1
|
Wang R, Tan X, Liu Y, Fan L, Yan Q, Chen C, Wang W, Zhang W, Ren Z, Ning X, Wei S, Ku T, Sang N. Triazole fungicides disrupt embryonic stem cell differentiation: Potential modulatory role of the retinoic acid signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116859. [PMID: 39137466 DOI: 10.1016/j.ecoenv.2024.116859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The developmental toxicity and human health risks of triazole fungicides (TFs) have attracted worldwide attention due to the ability to enter the human body in a variety of ways. Nevertheless, the specific mechanism by which TFs exert remains incompletely understood. Given that retinoic acid (RA) signaling pathway are closely related to development, this study aimed to screen and identify developmentally disabled chemicals in commonly used TFs and to reveal the potential effects of TFs on developmental retardation through the RA signaling pathway in mouse embryonic stem cells (mESCs). Specifically, six typical TFs (myclobutanil, tebuconazole, hexaconazole, propiconazole, difenoconazole, and flusilazole) were exposed through the construction of an embryoid bodies (EBs)-based in vitro global differentiation models. Our results clarified that various TFs disturbed lineage commitment during early embryonic development. Crucially, the activation of RA signaling pathway, which alters the expression of key genes and interferes the transport and metabolism of retinol, may be responsible for this effect. Furthermore, molecular docking, molecular dynamics simulations, and experiments using a retinoic acid receptor α inhibitor provide evidence supporting the potential modulatory role of the retinoic acid signaling pathway in developmental injury. The current study offers new insights into the TFs involved in the RA signaling pathway that interfere with the differentiation process of mESCs, which is crucial for understanding the impact of TFs on pregnancy and early development.
Collapse
Affiliation(s)
- Rui Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xin Tan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yutong Liu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lifan Fan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qiqi Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chen Chen
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Wenhao Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Wanrou Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xia Ning
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shuting Wei
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China; First Clinical Medical College, Shanxi Medical University Taiyuan, China
| | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
2
|
Fernández-Vizcaíno E, Mateo R, Fernández de Mera IG, Mougeot F, Camarero PR, Ortiz-Santaliestra ME. Transgenerational effects of triazole fungicides on gene expression and egg compounds in non-exposed offspring: A case study using Red-Legged Partridges (Alectoris rufa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171546. [PMID: 38479527 DOI: 10.1016/j.scitotenv.2024.171546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Triazole fungicides are widely used to treat cereal seeds before sowing. Granivorous birds like the Red-legged Partridge (Alectoris rufa) have high exposure risk because they ingest treated seeds that remain on the field surface. As triazole fungicides can act as endocrine disruptors, affecting sterol synthesis and reproduction in birds several months after exposure, we hypothesized that these effects could also impact subsequent generations of exposed birds. To test this hypothesis, we exposed adult partridges (F0) to seeds treated at commercial doses with four different formulations containing triazoles as active ingredients (flutriafol, prothioconazole, tebuconazole, and a mixture of the latter two), simulating field exposure during late autumn sowing. During the subsequent reproductive season, two to four months after exposure, we examined compound allocation of steroid hormones, cholesterol, vitamins, and carotenoids in eggs laid by exposed birds (F1), as well as the expression of genes encoding enzymes involved in sterol biosynthesis in one-day-old chicks of this F1. One year later, F1 animals were paired again to investigate the expression of the same genes in the F2 chicks. We found changes in the expression of some genes for all treatments and both generations. Additionally, we observed an increase in estrone levels in eggs from partridges treated with flutriafol compared to controls, a decrease in tocopherol levels in partridges exposed to the mixture of tebuconazole and prothioconazole, and an increase in retinol levels in partridges exposed to prothioconazole. Despite sample size limitations, this study provides novel insights into the mechanisms of action of the previously observed effects of triazole fungicide-treated seeds on avian reproduction with evidence that the effects can persist beyond the exposure windows, affecting unexposed offspring of partridges fed with treated seeds. The results highlight the importance of considering long-term chronic effects when assessing pesticide risks to wild birds.
