1
|
Guo J, Luo Y, Fang C, Jin J, Xia P, Wu B, Zhang X, Yu H, Ren H, Shi W. Advancing the Effect-Directed Identification in Combined Pollution: Using Pathways to Link Effects and Toxicants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18642-18653. [PMID: 39392738 DOI: 10.1021/acs.est.4c07735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
The difficulty in associating diverse pollutants with mixture effects has led to significant challenges in identifying toxicants in combined pollution. In this study, pathways were used to link effects and toxicants. By pathways evaluated by the concentration-dependent transcriptome, individual effects were extended to molecular mechanisms encompassing 135 pathways corresponding to 6 biological processes. Accordingly, mechanism-based identification of toxicants was achieved by constructing a pathway toxicant database containing 2413 chemical-pathway interactions and identifying pathway active fragments of 72 pathways. The developed method was applied to two different wastewaters, industrial wastewater OB and municipal wastewater HL. Although lethality and teratogenesis were both observed at the individual level, different molecular mechanisms were revealed by pathways, with cardiotoxicity- and genotoxicity-related pathways significantly enriched in OB, and neurotoxicity- and environmental information processing-related pathways significantly enriched in HL. Further suspect and nontargeted screening generated 59 and 86 causative toxicants in OB and HL, respectively, among which 29 toxicants were confirmed, that interacted with over 90% of enriched pathways and contributed over 50% of individual effects. After upgrading treatments based on causative toxicants, consistent removal of toxicants, pathway effects, and individual effects were observed. Mediation by pathways enables mechanism-based identification, supporting the assessment and management of combined pollution.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| | - Yiwen Luo
- Environmental Protection Key Laboratory of Chemical Ecological Effects and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Chao Fang
- National Engineering Research Centre of Energy-Efficient Semi-conductor Devices and Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jinsha Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Pu Xia
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham B15 2TT, U.K
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| |
Collapse
|
2
|
Kumar N, Marée R, Geurts P, Muller M. Recent Advances in Bioimage Analysis Methods for Detecting Skeletal Deformities in Biomedical and Aquaculture Fish Species. Biomolecules 2023; 13:1797. [PMID: 38136667 PMCID: PMC10742266 DOI: 10.3390/biom13121797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Detecting skeletal or bone-related deformities in model and aquaculture fish is vital for numerous biomedical studies. In biomedical research, model fish with bone-related disorders are potential indicators of various chemically induced toxins in their environment or poor dietary conditions. In aquaculture, skeletal deformities are affecting fish health, and economic losses are incurred by fish farmers. This survey paper focuses on showcasing the cutting-edge image analysis tools and techniques based on artificial intelligence that are currently applied in the analysis of bone-related deformities in aquaculture and model fish. These methods and tools play a significant role in improving research by automating various aspects of the analysis. This paper also sheds light on some of the hurdles faced when dealing with high-content bioimages and explores potential solutions to overcome these challenges.
Collapse
Affiliation(s)
- Navdeep Kumar
- Department of Computer Science and Electrical Engineering, Montefiore Institute, University of Liège, 4000 Liège, Belgium; (R.M.); (P.G.)
| | - Raphaël Marée
- Department of Computer Science and Electrical Engineering, Montefiore Institute, University of Liège, 4000 Liège, Belgium; (R.M.); (P.G.)
