1
|
Nie X, Ge H, Wu K, Liu R, He C. Unlocking the Potential of Disulfidptosis-Related LncRNAs in Lung Adenocarcinoma: A Promising Prognostic LncRNA Model for Survival and Immunotherapy Prediction. Cancer Med 2024; 13:e70337. [PMID: 39431755 PMCID: PMC11492340 DOI: 10.1002/cam4.70337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/19/2023] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
OBJECTIVE Disulfidptosis was stimulated in high SLC7A11 expression cells starving to glucose. We attempted to identify disulfidptosis-related lncRNAs (DRLs), built a prognostic model to predict survival, and analyzed the tumor microenvironment. METHODS The TCGA database was utilized to procure the pertinent data. By utilizing both Cox regression and the least absolute shrinkage and selection operator (LASSO) method, a risk model based on DRLs was formulated for prognostic evaluation. The ability of survival prediction was validated by multiple approaches. The biological functions were screened through GO, KEGG, and GSEA. Various methods were employed to evaluate the tumor immune environment, which included ESTIMATE, tumor mutation burden (TMB) score, CIBERSORT algorithm, and tumor immune dysfunction and exclusion (TIDE) score. RESULTS Ninety-one DRLs were recognized, and lncRNA AC092718.4, AL365181.2, AL606489.1, EMSLR, and ENTPD3-AS1 were involved in the risk model. The GEO database was used to verify the influence of these lncRNAs on survival. The following analyses showed that survival could be predicted excellently by the DRLs risk model. The results of enrichment analyses pointed toward the involvement of the cell cycle and IgA production pathways. In the low-risk patient group, there was a notable surge in stromal, immune, and ESTIMATE scores, while the TMB scores took a tumble. Conversely, the high-risk patient group displayed a converse trend. Notably, the group of patients with lower risk scores and higher TMB scores showed the most favorable survival outcomes, underscoring the importance of considering both risk score and TMB in predicting the response to immune checkpoint blockade therapy. Furthermore, patients classified as high-risk might display resistance to both chemotherapy and targeted therapy. Cellular biological experiments proved that lncRNA AC092718.4 promoted invasion, migration, and proliferation abilities in vitro. These results provided valuable insights into the role of DRLs in LUAD and presented a possible effective treatment approach for LUAD. CONCLUSIONS We developed a disulfidptosis-related risk model with 5 lncRNAs that enables survival prediciton for LUAD patients and aids cilinical decisions by forecasting the TME, TMB, and drug sensitivity, making it a valuable tool for outcomes prediction.
Collapse
Affiliation(s)
- Xin Nie
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouPeople's Republic of China
| | - Hong Ge
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouPeople's Republic of China
| | - Kongming Wu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Ru Liu
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouPeople's Republic of China
| | - Chunyu He
- Department of Radiation OncologyThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouPeople's Republic of China
| |
Collapse
|
2
|
Vilas-Boas V, Chatterjee N, Carvalho A, Alfaro-Moreno E. Particulate matter-induced oxidative stress - Mechanistic insights and antioxidant approaches reported in in vitro studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104529. [PMID: 39127435 DOI: 10.1016/j.etap.2024.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Inhaled particulate matter (PM) is a key factor in millions of yearly air pollution-related deaths worldwide. The oxidative potential of PM indicates its ability to promote an oxidative environment. Excessive reactive oxygen species (ROS) can cause cell damage via oxidative stress, leading to inflammation, endoplasmic reticulum stress, airway remodeling, and various cell death modes (apoptosis, ferroptosis, pyroptosis). ROS can also interact with macromolecules, inducing DNA damage and epigenetic modifications, disrupting homeostasis. These effects have been studied extensively in vitro and confirmed in vivo. This review explores the oxidative potential of airborne particles and PM-induced ROS-mediated cellular damage observed in vitro, highlighting the link between oxidative stress, inflammation, and cell death modes described in the latest literature. The review also analyzes the effects of ROS on DNA damage, repair, carcinogenicity, and epigenetics. Additionally, the latest developments on the potential of antioxidants to prevent ROS's harmful effects are described, providing future perspectives on the topic.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | - Nivedita Chatterjee
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Andreia Carvalho
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
3
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
4
|
He B, Shao B, Cheng C, Ye Z, Yang Y, Fan B, Xia H, Wu H, Liu Q, Zhang J. miR-21-Mediated Endothelial Senescence and Dysfunction Are Involved in Cigarette Smoke-Induced Pulmonary Hypertension through Activation of PI3K/AKT/mTOR Signaling. TOXICS 2024; 12:396. [PMID: 38922076 PMCID: PMC11209295 DOI: 10.3390/toxics12060396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Smoking is a pathogenic factor for pulmonary hypertension (PH). Our previous study showed that serum miR-21 levels are elevated in smokers. miR-21 is considered as engaged in the PH process; however, its mechanisms remain unclear. In this investigation, we found that in the lung tissue of smoking-induced PH patients, the levels of miR-21 and aging markers (p21 and p16) were upregulated, and the function of pulmonary vascular endothelial cells was also impaired. Exposure of mice to cigarette smoke (CS) for four months caused similar changes in lung tissues and increased pulmonary arterial pressure, which were attenuated by knockout of miR-21. Further, human umbilical vein endothelial cells (HUVECs) exposed to cigarette smoke extract (CSE) revealed upregulation of miR-21 levels, depression of PTEN, activation of PI3K/AKT/mTOR signaling, an increase in senescence indexes, and enhanced dysfunction. Inhibiting miR-21 overexpression reversed the PTEN-mTOR signaling pathway and prevented senescence and dysfunction of HUVECs. In sum, our data indicate that miR-21-mediated endothelial senescence and dysfunction are involved in CS-induced PH through the activation of PI3K/AKT/mTOR signaling, which suggests that selective miR-21 inhibition offers the potential to attenuate PH.
Collapse
Affiliation(s)
- Bin He
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; (B.H.); (H.W.)
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
| | - Binxia Shao
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing 210008, China
| | - Cheng Cheng
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
| | - Zitong Ye
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
| | - Yi Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
| | - Bowen Fan
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
| | - Haibo Xia
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
| | - Hao Wu
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; (B.H.); (H.W.)
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (B.S.); (C.C.); (Z.Y.); (Y.Y.); (B.F.); (H.X.)
| | - Jinsong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; (B.H.); (H.W.)
| |
Collapse
|
5
|
Xie J, Wu Y, Tao Q, Liu H, Wang J, Zhang C, Zhou Y, Wei C, Chang Y, Jin Y, Ding Z. The role of lncRNA in the pathogenesis of chronic obstructive pulmonary disease. Heliyon 2023; 9:e22460. [PMID: 38034626 PMCID: PMC10687241 DOI: 10.1016/j.heliyon.2023.e22460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by progressive and irreversible airflow obstruction with abnormal lung function. Because its pathogenesis involves multiple aspects of oxidative stress, immunity and inflammation, apoptosis, airway and lung repair and destruction, the clinical approach to COPD treatment is not further updated. Therefore, it is crucial to discover a new means of COPD diagnosis and treatment. COPD etiology is associated with complex interactions between environmental and genetic determinants. Numerous genes are involved in the pathogenic process of this illness in research samples exposed to hazardous environmental conditions. Among them, Long non-coding RNAs (lncRNAs) have been reported to be involved in the molecular mechanisms of COPD development induced by different environmental exposures and genetic susceptibility encounters, and some potential lncRNA biomarkers have been identified as early diagnostic, disease course determination, and therapeutic targets for COPD. In this review, we summarize the expression profiles of the reported lncRNAs that have been reported in COPD studies related to environmental risk factors such as smoking and air pollution exposure and provided an overview of the roles of those lncRNAs in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Jing Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yongkang Wu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Qing Tao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hua Liu
- Anhui Institute for Food and Drug Control, Hefei, Anhui, China
| | - Jingjing Wang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Chunwei Zhang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yuanzhi Zhou
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Chengyan Wei
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui, China
| | - Yong Jin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Zhen Ding
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui, China
| |
Collapse
|
6
|
Hashemi M, Gholami S, Raesi R, Sarhangi S, Mahmoodieh B, Koohpar ZK, Goharrizi MASB, Behroozaghdam M, Entezari M, Salimimoghadam S, Zha W, Rashidi M, Abdi S, Taheriazam A, Nabavi N. Biological and therapeutic viewpoints towards role of miR-218 in human cancers: Revisiting molecular interactions and future clinical translations. Cell Signal 2023:110786. [PMID: 37380085 DOI: 10.1016/j.cellsig.2023.110786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
Understanding the exact pathogenesis of cancer is difficult due to heterogenous nature of tumor cells and multiple factors that cause its initiation and development. Treatment of cancer is mainly based on surgical resection, chemotherapy, radiotherapy and their combination, while gene therapy has been emerged as a new kind of therapy for cancer. Post-transcriptional regulation of genes has been of interest in recent years and among various types of epigenetic factors that can modulate gene expression, short non-coding RNAs known as microRNAs (miRNAs) have obtained much attention. The stability of mRNA decreases by miRNAs to repress gene expression. miRNAs can regulate tumor malignancy and biological behavior of cancer cells and understanding their function in tumorigenesis can pave the way towards developing new therapeutics in future. One of the new emerging miRNAs in cancer therapy is miR-218 that increasing evidence highlights its anti-cancer activity, while a few studies demonstrate its oncogenic function. The miR-218 transfection is promising in reducing progression of tumor cells. miR-218 shows interactions with molecular mechanisms including apoptosis, autophagy, glycolysis and EMT, and the interaction is different. miR-218 induces apoptosis, while it suppresses glycolysis, cytoprotective autophagy and EMT. Low expression of miR-218 can result in development of chemoresistance and radio-resistance in tumor cells and direct targeting of miR-218 as a key player is promising in cancer therapy. LncRNAs and circRNAs are nonprotein coding transcripts that can regulate miR-218 expression in human cancers. Moreover, low expression level of miR-218 can be observed in human cancers such as brain, gastrointestinal and urological cancers that mediate poor prognosis and low survival rate.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sareh Sarhangi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | | | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Wenliang Zha
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Soheila Abdi
- Department of Physics, Safadasht Branch, Islamic Azad university, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| |
Collapse
|
7
|
LncRNA GAS5 Suppresses Colorectal Cancer Progress by Target miR-21/LIFR Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3298939. [PMID: 36062165 PMCID: PMC9433273 DOI: 10.1155/2022/3298939] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
GAS5 is abnormally high in colorectal cancer tissues, which is a specific expression of lncRNA in colorectal cancer (CRC). Nevertheless, its biological function in CRC has not been elucidated. The abnormal high expression of GAS5 in CRC is the specific expression of lncRNA in CRC. The purpose of our study is to explore the effect of GAS5 on CRC and its mechanism. The expression of GAS5 in 53 paired normal and colorectal cancer tissues and colorectal cancer cell lines was detected by real-time PCR. The biological effects of GAS5, miR-21, and LIFR were measured by functional assays, including wound healing, transwell assays, and in vivo assays. We ensured the carcinogenesis role of GAS5 in CRC in the xenograft nude model. The dual-luciferase reporter assay system and chromatin immunoprecipitation method were used for target evaluation and Western blot for verification. GAS5 was significantly decreased in tumor tissues and CRC cells, and the low expression of CAS5 in CRC promoted tumor metastasis and decreased the survival of patients. GAS5 knockdown increases the cell viability, inhibits apoptosis, and promotes migration. Xenografted tumors in nude mice studies showed that GAS5 knockdown promoted tumor growth and caused worse lesions in colorectal. Furthermore, GAS5 increases the expression level of target gene LIFR to promote the apoptosis of CRC cells by binding to miR-21. Our study revealed that a novel pathway about lncRNA GAS5 inhibited the proliferation and metastasis of CRC cells by targeting miR-21/LIFR which provides a new strategy to treat CRC.