Collapse
Affiliation(s)
- Elena Fernández-Vizcaíno
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| |
Collapse
|
3
|
Svanholm S, Brouard V, Roza M, Marini D, Karlsson O, Berg C. Impaired spermatogenesis and associated endocrine effects of azole fungicides in peripubertal Xenopus tropicalis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115876. [PMID: 38154155 DOI: 10.1016/j.ecoenv.2023.115876] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Early life exposure to endocrine disrupting chemicals (EDCs) has been suggested to adversely affect reproductive health in humans and wildlife. Here, we characterize endocrine and adverse effects on the reproductive system after juvenile exposure to propiconazole (PROP) or imazalil (IMZ), two common azole fungicides with complex endocrine modes of action. Using the frog Xenopus tropicalis, two short-term (2-weeks) studies were conducted. I: Juveniles (2 weeks post metamorphosis (PM)) were exposed to 0, 17 or 178 µg PROP/L. II: Juveniles (6 weeks PM) were exposed to 0, 1, 12 or 154 µg IMZ/L. Histological analysis of the gonads revealed an increase in the number of dark spermatogonial stem cells (SSCs)/testis area, and in the ratio secondary spermatogonia: dark SSCs were increased in all IMZ groups compared to control. Key genes in gametogenesis, retinoic acid and sex steroid pathways were also analysed in the gonads. Testicular levels of 3β-hsd, ddx4 were increased and cyp19 and id4 levels were decreased in the IMZ groups. In PROP exposed males, increased testicular aldh1a2 levels were detected, but no histological effects observed. Although no effects on ovarian histology were detected, ovarian levels of esr1, rsbn1 were increased in PROP groups, and esr1 levels were decreased in IMZ groups. In conclusion, juvenile azole exposure disrupted testicular expression of key genes in retinoic acid (PROP) and sex steroid pathways and in gametogenesis (IMZ). Our results further show that exposure to environmental concentrations of IMZ disrupted spermatogenesis in the juvenile testis, which is a cause for concern as it may lead to impaired fertility. Testicular levels of id4, ddx4 and the id4:ddx4 ratio were associated with the number of dark SSCs and secondary spermatogonia suggesting that they may serve as a molecular markers for disrupted spermatogenesis.
Collapse
Affiliation(s)
- Sofie Svanholm
- Department of Environmental Toxicology, Uppsala University, SE-754 36 Uppsala, Sweden.
| | - Vanessa Brouard
- Department of Environmental Toxicology, Uppsala University, SE-754 36 Uppsala, Sweden
| | - Mauricio Roza
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Daniele Marini
- Department of Environmental Toxicology, Uppsala University, SE-754 36 Uppsala, Sweden; Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Uppsala University, SE-754 36 Uppsala, Sweden
| |
Collapse
|
4
|
Serra L, Estienne A, Caria G, Ramé C, Jolivet C, Froger C, Henriot A, Amalric L, Guérif F, Froment P, Dupont J. In vitro exposure to triazoles used as fungicides impairs human granulosa cells steroidogenesis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104295. [PMID: 37852555 DOI: 10.1016/j.etap.2023.104295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023]
Abstract
Triazoles are the main components of fungicides used in conventional agriculture. Some data suggests that they may be endocrine disruptors. Here, we found five triazoles, prothioconazole, metconazole, difenoconazole, tetraconazole, and cyproconazole, in soil or water from the Centre-Val de Loire region of France. We then studied their effects from 0.001 µM to 1000 µM for 48 h on the steroidogenesis and cytotoxicity of ovarian cells from patients in this region and the human granulosa line KGN. In addition, the expression of the aryl hydrocarbon receptor (AHR) nuclear receptor in KGN cells was studied. Overall, all triazoles reduced the secretion of progesterone, estradiol, or both at doses that were non-cytotoxic but higher than those found in the environment. This was mainly associated, depending on the triazole, with a decrease in the expression of CYP51, STAR, CYP11A1, CYP19A1, or HSD3B proteins, or a combination thereof, in hGCs and KGN cells and an increase in AHR in KGN cells.
Collapse
Affiliation(s)
- Loïse Serra
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France
| | - Anthony Estienne
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France
| | - Giovanni Caria
- INRAE, Laboratoire d'Analyses des Sols, 273, rue de Cambrai, 62000 Arras, France
| | - Christelle Ramé
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France
| | | | - Claire Froger
- INRAE Orléans - US 1106, Unité INFOSOL, Orléans, France
| | - Abel Henriot
- Division Laboratoires, BRGM, 3 Avenue Claude Guillemin, 45060 Orleans Cedex 2, France
| | - Laurence Amalric
- Division Laboratoires, BRGM, 3 Avenue Claude Guillemin, 45060 Orleans Cedex 2, France
| | - Fabrice Guérif
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, F-37044 Tours, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, University of Tours, PRC, F-37380 Nouzilly, France.
