box-1 protein (HMGB1) release in LPS-primed bone marrow-derived macrophages and J774A.1 cells. Accompanying this, ATP-induced AMP-activated protein kinase (AMPK) activation was greatly suppressed by piperine, whereas AMPK agonist metformin counteracted piperine’s inhibitory effects on pyroptosis. Moreover, piperine administration greatly reduced both peritoneal and serum IL-1β levels in the mouse model intraperitoneally infected with Escherichia coli, suggestive of suppressing systemic inflammation and pyroptosis. Our data indicated that piperine could protect macrophages from pyroptosis and reduced IL-1β and HMGB1 release by suppressing ATP-induced AMPK activation, suggesting that piperine may become a potential therapeutic agent against bacterial sepsis.
Collapse
Affiliation(s)
- Yi-Dan Liang
- Department of Immunobiology, College of Life Science and Technology, Jinan University Guangzhou, China
| | - Wen-Jing Bai
- Department of Immunobiology, College of Life Science and Technology, Jinan University Guangzhou, China
| | - Chen-Guang Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University Guangzhou, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University Guangzhou, China
| | - Hong-Xia Wei
- Department of Immunobiology, College of Life Science and Technology, Jinan University Guangzhou, China
| | - Hao Pan
- Department of Immunobiology, College of Life Science and Technology, Jinan University Guangzhou, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University Guangzhou, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University Guangzhou, China
| |
Collapse
|
22
|
2-Pyrrolidone synthesis from γ-aminobutyric acid produced by Lactobacillus brevis under solid-state fermentation utilizing toxic deoiled cottonseed cake. Bioprocess Biosyst Eng 2016; 40:145-152. [DOI: 10.1007/s00449-016-1683-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
|