1
|
Rarinca V, Hritcu LD, Burducea M, Plavan G, Lefter R, Burlui V, Romila L, Ciobică A, Todirascu-Ciornea E, Barbacariu CA. Assessing the Influence of Low Doses of Sucrose on Memory Deficits in Fish Exposed to Common Insecticide Based on Fipronil and Pyriproxyfen. Curr Issues Mol Biol 2024; 46:14168-14189. [PMID: 39727976 DOI: 10.3390/cimb46120848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Although pesticides have been a constant concern for decades, in the last ten years, public discussions and scientific research have emphasized their impact on human health and the environment, drawing increased attention to the problems associated with their use. The association of environmental stressors such as pesticides with a sugar-rich diet can contribute to the growing global metabolic disease epidemic through overlapping mechanisms of insulin resistance, inflammation, and metabolic dysregulation. The main aim of this study was to evaluate the behavioral effects of the exposure of Silver crucian carp (Carassius auratus gibelio) to a commercial insecticide formulation containing fipronil, pyriproxyfen, and other additives, as well as sucrose and their mixtures. The behavioral responses in the T-test showed significant abnormalities in the exploratory activity evocative of memory deficits and an increased degree of anxiety in the groups of fish treated with the insecticide formulation and the mixture of the insecticide with sucrose. Aggression, quantified in the mirror-biting test, as biting and the frequency of approaches to the mirror contact zone, was significantly decreased only in the insecticide and sucrose group. All three groups showed behavioral changes reflective of toxicity, but only the combination of the two stress factors, environmental (insecticide) and metabolic (sucrose intake), resulted in pronounced memory alterations.
Collapse
Affiliation(s)
- Viorica Rarinca
- Doctoral School of Geosciences, Faculty of Geography and Geology, "Alexandru Ioan Cuza" University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Doctoral School of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I Avenue, 20A, 700505 Iasi, Romania
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Luminita Diana Hritcu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania
| | - Marian Burducea
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
| | - Radu Lefter
- Center of Biomedical Research, Romanian Academy, No. 8, Carol I Avenue, 700506 Iasi, Romania
| | - Vasile Burlui
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Laura Romila
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
| | - Alin Ciobică
- Preclinical Department, Apollonia University, Pacurari Street 11, 700511 Iasi, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, No. 8, Carol I Avenue, 700506 Iasi, Romania
- Academy of Romanian Scientists, No. 54, Independence Street, Sector 5, 050094 Bucharest, Romania
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, No 20A, Carol I Avenue, 700505 Iasi, Romania
| | - Cristian-Alin Barbacariu
- Research and Development Station for Aquaculture and Aquatic Ecology, "Alexandru Ioan Cuza" University, Carol I, 20A, 700505 Iasi, Romania
| |
Collapse
|
2
|
Rahman ANA, Altohamy DE, Elshopakey GE, Abdelwarith AA, Younis EM, Elseddawy NM, Elgamal A, Bazeed SM, Khamis T, Davies SJ, Ibrahim RE. Potential role of dietary Boswellia serrata resin against mancozeb fungicide-induced immune-antioxidant suppression, histopathological alterations, and genotoxicity in Nile tilapia, Oreochromis niloticus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106738. [PMID: 37922777 DOI: 10.1016/j.aquatox.2023.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
This study was established to look into the toxicological consequences of chronic exposure to a fungicide (mancozeb; MAZ) on the immune-antioxidant response, gene expressions, hepato-renal functions, and histological pictures of Nile tilapia (Oreochromis niloticus). Additionally, the effectiveness of Indian frankincense resin extract (IFRE) to mitigate their toxicity was taken into account. Fish (n =240; average body weight: 22.45 ± 2.21 g) were randomized into four groups for eight weeks in six replicates (control, IFRE, MAZ, and IFRE + MAZ), where ten fish were kept per replicate. The control and IFRE groups received basal diets that included 0.0 and 5 g/kg of IFRE without MAZ exposure. The MAZ and IFRE+MAZ groups received the same diets and were exposed to 1/10 of the 96-h of LC50 of MAZ (1.15 mg/L). The outcomes displayed that MAZ exposure resulted in a lower survival rate (56.67 %) and significantly decreased levels of immune-antioxidant variables (antiprotease, complement3, phagocytic activity, lysozyme, glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to the control group. The MAZ-exposed fish showed the greatest levels of lipid peroxide (malondialdehyde), alkaline phosphatase, alanine amino-transferase, and stress indicators (cortisol and glucose). Additionally, histopathological alterations, including vacuolation, severe necrosis, degeneration, and mononuclear cell infiltrations in the hepatic, renal, and splenic tissues resulted, besides a reduction in the melanomacrophage center in the spleen. A down-regulation of immune-antioxidant-associated genes [toll-like receptors (TLR-2 and TLR-7), nuclear factor kappa beta (NF-κβ), transforming growth factor-beta (TGF-β), phosphoinositide-3-kinase regulatory subunit 3 gamma b (pik3r3b), interleukins (IL-1β and IL-8), glutathione synthetase (GSS), glutathione peroxidase (GPx), and superoxide dismutase (SOD)] were the consequences of the MAZ exposure. Remarkably, the dietary inclusion of IFRE in MAZ-exposed fish augmented the immune-antioxidant parameters, including their associated genes, decreased stress response, and increased survival rate (85 %) compared with the MAZ-exposed fish. Moreover, dietary IFRE improved hepato-renal function indices by preserving the histological architecture of the hepatic, renal, and splenic tissues. The insights of this study advocate the use of an IFRE-dietary addition to protect Nile tilapia from MAZ toxicity, which provides perspectives for future implementations in enhancing fish health for sustainable aquaculture.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| | - Dalia E Altohamy