Collapse
|
8
|
Piergentili R, Basile G, Nocella C, Carnevale R, Marinelli E, Patrone R, Zaami S. Using ncRNAs as Tools in Cancer Diagnosis and Treatment-The Way towards Personalized Medicine to Improve Patients' Health. Int J Mol Sci 2022; 23:9353. [PMID: 36012617 PMCID: PMC9409241 DOI: 10.3390/ijms23169353] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/06/2022] Open
Abstract
Although the first discovery of a non-coding RNA (ncRNA) dates back to 1958, only in recent years has the complexity of the transcriptome started to be elucidated. However, its components are still under investigation and their identification is one of the challenges that scientists are presently facing. In addition, their function is still far from being fully understood. The non-coding portion of the genome is indeed the largest, both quantitatively and qualitatively. A large fraction of these ncRNAs have a regulatory role either in coding mRNAs or in other ncRNAs, creating an intracellular network of crossed interactions (competing endogenous RNA networks, or ceRNET) that fine-tune the gene expression in both health and disease. The alteration of the equilibrium among such interactions can be enough to cause a transition from health to disease, but the opposite is equally true, leading to the possibility of intervening based on these mechanisms to cure human conditions. In this review, we summarize the present knowledge on these mechanisms, illustrating how they can be used for disease treatment, the current challenges and pitfalls, and the roles of environmental and lifestyle-related contributing factors, in addition to the ethical, legal, and social issues arising from their (improper) use.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy
| | - Giuseppe Basile
- Trauma Unit and Emergency Department, IRCCS Galeazzi Orthopedics Institute, 20161 Milan, Italy
- Head of Legal Medicine Unit, Clinical Institute San Siro, 20148 Milan, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
| | - Renato Patrone
- PhD ICTH, University of Federico II, HPB Department INT F. Pascale IRCCS of Naples, Via Mariano Semmola, 80131 Naples, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|
9
|
Hu Q, Ma H, Chen H, Zhang Z, Xue Q. LncRNA in tumorigenesis of non-small-cell lung cancer: From bench to bedside. Cell Death Dis 2022; 8:359. [PMID: 35963868 PMCID: PMC9376075 DOI: 10.1038/s41420-022-01157-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer has been one of the leading causes of cancer-related death worldwide, and non-small-cell lung cancer (NSCLC) accounts for the majority of lung cancer morbidity, yet the pathogenesis of NSCLC has not been fully elucidated. Recently, long-chain non-coding RNA (lncRNA) has attracted widespread attention. LncRNA is a type of non-coding RNA whose transcript length exceeds 200 nucleotides. After constant research, academics updated their understanding of lncRNA, especially its role in the biological processes of cancer cells, including epigenetic regulation, cell proliferation, and cell differentiation. Notably, examination of lncRNAs could serve as potential hallmarks for clinicopathological features, long-term prognosis, and drug sensitivity. Therefore, it is necessary to explore the functions of lncRNA in NSCLC and innovate potential strategies against NSCLC based on lncRNA-related research. Herein, we reviewed the functions of lncRNA in the occurrence, diagnosis, treatment, and prognosis of NSCLC, which not only help promote a comprehensive view of lncRNA in NSCLC, but also shed light on the potential of lncRNA-based diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Qin Hu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Huiyun Ma
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Hongyu Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Zhouwei Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Qun Xue
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
10
|
Zong D, Liu X, Li J, Long Y, Ouyang R, Chen Y. LncRNA-CCAT1/miR-152-3p is involved in CSE-induced inflammation in HBE cells via regulating ERK signaling pathway. Int Immunopharmacol 2022; 109:108818. [PMID: 35523108 DOI: 10.1016/j.intimp.2022.108818] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022]
Abstract
Emerging studies have noted that dysregulated long non-coding RNAs (lncRNAs) are implicated in the pathological processes of chronic obstructive pulmonary disease (COPD). LncRNA colon cancer-associated transcript 1 (CCAT1) plays well-defined roles in the inflammatory progression. The study aims to figure out the effect and regulatory mechanism of CCAT1 in the cigarette smoke induced inflammation in COPD. The results showed that CCAT1 was highly expressed in lung tissues of smokers with COPD compared with never-smokers without COPD. In human bronchial epithelial (HBE) cells, cigarette smoke extract (CSE) treatment led to an increase in CCAT1 expression in a dose- and time- dependent manner. Functional experiments showed that knockdown of CCAT1 amelioratedCSE-inducedinflammation. Mechanistically, CCAT1 directly targeted miR-152-3p, and miR-152-3p overexpression reversed the pro-inflammatory effects of CCAT1 on HBE cells. Subsequently, miR-152-3p was found to regulate ERK signaling pathway. PD98059, an ERK specific inhibitor, reversed miR-152-3p knockdown mediated inflammation in HBE cells. In addition, CCAT1 acted as a sponge for miR-152-3p to positively regulate ERK signaling pathway. Overall, current findings suggest that CCAT1 promoted inflammation by activating ERK signal pathway via sponging miR-152-3p in CSE-treated HBE cells. These results may provide a novel therapeutic target for alleviating cigarette smoke mediated airway inflammation.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Yingjiao Long
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
11
|
Hu X, Zhang Q, Xing W, Wang W. Role of microRNA/lncRNA Intertwined With the Wnt/β-Catenin Axis in Regulating the Pathogenesis of Triple-Negative Breast Cancer. Front Pharmacol 2022; 13:814971. [PMID: 35814205 PMCID: PMC9263262 DOI: 10.3389/fphar.2022.814971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Objective (s): In this mini-review, we aimed to discuss the Wnt/β-catenin signaling pathway modulation in triple-negative breast cancer, particularly the contribution of lncRNAs and miRNAs in its regulation and their possible entwining role in breast cancer pathogenesis, proliferation, migration, or malignancy.Background: Malignant tumor formation is very high for breast cancer in women and is a leading cause of death all over the globe. Among breast cancer subtypes, triple-negative breast cancer is rife in premenopausal women, most invasive, and prone to metastasis. Complex pathways are involved in this cancer’s pathogenesis, advancement, and malignancy, including the Wnt/β-catenin signaling pathway. This pathway is conserved among vertebrates and is necessary for sustaining cell homeostasis. It is regulated by several elements such as transcription factors, enhancers, non-coding RNAs (lncRNAs and miRNAs), etc.Methods: We evaluated lncRNAs and miRNAs differentially expressed in triple-negative breast cancer (TNBC) from the cDNA microarray data set literature survey. Using in silico analyses combined with a review of the current literature, we anticipated identifying lncRNAs and miRNAs that might modulate the Wnt/β-catenin signaling pathway.Result: The miRNAs and lncRNAs specific to triple-negative breast cancer have been identified based on literature and database searches. Tumorigenesis, metastasis, and EMT were all given special attention. Apart from cross-talk being essential for TNBC tumorigenesis and treatment outcomes, our results indicated eight upregulated and seven downregulated miRNAs and 19 upregulated and three downregulated lncRNAs that can be used as predictive or diagnostic markers. This consolidated information could be useful in the clinic and provide a combined literature resource for TNBC researchers working on the Wnt/β-catenin miRNA/lncRNA axis.Conclusion: In conclusion, because the Wnt pathway and miRNAs/lncRNAs can modulate TNBC, their intertwinement results in a cascade of complex reactions that affect TNBC and related processes. Their function in TNBC pathogenesis has been highlighted in molecular processes underlying the disease progression.
Collapse
Affiliation(s)
- Xue Hu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiang Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Wanying Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wan Wang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Wan Wang,
| |
Collapse
|
12
|
The association of long non-coding RNA in the prognosis of oral squamous cell carcinoma. Genes Genomics 2022; 44:327-342. [PMID: 35023067 DOI: 10.1007/s13258-021-01194-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/17/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oral cancer is considered one of the most prevalent cancers in India. This is mainly because India suffers from high usage of tobacco, which is one of the main causative agents of oral cancer, and lacks proper health and sexual hygiene in rural areas. DISCUSSION Non-coding RNAs are reported to be involved in the various mechanism and causality of cancer. Numerous reports have identified viable prospects connecting non-coding RNA (ncRNA) with cancer. Specific ncRNAs like long non-coding RNA or lncRNAs are recently being prioritized as potential associations in the cause of cancer. CONCLUSION This review aims at presenting a concise perspective on the basics and the recent advancements of the lncRNA research pertaining specifically to oral cancer, its recurrence, and the future possibilities of knowledge it might possess.
Collapse
|
13
|
Yang Y, Chen S, Li P, Jing Y, Cheng B, Hu Y, Zheng Q, Wang C. PFOI stimulates the motility of T24 bladder cancer cells: Possible involvement and activation of lncRNA malat1. CHEMOSPHERE 2022; 287:131967. [PMID: 34438215 DOI: 10.1016/j.chemosphere.2021.131967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Perfluorinated iodine alkanes (PFIs) can serve as an important raw materials for the synthesis of various perfluorinated chemical products through telomerization reaction. The estrogenic effects of PFIs have been reported previously by some in vitro and in vivo screening assays. To explore the potential epigenetic toxicity of PFIs, activation of lncRNAs was screened, and the cell motility changes induced by perfluorooctyl iodide (PFOI) were analyzed in this study. High metastatic bladder cell line (T24) was used to investigate the cellular migration function affected by PFOI. PFOI exposure significantly induced the upregulation of lncRNA anril, thorlnc, hotairm1, meg3, and malat1. The migration and invasion of T24 cells were also enhanced upon PFOI exposure. The transcription level of matrix metalloenzyme genes, epidermal growth factors, cytoskeleton genes, and the upstream factors involved in cell motility pathways were examined to illustrate possible mechanisms. Additionally, the basic role of malat1 in cellular motility was investigated by lncRNA knockdown and migration assays. The knockdown of malat1 inhibited the cellular motility induced by PFOI. The levels of MMP-2/-9 genes were also down-regulated by the treatment of si-malat1. Overall, the perturbation of cytoskeleton genes (E-cadherin/N-cadherin) may account for the impact on the motility of T24 cells. Our studies indicate that perfluorinated chemicals might regulate the lncRNAs, thus promoting the metastasis of the tumor cells.
