1
|
Safaie N, Idari G, Ghasemi D, Hajiabbasi M, Alivirdiloo V, Masoumi S, Zavvar M, Majidi Z, Faridvand Y. AMPK activation; a potential strategy to mitigate TKI-induced cardiovascular toxicity. Arch Physiol Biochem 2024:1-13. [PMID: 39526616 DOI: 10.1080/13813455.2024.2426494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The introduction of Tyrosine Kinase Inhibitors (TKIs) has revolutionised cancer treatment, yet concerns regarding cardiovascular toxicity have surfaced. This piece delves into the interplay between AMP-activated protein kinase (AMPK) signalling and TKI-induced cardiovascular toxicity. The study unravels the intricate relationship between AMPK activation and TKI-induced cardiovascular toxicity, aiming to ascertain whether AMPK can play a strategic role in mitigating adverse effects. Beyond unravelling mechanistic insights, the research sets the stage for future therapeutic approaches, envisioning AMPK activation as a pivotal connection for balancing effective cancer treatment with cardiovascular well-being. As research advances, the potential of AMPK activation not only addresses challenges in TKI-induced cardiovascular toxicity but also shapes the future landscape of personalised anticancer therapies. The article explores the mechanisms of TKI-induced toxicity, AMPK's impact on cardiovascular health, and the potential therapeutic implications of AMPK activation in alleviating TKI-associated toxicities.
Collapse
Affiliation(s)
- Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Idari
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Diba Ghasemi
- Stem Cell research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Alivirdiloo
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramasr, Iran
| | - Shahab Masoumi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Vanderbilt University of Medical center, Nashville, TN, USA
| | - Mahdi Zavvar
- Department of Medical Laboratory Science, School of Allied Medicine Sciences (SAMS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ziba Majidi
- Department of Medical Laboratory Science, School of Allied Medicine Sciences (SAMS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Liu X, Guo Y, Huang Y, Wang Q, Huang Y, Lei Y, Liu Z, Zhang L. GPX4 allosteric activators inhibit ferroptosis and exert myocardial protection in doxorubicin-induced myocardial injury mouse model. Eur J Med Chem 2024; 277:116721. [PMID: 39096818 DOI: 10.1016/j.ejmech.2024.116721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Ferroptosis is a unique type of non-apoptotic form of cell death characterized by increased lipid hydroperoxide levels. It has relevance for a number of pathological conditions including multiple organ injuries and degenerative diseases. GPX4 plays an important role in ferroptosis by repairing lipid hydroperoxides. Based on the reported allosteric sites, we obtained the GPX4 allosteric activator hit compound A9 through virtual screening. A9 can bind to GPX4 and prevent RSL3-induced lipid peroxidation production in HT-1080 cells. In addition, A9 can specifically rescue erastin-induced cell death. Further chemical modification and structure-activity relationship studies afforded the optimized compound C3. C3 showed the activity of alleviating myocardial injury in the doxorubicin-induced myocardial injury mouse model. This study demonstrated that inhibiting ferroptosis by activating GPX4 is expected to be a potential solution to treat myocardial injury.
Collapse
Affiliation(s)
- Xiaoang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yi Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yusong Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yanwen Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yizhi Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
3
|
Lumpuy-Castillo J, Amador-Martínez I, Díaz-Rojas M, Lorenzo O, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. Role of mitochondria in reno-cardiac diseases: A study of bioenergetics, biogenesis, and GSH signaling in disease transition. Redox Biol 2024; 76:103340. [PMID: 39250857 PMCID: PMC11407069 DOI: 10.1016/j.redox.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - Isabel Amador-Martínez
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Miriam Díaz-Rojas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 43210, Columbus, Ohio, USA.