| |
Collapse
|
5
|
Chen Q, Zhang Y, Luo Y, Li G. Mycophenolate mofetil exposure on embryonic and fetal ear development in rats during pregnancy. Birth Defects Res 2023; 115:1411-1423. [PMID: 37602693 DOI: 10.1002/bdr2.2214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/21/2023] [Accepted: 06/16/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND To explore the pathogenesis of microtia, in this study, the different concentrations of mycophenolate mofetil (MMF) exposure on the development of rat embryonic and fetal ears, in order to establish a drug-induced microtia model, and provide a basis for further exploring the pathogenesis of microtia. METHODS The pregnant rat model was established in this study, 56 pregnant SD rats were randomly divided into 4 groups: control group and MMF (50, 100, and 200 mg/kg) group. Solutions were administered to the rats by oral gavage at gestation day (GD) 9 and GD 10 8:00 a.m, once a day. On GD 10.5 and GD 14.5, embryos were evaluated for neural crest development. On GD 20.5, fetuses were evaluated for overall survival and development with particular focus on ear development via morphologic, skeletal, and histologic investigation. Some animals were allowed to deliver their litters and offspring were evaluated on postnatal day 18 for ear development. RESULTS A total of 56 pregnant rats, 14 in each group, were included in the study. As a result, depending on MMF dose increase, in experimental groups, it was determined that the statistically significant the development of the first and second branchial arches and derived tissues of the embryo, overall survival, ear development, and length and weight of fetuses. Imaging of MMF groups revealed statistically significant differences in the development of the skull and auditory vesicles of MMF treated fetuses. Histologically, MMF affected the proliferation and differentiation of chondrocytes and the expression of type II collagen. CONCLUSIONS Mycophenolate mofetil can lead to the hypoplasia of rat embryos, fetuses, and auricle in a dose-dependent. MMF may affect the migration and proliferation of cranial neural crest cells, and then lead to microtia. MMF may induce the establishment of an animal model of microtia.
Collapse
Affiliation(s)
- Qian Chen
- Department of Plastic and Cosmetic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yang Zhang
- Department of Plastic and Cosmetic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Youqi Luo
- Department of Plastic and Cosmetic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Gaofeng Li
- Department of Plastic and Cosmetic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
6
|
da Silva Neto JX, Dias LP, Lopes de Souza LA, Silva da Costa HP, Vasconcelos IM, Pereira ML, de Oliveira JTA, Cardozo CJP, Gonçalves Moura LFW, de Sousa JS, Carneiro RF, Lopes TDP, Bezerra de Sousa DDO. Insights into the structure and mechanism of action of the anti-candidal lectin Mo-CBP2 and evaluation of its synergistic effect and antibiofilm activity. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Draskau MK, Svingen T. Azole Fungicides and Their Endocrine Disrupting Properties: Perspectives on Sex Hormone-Dependent Reproductive Development. FRONTIERS IN TOXICOLOGY 2022; 4:883254. [PMID: 35573275 PMCID: PMC9097791 DOI: 10.3389/ftox.2022.883254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022] Open
Abstract
Azoles are antifungal agents used in both agriculture and medicine. They typically target the CYP51 enzyme in fungi and, by so doing, disrupt cell membrane integrity. However, azoles can also target various CYP enzymes in mammals, including humans, which can disrupt hormone synthesis and signaling. For instance, several azoles can inhibit enzymes of the steroidogenic pathway and disrupt steroid hormone biosynthesis. This is of particular concern during pregnancy, since sex hormones are integral to reproductive development. In other words, exposure to azole fungicides during fetal life can potentially lead to reproductive disease in the offspring. In addition, some azoles can act as androgen receptor antagonists, which can further add to the disrupting potential following exposure. When used as pharmaceuticals, systemic concentrations of the azole compounds can become significant as combatting fungal infections can be very challenging and require prolonged exposure to high doses. Although most medicinal azoles are tightly regulated and used as prescription drugs after consultations with medical professionals, some are sold as over-the-counter drugs. In this review, we discuss various azole fungicides known to disrupt steroid sex hormone biosynthesis or action with a focus on what potential consequences exposure during pregnancy can have on the life-long reproductive health of the offspring.