- Department of Pharmacology, Central Laboratory, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Nora M Elseddawy
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Shefaa M Bazeed
- Department of Biochemistry and Animal Physiology, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway H91V8Y1, Ireland
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| |
Collapse
|
3
|
Lai NHY, Mohd Zahir IA, Liew AKY, Ogawa S, Parhar I, Soga T. Teleosts as behaviour test models for social stress. Front Behav Neurosci 2023; 17:1205175. [PMID: 37744951 PMCID: PMC10512554 DOI: 10.3389/fnbeh.2023.1205175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Stress is an important aspect of our everyday life and exposure to it is an unavoidable occurrence. In humans, this can come in the form of social stress or physical stress from an injury. Studies in animal models have helped researchers to understand the body's adaptive response to stress in human. Notably, the use of behavioural tests in animal models plays a pivotal role in understanding the neural, endocrine and behavioural changes induced by social stress. Under socially stressed conditions, behavioural parameters are often measured physiological and molecular parameters as changes in behaviour are direct responses to stress and are easily assessed by behavioural tests. Throughout the past few decades, the rodent model has been used as a well-established animal model for stress and behavioural changes. Recently, more attention has been drawn towards using fish as an animal model. Common fish models such as zebrafish, medaka, and African cichlids have the advantage of a higher rate of reproduction, easier handling techniques, sociability and most importantly, share evolutionary conserved genetic make-up, neural circuitry, neuropeptide molecular structure and function with mammalian species. In fact, some fish species exhibit a clear diurnal or seasonal rhythmicity in their stress response, similar to humans, as opposed to rodents. Various social stress models have been established in fish including but not limited to chronic social defeat stress, social stress avoidance, and social stress-related decision-making. The huge variety of behavioural patterns in teleost also aids in the study of more behavioural phenotypes than the mammalian species. In this review, we focus on the use of fish models as alternative models to study the effects of stress on different types of behaviours. Finally, fish behavioural tests against the typical mammalian model-based behavioural test are compared and discussed for their viability.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
4
|
Ibrahim RE, Elbealy MA, Salem GA, Abdelwarith AA, Younis EM, Wagih E, Elkady AA, Davies SJ, Rahman ANA. Acute mancozeb-fungicide exposure induces neuro-ethology disruption, health disorders, and immune-oxidative dysfunction in Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106630. [PMID: 37406490 DOI: 10.1016/j.aquatox.2023.106630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/19/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
An acute exposure study of mancozeb (MAZ) fungicide was applied on Oreochromis niloticus for 96-h duration. Three hundred fish (20.50 ± 1.60 g) were assigned into six groups (50 fish/ group; 10 fish/replicate) and exposed to different six concentrations (0, 4, 8, 12, 16, and 20 mg L-1) of MAZ for 96-h. The Probit analysis program was used to compute the 96-h lethal concentration 50 (96-h LC50) of MAZ. During the exposure duration, the fish's behavior, clinical symptoms, and mortalities were recorded daily. After the exposure period was ended, the hematological, biochemical, immunological, and oxidant/antioxidant parameters were evaluated. The results of this study recorded the 96-h LC50 of MAZ for O. niloticus to be 11.49 mg L-1. Acute MAZ exposure badly affected the fish's behavior in the form of increased the breath gasping and swimming activity with aggressive mode. The exposed fish showed excessive body hemorrhages and fin rot. The survival rate of the exposed fish to MAZ was 100, 80, 66, 50, 38, and 30% in 0, 4, 8, 12, 16, and 20 mg L-1 MAZ, respectively. The hematological indices (red blood cell count, hemoglobin, packed cell volume%, and white blood cell count) were significantly decreased by increasing the MAZ exposure concentration (8-20 mg L-1). The acetylcholine esterase activity and immune indices (lysozyme, nitric oxide, immunoglobulin M, complement 3) were decreased by MAZ exposure (4-20 mg L-1). Acute MAZ exposure induced hepato-renal dysfunction and elevated stress-related parameter (cortisol) by increasing the MAZ concentration. A significant reduction in the antioxidant parameters (total antioxidant activity, catalase, and superoxide dismutase) with increasing the lipid peroxidation marker (malondialdehyde) was noticed by acute MAZ exposure (4 -20 mg L-1) in O. niloticus. Based on these outcomes, the MAZ exposure induced toxicity to the fish evident in changes in fish behavior, neurological activity, hepato-renal functioning, and immune-antioxidant responses which suggest physiological disruption.