| | - Pierre Geurts
- Department of Computer Science and Electrical Engineering, Montefiore Institute, University of Liège, 4000 Liège, Belgium; (R.M.); (P.G.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium;
| |
Collapse
|
3
|
Hedge JM, Hunter DL, Sanders E, Jarema KA, Olin JK, Britton KN, Lowery M, Knapp BR, Padilla S, Hill BN. Influence of Methylene Blue or Dimethyl Sulfoxide on Larval Zebrafish Development and Behavior. Zebrafish 2023; 20:132-145. [PMID: 37406269 PMCID: PMC10627343 DOI: 10.1089/zeb.2023.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
The use of larval zebrafish developmental testing and assessment, specifically larval zebrafish locomotor activity, has been recognized as a higher throughput testing strategy to identify developmentally toxic and neurotoxic chemicals. There are, however, no standardized protocols for this type of assay, which could result in confounding variables being overlooked. Two chemicals commonly employed during early-life stage zebrafish assays, methylene blue (antifungal agent) and dimethyl sulfoxide (DMSO, a commonly used vehicle) have been reported to affect the morphology and behavior of freshwater fish. In this study, we conducted developmental toxicity (morphology) and neurotoxicity (behavior) assessments of commonly employed concentrations for both chemicals (0.6-10.0 μM methylene blue; 0.3%-1.0% v/v DMSO). A light-dark transition behavioral testing paradigm was applied to morphologically normal, 6 days postfertilization (dpf) zebrafish larvae kept at 26°C. Additionally, an acute DMSO challenge was administered based on early-life stage zebrafish assays typically used in this research area. Results from developmental toxicity screens were similar between both chemicals with no morphological abnormalities detected at any of the concentrations tested. However, neurodevelopmental results were mixed between the two chemicals of interest. Methylene blue resulted in no behavioral changes up to the highest concentration tested, 10.0 μM. By contrast, DMSO altered larval behavior following developmental exposure at concentrations as low as 0.5% (v/v) and exhibited differential concentration-response patterns in the light and dark photoperiods. These results indicate that developmental DMSO exposure can affect larval zebrafish locomotor activity at routinely used concentrations in developmental neurotoxicity assessments, whereas methylene blue does not appear to be developmentally or neurodevelopmentally toxic to larval zebrafish at routinely used concentrations. These results also highlight the importance of understanding the influence of experimental conditions on larval zebrafish locomotor activity that may ultimately confound the interpretation of results.
Collapse
Affiliation(s)
- Joan M. Hedge
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Advanced Experimental Toxicology Models Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Deborah L. Hunter
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Erik Sanders
- Aquatics Lab Services LLC 1112 Nashville Street St. Peters, MO 63376, USA
| | - Kimberly A. Jarema
- Office of Research and Development, Center for Public Health and Environmental Assessment, Immediate Office, Program Operations Staff, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Jeanene K. Olin
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Katy N. Britton
- ORAU Research Participation Program hosted by EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Morgan Lowery
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Bridget R. Knapp
- ORISE Research Participation Program hosted by EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Stephanie Padilla
- Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Bridgett N. Hill
- ORISE Research Participation Program hosted by EPA, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| |
Collapse
|
4
|
Olazcuaga L, Baltenweck R, Leménager N, Maia-Grondard A, Claudel P, Hugueney P, Foucaud J. Metabolic consequences of various fruit-based diets in a generalist insect species. eLife 2023; 12:84370. [PMID: 37278030 DOI: 10.7554/elife.84370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Most phytophagous insect species exhibit a limited diet breadth and specialize on a few or a single host plant. In contrast, some species display a remarkably large diet breadth, with host plants spanning several families and many species. It is unclear, however, whether this phylogenetic generalism is supported by a generic metabolic use of common host chemical compounds ('metabolic generalism') or alternatively by distinct uses of diet-specific compounds ('multi-host metabolic specialism')? Here, we simultaneously investigated the metabolomes of fruit diets and of individuals of a generalist phytophagous species, Drosophila suzukii, that developed on them. The direct comparison of metabolomes of diets and consumers enabled us to disentangle the metabolic fate of common and rarer dietary compounds. We showed that the consumption of biochemically dissimilar diets resulted in a canalized, generic response from generalist individuals, consistent with the metabolic generalism hypothesis. We also showed that many diet-specific metabolites, such as those related to the particular color, odor, or taste of diets, were not metabolized, and rather accumulated in consumer individuals, even when probably detrimental to fitness. As a result, while individuals were mostly similar across diets, the detection of their particular diet was straightforward. Our study thus supports the view that dietary generalism may emerge from a passive, opportunistic use of various resources, contrary to more widespread views of an active role of adaptation in this process. Such a passive stance towards dietary chemicals, probably costly in the short term, might favor the later evolution of new diet specializations.