Collapse
Affiliation(s)
- Yuying Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430025, China
| | - Siyi Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Pingdeng Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430025, China
| | - Yingwei Jing
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China; School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430025, China
| | - Bo Cheng
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430025, China
| | - Yeli Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430025, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Jianghan University, Wuhan, 430056, China
| | - Chang Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
14
|
Su X, Chen J, Lin X, Chen X, Zhu Z, Wu W, Lin H, Wang J, Ye X, Zeng Y. FERMT3 mediates cigarette smoke-induced epithelial-mesenchymal transition through Wnt/β-catenin signaling. Respir Res 2021; 22:286. [PMID: 34742298 PMCID: PMC8571878 DOI: 10.1186/s12931-021-01881-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Background Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Epithelial–mesenchymal transition (EMT) is an essential pathophysiological process in COPD and plays an important role in airway remodeling, fibrosis, and malignant transformation of COPD. Previous studies have indicated FERMT3 is downregulated and plays a tumor-suppressive role in lung cancer. However, the role of FERMT3 in COPD, including EMT, has not yet been investigated. Methods The present study aimed to explore the potential role of FERMT3 in COPD and its underlying molecular mechanisms. Three GEO datasets were utilized to analyse FERMT3 gene expression profiles in COPD. We then established EMT animal models and cell models through cigarette smoke (CS) or cigarette smoke extract (CSE) exposure to detect the expression of FERMT3 and EMT markers. RT-PCR, western blot, immunohistochemical, cell migration, and cell cycle were employed to investigate the potential regulatory effect of FERMT3 in CSE-induced EMT. Results Based on Gene Expression Omnibus (GEO) data set analysis, FERMT3 expression in bronchoalveolar lavage fluid was lower in COPD smokers than in non-smokers or smokers. Moreover, FERMT3 expression was significantly down-regulated in lung tissues of COPD GOLD 4 patients compared with the control group. Cigarette smoke exposure reduced the FERMT3 expression and induces EMT both in vivo and in vitro. The results showed that overexpression of FERMT3 could inhibit EMT induced by CSE in A549 cells. Furthermore, the CSE-induced cell migration and cell cycle progression were reversed by FERMT3 overexpression. Mechanistically, our study showed that overexpression of FERMT3 inhibited CSE-induced EMT through the Wnt/β-catenin signaling. Conclusions In summary, these data suggest FERMT3 regulates cigarette smoke-induced epithelial–mesenchymal transition through Wnt/β-catenin signaling. These findings indicated that FERMT3 was correlated with the development of COPD and may serve as a potential target for both COPD and lung cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01881-y.
Collapse
Affiliation(s)
- Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Junjie Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoping Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Xiaoyang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Zhixing Zhu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Weijing Wu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Hai Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Jianming Wang
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Xiangjia Ye
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China.
| |
Collapse
|
15
|
Wang PS, Wang Z, Yang C. Dysregulations of long non-coding RNAs - The emerging "lnc" in environmental carcinogenesis. Semin Cancer Biol 2021; 76:163-172. [PMID: 33823237 PMCID: PMC8487435 DOI: 10.1016/j.semcancer.2021.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) refer to a class of RNA molecules that are more than 200 nucleotides in length and usually lack protein-coding capacity. LncRNAs play important roles in regulating gene expression as well as many aspects of normal physiological processes. Dysregulations of lncRNA expressions and functions are considered to be critically involved in the development and progression of many diseases especially cancer. The lncRNA research in the field of cancer biology over the past decade reveals that a large number of lncRNAs are dysregulated in various types of cancer and that dysregulated lncRNAs may play important roles in cancer initiation, metastasis and therapeutic responses. Metal carcinogens and other common environmental carcinogens such as polycyclic aromatic hydrocarbons, fine particular matters, cigarette smoke, ultraviolet and ionizing radiation are important cancer etiology factors. However, the mechanisms of how metal carcinogens and other common environmental carcinogen exposures initiate cancer and promote cancer progression remain largely unknown. Accumulating evidence show that exposure to metal carcinogens and other common environmental carcinogens dysregulate lncRNA expression in various model systems, which may offer novel mechanistic insights for environmental carcinogenesis. This review will first provide a brief introduction about lncRNA biology and the mechanisms of lncRNA functions, followed by summarizing and discussing recent studies about lncRNA dysregulation by metal carcinogen and other common environment carcinogen exposures and the potential roles of dysregulated lncRNAs in environmental carcinogenesis. A perspective for future studies in this emerging and important field is also presented.
Collapse
Affiliation(s)
- Po-Shun Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44109, USA
| | - Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44109, USA
| | - Chengfeng Yang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44109, USA.
| |
Collapse
|
16
|
Zheng Y, Zeng J, Xia H, Wang X, Chen H, Huang L, Zeng C. Upregulated lncRNA Cyclin-dependent kinase inhibitor 2B antisense RNA 1 induces the proliferation and migration of colorectal cancer by miR-378b/CAPRIN2 axis. Bioengineered 2021; 12:5476-5490. [PMID: 34511033 PMCID: PMC8806871 DOI: 10.1080/21655979.2021.1961656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
LncRNA Cyclin‐dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) plays a role in the progression of multiple cancers like cholangiocarcinoma, osteosarcoma and several gastrointestinal tumors. Few studies have linked its function and mechanism to the development of colorectal cancer (CRC). The expression of CDKN2B-AS1, microRNA (miR)-378b, and cytoplasmic activation/proliferation-associated protein 2 (CAPRIN2) was analyzed in CRC patients and cell lines. The proliferation and migration of CRC cells were evaluated after gain and loss-of function mutations. Interactions between CDKN2B-AS1 and miR-378b, miR-378b and CAPRIN2 were validated by luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. The role of CDKN2B-AS1 was further confirmed in a xenograft mouse model. We found that the expression of CDKN2B-AS1 and CAPRIN2 was upregulated in CRC and they were linked to the poor differentiation and distant metastasis in CRC patients. CDKN2B-AS1 knockdown attenuated while CDKN2B-AS1 overexpression promoted CRC cell proliferation and migration. Notably, the results of Starbase 2.0 database analysis and in vitro experiments demonstrated that CDKN2B-AS1 could interact with miR-378b and regulate its expression. Furthermore, CAPRIN2 acted as a downstream target of CDKN2B-AS1/miR-378b that involved in modulating β-catenin expression in CRC cells. Upregulation of CDKN2B-AS1 contributed to CRC progression via regulating CAPRIN2 expression by binding to miR-378b. Downregulation of CDKN2B-AS1 suppressed tumor growth and Ki-67 staining in vivo that was related to the miR-378b/CAPRIN2 pathway. This study indicated that lncRNA CDKN2B-AS1 promoted the development of CRC through the miR-378b/CAPRIN2/β-catenin axis. CDKN2B-AS1 might serve as a potential and useful target in CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jintao Zeng
- Department of Clinical Medicine, School of Basic Medicine, Chengde Medical College, Chengde, China
| | - Haoyun Xia
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiangyu Wang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hongyuan Chen
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Liangxiang Huang
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Changqing Zeng
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Olesiński T, Lutkowska A, Balcerek A, Sowińska A, Piotrowski P, Trzeciak T, Maj T, Hevelke P, Jagodziński PP. Long noncoding RNA CCAT1 rs67085638 SNP contribution to the progression of gastric cancer in a Polish population. Sci Rep 2021; 11:15369. [PMID: 34321511 PMCID: PMC8319342 DOI: 10.1038/s41598-021-94576-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/07/2021] [Indexed: 01/17/2023] Open
Abstract
The role of the long noncoding RNA CCAT1 NC_000008.10:g.128220661C > T (rs67085638) in the development of colon cancer has been reported. Therefore, we assessed the prevalence of rs67085638 in patients with gastric cancer (GC). We also evaluated the effect of rs67085638 on B-cell-specific Moloney leukaemia virus insertion site 1 (BMI1) transcripts in primary GC and counterpart histopathologically confirmed disease-free margin tissue. Using high-resolution melting analysis, we evaluated rs67085638 frequency in patients with the GC genotype (n = 214) and controls (n = 502) in a Polish Caucasian population. qRT-PCR was used to determine BMI1 transcripts. We observed the trend of rs67085638 association in all patients with GC (ptrend = 0.028), a strong risk of the GC genotype in male (ptrend = 0.035) but not female (ptrend = 0.747) patients, and the association with non-cardia GC (ptrend = 0.041), tumour stages T3 (ptrend = 0.014) and T4 (ptrend = 0.032), differentiation grading G3 (ptrend = 0.009), lymph node metastasis stage N3 (ptrend = 0.0005) and metastasis stage M0 (ptrend = 0.027). We found that significantly increased BMI1 transcripts were associated with the primary GC genotype classified as grade G3 (p = 0.011) and as lymph node metastasis N3 (p = 0.010) and counterpart marginal tissues (p = 0.026, p = 0.040, respectively) from carriers of the T/T versus C/C genotypes. rs67085638 may contribute to increased BMI1 transcripts and the progression and rapid growth of GC.
Collapse
Affiliation(s)
- Tomasz Olesiński
- Department of Oncological Gastroenterology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Lutkowska
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781, Poznan, Poland
| | - Adam Balcerek
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781, Poznan, Poland
| | - Anna Sowińska
- Department of Computer Science and Statistics, Poznań University of Medical Sciences, Poznan, Poland
| | - P Piotrowski
- Molecular Biology Department, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Maj
- Department of Oncological Gastroenterology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Hevelke
- Department of Oncological Gastroenterology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Pawel P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781, Poznan, Poland.
| |
Collapse
|
18
|
Gao MM, Cui Z, Gao YL, Wang J, Liu JX. Multi-Label Fusion Collaborative Matrix Factorization for Predicting LncRNA-Disease Associations. IEEE J Biomed Health Inform 2021; 25:881-890. [PMID: 32324583 DOI: 10.1109/jbhi.2020.2988720] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As we all know, science and technology are developing faster and faster. Many experts and scholars have demonstrated that human diseases are related to lncRNA, but only a few associations have been confirmed, and many unknown associations need to be found. In the process of finding associations, it takes a lot of time, so finding an efficient way to predict the associations between lncRNAs and diseases is particularly important. In this paper, we propose a multi-label fusion collaborative matrix factorization (MLFCMF) approach for predicting lncRNA-disease associations (LDAs). Firstly, the lncRNA space and disease space are optimized by multi-label to enhance the intrinsic link between lncRNA and disease and to tap potential information. Multi-label learning can encode a variety of data information from the sample space. Secondly, to learn multi-label information in the data space, the fusion method is used to handle the relationship between multiple labels. More comprehensive information will be obtained by weighing the effects of different labels. The addition of Gaussian interaction profile (GIP) kernel can increase the network similarity. Finally, the lncRNA-disease associations are predicted by the method of collaborative matrix factorization. The ten-fold cross-validation method is used to evaluate the MLFCMF method, and our method finally obtains an AUC value of 0.8612. Detailed analysis of ovarian cancer, colorectal cancer, and lung cancer in the simulation experiment results. So it can be seen that our method MLFCMF is an effective model for predicting lncRNA-disease associations.