Collapse
Affiliation(s)
- Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Mohamed A Elbealy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, P.O. Box 35516, Mansoura, Dakahlia, Egypt
| | - Gamal A Salem
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Eman Wagih
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Ahmed Asaid Elkady
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, Misurata University, PO Box 2478, Libya
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway H91V8Y1, Ireland
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| |
Collapse
|
5
|
Weber AV, Firth BL, Cadonic IG, Craig PM. Interactive effects of venlafaxine and thermal stress on zebrafish (Danio rerio) inflammatory and heat shock responses. Comp Biochem Physiol C Toxicol Pharmacol 2023; 269:109620. [PMID: 37004898 DOI: 10.1016/j.cbpc.2023.109620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Venlafaxine (VFX), a commonly prescribed antidepressant often detected in wastewater effluent, and acute temperature elevations from climate change and increased urbanization, are two environmental stressors currently placing freshwater ecosystems at risk. This study focused on understanding if exposure to VFX impacts the agitation temperature (Tag) and critical thermal maximum (CTmax) of zebrafish (Danio rerio). Additionally, we examined the interactive effects of VFX and acute thermal stress on zebrafish heat shock and inflammatory immune responses. A 96 h 1.0 μg/L VFX exposure experiment was conducted, followed by assessment of thermal tolerance via CTmax challenge. Heat shock proteins and pro-inflammatory immune cytokines were quantified through gene expression analysis by quantitative PCR (qPCR) on hsp 70, hsp 90, hsp 47, il-8, tnfα, and il-1β within gill and liver tissue. No significant changes in agitation temperature between control and exposed fish were observed, nor were there any differences in CTmax based on treatment. Unsurprisingly, hsp 47, 70, and 90 were all upregulated in groups exposed solely to CTmax, while only hsp 47 within gill tissue showed signs of interactive effects, which was significantly decreased in fish exposed to both VFX and CTmax. No induction of an inflammatory response occurred. This study demonstrated that environmentally relevant concentrations of VFX have no impact on thermal tolerance performance in zebrafish. However, VFX can cause diminished function of protective heat shock mechanisms, which could be detrimental to freshwater fish populations and aquatic ecosystems as temperature spikes become more frequent from climate change and urbanization near watersheds.
Collapse
Affiliation(s)
- A V Weber
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - B L Firth
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada. https://twitter.com/@Britney_Firth
| | - I G Cadonic
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada. https://twitter.com/@IvanCadonic
| | - P M Craig
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
6
|
Dehghani A, Pourjafari F, Koohkan F, Haghpanh T, Pourjafari F, Sheibani V, Afarinesh MR. L-carnitine attenuates acoustic startle reflex dysfunction in adult male rats exposed to mancozeb. Toxicol Ind Health 2023; 39:115-126. [PMID: 36650049 DOI: 10.1177/07482337231151739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The fungicide mancozeb increases oxygen-free radicals in the central nervous system. As an antioxidant, L-carnitine protects DNA and cell membranes from damage caused by oxygen-free radicals. The present study investigated how L-carnitine affected the acoustic startle response (ASR) in rats exposed to mancozeb. In this experimental study, male Wistar rats were gavaged orally with mancozeb (500, 1000, and 2000Â mg/kg), L-carnitine (100, 200, and 400Â mg/kg), or L-carnitine (200Â mg/kg) + mancozeb (500Â mg/kg) three times in 1Â week. In the sham group, saline (0.9%, 10Â mL/kg) was gavaged at a volume equivalent to that of the drugs. The control group did not receive any treatment. The results showed that locomotor activity and the percentage of prepulse inhibition in the mancozeb groups decreased compared to the sham group while these parameters increased in the L-carnitine group (200Â mg/kg) compared to sham rats. In conclusion, mancozeb may increase the risk factor for cognitive diseases such as schizophrenia in people exposed to it while pretreatment with L-carnitine can attenuate the toxic effect.