Collapse
|
8
|
Li R, Liu B, Xu W, Yu L, Zhang C, Cheng J, Tao L, Li Z, Zhang Y. DNA damage and cell apoptosis induced by fungicide difenoconazole in mouse mononuclear macrophage RAW264.7. ENVIRONMENTAL TOXICOLOGY 2022; 37:650-659. [PMID: 34877763 DOI: 10.1002/tox.23432] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Difenoconazole (DFC) is a typical triazole fungicide. Because of its effective bactericidal activity, it has been widely used in agricultural products such as fruits and vegetables. This study revealed the cytotoxic effect of fungicide DFC on mouse monocyte macrophage RAW264.7. The results showed that the IC50 value of DFC on RAW264.7 cells was 37.08 μM (24 h). DFC can significantly inhibit the viability of RAW264.7 cells, induce DNA damage and enhance apoptosis. The established cytotoxicity test showed that DFC-induced DNA double strand breaks in RAW264.7 cells. DFC-treated cells showed typical morphological changes of apoptosis, including chromatin condensation and nuclear lysis. In addition, DFC can induce the release of Cyt c, promote the collapse of mitochondrial membrane potential and increase the Bax/Bcl-2 ratio in RAW264.7 cells. Through this research, people further understand the toxicity of DFC and provide a more scientific basis for its safety application and risk management.
Collapse
Affiliation(s)
- Ruirui Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Bin Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Shanghai Qingpu District Agricultural Technology Extension Service Center, Shanghai, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lvnan Yu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Cheng Zhang
- Department of Pathology, UT southwestern Medical Center, Dallas, Texas, USA
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Fragki S, Hoogenveen R, van Oostrom C, Schwillens P, Piersma AH, Zeilmaker MJ. Integrating in vitro chemical transplacental passage into a generic PBK model: A QIVIVE approach. Toxicology 2022; 465:153060. [PMID: 34871708 DOI: 10.1016/j.tox.2021.153060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
Abstract
With the increasing application of cell culture models as primary tools for predicting chemical safety, the quantitative extrapolation of the effective dose from in vitro to in vivo (QIVIVE) is of increasing importance. For developmental toxicity this requires scaling the in vitro observed dose-response characteristics to in vivo fetal exposure, while integrating maternal in vivo kinetics during pregnancy, in particular transplacental transfer. Here the transfer of substances across the placental barrier, has been studied using the in vitro BeWo cell assay and six embryotoxic compounds of different kinetic complexity. The BeWo assay results were incorporated in an existing generic Physiologically Based Kinetic (PBK) model which for this purpose was extended with rat pregnancy. Finally, as a "proof of principle", the BeWo PBK model was used to perform a QIVIVE based on developmental toxicity as observed in various different in vitro toxicity assays. The BeWo results illustrated different transport profiles of the chemicals across the BeWo monolayer, allocating the substances into two distinct groups: the 'quickly-transported' and the 'slowly-transported'. BeWo PBK exposure simulations during gestation were compared to experimentally measured maternal blood and fetal concentrations and a reverse dosimetry approach was applied to translate in vitro observed embryotoxicity into equivalent in vivo dose-response curves. This approach allowed for a direct comparison of the in vitro dose-response characteristics as observed in the Whole Embryo Culture (WEC), and the Embryonic Stem Cell test (cardiac:ESTc and neural:ESTn) with in vivo rat developmental toxicity data. Overall, the in vitro to in vivo comparisons suggest a promising future for the application of such QIVIVE methodologies for screening and prioritization purposes of developmental toxicants. Nevertheless, the clear need for further improvements is acknowledged for a wider application of the approach in chemical safety assessment.
Collapse
Affiliation(s)
- Styliani Fragki
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Rudolf Hoogenveen
- Centre for Statistics, Informatics and Modelling, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Conny van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Paul Schwillens
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD, Utrecht, the Netherlands
| | - Marco J Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
10
|
Black MB, Stern A, Efremenko A, Mallick P, Moreau M, Hartman JK, McMullen PD. Biological system considerations for application of toxicogenomics in next-generation risk assessment and predictive toxicology. Toxicol In Vitro 2022; 80:105311. [PMID: 35038564 DOI: 10.1016/j.tiv.2022.105311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
There is increasing interest in using modern 'omics technologies, such as whole transcriptome sequencing, to inform decisions about human health safety and chemical toxicity hazard. High throughput methodologies using in vitro assays offer a path forward in reducing or eliminating animal testing. However, many aspects of these technologies need assessment before they will gain the trust of regulators and the public as viable alternative test methods for human health and safety. We used a high throughput whole transcriptome sequence assay (TempO-Seq) to assess the use of three widely used cancer cell lines (HepG2, MCF7, and Ishikawa cells) as in vitro systems for determination of cellular modes of action for two well studied compounds with canonical liver responses: ketoconazole and phenobarbital. We evaluated transcriptomic data to infer points of departure for use in risk analyses of compounds. Both compounds displayed shortcomings in evidence for canonical liver-related responses in any cell line, despite a strong dose response in all three. This raises questions about the competence of simple, mono-cultured cancer cell lines as appropriate surrogates for some adverse effects or toxic endpoints. Points of departure derived from benchmark doses were highly consistent across all three cell lines however, indicating the use of transcriptomic BMD analyses for such purposes would be a reliable and consistent approach.