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| |
Collapse
|
4
|
Gao F, Xu T, Zang F, Luo Y, Pan D. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms, Clinical Management and Innovative Treatment. Drug Des Devel Ther 2024; 18:4089-4116. [PMID: 39286288 PMCID: PMC11404500 DOI: 10.2147/dddt.s469331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
With the continuous refinement of therapeutic measures, the survival rate of tumor patients has been improving year by year, while cardiovascular complications related to cancer therapy have become increasingly prominent. Exploring the mechanism and prevention strategy of cancer therapy-related cardiovascular toxicity (CTR-CVT) remains one of the research hotspots in the field of Cardio-Oncology in recent years. Cardiotoxicity of anticancer drugs involves heart failure, myocarditis, hypertension, arrhythmias and vascular toxicity, mechanistically related to vascular endothelial dysfunction, ferroptosis, mitochondrial dysfunction and oxidative stress. To address the cardiotoxicity induced by different anticancer drugs, various therapeutic measures have been put in place, such as reducing the accumulation of anticancer drugs, shifting to drugs with less cardiotoxicity, using cardioprotective drugs, and early detection. Due to the very limited treatments available to ameliorate anticancer drugs-induced cardiotoxicity, a few innovations are being shifted from animal studies to human studies. Examples include mitochondrial transplantation. Mitochondrial transplantation has been proven to be effective in in vivo and in vitro experiments. Several recent studies have demonstrated that intercellular mitochondrial transfer can ameliorate doxorubicin(DOX)-induced cardiotoxicity, laying the foundation for innovative therapies in anticancer drugs-induced cardiotoxicity. In this review, we will discuss the current status of anticancer drugs-induced cardiotoxicity in terms of the pathogenesis and treatment, with a focus on mitochondrial transplantation, and we hope that this review will bring some inspiration to you.
Collapse
Affiliation(s)
- Feiyu Gao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Tao Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Fangnan Zang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| |
Collapse
|
5
|
Rahmani S, Roohbakhsh A, Pourbarkhordar V, Hayes AW, Karimi G. Melatonin regulates mitochondrial dynamics and mitophagy: Cardiovascular protection. J Cell Mol Med 2024; 28:e70074. [PMID: 39333694 PMCID: PMC11436317 DOI: 10.1111/jcmm.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
Despite extensive progress in the knowledge and understanding of cardiovascular diseases and significant advances in pharmacological treatments and procedural interventions, cardiovascular diseases (CVD) remain the leading cause of death globally. Mitochondrial dynamics refers to the repetitive cycle of fission and fusion of the mitochondrial network. Fission and fusion balance regulate mitochondrial shape and influence physiology, quality and homeostasis. Mitophagy is a process that eliminates aberrant mitochondria. Melatonin (Mel) is a pineal-synthesized hormone with a range of pharmacological properties. Numerous nonclinical trials have demonstrated that Mel provides cardioprotection against ischemia/reperfusion, cardiomyopathies, atherosclerosis and cardiotoxicity. Recently, interest has grown in how mitochondrial dynamics contribute to melatonin cardioprotective effects. This review assesses the literature on the protective effects of Mel against CVD via the regulation of mitochondrial dynamics and mitophagy in both in-vivo and in-vitro studies. The signalling pathways underlying its cardioprotective effects were reviewed. Mel modulated mitochondrial dynamics and mitophagy proteins by upregulation of mitofusin, inhibition of DRP1 and regulation of mitophagy-related proteins. The evidence supports a significant role of Mel in mitochondrial dynamics and mitophagy quality control in CVD.
Collapse
Affiliation(s)
- Sohrab Rahmani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Pourbarkhordar
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Yaghoobi A, Rezaee M, Hedayati N, Keshavarzmotamed A, Khalilzad MA, Russel R, Asemi Z, Rajabi Moghadam H, Mafi A. Insight into the cardioprotective effects of melatonin: shining a spotlight on intercellular Sirt signaling communication. Mol Cell Biochem 2024:10.1007/s11010-024-05002-3. [PMID: 38980593 DOI: 10.1007/s11010-024-05002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and illness worldwide. While there have been advancements in the treatment of CVDs using medication and medical procedures, these conventional methods have limited effectiveness in halting the progression of heart diseases to complete heart failure. However, in recent years, the hormone melatonin has shown promise as a protective agent for the heart. Melatonin, which is secreted by the pineal gland and regulates our sleep-wake cycle, plays