Collapse
|
19
|
Wu Y, Niu Y, Leng J, Xu J, Chen H, Li H, Wang L, Hu J, Xia D, Wu Y. Benzo(a)pyrene regulated A549 cell migration, invasion and epithelial-mesenchymal transition by up-regulating long non-coding RNA linc00673. Toxicol Lett 2020; 320:37-45. [DOI: 10.1016/j.toxlet.2019.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/26/2019] [Accepted: 11/23/2019] [Indexed: 12/19/2022]
|
20
|
Li X, Chen M, Shi Q, Zhang H, Xu S. Hydrogen sulfide exposure induces apoptosis and necroptosis through lncRNA3037/miR-15a/BCL2-A20 signaling in broiler trachea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134296. [PMID: 31683218 DOI: 10.1016/j.scitotenv.2019.134296] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide (H2S) is an air pollutant, has toxic effects on respiratory tract. However, the underlying mechanisms of H2S induced respiratory toxicity and the roles of long non-coding RNAs (lncRNA) and microRNA (miRNA) in this process remain poorly understood. To clear this, we investigated the change of tracheal tissue ultrastructure and the expression profiles of lncRNAs and miRNAs of chicken trachea exposed to H2S for 42 days. Results showed that H2S exposure triggered apoptosis, necroptosis, and differential expression of 16 lncRNAs and 18 miRNAs in broiler tracheas. The results of LMH cells stimulated by NaHS in vitro also showed the occurrence of apoptosis and necroptosis. LncRNA3037 is down-regulated and miR-15a is up-regulated in tracheal tissue and LMH cells under H2S exposure. Bioinformatics analysis and dual luciferase reporter system showed lncRNA3037 bound directly to miR-15a and negatively regulates each other. A20 and BCL2 are the target genes of miR-15a and negatively regulated by it. Overexpression of miR-15a caused apoptosis and necroptosis and its inhibition partially reversed apoptosis and necroptosis of LMH cells caused by NaHS stimulation and lncRNA3037 knockdown. Taken together, we concluded that H2S exposure mediates apoptosis and necroptosis through lncRNA3037/miR-15/A20-BCL2. These results provide new insights for unveiling the biological effects of H2S in vivo and in vitro.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Menghao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qunxiang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
21
|
Abstract
Retinoblastoma (Rb) is the most common ocular pediatric malignancy that arises from the retina and is caused by a mutation of the two alleles of the tumor suppressor gene, RB1. Although early detection provides the opportunity of controlling the primary tumor with effective therapies, metastatic activity is fatal. Non-coding RNAs (ncRNAs) have emerged as important modifiers of a plethora of biological mechanisms including those involved in cancer. They are classified into short and long ncRNAs according to their length. Deregulation of all these molecules has also been shown to play a critical role in Rb pathogenesis and progression. It is believed that ncRNAs can provide new insights into novel regulatory mechanisms associated with clinical pathological characteristics, facilitating the development of therapeutic alternatives for the treatment of Rb. In this review, we describe a variety of ncRNAs, which capable of regulating the most likely candidate genes involved in the tumorigenesis of Rb, could prove useful in analyzing different aspects of this cancer.
Collapse
Affiliation(s)
- Meropi Plousiou
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Ivan Vannini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
22
|
Chen X, Li J, Liang D, Zhang L, Wang Q. LncRNA AWPPH participates in the development of non-traumatic osteonecrosis of femoral head by upregulating Runx2. Exp Ther Med 2019; 19:153-159. [PMID: 31853285 PMCID: PMC6909627 DOI: 10.3892/etm.2019.8185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
AWPPH is a newly discovered long noncoding (lnc)RNA that plays an oncogenic role in development of several types of malignancies, whiles its involvement in non-traumatic osteonecrosis of femoral head (ONFH) is unknown. Therefore, the present study aimed to investigate the functionality of AWPPH in non-traumatic ONFH. Blood and mesenchymal stem cells (MSCs) were obtained from both non-traumatic ONFH patients and healthy controls, and expression of AWPPH in those tissues was detected by RT-qPCR. Receiver operating characteristic curve analysis was performed to investigate the diagnostic value of lncRNA AWPPH expression for non-traumatic ONFH. Bone morphogenic protein (BMP-2) was used to treat MSCs to induce osteogenic differentiation and the effects on lncRNA AWPPH expression was detected by RT-qPCR. LncRNA AWPPH overexpression and short hairpin (sh)RNA silencing cell lines were established and the effects on runt-related transcription factor 2 (Runx2) expression were detected by western blotting. It was demonstrated that AWPPH was significantly downregulated in non-traumatic ONFH patients compared with in healthy controls in both MSCs and serum. Expression of AWPPH in MSCs and serum is a sensitive diagnostic marker for non-traumatic ONFH. Expression of AWPPH exhibited no significant correlation with patients' age, gender and living habits, but was significantly correlated with course of disease. BMP-2 treatment significantly increased the expression level of AWPPH in human MSCs from bone marrow (hMSC-BM). AWPPH overexpression promoted, while AWPPH short hairpin RNA silencing inhibited the expression of Runx2 expression in hMSC-BM cells. Therefore, it was concluded that lncRNA AWPPH may participate in the development of ONFH by upregulating Runx2.
Collapse
Affiliation(s)
- Xiantao Chen
- Department of Osteonecrosis of The Femoral Head, Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan 471000, P.R. China
| | - Jing Li
- Department of Osteonecrosis of The Femoral Head, Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan 471000, P.R. China
| | - Dawei Liang
- Department of Osteonecrosis of The Femoral Head, Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan 471000, P.R. China
| | - Leilei Zhang
- Department of Osteonecrosis of The Femoral Head, Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan 471000, P.R. China
| | - Qingfeng Wang
- Department of Osteonecrosis of The Femoral Head, Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan 471000, P.R. China
| |
Collapse
|
23
|
Zong D, Liu X, Li J, Ouyang R, Chen P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019; 12:65. [PMID: 31711545 PMCID: PMC6844059 DOI: 10.1186/s13072-019-0311-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Exposure to cigarette smoke (CS) is a major threat to human health worldwide. It is well established that smoking increases the risk of respiratory diseases, cardiovascular diseases and different forms of cancer, including lung, liver, and colon. CS-triggered inflammation is considered to play a central role in various pathologies by a mechanism that stimulates the release of pro-inflammatory cytokines. During this process, epigenetic alterations are known to play important roles in the specificity and duration of gene transcription. Main text Epigenetic alterations include three major modifications: DNA modifications via methylation; various posttranslational modifications of histones, namely, methylation, acetylation, phosphorylation, and ubiquitination; and non-coding RNA sequences. These modifications work in concert to regulate gene transcription in a heritable fashion. The enzymes that regulate these epigenetic modifications can be activated by smoking, which further mediates the expression of multiple inflammatory genes. In this review, we summarize the current knowledge on the epigenetic alterations triggered by CS and assess how such alterations may affect smoking-mediated inflammatory responses. Conclusion The recognition of the molecular mechanisms of the epigenetic changes in abnormal inflammation is expected to contribute to the understanding of the pathophysiology of CS-related diseases such that novel epigenetic therapies may be identified in the near future.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
24
|
Wu D, Zhou Y, Fan Y, Zhang Q, Gu F, Mao W, Zhang M. LncRNA CAIF was downregulated in end-stage cardiomyopathy and is a promising diagnostic and prognostic marker for this disease. Biomarkers 2019; 24:735-738. [PMID: 31587591 DOI: 10.1080/1354750x.2019.1677778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cardiac autophagy inhibitory factor (CAIF) is a novel lncRNA with protective effects on myocardial infarction. We explored the involvement of CAIF in end-stage cardiomyopathy. Patients with end-stage cardiomyopathy and healthy volunteers were included in this study. Myocardial tissues and serum were collected. CAIF was detected by RT-qPCR. ROC curve was used for diagnostic analysis. Prognostic value of CAIF expression for end-stage cardiomyopathy was evaluated by survival curve analysis. Correlations between CAIF expression and clinicopathological data of patients with end-stage cardiomyopathy were analysed by chi-square test. Downregulated CAIF was observed in end-stage cardiomyopathy patients than in healthy controls. CAIF expression distinguished end-stage cardiomyopathy patients from healthy controls and predict the survival of patients. LncRNA CAIF was downregulated in end-stage cardiomyopathy and may serve as a promising prognostic and diagnostic marker for this disease.
Collapse
Affiliation(s)
- Di Wu
- Department of Cardiovascular, China Meitan General Hospital, Beijing City, P.R. China
| | - Yanqiu Zhou
- Central Laboratory, China Meitan General Hospital, Beijing City, P.R. China
| | - Yudong Fan
- Department of Cardiovascular, China Meitan General Hospital, Beijing City, P.R. China
| | - Qingjun Zhang
- Department of Cardiovascular, China Meitan General Hospital, Beijing City, P.R. China
| | - Feifei Gu
- Department of Cardiovascular, China Meitan General Hospital, Beijing City, P.R. China
| | - Wen Mao
- Department of Cardiovascular, China Meitan General Hospital, Beijing City, P.R. China
| | - Miaomiao Zhang
- Department of Cardiovascular, China Meitan General Hospital, Beijing City, P.R. China
| |
Collapse
|
25
|
Dai X, Chen C, Xue J, Xiao T, Mostofa G, Wang D, Chen X, Xu H, Sun Q, Li J, Wei Y, Chen F, Quamruzzaman Q, Zhang A, Liu Q. Exosomal MALAT1 derived from hepatic cells is involved in the activation of hepatic stellate cells via miRNA-26b in fibrosis induced by arsenite. Toxicol Lett 2019; 316:73-84. [PMID: 31513886 DOI: 10.1016/j.toxlet.2019.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/28/2019] [Accepted: 09/08/2019] [Indexed: 12/15/2022]
Abstract
In the liver microenvironment, interactions among diverse types of hepatic cells are involved in liver fibrosis. In fibrotic tissues, exosomes act as transporters in intercellular communication. Long non-coding RNAs (lncRNAs) are involved in the activation of hepatic stellate cells (HSCs), which are participants in liver fibrosis. However, the functions of exosomal lncRNAs in liver fibrosis induced by arsenite are undefined. The purposes of the present study were (a) to determine if lncRNAs secreted from human hepatic (L-02) cells exposed to arsenite are shuttled to hepatic stellate LX-2 cells and (b) to establish their effects on LX-2 cells. In mice, MALAT1 was overexpressed in the progression of liver fibrosis induced by arsenite as well as in L-02 cells exposed to arsenite. Co-cultures with arsenite-treated L-02 cells induced the activation of LX-2 cells and overexpression of MALAT1. Arsenite-treated L-02 cells transported MALAT1 into LX-2 cells. Downregulation of MALAT1, which reduced the MALAT1 levels in exosomes derived from arsenite-treated L-02 cells, inhibited the activation of LX-2 cells. Additionally, exosomal MALAT1 derived from arsenite-treated L-02 cells promoted the activation of LX-2 cells via microRNA-26b regulation of COL1A2. Furthermore, circulating exosomal MALAT1 was up-regulated in people exposed to arsenite. In sum, exosomes derived from arsenite-treated hepatic cells transferred MALAT1 to HSCs, which induced their activation. These findings support the concept that, during liver fibrosis induced by arsenite, exosomal lncRNAs are involved in cell-cell communication.