Collapse
Affiliation(s)
- Michael B Black
- ScitoVation, 100 Capitola Drive, Suite 106, Durham, NC 27713, United States of America.
| | - Allysa Stern
- ScitoVation, 100 Capitola Drive, Suite 106, Durham, NC 27713, United States of America; Cell Microsystems, 801 Capitola Dr., Suite 10, Durham, NC 27713, United States of America
| | - Alina Efremenko
- ScitoVation, 100 Capitola Drive, Suite 106, Durham, NC 27713, United States of America
| | - Pankajini Mallick
- ScitoVation, 100 Capitola Drive, Suite 106, Durham, NC 27713, United States of America
| | - Marjory Moreau
- ScitoVation, 100 Capitola Drive, Suite 106, Durham, NC 27713, United States of America
| | - Jessica K Hartman
- ScitoVation, 100 Capitola Drive, Suite 106, Durham, NC 27713, United States of America; Cell Microsystems, 801 Capitola Dr., Suite 10, Durham, NC 27713, United States of America
| | - Patrick D McMullen
- ScitoVation, 100 Capitola Drive, Suite 106, Durham, NC 27713, United States of America
| |
Collapse
|
11
|
An adverse outcome pathway on the disruption of retinoic acid metabolism leading to developmental craniofacial defects. Toxicology 2021; 458:152843. [PMID: 34186166 DOI: 10.1016/j.tox.2021.152843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022]
Abstract
Adverse outcome pathway (AOP) is a conceptual framework that links a molecular initiating event (MIE) via intermediate key events (KEs) with adverse effects (adverse outcomes, AO) relevant for risk assessment, through defined KE relationships (KERs). The aim of the present work is to describe a linear AOP, supported by experimental data, for skeletal craniofacial defects as the AO. This AO was selected in view of its relative high incidence in humans and the suspected relation to chemical exposure. We focused on inhibition of CYP26, a retinoic acid (RA) metabolizing enzyme, as MIE, based on robust previously published data. Conazoles were selected as representative stressors. Intermediate KEs are RA disbalance, aberrant HOX gene expression, disrupted specification, migration, and differentiation of neural crest cells, and branchial arch dysmorphology. We described the biological basis of the postulated events and conducted weight of evidence (WoE) assessments. The biological plausibility and the overall empirical evidence were assessed as high and moderate, respectively, the latter taking into consideration the moderate evidence for concordance of dose-response and temporal relationships. Finally, the essentiality assessment of the KEs, considered as high, supported the robustness of the presented AOP. This AOP, which appears of relevance to humans, thus contributes to mechanistic underpinning of selected test methods, thereby supporting their application in integrated new approach test methodologies and strategies and application in a regulatory context.
Collapse
|
12
|
Fernández-Vizcaíno E, Fernández de Mera IG, Mougeot F, Mateo R, Ortiz-Santaliestra ME. Multi-level analysis of exposure to triazole fungicides through treated seed ingestion in the red-legged partridge. ENVIRONMENTAL RESEARCH 2020; 189:109928. [PMID: 32980015 DOI: 10.1016/j.envres.2020.109928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Triazole fungicides are the most widely used products to treat cereal seeds. Granivorous birds, such as red-legged partridges (Alectoris rufa), which consume seeds left on the surface of fields after sowing, have a high risk of exposure. As triazole fungicides can affect sterol synthesis, we tested the hypothesis that treated seed consumption could alter the synthesis of sex hormones and reduce the reproductive capacity of partridges. We exposed adult partridges to seeds treated with four different formulations containing triazoles as active ingredients (flutriafol, prothioconazole, tebuconazole, and a mixture of the latter two) simulating a field exposure during the late autumn sowing season. All treatments produced biochemical changes and an overexpression of genes encoding for enzymes involved in the biosynthesis of sterols and steroid hormones, such as PMVK, ABCA1, MVD, PSCK9, DHCR7 and HSD17B7. Plasma levels of oestradiol were reduced in partridges exposed to tebuconazole. We also monitored reproduction 3 months after exposure (laying date, egg fertilization and hatching rates). We observed a 14-day delay in the laying onset of partridges that had been exposed to flutriafol as compared to controls. These results show that the consumption of seeds treated with triazole fungicides has the potential to affect granivorous bird reproduction. We recommend the evaluation of lagged reproductive effects as part of the protocols of environmental risk assessment of pesticides in wild birds in light of the effects resulting from the exposure to triazole-treated seeds.