Collapse
Affiliation(s)
- Ali Dehghani
- Department of Medical Genetics, Faculty of Medical Sciences, 48503Tarbiat Modares University, Tehran, Iran
| | - Farimah Pourjafari
- Department of Biology, Faculty of Science, 196469University of Bojnord, Bojnord, Iran
| | - Faeze Koohkan
- Neuroscience Research Center, Institute of Neuropharmacology48463Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanh
- Anatomical Sciences Department, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Pourjafari
- Anatomical Sciences Department, School of Medicine, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology48463Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmacology48463Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Modulation of CREB and its associated upstream signaling pathways in pesticide-induced neurotoxicity. Mol Cell Biochem 2022; 477:2581-2593. [PMID: 35596844 PMCID: PMC9618525 DOI: 10.1007/s11010-022-04472-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/04/2022] [Indexed: 11/13/2022]
Abstract
Human beings are exposed to various environmental xenobiotics throughout their life consisting of a broad range of physical and chemical agents that impart bodily harm. Among these, pesticide exposure that destroys insects mainly by damaging their central nervous system also exerts neurotoxic effects on humans and is implicated in the etiology of several degenerative disorders. The connectivity between CREB (cAMP Response Element Binding Protein) signaling activation and neuronal activity is of broad interest and has been thoroughly studied in various diseased states. Several genes, as well as protein kinases, are involved in the phosphorylation of CREB, including BDNF (Brain-derived neurotrophic factor), Pi3K (phosphoinositide 3-kinase), AKT (Protein kinase B), RAS (Rat Sarcoma), MEK (Mitogen-activated protein kinase), PLC (Phospholipase C), and PKC (Protein kinase C) that play an essential role in neuronal plasticity, long-term potentiation, neuronal survival, learning, and memory formation, cognitive function, synaptic transmission, and suppressing apoptosis. These elements, either singularly or in a cascade, can result in the modulation of CREB, making it a vulnerable target for various neurotoxic agents, including pesticides. This review provides insight into how these various intracellular signaling pathways converge to bring about CREB activation and how the activated or deactivated CREB levels can affect the gene expression of the upstream molecules. We also discuss the various target genes within the cascade vulnerable to different types of pesticides. Thus, this review will facilitate future investigations associated with pesticide neurotoxicity and identify valuable therapeutic targets.
Collapse
|
8
|
Zizza M, Fazzari G, Di Lorenzo M, Alò R, Bruno R, Laforgia V, Canonaco M, Facciolo RM. Cerebral pCREB-dependent social behavioral adversities following a short-term exposure to obesogenic diets in young hamsters. Neurotoxicol Teratol 2022; 92:107094. [DOI: 10.1016/j.ntt.2022.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
|
9
|
Sciarrillo R, Di Lorenzo M, Valiante S, Rosati L, De Falco M. OctylPhenol (OP) Alone and in Combination with NonylPhenol (NP) Alters the Structure and the Function of Thyroid Gland of the Lizard Podarcis siculus. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:567-578. [PMID: 33687533 PMCID: PMC8026464 DOI: 10.1007/s00244-021-00823-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/19/2021] [Indexed: 05/04/2023]
Abstract
Different environmental contaminants disturb the thyroid system at many levels. AlkylPhenols (APs), by-products of microbial degradation of AlkylPhenol Polyethoxylates (APEOs), constitute an important class of Endocrine Disrupting Chemicals (EDCs), the two most often used environmental APs being 4-nonylphenol (4-NP) and 4-tert-octylphenol (4-t-OP). The purpose of the present study was to investigate the effects on the thyroid gland of the bioindicator Podarcis siculus of OP alone and in combination with NP. We used radioimmunoassay to determine their effects on plasma 3,3',5-triiodo-L-thyronine (T3), 3,3',5,5'-L-thyroxine (T4), thyroid-stimulating hormone (TSH), and thyrotropin-releasing hormone (TRH) levels in adult male lizards. We also investigated the impacts of AP treatments on hepatic 5'ORD (type II) deiodinase and hepatic content of T3 and T4. After OP and OP + NP administration, TRH levels increased, whereas TSH, T3, and T4 levels decreased. Lizards treated with OP and OP + NP had a higher concentration of T3 in the liver and 5'ORD (type II) activity, whereas T4 concentrations were lower than that observed in the control group. Moreover, histological examination showed that the volume of the thyroid follicles became smaller in treated lizards suggesting that that thyroid follicular epithelial cells were not functionally active following treatment. This data collectively suggest a severe interference with hypothalamus-pituitary-thyroid axis and a systemic imbalance of thyroid hormones.