Collapse
Affiliation(s)
- Xiangyu Dai
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Chao Chen
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, people's Republic of China
| | - Junchao Xue
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Golam Mostofa
- Dhaka Community Hospital Trust, Dhaka 1217, Bangladesh
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Hui Xu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qian Sun
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Junjie Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Yongyue Wei
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Feng Chen
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | | | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Ghafouri-Fard S, Taheri M. Colon Cancer-Associated Transcripts 1 and 2: Roles and functions in human cancers. J Cell Physiol 2019; 234:14581-14600. [PMID: 30693526 DOI: 10.1002/jcp.28176] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The long noncoding RNAs (lncRNAs) Colon Cancer-Associated Transcripts 1 and 2 (CCAT1 and CCAT2) are located in a recurrently amplified region in cancers. Their proximity with the Myc oncogene and their interactions with its promoter provided further evidence for their contribution in the tumorigenesis processes. Several cell line and clinical studies have shown upregulation of these lncRNAs in diverse malignancies. Moreover, some single nucleotide variants within these genes have been associated with cancer risk or therapeutic response in different populations. Besides, these two lncRNAs act as sponges for some tumor suppressor microRNAs (miRNAs), thus promoting cancer evolution. In the current study, we review recent literature about their expression level, interaction with cancer-related pathways, their role in determination of cell fate and their contribution in malignant phenotype characteristics. Taken together, the current literature shows that these lncRNAs are putative targets for design of novel treatment strategies. Moreover, their expression levels in biopsied samples, exosomes, and sera of patients might be applied as diagnostic biomarkers or markers for patient follow-up.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Xiao T, Ling M, Xu H, Luo F, Xue J, Chen C, Bai J, Zhang Q, Wang Y, Bian Q, Liu Q. NF-κB-regulation of miR-155, via SOCS1/STAT3, is involved in the PM 2.5-accelerated cell cycle and proliferation of human bronchial epithelial cells. Toxicol Appl Pharmacol 2019; 377:114616. [PMID: 31185220 DOI: 10.1016/j.taap.2019.114616] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/02/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
Air pollution, especially fine particulate matter (PM2.5, particles <2.5 μm in size), induces adverse health effects on the respiratory system. Uncontrolled proliferation of bronchial epithelial cells, resulting from deregulated cell cycle progression, contributes to pulmonary homeostatic imbalance. Although dysregulation of miRNAs is involved in a variety of pathophysiologic processes, the role of miRNAs in lung injury caused by PM2.5 is unclear. In the present study, we found that different concentrations of PM2.5 caused a biphasic effect on proliferation of human bronchial epithelial (HBE) cells. PM2.5 induced an aberrant cell cycle and proliferation of HBE cells, and up-regulated miR-155 levels with a concentration-dependent manner. High miR-155 expression, mediated by NF-κB activation, produced an accelerated G1/S phase and cell proliferation though the STAT3 pathway, which targeted SOCS1. These findings indicate that NF-κB-mediated miR-155 induces an altered cell cycle through epigenetic modulation of the SOCS1/STAT3 signaling pathway and provide a mechanism for the biphasic effect of different concentrations of PM2.5 in inducing respiratory injury.
Collapse
Affiliation(s)
- Tian Xiao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Min Ling
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Hui Xu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Fei Luo
- Faculty of Public Health, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, PR China
| | - Junchao Xue
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Chao Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Jun Bai
- School of Public Health, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Yan Wang
- Faculty of Public Health, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, PR China
| | - Qian Bian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China.
| | - Qizhan Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
28
|
Zhang L, Meng X, Zhu XW, Yang DC, Chen R, Jiang Y, Xu T. Long non-coding RNAs in Oral squamous cell carcinoma: biologic function, mechanisms and clinical implications. Mol Cancer 2019; 18:102. [PMID: 31133028 PMCID: PMC6535863 DOI: 10.1186/s12943-019-1021-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/22/2019] [Indexed: 01/17/2023] Open
Abstract
There is growing evidence that regions of the genome that cannot encode proteins play an important role in diseases. These regions are usually transcribed into long non-coding RNAs (lncRNAs). LncRNAs, little or no coding potential, are defined as capped transcripts longer than 200 nucleotides. New sequencing technologies have shown that a large number of aberrantly expressed lncRNAs are associated with multiple cancer types and indicated they have emerged as an important class of pervasive genes during the development and progression of cancer. However, the underlying mechanism in cancer is still unknown. Therefore, it is necessary to elucidate the lncRNA function. Notably, many lncRNAs dysregulation are associated with Oral squamous cell carcinoma (OSCC) and affect various aspects of cellular homeostasis, including proliferation, survival, migration or genomic stability. This review expounds the up- or down-regulation of lncRNAs in OSCC and the molecular mechanisms by which lncRNAs perform their function in the malignant cell. Finally, the potential of lncRNAs as non-invasive biomarkers for OSCC diagnosis are also described. LncRNAs hold promise as prospective novel therapeutic targets, but more research is needed to gain a better understanding of their biologic function.
Collapse
Affiliation(s)
- Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.,Department of Periodontology, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Xiang Meng
- School of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Xin-Wei Zhu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.,Outpatient Department of Binhu District, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Deng-Cheng Yang
- School of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ran Chen
- School of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Yong Jiang
- Department of Stomatology, The Fourth Affiliated Hospital of Anhui Medical University, 372 Tunxi Road, Hefei, 230000, Anhui Province, China.
| | - Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China. .,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
29
|
The effects of cigarette smoking extracts on cell cycle and tumor spread: novel evidence. Future Sci OA 2019. [DOI: 10.4155/fsoa-2019-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Pezzuto A, Citarella F, Croghan I, Tonini G. The effects of cigarette smoking extracts on cell cycle and tumor spread: novel evidence. Future Sci OA 2019; 5:FSO394. [PMID: 31205749 PMCID: PMC6556819 DOI: 10.2144/fsoa-2019-0017] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoking is a major preventable risk factor for lung cancer, contributing to lung cancer progression and metastasis. Moreover, cigarette smoking correlates with increased metastasis frequency of pancreatic, breast and bladder cancer. The aim of this review was to examine the role of cigarette smoke extract in cell cycle and cancer progression. Clinical impact and the effects of cigarette smoke extract on carcinogenesis are discussed. 98 of the over 5000 chemicals in tobacco smoke are known carcinogens that can act on cancer genes such as K-RAS and p53. Through various mechanisms these compounds can activate molecules involved in the cell cycle, such as cyclins, and molecules involved in apoptosis and autophagy, such as Beclin-1 or LC3B. A search of the literature, including in vitro and in vivo studies, was carried out and the results summarized. There is evidence of cancerogenic effects of cigarette smoke compounds. Cigarette smoke extract is a tobacco condensate obtained by filtration processes. Studies have shown that it can modify the cell cycle, inducing uncontrolled cell proliferation. This effect occurs through activation of genetic and epigenetic pathways and increasing the expression of proteins involved in inflammation. The pathways activated by cigarette smoke extract open up opportunities for researchers to develop new targeted therapies toward the specific molecules involved. Furthermore, the effects exerted by cigarette smoke extract on normal epithelial cells hold potential for use in the development of prevention medicine and early cancer diagnosis.
Collapse
Affiliation(s)
- Aldo Pezzuto
- Cardiovascular & Thoracic Department, AOU Sant'Andrea, Sapienza - Università di Roma, Roma, Italy
| | | | - Ivana Croghan
- Department of Medicine Clinical Research Office & Primary Care Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Giuseppe Tonini
- Oncology Department, Campus Bio-Medico Università di Roma, Roma, Italy
| |
Collapse
|
31
|
Zhang C, Wang W, Lin J, Xiao J, Tian Y. lncRNA CCAT1 promotes bladder cancer cell proliferation, migration and invasion. Int Braz J Urol 2019; 45:549-559. [PMID: 31038865 PMCID: PMC6786104 DOI: 10.1590/s1677-5538.ibju.2018.0450] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 02/16/2019] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE To study the expression patterns of long noncoding RNA (lncRNA) colon cancer-associated transcript 1 (CCAT1) and the changes in cell proliferation, apoptosis, migration and invasion induced by silencing CCAT1 in bladder cancer cells. MATERIALS AND METHODS The expression levels of CCAT1 were determined using realtime quantitative polymerase chain reaction in cancerous tissues and paired normal tissues from 34 patients with bladder cancer. The relationship between clinical characteristics and CCAT1 expression was analyzed. And then we conducted cell experiments. Bladder urothelial carcinoma cell lines T24 and 5637 cells were transfected with CCAT1 small interfering RNA (siRNA) or scramble siRNA. Cell proliferation and apoptosis changes were determined using a Cell Counting Kit-8 (CCK-8) assay and a fl ow cytometry assay. Migration and invasion changes were measured using a wound healing assay and a trans-well assay. microRNAs (miRNAs) were predicted by Starbase 2.0, and their differential expression levels were studied. RESULTS CCAT1 was signifi cantly upregulated in bladder cancer (P < 0.05). CCAT1 upregulation was positively related to tumor stage (P = 0.004), tumor grade (P = 0.001) and tumor size (P = 0.042). Cell proliferation, migration and invasion were promoted by abnormally expressed CCAT1. miRNAs miR-181b-5p, miR-152-3p, miR-24-3p, miR-148a-3p and miR-490-3p were potentially related to the aforementioned functions of CCAT1. CONCLUSION CCAT1 plays an oncogenic role in urothelial carcinoma of the bladder. In addition, CCAT1 may be a potential therapeutic target in this cancer.
Collapse
Affiliation(s)
- Caixiang Zhang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenying Wang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jun Lin
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Xiao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Shen H, Wang L, Xiong J, Ren C, Gao C, Ding W, Zhu D, Ma D, Wang H. Long non-coding RNA CCAT1 promotes cervical cancer cell proliferation and invasion by regulating the miR-181a-5p/MMP14 axis. Cell Cycle 2019; 18:1110-1121. [PMID: 31084453 PMCID: PMC6592243 DOI: 10.1080/15384101.2019.1609829] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 01/01/2023] Open
Abstract
Cervical cancer is a serious threat to women's health and is the third most common malignancy in women worldwide. Recent studies indicate that the long non-coding RNA CCAT1 plays a role in the malignant behavior of many tumors. However, the role of CCAT1 in cervical cancer is still unknown. Our aim is to evaluate the expression and investigate the regulatory role and potential mechanism of CCAT1 in cervical cancer. CCAT1 expression was measured by qRT-PCR. In addition, CCK-8 assays, colony formation assays, qRT-PCR assays, Transwell assays and xenograft experiments were performed to determine the role of CCAT1 in the proliferation and invasion in cervical cancer cells. The expression of CCAT1 in the cervical cancer tissues was higher than in the adjacent normal tissues. Overexpressing CCAT1 promoted cervical cancer cell proliferation, colony formation, and invasion in vitro. Elevated CCAT1 suppressed miR-181a expression, which was accompanied by an increased expression of MMP14 and HB-EGF. In contrast, knocking down CCAT1 resulted in increased expression of miR-181a, along with decreased expression of MMP14 and HB-EGF. Thus, CCAT1 is a key oncogenic lncRNA associated with cervical cancer and plays a role in promoting cervical cancer cell proliferation and invasion by regulating the miR-181a-5p/MMP14 axis.