Collapse
Affiliation(s)
- Elena Fernández-Vizcaíno
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain.
| | - Isabel G Fernández de Mera
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| |
Collapse
|
13
|
Heusinkveld HJ, Schoonen WG, Hodemaekers HM, Nugraha A, Sirks JJ, Veenma V, Sujan C, Pennings JL, Wackers PF, Palazzolo L, Eberini I, Rorije E, van der Ven LT. Distinguishing mode of action of compounds inducing craniofacial malformations in zebrafish embryos to support dose-response modeling in combined exposures. Reprod Toxicol 2020; 96:114-127. [DOI: 10.1016/j.reprotox.2020.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
|
14
|
Retinoids and developmental neurotoxicity: Utilizing toxicogenomics to enhance adverse outcome pathways and testing strategies. Reprod Toxicol 2020; 96:102-113. [PMID: 32544423 DOI: 10.1016/j.reprotox.2020.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/17/2022]
Abstract
The use of genomic approaches in toxicological studies has greatly increased our ability to define the molecular profiles of environmental chemicals associated with developmental neurotoxicity (DNT). Integration of these approaches with adverse outcome pathways (AOPs), a framework that translates environmental exposures to adverse developmental phenotypes, can potentially inform DNT testing strategies. Here, using retinoic acid (RA) as a case example, we demonstrate that the integration of toxicogenomic profiles into the AOP framework can be used to establish a paradigm for chemical testing. RA is a critical regulatory signaling molecule involved in multiple aspects of mammalian central nervous system (CNS) development, including hindbrain formation/patterning and neuronal differentiation, and imbalances in RA signaling pathways are linked with DNT. While the mechanisms remain unresolved, environmental chemicals can cause DNT by disrupting the RA signaling pathway. First, we reviewed literature evidence of RA and other retinoid exposures and DNT to define a provisional AOP related to imbalances in RA embryonic bioavailability and hindbrain development. Next, by integrating toxicogenomic datasets, we defined a relevant transcriptomic signature associated with RA-induced developmental neurotoxicity (RA-DNT) in human and rodent models that was tested against zebrafish model data, demonstrating potential for integration into an AOP framework. Finally, we demonstrated how these approaches may be systematically utilized to identify chemical hazards by testing the RA-DNT signature against azoles, a proposed class of compounds that alters RA-signaling. The provisional AOP from this study can be expanded in the future to better define DNT biomarkers relevant to RA signaling and toxicity.
Collapse
|
15
|
Defining embryonic developmental effects of chemical mixtures using the embryonic stem cell test. Food Chem Toxicol 2020; 140:111284. [DOI: 10.1016/j.fct.2020.111284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
|
16
|
Arantes MR, Peijnenburg A, Hendriksen PJM, Stoopen G, Almeida TS, Souza TM, Farias DF, Carvalho AFU, Rocha TM, Leal LKAM, Vasconcelos IM, Oliveira JTA. In vitro toxicological characterisation of the antifungal compound soybean toxin (SBTX). Toxicol In Vitro 2020; 65:104824. [PMID: 32165152 DOI: 10.1016/j.tiv.2020.104824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/13/2020] [Accepted: 03/08/2020] [Indexed: 12/18/2022]
Abstract
Soybean toxin (SBTX) is a protein isolated from soybean seeds and composed of two polypeptide subunits (17 and 27 kDa). SBTX has in vitro activity against phytopathogenic fungi such as Cercospora sojina, Aspergillus niger, and Penicillium herguei, and yeasts like Candida albicans, C. parapsilosis, Kluyveromyces marxiannus, and Pichia membranifaciens. The present study aimed to analyze in vitro whether SBTX causes any side effects on non-target bacterial and mammalian cells that could impede its potential use as a novel antifungal agent. SBTX at 100 μg/mL and 200 μg/mL did not hinder the growth of the bacteria Salmonella enterica (subspecies enterica serovar choleraesuis), Bacillus subtilis (subspecies spizizenii) and Staphylococcus aureus. Moreover, SBTX at concentrations up to 500 μg/mL did not significantly affect the viability of erythrocytes, neutrophils, and human intestinal Caco-2 cells. To study whether SBTX could induce relevant alterations in gene expression, in vitro DNA microarray experiments were conducted in which differentiated Caco-2 cells were exposed for 24 h to 100 μg/mL or 200 μg/mL SBTX. SBTX up-regulated genes involved in cell cycle and immune response pathways, but down-regulated genes that play a role in cholesterol biosynthesis and platelet degranulation pathways. Thus, although SBTX did not affect bacteria, nor induced cytotoxity in mammalian cells, it affected some biological pathways in the human Caco-2 cell line that warrants further investigation.