Collapse
Affiliation(s)
- Rosaria Sciarrillo
- Department of Science and Technologies, University of Sannio, Benevento, Italy.
| | - Mariana Di Lorenzo
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Salvatore Valiante
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Maria De Falco
- Department of Biology, University of Naples "Federico II", Naples, Italy
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
- Center for Studies On Bioinspired Agro-Environmental Technology (BAT Center), Portici, Italy
| |
Collapse
|
10
|
Alò R, Fazzari G, Zizza M, Avolio E, Di Vito A, Bruno R, Cuda G, Barni T, Canonaco M, Facciolo RM. Daidzein Pro-cognitive Effects Coincided with Changes of Brain Neurotensin1 Receptor and Interleukin-10 Expression Levels in Obese Hamsters. Neurotox Res 2021; 39:645-657. [PMID: 33428179 DOI: 10.1007/s12640-020-00328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
At present, concerns are pointing to "tasteful" high-fat diets as a cause of conditioning physical-social states that through alterations of some key emotional- and nutritional-related limbic circuits such as hypothalamic and amygdalar areas lead to obesity states. Feeding and energetic homeostatic molecular mechanisms are part of a complex neuronal circuit accounting for this metabolic disorder. In an attempt to exclude conventional drugs for treating obesity, daidzein, a natural glycosidic isoflavone, which mimics estrogenic neuroprotective properties against increased body weight, is beginning to be preferred. In this study, evident anxiolytic-like behaviors were detected following treatment of high-fat diet hamsters with daidzein as shown by extremely evident (p < 0.001) exploration tendencies in novel object recognition test and a notably greater amount of time spent (p < 0.01) in open arms of elevated plus maze. Moreover, the isoflavone promoted a protective role against neurodegeneration processes as shown by few, if any, amino cupric silver granules in amygdalar, hypothalamic and hippocampal neuronal fields when compared with obese hamsters. Interestingly, elevated expression levels of the anorexic neuropeptide receptor neurotensin1 in the above limbic areas of obese hamsters were extremely reduced by daidzein, especially during recovery of cognitive events. Contextually, such effects were strongly paralleled by increased levels of the anti-neuroinflammatory cytokine, interleukin-10. Our results corroborate a neuroprotective ability of this natural glycosidic isoflavone, which through its interaction with the receptor neurotensin1 and interleukin-10 pathways is correlated not only to improved feeding states, and subsequently obesity conditions, but above all to cognitive performances.
Collapse
Affiliation(s)
- Raffaella Alò
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy
| | - Gilda Fazzari
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy
| | - Merylin Zizza
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy
| | - Ennio Avolio
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy
| | - Anna Di Vito
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Græcia", Viale Europa, 88100, Catanzaro, Italy
| | - Rosalinda Bruno
- Department of Pharmacy and Science of Health and Nutrition, Polyfunctional Building, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
| | - Giovanni Cuda
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Græcia", Viale Europa, 88100, Catanzaro, Italy
| | - Tullio Barni
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Græcia", Viale Europa, 88100, Catanzaro, Italy
| | - Marcello Canonaco
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy.
| | - Rosa Maria Facciolo
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy
| |
Collapse
|
11
|
Environmental level of the antidepressant venlafaxine induces behavioral disorders through cortisol in zebrafish larvae (Danio rerio). Neurotoxicol Teratol 2020; 83:106942. [PMID: 33220437 DOI: 10.1016/j.ntt.2020.106942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Psychoactive drugs discharged into the environment have different effects on the behavior of vertebrates. The objective of this study was to evaluate the effect of venlafaxine on the behavior of zebrafish, and whether melatonin could reverse the induction of venlafaxine. In this study, a series of venlafaxine concentrations (1 μg/L, 10 μg/L, 100 μg/L) was used to treat zebrafish embryos from 2 hours post-fertilization (hpf) to 5dpf. We found that venlafaxine (1 μg/L) can stimulate the growth of the head area, eye area, and body length of zebrafish. The light-dark test showed that venlafaxine (1 μg/L) could increase the activity of zebrafish larvae. What's more, venlafaxine (1 μg/L) upregulated the expression of steroid regulatory factors including steroidogenic acute regulatory protein (star), cytochrome P450 family member 11A1 (cyp11a1) and 11 β hydroxylase (cyp11b1) by cAMP-pCREB pathway, affecting the function of the steroidogenic cells, which might be involved in the increased cortisol levels in zebrafish larvae. Whereas, melatonin (230 μg/L) restored the altered locomotion behavior induced by venlafaxine and recovered the altered gene expression. Our results demonstrate that venlafaxine at levels detected in the aquatic environment impacts behavior and may compromise the adaptive responses to the environment in zebrafish larvae.