Collapse
Affiliation(s)
- Laure Olazcuaga
- UMR CBGP (INRAE-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet, Montferrier, France
- Department of Agricultural Biology, Colorado State University, Fort Collins, United States
| | | | - Nicolas Leménager
- UMR CBGP (INRAE-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet, Montferrier, France
| | | | | | | | - Julien Foucaud
- UMR CBGP (INRAE-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet, Montferrier, France
| |
Collapse
|
5
|
Mendes FRS, da Silva AW, Ferreira MKA, Rebouças EDL, Moura Barbosa I, da Rocha MN, Henrique Ferreira Ribeiro W, Menezes RRPPBD, Magalhães EP, Marinho EM, Marinho MM, Bandeira PN, de Menezes JESA, Marinho ES, Dos Santos HS. GABA A and serotonergic receptors participation in anxiolytic effect of chalcones in adult zebrafish. J Biomol Struct Dyn 2023; 41:12426-12444. [PMID: 36644862 DOI: 10.1080/07391102.2023.2167116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
The prevalence of anxiety is a significant public health problem, being the 24th leading cause of disability in individuals affected by this disorder. In this context, chalcones, a flavonoid subclass obtained from natural or synthetic sources, interact with central nervous system (CNS) receptors at the same binding site as benzodiazepines, the primary drugs used in the treatment of anxiety. Thus, our study investigates the anxiolytic effect of synthetic chalcones derived from the natural product 2-hydroxy-3,4,6-trimethoxyacetophenone isolated from Croton anisodontus Müll.Arg. in modulating anxiolytic activity via GABAergic and serotoninergic neurotransmission in an adult zebrafish model. Chalcones 1 and 2 were non-toxic to adult zebrafish and showed anxiolytic activity via GABAA receptors. Chalcone 2 also had its anxiolytic action reversed by the antagonist granisetron, indicating the participation of serotonergic receptors 5HTR3A/3B in the anxiolytic effect. In addition, molecular docking results showed that chalcones have a higher affinity for the GABAA receptor than DZP and binding in the same region of the DZP binding site, indicating a similar effect to the drug. Furthermore, the interaction of chalcones with GABAA and 5-HT3A receptors demonstrates the anxiolytic effect potential of these molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | | | - Italo Moura Barbosa
- Graduate Program in Natural Sciences, State University of Ceara, Fortaleza, Ceará, Brazil
| | - Matheus Nunes da Rocha
- Department of Chemistry, Limoeiro do Norte, State University of Ceara, Limoeiro do Norte, Ceará, Brazil
| | | | | | - Emanuel Paula Magalhães
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Emanuelle Machado Marinho
- Department of Analytical and Physical Chemistry, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | | | | | | | - Emmanuel Silva Marinho
- Graduate Program in Natural Sciences, State University of Ceara, Fortaleza, Ceará, Brazil
- Department of Chemistry, Limoeiro do Norte, State University of Ceara, Limoeiro do Norte, Ceará, Brazil
| | - Hélcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
- Graduate Program of Biotechnology, State University of Ceara, Fortaleza, Ceará, Brazil
- Graduate Program in Natural Sciences, State University of Ceara, Fortaleza, Ceará, Brazil
- Chemistry Course, State University of Vale do Acaraú, Sobral, Ceará, Brazil
| |
Collapse
|
6
|
Chen Y, Wisner AS, Schiefer IT, Williams FE, Hall FS. Methamphetamine-induced lethal toxicity in zebrafish larvae. Psychopharmacology (Berl) 2022; 239:3833-3846. [PMID: 36269378 PMCID: PMC10593407 DOI: 10.1007/s00213-022-06252-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/27/2022] [Indexed: 10/24/2022]
Abstract