Collapse
Affiliation(s)
- Hui Shen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Liming Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jinfeng Xiong
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ci Ren
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chun Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wencheng Ding
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Da Zhu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ding Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hui Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
33
|
Yang C, Pan Y, Deng SP. Downregulation of lncRNA CCAT1 enhances 5-fluorouracil sensitivity in human colon cancer cells. BMC Mol Cell Biol 2019; 20:9. [PMID: 31039730 PMCID: PMC6480879 DOI: 10.1186/s12860-019-0188-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 03/19/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The purpose of this study was to determine the aberrant expression of the long noncoding RNA (lncRNA) colon cancer-associated transcript 1 (CCAT1) in 5-fluorouracil-resistant colonic neoplasm cells and to elucidate its effects on the 5-fluorouracil sensitivity of human colonic neoplasm cells. The aberrant expression of lncRNAs in normal tissues and colonic neoplasm tissues was detected by microarray assay. qRT-PCR analysis was performed to assess CCAT1 expression levels in colonic neoplasm cell lines and corresponding normal tissues. After constructing the 5-FU-resistant cell lines and validating the resistance by measuring the IC50 value, the CCAT1 expression levels in parental and artificially resistant cell lines were determined by qRT-PCR. Transfection was used to modulate the expression of CCAT1. Cell proliferation and apoptosis were then detected by CCK-8 and flow cytometry, respectively. RESULTS CCAT1 in colon cancer tissues was higher than that in noncancer tissues, and the levels of CCAT1 in HCT 116, SW1417, HT-29, and KM12 cell lines were higher than those in the human normal colon epithelial NCM460 cell line. Moreover, the expression levels of CCAT1 were high in HCT 116/5-FU and HT-29/5-FU cell lines, whose apoptosis rates induced by 5-FU were lower than those in corresponding parental cells. The results of qRT-PCR and CCK-8 assay showed that enhancement of lncRNA CCAT1 expression levels in HCT 116 and HT-29 cell lines increased their IC50 of 5-FU and decreased their apoptosis rates. Meanwhile, siRNA-CCAT1 effectively inhibited the expression of CCAT1 and enhanced the 5-FU-sensitivity of HCT 116/5-FU and HT-29/5-FU, in which apoptosis rates were increased at the same time. CONCLUSIONS Downregulation of CCAT1 effectively reversed the resistance of HCT 116/5-FU and HT-29/5-FU cells to 5-FU chemotherapeutic, opening a new avenue in colon cancer therapy.
Collapse
Affiliation(s)
- Chun Yang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, No.32 Western Section 2 Yihuan Road, Chengdu, 610072, Sichuan, China
| | - Yong Pan
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, No.32 Western Section 2 Yihuan Road, Chengdu, 610072, Sichuan, China.
| | - Shao Ping Deng
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, No.32 Western Section 2 Yihuan Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
34
|
Song Z, Du J, Zhou L, Sun B. lncRNA AWPPH promotes proliferation and inhibits apoptosis of non‑small cell lung cancer cells by activating the Wnt/β‑catenin signaling pathway. Mol Med Rep 2019; 19:4425-4432. [PMID: 30942396 DOI: 10.3892/mmr.2019.10089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 11/21/2018] [Indexed: 11/06/2022] Open
Abstract
AWPPH is a newly discovered long non‑coding (lnc)RNA that serves an oncogenic role in the development of several types of cancer; however, its involvement in non‑small cell lung cancer (NSCLC) is unknown. Therefore, the aim of the present study was to investigate the function of AWPPH in NSCLC. The results demonstrated that AWPPH expression levels were significantly upregulated in the lung tissues and serum samples of patients with NSCLC compared with in healthy controls. High expression levels of AWPPH effectively distinguished NSCLC patients from healthy controls. In addition, patients with high expression levels of AWPPH had significantly shorter survival time. AWPPH overexpression in NSCLC cells promoted proliferation and inhibited apoptosis, and activated the Wnt/β‑catenin signaling pathway, which is a classic signaling pathway involved in the development and progression of different types of cancers. Treatment with a Wnt/β‑catenin signaling pathway activator produced no significant effect on AWPPH expression. Therefore, it was concluded that lcRNA AWPPH could promote the growth of NSCLCs by activating the Wnt/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Zhan Song
- Department of Respiratory Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Junfeng Du
- Department of Respiratory Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Lirong Zhou
- Department of Respiratory Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Baohua Sun
- Department of Respiratory Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
35
|
Wang N, Yu Y, Xu B, Zhang M, Li Q, Miao L. Pivotal prognostic and diagnostic role of the long non‑coding RNA colon cancer‑associated transcript 1 expression in human cancer (Review). Mol Med Rep 2018; 19:771-782. [PMID: 30535444 PMCID: PMC6323215 DOI: 10.3892/mmr.2018.9721] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/30/2018] [Indexed: 01/17/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) have been classically defined as regulatory RNA members >200 nucleotides in length, without detectable open‑reading frames to encode proteins. Previous studies have demonstrated that lncRNAs serve critical roles in multiple cancer types. Colon cancer‑associated transcript 1 (CCAT1), a novel cancer‑associated lncRNA, is significantly overexpressed in a number of malignancies. Functionally, as an oncogenic lncRNA, CCAT1 is involved in proliferation, migration, cell cycle progression, apoptosis, chemoresistance and other biological processes of cancer cells through complex regulation mechanisms in the cytoplasm or nucleus. In clinical applications, CCAT1 is additionally positively associated with histological differentiation, tumour node metastasis stage, vascular invasion, overall survival and recurrence‑free survival, which demonstrates its important role as a diagnostic and prognostic marker in cancer. The present review summarises the current research progress of the oncogenic potential and clinical uses of CCAT1 in various human cancer types.
Collapse
Affiliation(s)
- Ni Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Yang Yu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Boming Xu
- Department of Gastroenterology, The Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Mingjiong Zhang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Quanpeng Li
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| | - Lin Miao
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 21001, P.R. China
| |
Collapse
|
36
|
Ruan M, Liu J, Ren X, Li C, Zhao AZ, Li L, Yang H, Dai Y, Wang Y. Whole transcriptome sequencing analyses of DHA treated glioblastoma cells. J Neurol Sci 2018; 396:247-253. [PMID: 30529802 DOI: 10.1016/j.jns.2018.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023]
Abstract
Glioblastoma (GBM) is a typical malignant tumor, and there are no effective drugs capable of improving patient survival. Docosahexaenoic acid (DHA), a nutrient essential to animal health and neurodevelopment, exerts an anticancer effect in several types of cancer. However, the function of DHA in GBM is still unclear. Here, we showed that DHA could repress the migration and invasion of GBM U251 cells and promote their apoptosis in a dose- and time-dependent manner, indicating that DHA has an anticancer effect on GBM cells. Whole-transcriptome analysis indicated that DHA treatment mainly regulates the genes associated with receptor binding, oxidoreductase activity, organic acid transmembrane transporter activity, and carboxylic acid transmembrane transporter activity. Long non-coding RNAs (LncRNAs) involved in the regulation network of DHA were also identified, and their targets were assigned to the Gene Ontology (GO) categories. In silico analysis was conducted to predict the pathways related to the differentially expressed genes by DHA treatment. Our findings suggest that DHA acts as an antitumor agent in GBM, which may provide a suitable means of improving the efficacy of GBM treatment in the future.
Collapse
Affiliation(s)
- Miaomiao Ruan
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Jiangsu Center for Safety Evaluation of Drugs, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Jiying Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xueyang Ren
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Chu Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Allan Z Zhao
- Collaborative Innovation Center for Cancer Medicine, Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province 510643, China
| | - Lin Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China; Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
37
|
Xu H, Ling M, Xue J, Dai X, Sun Q, Chen C, Liu Y, Zhou L, Liu J, Luo F, Bian Q, Liu Q. Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking. Theranostics 2018; 8:5419-5433. [PMID: 30555555 PMCID: PMC6276085 DOI: 10.7150/thno.27876] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022] Open
Abstract
Rationale: Aberrant bronchial epithelium-fibroblast communication is essential for the airway remodeling that contributes to chronic obstructive pulmonary disease (COPD). Exosomes have emerged as novel mediators of intercellular communication, but their role in cigarette smoke (CS)-induced COPD is unknown. Here, we investigated the role of exosomal miR-21 in the dysfunctional epithelium-fibroblast cross-talk caused by CS. Methods: Normal or CS extract (CSE)-treated human bronchial epithelial (HBE) cells were co-cultured with bronchial fibroblasts (MRC-5 cells). Exosomes were obtained from culture media or serum by use of commercial kits. The size distribution and concentration of exosomes were analyzed by nanoparticle tracking analysis using a ZetaView particle tracker from ParticleMetrix. Inhibition of miR-21 levels by tail vein injection of antagomir-21 into mice exposed to CS was used to demonstrate the role of miR-21 in airway remodeling leading to COPD in animals. Results: For MRC-5 cells, co-culture with CSE-treated HBE cells or with exosomes derived from CSE-treated HBE cells resulted in the myofibroblast differentiation phenotype. Exosomal miR-21 was responsible for myofibroblast differentiation through hypoxia-inducible factor 1α (HIF-1α) signaling by targeting the von Hippel-Lindau protein (pVHL); HIF-1α transcriptionally regulated the α-SMA gene. For mice, downregulation of miR-21 prevented CS-induced airway remodeling. The levels of exosomal miR-21 were high in sera of smokers and COPD patients and inversely correlated with FEV1/FVC. Conclusion: We demonstrate that CS triggers the modification of exosome components and identify miR-21 derived from bronchial epithelial cells as a mediator of myofibroblast differentiation through the pVHL/HIF-1α signaling pathway, which has potential value for diagnosis and treatment of COPD.
Collapse
|
38
|
Sun C, Sun Y, Zhang E. Long non-coding RNA SNHG20 promotes nasopharyngeal carcinoma cell migration and invasion by upregulating TGF-β1. Exp Ther Med 2018; 16:4967-4974. [PMID: 30546404 PMCID: PMC6257038 DOI: 10.3892/etm.2018.6849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022] Open
Abstract
Small nucleolar RNA host gene 20 (SNHG20) has been reported to serve roles in several types of malignancies, while its role in nasopharyngeal carcinoma remains unknown. In the present study, tumor tissues and adjacent healthy tissues of patient with nasopharyngeal carcinoma, as well as blood samples from patients with nasopharyngeal carcinoma and heathy controls were collected, and expression levels of SNHG20 were detected by reverse transcription-quantitative polymerase chain reaction. Receiver operating characteristic curve and survival curve analyses were performed to evaluate the diagnostic and prognostic values of SNHG20 expression for nasopharyngeal carcinoma, respectively. Associations between serum expression levels of SNHG20 and clinical data of patients with nasopharyngeal carcinoma were analyzed using χ2 test. A SNHG20 expression vector was constructed and transfected into nasopharyngeal carcinoma cells, and cell migration and invasion were detected by Transwell assays. Expression of transforming growth factor-β1 (TGF-β1) was detected by western blotting. Results indicated that the expression level of SNHG20 increased in cancer tissues compared with healthy tissues of patients with nasopharyngeal carcinoma. Serum level of SNHG20 increased in patients with nasopharyngeal carcinoma compared with healthy controls. Significant association was identified between serum levels of SNHG20 and distant tumor metastasis. Serum SNHG20 could serve as a potential diagnostic and prognostic marker for nasopharyngeal carcinoma. Overexpression of SNHG20 promoted nasopharyngeal carcinoma cell migration and invasion, and promoted the expression of TGF-β1. TGF-β1 inhibitor reduced the effects of SNHG20 overexpression on nasopharyngeal carcinoma cell migration and invasion, and exhibited no significant effect on SNHG20 expression. Therefore, the results of the present study indicated that lncRNA SNHG20 could promote the migration and invasion of nasopharyngeal carcinoma cells by upregulating TGF-β1.