Collapse
|
12
|
Di Lorenzo M, Barra T, Rosati L, Valiante S, Capaldo A, De Falco M, Laforgia V. Adrenal gland response to endocrine disrupting chemicals in fishes, amphibians and reptiles: A comparative overview. Gen Comp Endocrinol 2020; 297:113550. [PMID: 32679158 DOI: 10.1016/j.ygcen.2020.113550] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
The adrenal gland is an essential component of the body stress response; it is formed by two portions: a steroidogenic and a chromaffin tissue. Despite the anatomy of adrenal gland is different among classes of vertebrates, the hormones produced are almost the same. During stress, these hormones contribute to body homeostasis and maintenance of ion balance. The adrenal gland is very sensitive to toxic compounds, many of which behave like endocrine-disruptor chemicals (EDCs). They contribute to alter the endocrine system in wildlife and humans and are considered as possible responsible of the decline of several vertebrate ectotherms. Considering that EDCs regularly can be found in all environmental matrices, the aim of this review is to collect information about the impact of these chemical compounds on the adrenal gland of fishes, amphibians and reptiles. In particular, this review shows the different behavior of these "sentinel species" when they are exposed to stress condition. The data supplied in this review can help to further elucidate the role of EDCs and their harmful impact on the survival of these vertebrates.
Collapse
Affiliation(s)
- Mariana Di Lorenzo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy.
| | - Teresa Barra
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Salvatore Valiante
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Anna Capaldo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Maria De Falco
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Vincenza Laforgia
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| |
Collapse
|
13
|
Vieira R, Venâncio CAS, Félix LM. Toxic effects of a mancozeb-containing commercial formulation at environmental relevant concentrations on zebrafish embryonic development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21174-21187. [PMID: 32270457 DOI: 10.1007/s11356-020-08412-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
The toxicological knowledge of mancozeb (MZ)-containing commercial formulations on non-target species is scarce and limited. Therefore, the objective of this work was to represent a realistic application scenario by evaluating the toxicity of environmental relevant and higher concentrations of a commercial formulation of MZ using zebrafish embryos. Following determination of the 96-h LC50 value, the embryos at the blastula stage (~ 2 h post-fertilisation, hpf) were exposed to 0.5, 5, and 50 μg L-1 of the active ingredient (~ 40× lower than the 96-h LC50). During the exposure period (96 h), lethal, sublethal, and teratogenic parameters, as well as behaviour analysis, at 120 hpf, were assayed. Biochemical parameters such as oxidative stress-linked enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR)), reactive oxygen species (ROS) levels, and glutathione levels (GSH and GSSG), as well as the activity of degradation (glutathione S-transferase (GST) and carboxylesterase (CarE)), neurotransmission (acetylcholinesterase (AChE)), and anaerobic respiration (lactate dehydrogenase (LDH))-related enzymes, were analysed at the end of the exposure period. Exposed embryos showed a marked decrease in the hatching rate and many malformations (cardiac and yolk sac oedema and spinal torsions), with a higher prevalence at the highest concentration. A dose-dependent decreased locomotor activity and a response to an aversive stimulus, as well as a light-dark transition decline, were observed at environmental relevant concentrations. Furthermore, the activities of SOD and GR increased while the activity of GST, AChE, and MDA contents decreased. Taken together, the involvement of mancozeb metabolites and the generation of ROS are suggested as responsible for the developmental phenotypes. While further studies are needed to fully support the hypothesis presented, the potential cumulative effects of mancozeb-containing formulations and its metabolites could represent an environmental risk which should not be disregarded.
Collapse
Affiliation(s)
- Raquel Vieira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Carlos A S Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801, Vila Real, Portugal
- Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - LuÃs M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801, Vila Real, Portugal.