RATIONALE The use of novel psychoactive substances has been steadily increasing in recent years. Given the rapid emergence of new substances and their constantly changing chemical structure, it is necessary to develop an efficient and expeditious approach to examine the mechanisms underlying their pharmacological and toxicological effects. Zebrafish (Danio rerio) have become a popular experimental subject for drug screening due to their amenability to high-throughput approaches. OBJECTIVES In this study, we used methamphetamine (METH) as an exemplary psychoactive substance to investigate its acute toxicity and possible underlying mechanisms in 5-day post-fertilization (5 dpf) zebrafish larvae. METHODS Lethality and toxicity of different concentrations of METH were examined in 5-dpf zebrafish larvae using a 96-well plate format. RESULTS METH induced lethality in zebrafish larvae in a dose-dependent manner, which was associated with initial sympathomimetic activation, followed by cardiotoxicity. This was evidenced by significant heart rate increases at low doses, followed by decreased cardiac function at high doses and later time points. Levels of ammonia in the excreted water were increased but decreased internally. There was also evidence of seizures. Co-administration of the glutamate AMPA receptor antagonist GYKI-52466 and the dopamine D2 receptor antagonist raclopride significantly attenuated METH-induced lethality, suggesting that this lethality may be mediated synergistically or independently by glutamatergic and dopaminergic systems. CONCLUSIONS These experiments provide a baseline for the study of the toxicity of related amphetamine compounds in 5-dpf zebrafish as well as a new high-throughput approach for investigating the toxicities of rapidly emerging new psychoactive substances.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave., MS 1015, Toledo, OH, 43614-2598, USA
- College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Ave Room 610, Memphis, TN, 38163, USA
| | - Alexander S Wisner
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave., MS 1015, Toledo, OH, 43614-2598, USA
| | - Isaac T Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Frederick E Williams
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave., MS 1015, Toledo, OH, 43614-2598, USA
| | - F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave., MS 1015, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
7
|
Casticin Impacts Key Signaling Pathways in Colorectal Cancer Cells Leading to Cell Death with Therapeutic Implications. Genes (Basel) 2022; 13:genes13050815. [PMID: 35627200 PMCID: PMC9141418 DOI: 10.3390/genes13050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer is the third most frequently encountered cancer worldwide. While current chemotherapeutics help to manage the disease to some extent, they have eluded achieving complete remission and are limited by their severe side effects. This warrants exploration of novel agents that are efficacious with anticipation of minimal adverse effects. In the current study, casticin, a tetramethoxyflavone, was tested for its ability to inhibit the viability of three human colorectal cancer cells: adenocarcinoma (DLD-1, Caco-2 cell lines) and human colorectal carcinoma cells (HCT116 cell line). Casticin showed potent inhibition of viability of DLD-1 and HCT116 cells. Clonogenic assay performed in DLD-1 cells revealed that casticin impeded the colony-forming efficiency of the cells, suggesting its impact on the proliferation of these cells. Further, a sustained effect of the inhibitory action upon withdrawal of the treatment was observed. Elucidation of the mechanism of action revealed that casticin impacted the extrinsic programmed cell death pathway, leading to an increase in apoptotic cells. Further, Bcl-2, the key moiety of cell survival, was affected. Notably, a significant number of cells were arrested in the G2/M phase of the cell cycle in DLD-1 cells. Due to the multifaceted action of casticin, we envision that treatment with casticin could provide an efficacious treatment option for colorectal adenocarcinomas with minimal side effects.