Collapse
Affiliation(s)
- Caibo Sun
- Department of Otolaryngology, The Second Municipal Hospital of Wei Hai Affiliated to Qing Dao University, Weihai, Shandong 264200, P.R. China
| | - Yuning Sun
- Department of Otolaryngology, The Second Municipal Hospital of Wei Hai Affiliated to Qing Dao University, Weihai, Shandong 264200, P.R. China
| | - Endong Zhang
- Department of Otolaryngology, The Second Municipal Hospital of Wei Hai Affiliated to Qing Dao University, Weihai, Shandong 264200, P.R. China
| |
Collapse
|
39
|
Choukrallah MA, Sewer A, Talikka M, Sierro N, Peitsch MC, Hoeng J, Ivanov NV. Epigenomics in tobacco risk assessment: Opportunities for integrated new approaches. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2019.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Zhang Y, Liang D, Jin J, Liu C, He Y. [Progress of Long Non-coding RNA in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:43-49. [PMID: 29357972 PMCID: PMC5972355 DOI: 10.3779/j.issn.1009-3419.2018.01.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
肺癌是世界上常见的恶性肿瘤之一,其发病率和死亡率都居全部恶性肿瘤的首位。长链非编码RNA(lncRNA)是一类转录长度超过200个核苷酸且无蛋白质编码功能的RNA,但在表观遗传学调控、细胞周期调控和细胞分化调控等众多生命活动中发挥重要作用。研究发现lncRNA在非小细胞肺癌(non-small cell lung cancer, NSCLC)组织和血液中异常表达,且对肿瘤细胞的增殖、迁移、侵袭和凋亡发挥了重要调节作用,与肿瘤的发生发展密切相关。探索lncRNA在NSCLC中的作用机制,有助于NSCLC的早期诊断,靶向治疗及改善预后。因此本文就lncRNA与NSCLC的发生、诊断、治疗和预后的最新研究进展做一阐述,以期为NSCLC的防治提供新思路。
Collapse
Affiliation(s)
- Yachen Zhang
- The Fourth Hospital of Heibei Medical University, Cancer Institute, Shijiazhuang 050011, China
| | - Di Liang
- The Fourth Hospital of Heibei Medical University, Cancer Institute, Shijiazhuang 050011, China
| | - Jing Jin
- The Fourth Hospital of Heibei Medical University, Cancer Institute, Shijiazhuang 050011, China
| | - Congmin Liu
- The Fourth Hospital of Heibei Medical University, Cancer Institute, Shijiazhuang 050011, China
| | - Yutong He
- The Fourth Hospital of Heibei Medical University, Cancer Institute, Shijiazhuang 050011, China
| |
Collapse
|
41
|
Yi C, Wan X, Zhang Y, Fu F, Zhao C, Qin R, Wu H, Li Y, Huang Y. SNORA42 enhances prostate cancer cell viability, migration and EMT and is correlated with prostate cancer poor prognosis. Int J Biochem Cell Biol 2018; 102:138-150. [PMID: 30053504 DOI: 10.1016/j.biocel.2018.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 01/21/2023]
Abstract
Prostate cancer (PCa) is one of the most common invasive cancers and the second leading cause of cancer-related death in male worldwide, reflecting the needs of diagnostic and prognostic biomarkers for PCa. Emerging evidence has revealed small nucleolar RNAs (snoRNAs) playing a significant role in tumorigenesis and cancer progression. However, there are few reports about snoRNAs in PCa. Here, we found SNORA42 rather than its host gene (KIAA0907) was up-regulated in PCa cell lines. Meanwhile, an obvious up-regulation of SNORA42 was observed in cancer tissues compared to their adjacent normal tissues. SNORA42 could be induced by DHT stimulation. Over-expression of SNORA42 increased prostate cancer cell proliferation and inhibited apoptosis. Importantly, SNORA42 increased prostate cancer cell migration and invasion. Higher SNORA42 expression level was found to be correlated with shorter survival in metastatic PCa tissues by Kaplan-Meier survival analysis, but this effect was not found in primary PCa tissues. In conclusion, over-expression of SNORA42 could have an oncogenic effect on the progression of PCa. SNORA42 might serve as a prognostic biomarker in PCa.
Collapse
Affiliation(s)
- Chuanyou Yi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Xuechao Wan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Yufeng Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Fangqiu Fu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Chen Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Rui Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Hai Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
42
|
Sun Q, Xu H, Xue J, Yang Q, Chen C, Yang P, Han A, Tu Q, Lu J, Gao X, Xiang Q, Liu Q. MALAT1 via microRNA-17 regulation of insulin transcription is involved in the dysfunction of pancreatic β-cells induced by cigarette smoke extract. J Cell Physiol 2018; 233:8862-8873. [PMID: 29856480 DOI: 10.1002/jcp.26800] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/30/2018] [Indexed: 01/03/2023]
Abstract
Cigarettes contain various chemicals with the potential to influence metabolic health. Exposure to cigarette smoke causes a dysfunction in pancreatic β-cells and impairs insulin production. However, the mechanisms for cigarette smoke-induced reduction of insulin remain largely unclear. Data from 558 patients with diabetes showed that, with smoking pack-years, homeostatic model assessment (HOMA)-β (a method for assessing β-cell function) decreased and that HOMA of insulin resistance increased. For β-cells (MIN6), cigarette smoke extract (CSE) increased the levels of thioredoxin-interacting protein (TXNIP) and the long noncoding (lnc)RNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), and downregulated the levels of the transcription factor, mafA, and microRNA (miR)-17. MALAT1, one of four lncRNAs predicted to regulate miR-17, was knocked down by small interfering RNA (siRNA). For these cells, an miR-17 mimic inhibited TXNIP and enhanced the production of insulin. Knockdown of MALAT1 induced an increase in miR-17, which suppressed TXNIP and promoted the production of insulin. In the sera of patients with diabetes who smoked, there were higher MALAT1 levels and lower miR-17 levels than in the sera of nonsmokers. Thus, CSE inhibits insulin production by upregulating TXNIP via MALAT1-mediated downregulation of miR-17, which provides an understanding of the processes involved in the reduced β-cells function caused by cigarette smoke.
Collapse
Affiliation(s)
- Qian Sun
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junchao Xue
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianlei Yang
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Chen
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Yang
- School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Aohan Han
- Institute of Chronic Non-Communicable Disease Control, Jiangsu Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Qingyun Tu
- Institute of Chronic Non-Communicable Disease Control, Jiangsu Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Jiachun Lu
- School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohua Gao
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Quanyong Xiang
- Institute of Chronic Non-Communicable Disease Control, Jiangsu Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Zhang Z, Xie H, Liang D, Huang L, Liang F, Qi Q, Yang X. Long non-coding RNA CCAT1 as a diagnostic and prognostic molecular marker in various cancers: a meta-analysis. Oncotarget 2018; 9:23695-23703. [PMID: 29805767 PMCID: PMC5955114 DOI: 10.18632/oncotarget.24923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/20/2017] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Long non-coding RNA colon cancer-associated transcript-1 (CCAT1) is newly found to be related with diagnoses and prognosis of cancer. This meta-analysis was performed to investigate the relationship between CCAT1 expression and clinical parameters, including survival condition, lymph node metastasis and tumor node metastasis grade. MATERIALS AND METHODS The primary literatures were collected through initial search criteria from electronic databases, including PubMed, OVID Evidence-based medicine Reviews and others (up to May 12, 2017). Eligible studies were identified and selected by the inclusion and exclusion criteria. Data was extracted and computed into Hazard ratio (HR) for the assessment of overall survival, subgroup analyses were prespecified based on the digestive tract cancer or others. Analysis of different CCAT1 expression related with lymph node metastasis or tumor node metastasis grade was conducted. Risk of bias was assessed by the Newcastle-Ottawa Scale. RESULTS 9 studies were included. This meta-analysis showed that high CCAT1 expression level was related to poor overall survival, the pooled HR was 2.42 (95% confidence interval, CI: 1.86-3.16; P < 0.001; fix- effects model), similarly in the cancer type subgroups: digestive tract cancer (HR, 2.42; 95% CI, 1.79-3.29; P < 0.001; fix- effects model) and others (HR, 2.42; 95% CI, 1.42-4.13; P = 0.001; fix- effects model). The analysis showed that high CCAT1 was strongly related to positive lymph node metastasis (Odds ratio, OR: 3.24; 95% CI, 2.04-5.16; P < 0.001; fix- effects model), high tumor node metastasis stage (OR, 3.87; 95% CI, 2.53-5.92; P < 0.001; fix- effects model). CONCLUSIONS In conclusion, this meta-analysis revealed that CCAT1 had potential as a diagnostic and prognostic biomarker in various cancers.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
- Shantou University Medical College, Shantou 515041, China
| | - Haibiao Xie
- Shantou University Medical College, Shantou 515041, China
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Daqiang Liang
- Shantou University Medical College, Shantou 515041, China
| | - Lanbing Huang
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| | - Feiguo Liang
- Shantou University Medical College, Shantou 515041, China
| | - Qiang Qi
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100083, China
| | - Xinjian Yang
- Department of Spine Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China
| |
Collapse
|
44
|
Xu H, Wang Q, Sun Q, Qin Y, Han A, Cao Y, Yang Q, Yang P, Lu J, Liu Q, Xiang Q. In type 2 diabetes induced by cigarette smoking, activation of p38 MAPK is involved in pancreatic β-cell apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9817-9827. [PMID: 29372523 DOI: 10.1007/s11356-018-1337-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
Type 2 diabetes (T2D) is a chronic disease caused by pancreatic β-cell dysfunction and insulin resistance. Exposure to smoke is a risk factor for diabetes; however, its mechanisms are unclear. In an epidemiological study, we determined the relationship between cigarette smoking and β-cell function. T2D patients had a history of heavier smoking than people without T2D, and heavy smokers had more abnormal glucose metabolism. For various smoking populations, there was a dose-effect relationship between decreases of homeostatic model assessment (HOMA)-β levels or the increases of HOMA-insulin resistance (IR) levels and amount of smoking (pack-years), which indicated that smoking induced β-cell dysfunction. For MIN6 cells, cigarette smoke extract (CSE) decreased insulin secretion and content; enhanced apoptosis, as illustrated by decreases of BCL-2 levels, increases of BAX and cleaved caspase-3 levels, and an increased apoptotic index; and activated the p38 MAPK pathway. For MIN6 cells, inhibition of p-p38 MAPK by SB203580 prevented enhanced apoptosis and the dysfunction of insulin secretion induced by CSE. In sum, activation of p38 MAPK is involved in the apoptosis of pancreatic β-cells induced by cigarette smoking, which is a possible mechanism for induction of T2D by cigarette smoke.