- Laboratory Animal Science (LAS), i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto (UP), Porto, Portugal.
| |
Collapse
|
14
|
Morales-Ovalles Y, Miranda-Contreras L, Peña-Contreras Z, Dávila-Vera D, Balza-Quintero A, Sánchez-Gil B, Mendoza-Briceño RV. Developmental exposure to mancozeb induced neurochemical and morphological alterations in adult male mouse hypothalamus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:139-146. [PMID: 30391875 DOI: 10.1016/j.etap.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Mancozeb, a dithiocarbamate widely used in agriculture, is considered a developmental hazard in humans; however, more evidences are still needed concerning the consequences of chronic exposure to this pesticide. Mancozeb neurotoxicity in developing mouse hypothalamus was evaluated by subchronic exposure of male Mus musculus mice to low and high doses of mancozeb (30 and 90 mg/kg body weight, respectively) from late neonatal until adolescence. Variations in hypothalamic amino acid neurotransmitter levels and changes in histological as well as cytological characteristics were analyzed in young adult experimental mice and compared with control. A dose-dependent increase in excitation/ inhibition ratio was observed in mancozeb-exposed hypothalamus, indicating an overall state of excitoxicity. Histopathological and ultrastructural studies showed increased apoptosis, neuroinflammation and demyelination, demonstrating mancozeb-induced cytotoxicity in hypothalamic neurosecretory cells. In summary, both neurochemical and morphological data revealed mancozeb-induced alterations during development of hypothalamic circuitry that are critical for maturation of the neuroendocrine system.
Collapse
Affiliation(s)
- Yasmin Morales-Ovalles
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela
| | - Leticia Miranda-Contreras
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela.
| | - Zulma Peña-Contreras
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela
| | - Delsy Dávila-Vera
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela
| | - Alirio Balza-Quintero
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela
| | - Beluardi Sánchez-Gil
- Electron Microscopy Center "Dr. Ernesto Palacios Prü", University of Los Andes, Mérida, Venezuela
| | | |
Collapse
|
15
|
Costa-Silva DGD, Leandro LP, Vieira PDB, de Carvalho NR, Lopes AR, Schimith LE, Nunes MEM, de Mello RS, Martins IK, de Paula AA, Cañedo AD, Moreira JCF, Posser T, Franco JL. N -acetylcysteine inhibits Mancozeb-induced impairments to the normal development of zebrafish embryos. Neurotoxicol Teratol 2018; 68:1-12. [DOI: 10.1016/j.ntt.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 01/02/2023]
|
16
|
Reduced learning and memory performances in high-fat treated hamsters related to brain neurotensin receptor1 expression variations. Behav Brain Res 2018; 347:227-233. [DOI: 10.1016/j.bbr.2018.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
|
17
|
Costa-Silva DG, Lopes AR, Martins IK, Leandro LP, Nunes MEM, de Carvalho NR, Rodrigues NR, Macedo GE, Saidelles AP, Aguiar C, Doneda M, Flores EMM, Posser T, Franco JL. Mancozeb exposure results in manganese accumulation and Nrf2-related antioxidant responses in the brain of common carp Cyprinus carpio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15529-15540. [PMID: 29569203 DOI: 10.1007/s11356-018-1724-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Manganese (Mn)-containing dithiocarbamates such as Mancozeb (MZ) have been shown to induce oxidative stress-related toxicity in rodents and humans. However, little is known about the neurotoxic effects induced by MZ in fish. In this study, carp (Cyprinus carpio) were exposed to non-lethal waterborne concentrations of MZ, and oxidative stress parameters as well as metal accumulation in fish brains were evaluated. The experimental groups were as follows: control, MZ 5 mg/L, and MZ 10 mg/L. Fish were exposed for 7 days, and then brain was removed and prepared for subsequent analysis of antioxidant enzymes, reactive oxygen species (ROS), and expression of Nrf2 and phosphoNrf2. In parallel, manganese (Mn) levels were evaluated in blood and brain tissues. Mn levels were significantly increased in blood and brain of MZ-exposed carps. In addition, a concentration-dependent increase (p < 0.05) in ROS levels was observed in parallel to increments (p < 0.05) in the activity of major antioxidant enzymes, such as GPx, GR, and GST. On the other hand, significant decreases (p < 0.05) in CAT and SOD activities were observed. The expression of total and phosphorylated forms of Nrf2 was significantly (p < 0.05) upregulated in the brain of carps exposed to Mz when compared to the control, indicating an activation of the Nrf2 antioxidant pathway. Our study showed for the first time the activation of the Nrf2/ARE pathway and bioaccumulation of Mn induced by MZ exposure in fish species, highlighting important mechanisms of action and its toxicological impacts to aquatic organisms.