Collapse
|
8
|
Mora I, Arola L, Caimari A, Escoté X, Puiggròs F. Structured Long-Chain Omega-3 Fatty Acids for Improvement of Cognitive Function during Aging. Int J Mol Sci 2022; 23:3472. [PMID: 35408832 PMCID: PMC8998232 DOI: 10.3390/ijms23073472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
Although the human lifespan has increased in the past century owing to advances in medicine and lifestyle, the human healthspan has not kept up the same pace, especially in brain aging. Consequently, the role of preventive health interventions has become a crucial strategy, in particular, the identification of nutritional compounds that could alleviate the deleterious effects of aging. Among nutrients to cope with aging in special cognitive decline, the long-chain omega-3 polyunsaturated fatty acids (ω-3 LCPUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have emerged as very promising ones. Due to their neuroinflammatory resolving effects, an increased status of DHA and EPA in the elderly has been linked to better cognitive function and a lower risk of dementia. However, the results from clinical studies do not show consistent evidence and intake recommendations for old adults are lacking. Recently, supplementation with structured forms of EPA and DHA, which can be derived natural forms or targeted structures, have proven enhanced bioavailability and powerful benefits. This review summarizes present and future perspectives of new structures of ω-3 LCPUFAs and the role of "omic" technologies combined with the use of high-throughput in vivo models to shed light on the relationships and underlying mechanisms between ω-3 LCPUFAs and healthy aging.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| |
Collapse
|
9
|
Cocrystals of flavonoids with 4,4′-ethylenebispyridine: Crystal structures analysis, dissolution behavior, and anti-tumor activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Bownik A, Wlodkowic D. Applications of advanced neuro-behavioral analysis strategies in aquatic ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145577. [PMID: 33770877 DOI: 10.1016/j.scitotenv.2021.145577] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Despite mounting evidence of pleiotropic ecological risks, the understanding of the eco-neurotoxic impact of most industrially relevant chemicals is still very limited. In particularly the acute and chronic exposures to industrial pollutants on nervous systems and thus potential alterations in ecological fitness remain profoundly understudied. Since the behavioral phenotype is the highest-level and functional manifestation of integrated neurological functions, the alterations in neuro-behavioral traits have been postulated as very sensitive and physiologically integrative endpoints to assess eco-neurotoxicological risks associated with industrial pollutants. Due to a considerable backlog of risk assessments of existing and new production chemicals there is a need for a paradigm shift from high cost, low throughput ecotoxicity test models to next generation systems amenable to higher throughput. In this review we concentrate on emerging aspects of laboratory-based neuro-behavioral phenotyping approaches that can be amenable for rapid prioritizing pipelines. We outline the importance of development and applications of innovative neuro-behavioral assays utilizing small aquatic biological indicators and demonstrate emerging concepts of high-throughput chemo-behavioral phenotyping. We also discuss new analytical approaches to effectively and rapidly evaluate the impact of pollutants on higher behavioral functions such as sensory-motor assays, decision-making and cognitive behaviors using innovative model organisms. Finally, we provide a snapshot of most recent analytical approaches that can be applied to elucidate mechanistic rationale that underlie the observed neuro-behavioral alterations upon exposure to pollutants. This review is intended to outline the emerging opportunities for innovative multidisciplinary research and highlight the existing challenges as well barriers to future development.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | | |
Collapse
|
11
|
Manchanda A, Bonventre JA, Bugel SM, Chatterjee P, Tanguay R, Johnson CP. Truncation of the otoferlin transmembrane domain alters the development of hair cells and reduces membrane docking. Mol Biol Cell 2021; 32:1293-1305. [PMID: 33979209 PMCID: PMC8351550 DOI: 10.1091/mbc.e20-10-0657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Release of neurotransmitter from sensory hair cells is regulated by otoferlin. Despite the importance of otoferlin in the auditory and vestibular pathways, the functional contributions of the domains of the protein have not been fully characterized. Using a zebrafish model, we investigated a mutant otoferlin with a stop codon at the start of the transmembrane domain. We found that both the phenotype severity and the expression level of mutant otoferlin changed with the age of the zebrafish. At the early developmental time point of 72 h post fertilization, low expression of the otoferlin mutant coincided with synaptic ribbon deficiencies, reduced endocytosis, and abnormal transcription of several hair cell genes. As development proceeded, expression of the mutant otoferlin increased, and both synaptic ribbons and hair cell transcript levels resembled wild type. However, hair cell endocytosis deficits and abnormalities in the expression of GABA receptors persisted even after up-regulation of mutant otoferlin. Analysis of membrane-reconstituted otoferlin measurements suggests a function for the transmembrane domain in liposome docking. We conclude that deletion of the transmembrane domain reduces membrane docking, attenuates endocytosis, and results in developmental delay of the hair cell.