a role in various biological processes including oxidative stress, mitochondrial function, and cell death. The Sirtuin (Sirt) family of proteins has gained attention for their involvement in many cellular functions related to heart health. It has been well established that melatonin activates the Sirt signaling pathways, leading to several beneficial effects on the heart. These include preserving mitochondrial function, reducing oxidative stress, decreasing inflammation, preventing cell death, and regulating autophagy in cardiac cells. Therefore, melatonin could play crucial roles in ameliorating various cardiovascular pathologies, such as sepsis, drug toxicity-induced myocardial injury, myocardial ischemia-reperfusion injury, hypertension, heart failure, and diabetic cardiomyopathy. These effects may be partly attributed to the modulation of different Sirt family members by melatonin. This review summarizes the existing body of literature highlighting the cardioprotective effects of melatonin, specifically the ones including modulation of Sirt signaling pathways. Also, we discuss the potential use of melatonin-Sirt interactions as a forthcoming therapeutic target for managing and preventing CVDs.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | | | - Reitel Russel
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hasan Rajabi Moghadam
- Department of Cardiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Wang T, Xing G, Fu T, Ma Y, Wang Q, Zhang S, Chang X, Tong Y. Role of mitochondria in doxorubicin-mediated cardiotoxicity: From molecular mechanisms to therapeutic strategies. Cell Stress Chaperones 2024; 29:349-357. [PMID: 38485043 PMCID: PMC10999808 DOI: 10.1016/j.cstres.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control, including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Tianen Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guoli Xing
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Fu
- Brandeis University, Waltham, MA, USA
| | - Yanchun Ma
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuxiang Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xing Chang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
8
|
Sun W, Lu Q, Zhang Y, Xing D. 5-Hydroxytryptophan acts as a gap junction inhibitor to limit the spread of chemotherapy-induced cardiomyocyte injury and mitochondrial dysfunction. Aging (Albany NY) 2024; 16:4889-4903. [PMID: 38462693 PMCID: PMC10968683 DOI: 10.18632/aging.205641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/16/2024] [Indexed: 03/12/2024]
Abstract
Anthracycline chemotherapeutics like doxorubicin (DOX) are widely used against various cancers but are accompanied by severe cardiotoxic effects that can lead to heart failure. Through whole transcriptome sequencing and pathological tissue analysis in a murine model, our study has revealed that DOX impairs collagen expression in the early phase, causing extracellular matrix anomalies that weaken the mechanical integrity of the heart. This results in ventricular wall thinning and dilation, exacerbating cardiac dysfunction. In this work, we have identified 5-hydroxytryptophan (5-HTP) as a potent inhibitor of gap junction communication. This inhibition is key to limiting the spread of DOX-induced cardiotoxicity. Treatment with 5-HTP effectively countered the adverse effects of DOX on the heart, preserving ventricular structure and ejection fraction. Moreover, 5-HTP enhanced mitochondrial respiratory function, as shown by the O2k mitochondrial function assay, by improving mitochondrial complex activity and ATP production. Importantly, the cardioprotective benefits of 5-HTP did not interfere with DOX's ability to combat cancer. These findings shed light on the cardiotoxic mechanisms of DOX and suggest that 5-HTP could be a viable strategy to prevent heart damage during chemotherapy, offering a foundation for future clinical development. This research opens the door for 5-HTP to be considered a dual-purpose agent that can protect the heart without compromising the oncological efficacy of anthracycline chemotherapy.
Collapse
Affiliation(s)
- Wenshe Sun
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266071, China
| | - Qi Lu
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266071, China
| | - Yukun Zhang
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- Qingdao Cancer Institute, Qingdao University, Qingdao 266071, China
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao 266071, China
| |
Collapse
|
9
|
Fan X, Krzyzanski W, Wong RSM, Liu D, Yan X. Novel Combination of Erythropoietin and Romiplostim to Treat Chemotherapy-Induced Anemia and Thrombocytopenia via Pharmacodynamic Interaction on Hematopoietic Stem and Progenitor Cells. ACS Pharmacol Transl Sci 2023; 6:1884-1897. [PMID: 38093847 PMCID: PMC10714423 DOI: 10.1021/acsptsci.3c00194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2024]
Abstract