Collapse
Affiliation(s)
- Hui Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qiushi Wang
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Qian Sun
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yu Qin
- Institute of Chronic Non-Communicable Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Aohan Han
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Ye Cao
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Qianlei Yang
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Ping Yang
- School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China
| | - Jiachun Lu
- School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
- The Key Laboratory of Modern Toxicology, Ministry of Education, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| | - Quanyong Xiang
- Institute of Chronic Non-Communicable Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
45
|
Lu L, Xu H, Yang P, Xue J, Chen C, Sun Q, Yang Q, Lu J, Shi A, Liu Q. Involvement of HIF-1α-regulated miR-21, acting via the Akt/NF-κB pathway, in malignant transformation of HBE cells induced by cigarette smoke extract. Toxicol Lett 2018; 289:14-21. [PMID: 29501572 DOI: 10.1016/j.toxlet.2018.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
Abstract
Although the relationship between cigarette smoke and lung cancer has been widely studied, the molecular mechanism for cigarette smoke-induced lung cancer remains largely unclear. The present study investigated the roles of hypoxia-inducible factor (HIF)-1α and miR-21 in the malignant transformation of human bronchial epithelial (HBE) cells induced by cigarette smoke extract (CSE). In case of acute and chronic treatment of HBE cells, CSE increased the levels of HIF-1α, p-Akt, p-NF-κB, and miR-21 and decreased PTEN levels. The increased miR-21 levels induced by CSE were prevented by down-regulation of HIF-1α. Further, elevated miR-21 suppressed PTEN levels, which decreased the levels of p-Akt and p-NF-κB. However, those changes were attenuated in cells co-transfected with HIF-1α siRNA and an miR-21 mimic. Silencing of HIF-1α or NF-κB decreased colony formation and the invasion and migration capacities of CSE-transformed HBE cells; however, up-regulation of miR-21 reversed these effects. These results indicate that the oncogenic capacity of HIF-1α in regulation of miR-21-inhibited PTEN in a manner dependent on the Akt/NF-κB pathway, a process that is involved in the CSE-induced malignant transformation of HBE cells. Thus, the present research has established a new mechanism for cigarette smoke-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Lu Lu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Key Laboratory of the Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Hui Xu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Ping Yang
- School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 510182, Guangdong, People's Republic of China
| | - Junchao Xue
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Chao Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qian Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qianlei Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jiachun Lu
- School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 510182, Guangdong, People's Republic of China
| | - Aimin Shi
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Key Laboratory of the Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
46
|
Zhang Y, Luo J, Wang X, Wang HL, Zhang XL, Gan TQ, Chen G, Luo DZ. A comprehensive analysis of the predicted targets of miR-642b-3p associated with the long non-coding RNA HOXA11-AS in NSCLC cells. Oncol Lett 2018; 15:6147-6160. [PMID: 29616096 PMCID: PMC5876445 DOI: 10.3892/ol.2018.8105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 10/13/2017] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNA HOXA11 antisense RNA (HOXA11-AS) has been previously reported to be involved in the tumorigenesis and progression of ovarian cancer and glioma. However, the function of HOXA11-AS in lung cancer remains unclear. Following the knockdown of HOXA11-AS in A549 cells, a microarray analysis was performed in order to detect the differences in microRNA (miRNA/miR) profiles. Subsequently, miR-642b-3p was selected for further analysis. Four miRNA target prediction algorithms were used to identify potential target genes of miR-642b-3p. Bioinformatics analyses, including Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes, protein-protein interactions (PPIs) and network analysis, were performed to investigate the potential functions, pathways and networks of the target genes. Furthermore, the differential expression of miR-642b-3p and its target genes between normal lung and non-small cell lung cancer (NSCLC) tissues was verified using The Cancer Genome Atlas (TCGA) database. Six target genes [zinc finger protein 350, heterogeneous nuclear ribonucleoprotein U, high mobility group box 1, phosphodiesterase 4D (PDE4D), synaptotagmin binding cytoplasmic RNA interacting protein and basic helix-loop-helix family member B9] of miR-642b-3p were predicted using all 4 algorithms. It was revealed that miR-642b-3p was overexpressed in adenocarcinoma and squamous cell carcinoma tissues compared with non-cancerous lung tissues based on the TCGA database. From the 6 target genes, PDE4D was downregulated in lung adenocarcinoma and squamous cell carcinoma tissues, and a weak negative correlation between HOXA11-AS and PDE4D was identified. The area under the curve of PDE4D was 0.905 [95% confidence interval (CI), 0.879–0.931] for patients with lung adenocarcinoma and 0.665 (95% CI, 0.606–0.725) for patients with squamous cell carcinoma. Additionally, GO analysis of the target genes revealed that miR-642b-3p was specifically involved in complex cellular pathways. The target gene RAN binding protein 2 possessed the highest degree of interactions in the PPI network (degree=40). It was hypothesized that HOXA11-AS may have a function in NSCLC by regulating the expression of miR-642b-3p and PDE4D, which laid the foundation for the further elucidation of the potential molecular mechanisms of NSCLC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Luo
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Han-Lin Wang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiu-Ling Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ting-Qing Gan
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
47
|
Emerging role of non-coding RNA in oral cancer. Cell Signal 2018; 42:134-143. [DOI: 10.1016/j.cellsig.2017.10.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/28/2017] [Accepted: 10/15/2017] [Indexed: 02/06/2023]
|
48
|
Luo Y, Liang M, Yao W, Liu J, Niu Q, Chen J, Liu Z, Li M, Shi B, Pan J, Zhou L, Zhou X. Functional role of lncRNA LOC101927497 in N-methyl-N'-nitro-N-nitrosoguanidine-induced malignantly transformed human gastric epithelial cells. Life Sci 2017; 193:93-103. [PMID: 29223541 DOI: 10.1016/j.lfs.2017.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
Abstract
AIMS Evidence shows that aberrant expression of long non-coding RNA (lncRNA) is closely associated with tumor development and progression. However, the role of lncRNA in environmental carcinogen induced gastric tumorigenesis remains largely unknown. This study aimed at investigating the function role of lncRNA in N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induce malignantly transformed human gastric epithelial cells. MAIN METHODS In this study, high-throughput sequencing and qRT-PCR assay revealed marked downregulation of lncRNA LOC101927497 in the malignant transformed gastric epithelial cells induced by MNNG (GES-1-T cells), gain-of-function and loss-of-function assays showed that LOC101927497 can suppress the proliferation and migration of GES-1-T cells in vitro. RNA antisense purification experiment showed that LOC101927497 interacted with miR-574-5p in GES-1-T cells the most obvious. Further studies suggested that LOC101927497 may function as a tumor suppressor by interacting with miR-574-5p. KEY FINDINGS LncRNA LOC101927497 functions as a suppressor by interacting with miR-574-5p, thus inhibiting the malignant phenotype of GES-1-T cells. SIGNIFICANCE To the best of our knowledge, this is the first study to demonstrate the role of lncRNA in MNNG-induced gastric tumorigenesis, and it will provide new insights into the role of lncRNA in environmental carcinogen-induced gastric cancer.
Collapse
Affiliation(s)
- Yuanwei Luo
- Department of General Surgery, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, People's Republic of China
| | - Min Liang
- Department of Oncology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, People's Republic of China
| | - Wenxia Yao
- Centre Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, People's Republic of China
| | - Jifang Liu
- Centre Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, People's Republic of China
| | - Qiuling Niu
- Department of Oncology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, People's Republic of China
| | - Jitao Chen
- Centre Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, People's Republic of China
| | - Zhaoyu Liu
- Centre Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, People's Republic of China
| | - Ming Li
- Centre Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, People's Republic of China
| | - Boyun Shi
- Department of Oncology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, People's Republic of China
| | - Jinhui Pan
- Centre Laboratory, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, People's Republic of China
| | - Lin Zhou
- Department of Oncology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, People's Republic of China
| | - Xinke Zhou
- Department of Oncology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, People's Republic of China.
| |
Collapse
|
49
|
Irimie AI, Braicu C, Sonea L, Zimta AA, Cojocneanu-Petric R, Tonchev K, Mehterov N, Diudea D, Buduru S, Berindan-Neagoe I. A Looking-Glass of Non-coding RNAs in oral cancer. Int J Mol Sci 2017; 18:ijms18122620. [PMID: 29206174 PMCID: PMC5751223 DOI: 10.3390/ijms18122620] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
Oral cancer is a multifactorial pathology and is characterized by the lack of efficient treatment and accurate diagnostic tools. This is mainly due the late diagnosis; therefore, reliable biomarkers for the timely detection of the disease and patient stratification are required. Non-coding RNAs (ncRNAs) are key elements in the physiological and pathological processes of various cancers, which is also reflected in oral cancer development and progression. A better understanding of their role could give a more thorough perspective on the future treatment options for this cancer type. This review offers a glimpse into the ncRNA involvement in oral cancer, which can help the medical community tap into the world of ncRNAs and lay the ground for more powerful diagnostic, prognostic and treatment tools for oral cancer that will ultimately help build a brighter future for these patients.
Collapse
Affiliation(s)
- Alexandra Iulia Irimie
- Department of Prosthetic dentistry and Dental materials, Division Dental Propaedeutics, Aesthetic, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Laura Sonea
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Alina Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Roxana Cojocneanu-Petric
- Research Center for Functional Genomics and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Konstantin Tonchev
- Department of Maxillofacial Surgery, Medical University, 3 Hristo Botev Blvd, 4002 Plovdiv, Bulgaria.
- Clinic of Maxillofacial Surgery, University Hospital "St. George", 66 Peshtersko Shosse Blvd, 4002 Plovdiv, Bulgaria.
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University Plovdiv, 15-А Vasil Aprilov Bul, 4002 Plovdiv, Bulgaria.
| | - Diana Diudea
- Department of Prosthetic dentistry and Dental materials, Division Dental Propaedeutics, Aesthetic, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Smaranda Buduru
- Prosthetics and Dental materials, Faculty of Dental Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34th street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
50
|
Ni N, Song H, Wang X, Xu X, Jiang Y, Sun J. Up-regulation of long noncoding RNA FALEC predicts poor prognosis and promotes melanoma cell proliferation through epigenetically silencing p21. Biomed Pharmacother 2017; 96:1371-1379. [PMID: 29196104 DOI: 10.1016/j.biopha.2017.11.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/27/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022] Open
Abstract
Accumulating evidences have suggested that focally amplified lncRNA on chromosome 1 (FALEC) serves as an oncogenic long non-coding RNA (lncRNA) and has been identified to be dysregulated in various tumors. However, the expression, clinical values, and biological function of FALEC in melanoma are still unknown. In this study we detected the expression level of FALEC in tumor tissues and cell lines and measured the prognostic value of FALEC for melanoma patients and the biological effects of FALEC on melanoma cell proliferation, cell cycle, and apoptosis. Our results indicated that FALEC was more highly expressed in melanoma tissues and cell lines than in non-neoplastic nevi tissues and normal cell lines. Moreover, functional assays showed that silenced FALEC suppressed the proliferation of melanoma cells, resulted in cell cycle arrest, and induced apoptosis. Mechanically, we discovered that FALEC boosted melanoma progression via epigenetically repressing p21 through recruiting EZH2 to the promoter of p21. Generally, our results suggested that FALEC acted as an oncogene in melanoma and had the potential to be a prognostic biomarker and therapeutic target for melanoma.
Collapse
Affiliation(s)
- Nana Ni
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Hao Song
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Xiaopo Wang
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Xiulian Xu
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Yiqun Jiang
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Jianfang Sun
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|