Collapse
Affiliation(s)
- Aayushi Manchanda
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97333
| | - Josephine A Bonventre
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333
| | - Sean M Bugel
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333
| | - Paroma Chatterjee
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97333
| | - Robyn Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333
| | - Colin P Johnson
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97333.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333
| |
Collapse
|
12
|
High-throughput animal tracking in chemobehavioral phenotyping: Current limitations and future perspectives. Behav Processes 2020; 180:104226. [DOI: 10.1016/j.beproc.2020.104226] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
|
13
|
Annona G, Tarallo A, Nittoli V, Varricchio E, Sordino P, D'Aniello S, Paolucci M. Short-term exposure to the simple polyphenolic compound gallic acid induces neuronal hyperactivity in zebrafish larvae. Eur J Neurosci 2020; 53:1367-1377. [PMID: 33098676 DOI: 10.1111/ejn.15021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 10/17/2020] [Accepted: 10/17/2020] [Indexed: 11/29/2022]
Abstract
A growing body of evidence suggests that the biological effects of polyphenols are not restricted to antioxidant activity, but they exert a wide range of modulatory effects on metabolic pathways, cellular signaling and gene expression. In this study, we tested the minimum safe concentration of gallic acid (GA) in 72 hpf zebrafish larvae in order to evaluate the effects on the central nervous system and the behavioral response. We showed that a short exposure (30 min) induces the depletion of the two main excitatory and inhibitory neurotransmitters, Glu and GABA, respectively, in the larval nervous system. The acute impairment of GABAergic-glutamatergic balance was paralleled by an increase of the fosab neuronal activity marker in specific brain areas, such as the forebrain, olfactory bulbs, pallial area, ventral midbrain, tegmentum, and the medulla oblongata ventral area. The neuronal excitation was mirrored by the increased cumulative motor response. The inhibition of the olfactory epithelium with brief cadmium exposition suggests a direct involvement of olfaction in the larvae response to GA. Our results demonstrate that a brief exposure to GA induces motoneuronal hyperexcitability in zebrafish. The behavioral response was probably elicited through the activation of an odorous, or chemical, stimulus. The specificity of the activated neuronal territories suggests the involvement of additional signaling pathways. Although the underlying molecular mechanisms remain to be elucidated, our data support the hypothesis that GA acts as an excitatory molecule, capable of inducing a specific nerve response. These results offer a new vision on potential effects of GA.
Collapse
Affiliation(s)
- Giovanni Annona
- Department of Science and Technologies, University of Sannio, Benevento, Italy.,Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn di Napoli, Napoli, Italy
| | - Andrea Tarallo
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Valeria Nittoli
- Biogem s.c.ar.l, Istituto di Ricerche Genetiche G. Salvatore, Avellino, Italy
| | - Ettore Varricchio
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Paolo Sordino
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn di Napoli, Napoli, Italy
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn di Napoli, Napoli, Italy
| | - Marina Paolucci
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| |
Collapse
|
14
|
Zabegalov KN, Wang D, Yang L, Wang J, Hu G, Serikuly N, Alpyshov ET, Khatsko SL, Zhdanov A, Demin KA, Galstyan DS, Volgin AD, de Abreu MS, Strekalova T, Song C, Amstislavskaya TG, Sysoev Y, Musienko PE, Kalueff AV. Decoding the role of zebrafish neuroglia in CNS disease modeling. Brain Res Bull 2020; 166:44-53. [PMID: 33027679 DOI: 10.1016/j.brainresbull.2020.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
Neuroglia, including microglia and astrocytes, is a critical component of the central nervous system (CNS) that interacts with neurons to modulate brain activity, development, metabolism and signaling pathways. Thus, a better understanding of the role of neuroglia in the brain is critical. Complementing clinical and rodent data, the zebrafish (Danio rerio) is rapidly becoming an important model organism to probe the role of neuroglia in brain disorders. With high genetic and physiological similarity to humans and rodents, zebrafish possess some common (shared), as well as some specific molecular biomarkers and features of neuroglia development and functioning. Studying these common and zebrafish-specific aspects of neuroglia may generate important insights into key brain mechanisms, including neurodevelopmental, neurodegenerative, neuroregenerative and neurological processes. Here, we discuss the biology of neuroglia in humans, rodents and fish, its role in various CNS functions, and further directions of translational research into the role of neuroglia in CNS disorders using zebrafish models.
Collapse
Affiliation(s)
- Konstantin N Zabegalov
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | | | | | | | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia.