Collapse
Affiliation(s)
| | - Andressa Rubim Lopes
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Illana Kemmerich Martins
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Luana Paganotto Leandro
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Mauro Eugênio Medina Nunes
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | | | - Nathane Rosa Rodrigues
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Giulianna Echeveria Macedo
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Ana Paula Saidelles
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Cassiana Aguiar
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Morgana Doneda
- Departamento de QuÃmica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | | - Thais Posser
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil
| | - Jeferson Luis Franco
- Campus São Gabriel, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97300-000, Brazil.
| |
Collapse
|
18
|
Orexin receptor expression is increased during mancozeb-induced feeding impairments and neurodegenerative events in a marine fish. Neurotoxicology 2018; 67:46-53. [PMID: 29673962 DOI: 10.1016/j.neuro.2018.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 02/05/2023]
Abstract
Food intake ensures energy resources sufficient for basic metabolism, immune system and reproductive investment. It is already known that food-seeking performances, which are crucially controlled by orexins (ORXs), may be under the influence of environmental factors including pollutants. Among these, mancozeb (mz) is becoming an environmental risk for neurodegenerative diseases. Due to few studies on marine fish exposed to mz, it was our intention to correlate feeding latency, food intake and feeding duration to potential neurodegenerative processes in key diencephalic sites and expression changes of the ORX neuroreceptor (ORXR) in the ornate wrasses (Thalassoma pavo). Hence, fish exposed for 4 days (d) to mz 0.2 mg/l (deriving from a 0.07, 0.14, 0.2, 0.3 mg/l screening test) displayed a significant reduction (p < 0.05) of food intake compared to controls as early as 1d that became more evident (p < 0.01) after 3d. Moreover, significant enhancements of feeding latency were reported after 1d up to 3d (p < 0.001) and even feeding duration was enhanced up to 3d (p < 0.001), which instead moderately increased after 4d (p < 0.05). A reduction (-120%; p < 0.001) of mean body weight was also detected at the end of exposure. Likewise, a notable (p < 0.001) activation of ORXR protein occurred together with mRNA up-regulations in diencephalic areas such as the diffuse nucleus of the inferior lobe (+48%) that also exhibited evident degenerative neuronal fields. Overall, these results highlight an ORX role as a vital component of the neuroprotective program under environmental conditions that interfere with feeding behaviors.
Collapse
|
19
|
Di Lorenzo M, Forte M, Valiante S, Laforgia V, De Falco M. Interference of dibutylphthalate on human prostate cell viability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:565-573. [PMID: 28918339 DOI: 10.1016/j.ecoenv.2017.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/31/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Dibutylphthalate (DBP) is an environmental pollutant widely used as plasticizer in a variety of industrial applications worldwide. This agent can be found in personal-care products, children's toy, pharmaceuticals, food products. Exposure to DBP can occur via ingestion and inhalation as well as intravenous or skin contact. DBP belongs to the family of endocrine disrupting chemicals (EDCs) and its effects on reproductive system were demonstrated both in vivo and in vitro. In the present study we evaluated the effects of DBP on human prostate adenocarcinoma epithelial cells (LNCaP) in order to highlight xenoestrogens influence on human prostate. Moreover, we have compared DBP effects with 17β-estradiol action in order to investigate possible mimetical behaviour. We have assessed the effects of both compounds on the cell viability. After then, we have evaluated the expression of genes and proteins involved in cell cycle regulation. Furthermore, we have observed the expression and the cell localization of estrogen (ERs) and androgen (AR) receptors. In conclusion, we have demonstrated that DBP interacts with estrogen hormonal receptor pathway but differently from E2. DBP alters the normal gland physiology and it is involved in the deregulation of prostate cell cycle.
Collapse
Affiliation(s)
| | | | - Salvatore Valiante
- Department of Biology, University Federico II of Naples, Naples, Italy; National Institute of Biostructures and Biosystems (INBB), INBB, Rome, Italy.
| | - Vincenza Laforgia
- Department of Biology, University Federico II of Naples, Naples, Italy; National Institute of Biostructures and Biosystems (INBB), INBB, Rome, Italy.
| | - Maria De Falco
- Department of Biology, University Federico II of Naples, Naples, Italy; National Institute of Biostructures and Biosystems (INBB), INBB, Rome, Italy.
| |
Collapse
|