Collapse
Affiliation(s)
- Mariana Reis Arantes
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60020-181 Fortaleza, CE, Brazil
| | - Ad Peijnenburg
- WFSR, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands.
| | - Peter J M Hendriksen
- WFSR, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands.
| | - Geert Stoopen
- WFSR, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands.
| | - Thiago Silva Almeida
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60020-181 Fortaleza, CE, Brazil
| | - Terezinha Maria Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht 6229, ER, the Netherlands.
| | - Davi Felipe Farias
- Department of Molecular Biology, Federal University of Paraíba, 58051-900 Joao Pessoa, PB, Brazil.
| | | | | | | | - Ilka Maria Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60020-181 Fortaleza, CE, Brazil.
| | - Jose Tadeu Abreu Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60020-181 Fortaleza, CE, Brazil.
| |
Collapse
|
17
|
da Silva Neto JX, da Costa HPS, Vasconcelos IM, Pereira ML, Oliveira JTA, Lopes TDP, Dias LP, Araújo NMS, Moura LFWG, Van Tilburg MF, Guedes MIF, Lopes LA, Morais EG, de Oliveira Bezerra de Sousa D. Role of membrane sterol and redox system in the anti-candida activity reported for Mo-CBP 2, a protein from Moringa oleifera seeds. Int J Biol Macromol 2020; 143:814-824. [PMID: 31734363 DOI: 10.1016/j.ijbiomac.2019.09.142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
Plant proteins are emerging as an alternative to conventional treatments against candidiasis. The aim of this study was to better understand the mechanism of action of Mo-CBP2 against Candida spp, evaluating redox system activity, lipid peroxidation, DNA degradation, cytochrome c release, medium acidification, and membrane interaction. Anti-candida activity of Mo-CBP2 decreased in the presence of ergosterol, which was not observed with antioxidant agents. C. albicans treated with Mo-CBP2 also had catalase and peroxidase activities inhibited, while superoxide dismutase was increased. Mo-CBP2 increased the lipid peroxidation, but it did not alter the ergosterol profile in live cells. External medium acidification was strongly inhibited, and cytochrome c release and DNA degradation were detected. Mo-CBP2 interacts with cell membrane constituents, changes redox system enzymes in C. albicans and causes lipid peroxidation by ROS overproduction. DNA degradation and cytochrome c release suggest apoptotic or DNAse activity. Lipid peroxidation and H+-ATPases inhibition may induce the process of apoptosis. Finally, Mo-CBP2 did not have a cytotoxic effect in mammalian Vero cells. This study highlights the biotechnological potential of Mo-CBP2 as a promising molecule with low toxicity and potent activity. Further studies should be performed to better understand its mode of action and toxicity.