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Division of Molecular Psychiatry, Centre of Mental Health, University of Würzburg, Würzburg, Germany
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Zelman Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Yury Sysoev
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Petersburg State University, St. Petersburg, Russia; Department of Pharmacology and Clinical Pharmacology, St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - Pavel E Musienko
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, Petersburg State University, St. Petersburg, Russia; Institute of Phthisiopulmonology, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
15
|
Sancho Santos ME, Grabicová K, Steinbach C, Schmidt-Posthaus H, Šálková E, Kolářová J, Vojs Staňová A, Grabic R, Randák T. Environmental concentration of methamphetamine induces pathological changes in brown trout (Salmo trutta fario). CHEMOSPHERE 2020; 254:126882. [PMID: 32957289 DOI: 10.1016/j.chemosphere.2020.126882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Methamphetamine, mainly consumed as an illicit drug, is a potent addictive psychostimulant that has been detected in surface water at concentrations ranging from nanograms to micrograms per litre, especially in Middle and East Europe. The aim of this study was to expose brown trout (Salmo trutta fario) to environmental (1 μg L-1) and higher (50 μg L-1) concentrations of methamphetamine for 35 days with a four-day depuration phase to assess the possible negative effects on fish health. Degenerative liver and heart alterations, similar to those described in mammals, were observed at both concentrations, although at different intensities. Apoptotic changes in hepatocytes, revealed by activated caspase-3, were found in exposed fish. The parent compound and a metabolite (amphetamine) were detected in fish tissues in both concentration groups, in the order of kidney > liver > brain > muscle > plasma. Bioconcentration factors ranged from 0.13 to 80. A therapeutic plasma concentration was reached for both compounds in the high-concentration treatment. This study indicates that chronic environmental concentrations of methamphetamine can lead to health issues in aquatic organisms.
Collapse
Affiliation(s)
- Maria Eugenia Sancho Santos
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Christoph Steinbach
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Heike Schmidt-Posthaus
- University of Bern, Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Laenggassstrasse 122, 3001, Bern, Switzerland
| | - Eva Šálková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jitka Kolářová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
16
|
de Melo EL, Pinto AM, Baima CLB, da Silva HR, da Silva Sena I, Sanchez-Ortiz BL, de Lima Teixeira AVT, Pereira ACM, da Silva Barbosa R, Carvalho HO, Hu X, Carvalho JCT. Evaluation of the in vitro release of isoflavones from soybean germ associated with kefir culture in the gastrointestinal tract and anxiolytic and antidepressant actions in zebrafish (Danio rerio). J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
17
|
Zeng Q, Zhang Y, Zhang W, Guo Q. Baicalein suppresses the proliferation and invasiveness of colorectal cancer cells by inhibiting Snail‑induced epithelial‑mesenchymal transition. Mol Med Rep 2020; 21:2544-2552. [PMID: 32323825 PMCID: PMC7185271 DOI: 10.3892/mmr.2020.11051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Scutellaria baicalensis (S. baicalensis) is a plant that is widely used for medicinal purposes. Baicalein, one of the primary bioactive compounds found in S. baicalensis, is thought to possess antitumor activity, although the specific mechanisms remain unclear. Therefore, the present study aimed to evaluate the ability of baicalein to disrupt the proliferation and metastatic potential of colorectal cancer (CRC) cells; a rapid and sensitive ultra-high performance liquid chromatography-tandem mass spectrometric method was employed for the identification of baicalein in an S. baicalensis aqueous extract and in rat plasma. To investigate the effects of baicalein, Cell Counting Kit-8 (CCK-8), western blotting, wound-healing and Transwell assays were performed. The data indicated that baicalein was absorbed into the blood and was able to effectively disrupt the proliferation, migration and invasion abilities of CRC cells in a dose- and time-dependent manner. Baicalein treatment was also revealed to decrease the expression of epithelial-mesenchymal transition (EMT)-promoting factors including vimentin, Twist1, and Snail, but to upregulate the expression of E-cadherin in CRC cells. The expression levels of cell cycle inhibitory proteins p53 and p21 also increased following baicalein treatment. In addition, Snail-induced vimentin and Twist1 upregulation, as well as E-cadherin downregulation, were reversed following treatment with baicalein. In conclusion, the results of the present study indicate that baicalein may suppress EMT, at least in part, by decreasing Snail activity.