Chemotherapy-induced anemia and thrombocytopenia (CIAT) in cancer patients are often caused by the damage of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow. We have previously shown that romiplostim, a thrombopoietin receptor agonist that could stimulate the expansion of HSPCs, could synergize with recombinant human erythropoietin (rHuEPO) to promote erythropoiesis in addition to stimulating platelet production, whereas rHuEPO could influence the platelet count through stem cell competition. Therefore, we hypothesize that a combination of romiplostim with rHuEPO can alleviate CIAT simultaneously, while minimizing the risk of thrombosis. In this study, we demonstrated that rHuEPO and romiplostim exhibit no stimulatory effects on the growth and invasion of LA-7 cancer cells both in vitro and in vivo. Using a rat model with carboplatin-induced anemia and thrombocytopenia, we showed that the red blood cells and hemoglobin concentration recovered faster, and the secondary thrombocytopenia was alleviated in the rHuEPO and romiplostim combination therapy groups compared with the corresponding rHuEPO monotherapy groups. The rebound phenomenon of platelets was inhibited compared with the romiplostim monotherapy group. In vitro study further demonstrated that romiplostim expands HSPCs and synergizes with rHuEPO to promote erythropoiesis, while rHuEPO inhibited megakaryopoiesis. Furthermore, we developed a mechanism-based pharmacokinetic-pharmacodynamic model to quantify the effects of the two drugs. This study suggests that rHuEPO and romiplostim combination therapy can treat CIAT simultaneously in rats while minimizing the risk of thrombosis, indicating that combination therapy might be superior to monotherapy in the supportive therapy of cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Xiaoqing Fan
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, Hong Kong 999077, China SAR
| | - Wojciech Krzyzanski
- Department
of Pharmaceutical Sciences, The State University
of New York at Buffalo, Buffalo, New York 14068, United States
| | - Raymond S. M. Wong
- Division
of Hematology, Department of Medicine and Therapeutics, Faculty of
Medicine, The Chinese University of Hong
Kong, Shatin, Hong Kong 999077, China SAR
| | - Dongyang Liu
- Drug
Clinical Trial Center, Peking University
Third Hospital, Beijing 100191, China
| | - Xiaoyu Yan
- School
of Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, Hong Kong 999077, China SAR
| |
Collapse
|
10
|
Faggiano A, Gherbesi E, Avagimyan A, Ruscica M, Donisi L, Fedele MA, Cipolla CM, Vicenzi M, Carugo S, Cardinale D. Melatonin mitigates oxidative damage induced by anthracycline: a systematic-review and meta-analysis of murine models. Front Cardiovasc Med 2023; 10:1289384. [PMID: 38075951 PMCID: PMC10701532 DOI: 10.3389/fcvm.2023.1289384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Oxidative stress induced by the excessive production of reactive oxygen species is one of the primary mechanisms implicated in anthracycline (ANT)-induced cardiotoxicity. There is a strong clinical need for a molecule capable of effectively preventing and reducing the oxidative damage caused by ANT. In vitro and in vivo studies conducted in mice have shown that melatonin stimulates the expression of antioxidative agents and reduces lipid peroxidation induced by ANT. METHODS We investigated this issue through a meta-analysis of murine model studies. The outcome of the meta-analysis was to compare oxidative damage, estimated by products of lipid peroxidation (MDA = Malondialdehyde) and markers of oxidative stress (SOD = Superoxide Dismutase, GSH = Glutathione), along with a marker of cardiac damage (CK-MB = creatine kinase-myocardial band), assessed by measurements in heart and/or blood samples in mice undergoing ANT chemotherapy and assuming melatonin vs. controls. The PubMed, OVID-MEDLINE and Cochrane library databases were analysed to search English-language review papers published from the inception up to August 1st, 2023. Studies were identified by using Me-SH terms and crossing the following terms: "melatonin", "oxidative stress", "lipid peroxidation", "anthracycline", "cardiotoxicity". RESULTS The metanalysis included 153 mice administered melatonin before, during or immediately after ANT and 153 controls from 13 studies. Compared with controls, the levels of all oxidative stress markers were significantly better in the pooled melatonin group, with standardized mean differences (SMD) for MDA, GSH and SOD being -8.03 ± 1.2 (CI: -10.43/-5.64, p < 0.001), 7.95 ± 1.8 (CI: 4.41/11.5, p < 0.001) and 3.94 ± 1.6 (CI: 0.77/7.12, p = 0.015) respectively. Similarly, compared with controls, CK-MB levels reflecting myocardial damage were significantly lower in the pooled melatonin group, with an SMD of -4.90 ± 0.5 (CI: -5.82/-3.98, p < 0.001). CONCLUSION Melatonin mitigates the oxidative damage induced by ANT in mouse model. High-quality human clinical studies are needed to further evaluate the use of melatonin as a preventative/treatment strategy for ANT-induced cardiotoxicity.