Collapse
Affiliation(s)
- João Xavier da Silva Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Ilka Maria Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Jose Tadeu Abreu Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Lucas Pinheiro Dias
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Mauricio Fraga Van Tilburg
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Fortaleza, CE, Brazil
| | - Maria Izabel Florindo Guedes
- Northeast Biotechnology Network, Graduate Program of Biotechnology, State University of Ceará, Fortaleza, CE, Brazil
| | - Larissa Alves Lopes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Eva Gomes Morais
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | |
Collapse
|
18
|
Di Renzo F, Metruccio F, Battistoni M, Moretto A, Menegola E. Relative potency ranking of azoles altering craniofacial morphogenesis in rats: An in vitro data modelling approach. Food Chem Toxicol 2019; 123:553-560. [DOI: 10.1016/j.fct.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022]
|
19
|
Dimopoulou M, Verhoef A, Gomes CA, van Dongen CW, Rietjens IM, Piersma AH, van Ravenzwaay B. A comparison of the embryonic stem cell test and whole embryo culture assay combined with the BeWo placental passage model for predicting the embryotoxicity of azoles. Toxicol Lett 2018; 286:10-21. [DOI: 10.1016/j.toxlet.2018.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/08/2017] [Accepted: 01/09/2018] [Indexed: 01/03/2023]
|
20
|
Dimopoulou M, Verhoef A, Pennings JL, van Ravenzwaay B, Rietjens IM, Piersma AH. A transcriptomic approach for evaluating the relative potency and mechanism of action of azoles in the rat Whole Embryo Culture. Toxicology 2017; 392:96-105. [DOI: 10.1016/j.tox.2017.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 01/07/2023]
|
21
|
Neto JXS, Pereira ML, Oliveira JTA, Rocha-Bezerra LCB, Lopes TDP, Costa HPS, Sousa DOB, Rocha BAM, Grangeiro TB, Freire JEC, Monteiro-Moreira ACO, Lobo MDP, Brilhante RSN, Vasconcelos IM. A Chitin-binding Protein Purified from Moringa oleifera Seeds Presents Anticandidal Activity by Increasing Cell Membrane Permeability and Reactive Oxygen Species Production. Front Microbiol 2017. [PMID: 28634471 PMCID: PMC5459921 DOI: 10.3389/fmicb.2017.00980] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Candida species are opportunistic pathogens that infect immunocompromised and/or immunosuppressed patients, particularly in hospital facilities, that besides representing a significant threat to health increase the risk of mortality. Apart from echinocandins and triazoles, which are well tolerated, most of the antifungal drugs used for candidiasis treatment can cause side effects and lead to the development of resistant strains. A promising alternative to the conventional treatments is the use of plant proteins. M. oleifera Lam. is a plant with valuable medicinal properties, including antimicrobial activity. This work aimed to purify a chitin-binding protein from M. oleifera seeds and to evaluate its antifungal properties against Candida species. The purified protein, named Mo-CBP2, represented about 0.2% of the total seed protein and appeared as a single band on native PAGE. By mass spectrometry, Mo-CBP2 presented 13,309 Da. However, by SDS-PAGE, Mo-CBP2 migrated as a single band with an apparent molecular mass of 23,400 Da. Tricine-SDS-PAGE of Mo-CBP2 under reduced conditions revealed two protein bands with apparent molecular masses of 7,900 and 4,600 Da. Altogether, these results suggest that Mo-CBP2 exists in different oligomeric forms. Moreover, Mo-CBP2 is a basic glycoprotein (pI 10.9) with 4.1% (m/m) sugar and it did not display hemagglutinating and hemolytic activities upon rabbit and human erythrocytes. A comparative analysis of the sequence of triptic peptides from Mo-CBP2 in solution, after LC-ESI-MS/MS, revealed similarity with other M. oleifera proteins, as the 2S albumin Mo-CBP3 and flocculating proteins, and 2S albumins from different species. Mo-CBP2 possesses in vitro antifungal activity against Candida albicans, C. parapsilosis, C. krusei, and C. tropicalis, with MIC50 and MIC90 values ranging between 9.45–37.90 and 155.84–260.29 μM, respectively. In addition, Mo-CBP2 (18.90 μM) increased the cell membrane permeabilization and reactive oxygen species production in C. albicans and promoted degradation of circular plasmid DNA (pUC18) from Escherichia coli. The data presented in this study highlight the potential use of Mo-CBP2 as an anticandidal agent, based on its ability to inhibit Candida spp. growth with apparently low toxicity on mammalian cells.
Collapse
Affiliation(s)
- João X S Neto
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | - Mirella L Pereira
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | - Lady C B Rocha-Bezerra
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | - Tiago D P Lopes
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | - Helen P S Costa
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | - Daniele O B Sousa
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | - Bruno A M Rocha
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | | | - José E C Freire
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| | | | - Marina D P Lobo
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil.,School of Pharmacy, University of FortalezaFortaleza, Brazil
| | - Raimunda S N Brilhante
- Department of Pathology and Legal Medicine, Federal University of CearaFortaleza, Brazil
| | - Ilka M Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of CearaFortaleza, Brazil
| |
Collapse
|