Collapse
Affiliation(s)
- Qiongyao Zeng
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yu Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Wenjing Zhang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Qiang Guo
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
18
|
Yang J, Li K, He D, Gu J, Xu J, Xie J, Zhang M, Liu Y, Tan Q, Zhang J. Toward a better understanding of metabolic and pharmacokinetic characteristics of low-solubility, low-permeability natural medicines. Drug Metab Rev 2020; 52:19-43. [PMID: 31984816 DOI: 10.1080/03602532.2020.1714646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Today, it is very challenging to develop new active pharmaceutical ingredients. Developing good preparations of well-recognized natural medicines is certainly a practical and economic strategy. Low-solubility, low-permeability natural medicines (LLNMs) possess valuable advantages such as effectiveness, relative low cost and low toxicity, which is shown by the presence of popular products on the market. Understanding the in vivo metabolic and pharmacokinetic characteristics of LLNMs contributes to overcoming their associated problems, such as low absorption and low bioavailability. In this review, the structure-based metabolic reactions of LLNMs and related enzymatic systems, cellular and bodily pharmacological effects and metabolic influences, drug-drug interactions involved in metabolism and microenvironmental changes, and pharmacokinetics and dose-dependent/linear pharmacokinetic models are comprehensively evaluated. This review suggests that better pharmacological activity and pharmacokinetic behaviors may be achieved by modifying the metabolism through using nanotechnology and nanosystem in combination with the suitable administration route and dosage. It is noteworthy that novel nanosystems, such as triggered-release liposomes, nucleic acid polymer nanosystems and PEGylated dendrimers, in addition to prodrug and intestinal penetration enhancer, demonstrate encouraging performance. Insights into the metabolic and pharmacokinetic characteristics of LLNMs may help pharmacists to identify new LLNM formulations with high bioavailability and amazing efficacy and help physicians carry out LLNM-based precision medicine and individualized therapies.
Collapse
Affiliation(s)
- Jie Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Kailing Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Jing Gu
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Jingyu Xu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jiaxi Xie
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Min Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yuying Liu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Qunyou Tan
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Towards High-Throughput Chemobehavioural Phenomics in Neuropsychiatric Drug Discovery. Mar Drugs 2019; 17:md17060340. [PMID: 31174272 PMCID: PMC6627923 DOI: 10.3390/md17060340] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/19/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022] Open
Abstract
Identifying novel marine-derived neuroactive chemicals with therapeutic potential is difficult due to inherent complexities of the central nervous system (CNS), our limited understanding of the molecular foundations of neuro-psychiatric conditions, as well as the limited applications of effective high-throughput screening models that recapitulate functionalities of the intact CNS. Furthermore, nearly all neuro-modulating chemicals exhibit poorly characterized pleiotropic activities often referred to as polypharmacology. The latter renders conventional target-based in vitro screening approaches very difficult to accomplish. In this context, chemobehavioural phenotyping using innovative small organism models such as planarians and zebrafish represent powerful and highly integrative approaches to study the impact of new chemicals on central and peripheral nervous systems. In contrast to in vitro bioassays aimed predominantly at identification of chemicals acting on single targets, phenotypic chemobehavioural analysis allows for complex multi-target interactions to occur in combination with studies of polypharmacological effects of chemicals in a context of functional and intact milieu of the whole organism. In this review, we will outline recent advances in high-throughput chemobehavioural phenotyping and provide a future outlook on how those innovative methods can be utilized for rapidly screening and characterizing marine-derived compounds with prospective applications in neuropharmacology and psychosomatic medicine.
Collapse
|
20
|
Khan H, Perviz S, Sureda A, Nabavi SM, Tejada S. Current standing of plant derived flavonoids as an antidepressant. Food Chem Toxicol 2018; 119:176-188. [DOI: 10.1016/j.fct.2018.04.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 01/29/2023]
|