Collapse
Affiliation(s)
- Andrea Faggiano
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elisa Gherbesi
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ashot Avagimyan
- Department of Anatomical Pathology and Clinical Morphology, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Massimiliano Ruscica
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, Milan, Italy
| | - Luca Donisi
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maria Antonia Fedele
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| | - Carlo Maria Cipolla
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| | - Marco Vicenzi
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stefano Carugo
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Daniela Cardinale
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| |
Collapse
|
11
|
Durkina AV, Szeiffova Bacova B, Bernikova OG, Gonotkov MA, Sedova KA, Cuprova J, Vaykshnorayte MA, Diez ER, Prado NJ, Azarov JE. Blockade of Melatonin Receptors Abolishes Its Antiarrhythmic Effect and Slows Ventricular Conduction in Rat Hearts. Int J Mol Sci 2023; 24:11931. [PMID: 37569306 PMCID: PMC10419066 DOI: 10.3390/ijms241511931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Melatonin has been reported to cause myocardial electrophysiological changes and prevent ventricular tachycardia or fibrillation (VT/VF) in ischemia and reperfusion. We sought to identify electrophysiological targets responsible for the melatonin antiarrhythmic action and to explore whether melatonin receptor-dependent pathways or its antioxidative properties are essential for these effects. Ischemia was induced in anesthetized rats given a placebo, melatonin, and/or luzindole (MT1/MT2 melatonin receptor blocker), and epicardial mapping with reperfusion VT/VFs assessment was performed. The oxidative stress assessment and Western blotting analysis were performed in the explanted hearts. Transmembrane potentials and ionic currents were recorded in cardiomyocytes with melatonin and/or luzindole application. Melatonin reduced reperfusion VT/VF incidence associated with local activation time in logistic regression analysis. Melatonin prevented ischemia-related conduction slowing and did not change the total connexin43 (Cx43) level or oxidative stress markers, but it increased the content of a phosphorylated Cx43 variant (P-Cx43368). Luzindole abolished the melatonin antiarrhythmic effect, slowed conduction, decreased total Cx43, protein kinase Cε and P-Cx43368 levels, and the IK1 current, and caused resting membrane potential (RMP) depolarization. Neither melatonin nor luzindole modified INa current. Thus, the antiarrhythmic effect of melatonin was mediated by the receptor-dependent enhancement of impulse conduction, which was associated with Cx43 phosphorylation and maintaining the RMP level.
Collapse
Affiliation(s)
- Aleksandra V. Durkina
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Russia; (A.V.D.); (O.G.B.); (M.A.G.); (M.A.V.); (J.E.A.)
| | - Barbara Szeiffova Bacova
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 81438 Bratislava, Slovakia
| | - Olesya G. Bernikova
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Russia; (A.V.D.); (O.G.B.); (M.A.G.); (M.A.V.); (J.E.A.)
| | - Mikhail A. Gonotkov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Russia; (A.V.D.); (O.G.B.); (M.A.G.); (M.A.V.); (J.E.A.)
| | - Ksenia A. Sedova
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 27201 Kladno, Czech Republic;
| | - Julie Cuprova
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, 27201 Kladno, Czech Republic;
| | - Marina A. Vaykshnorayte
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Russia; (A.V.D.); (O.G.B.); (M.A.G.); (M.A.V.); (J.E.A.)
| | - Emiliano R. Diez
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; (E.R.D.); (N.J.P.)
| | - Natalia J. Prado
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina; (E.R.D.); (N.J.P.)
| | - Jan E. Azarov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Russia; (A.V.D.); (O.G.B.); (M.A.G.); (M.A.V.); (J.E.A.)
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 27201 Kladno, Czech Republic;
| |
Collapse
|
12
|
Maneechote C, Chattipakorn SC, Chattipakorn N. Recent Advances in Mitochondrial Fission/Fusion-Targeted Therapy in Doxorubicin-Induced Cardiotoxicity. Pharmaceutics 2023; 15:pharmaceutics15041182. [PMID: 37111670 PMCID: PMC10143663 DOI: 10.3390/pharmaceutics15041182] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Doxorubicin (DOX) has been recognized as one of the most effective chemotherapies and extensively used in the clinical settings of human cancer. However, DOX-mediated cardiotoxicity is known to compromise the clinical effectiveness of chemotherapy, resulting in cardiomyopathy and heart failure. Recently, accumulation of dysfunctional mitochondria via alteration of the mitochondrial fission/fusion dynamic processes has been identified as a potential mechanism underlying DOX cardiotoxicity. DOX-induced excessive fission in conjunction with impaired fusion could severely promote mitochondrial fragmentation and cardiomyocyte death, while modulation of mitochondrial dynamic proteins using either fission inhibitors (e.g., Mdivi-1) or fusion promoters (e.g., M1) can provide cardioprotection against DOX-induced cardiotoxicity. In this review, we focus particularly on the roles of mitochondrial dynamic pathways and the current advanced therapies in mitochondrial dynamics-targeted anti-cardiotoxicity of DOX. This review summarizes all the novel insights into the development of anti-cardiotoxic effects of DOX via the targeting of mitochondrial dynamic pathways, thereby encouraging and guiding future clinical investigations to focus on the potential application of mitochondrial dynamic modulators in the setting of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
The Role of Mitochondrial Quality Control in Anthracycline-Induced Cardiotoxicity: From Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3659278. [PMID: 36187332 PMCID: PMC9519345 DOI: 10.1155/2022/3659278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Cardiotoxicity is the major side effect of anthracyclines (doxorubicin, daunorubicin, epirubicin, and idarubicin), though being the most commonly used chemotherapy drugs and the mainstay of therapy in solid and hematological neoplasms. Advances in the field of cardio-oncology have expanded our understanding of the molecular mechanisms underlying anthracycline-induced cardiotoxicity (AIC). AIC has a complex pathogenesis that includes a variety of aspects such as oxidative stress, autophagy, and inflammation. Emerging evidence has strongly suggested that the loss of mitochondrial quality control (MQC) plays an important role in the progression of AIC. Mitochondria are vital organelles in the cardiomyocytes that serve as the key regulators of reactive oxygen species (ROS) production, energy metabolism, cell death, and calcium buffering. However, as mitochondria are susceptible to damage, the MQC system, including mitochondrial dynamics (fusion/fission), mitophagy, mitochondrial biogenesis, and mitochondrial protein quality control, appears to be crucial in maintaining mitochondrial homeostasis. In this review, we summarize current evidence on the role of MQC in the pathogenesis of AIC and highlight the therapeutic potential of restoring the cardiomyocyte MQC system in the prevention and intervention of AIC.
Collapse
|
14
|
Dana PM, Sadoughi F, Reiter RJ, Mohammadi S, Heidar Z, Mirzamoradi M, Asemi Z. Melatonin as an adjuvant treatment modality with doxorubicin [Biochimie 200 (2022) 1-7]. Biochimie 2022; 200:1-7. [PMID: 35569703 DOI: 10.1016/j.biochi.2022.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Sotoudeh Mohammadi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Heidar
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Mirzamoradi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| |
Collapse
|
15
|
Maleki Dana P, Sadoughi F, J Reiter R, Mohammadi S, Heidar Z, Mirzamoradi M, Asemi Z. Melatonin as an adjuvant treatment modality with doxorubicin. Biochimie 2022; 202:49-55. [PMID: 35752222 DOI: 10.1016/j.biochi.2022.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Combination chemotherapy seems to be a beneficial choice for some cancer patients particularly when the drugs target different processes of oncogenesis; patients treated with combination therapies sometimes have a better prognosis than those treated with single drug chemotherapy. However, research has shown that this is not always the case, and this approach may only increase toxicity without having a significant effect in augmenting the antitumor actions of the drugs. Doxorubicin (Dox) is one of the most common chemotherapy drugs used to treat many types of cancer, but it also has serious side effects, such as cardiotoxicity, skin necrosis, testicular toxicity, and nephrotoxicity. Many studies have examined the efficiacy of melatonin (MLT) as an anticancer agent. In fact, MLT is an anti-cancer agent that has various functions in inhibiting cancer cell proliferation, inducing apoptosis, and suppressing metastasis. Herein, we provide a comprehensive evaluation of the literature concerned with the role of MLT as an adjuvant in Dox-based chemotherapies and discuss how MLT may enhance the antitumor effects of Dox (e.g., by inducing apoptosis and suppressing metastasis) while rescuring other organs from its adverse effects, such as cardio- and nephrotoxicity.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Sotoudeh Mohammadi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Heidar
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Mirzamoradi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| |
Collapse
|
16
|
Stern S, Liang D, Li L, Kurian R, Lynch C, Sakamuru S, Heyward S, Zhang J, Kareem KA, Chun YW, Huang R, Xia M, Hong CC, Xue F, Wang H. Targeting CAR and Nrf2 improves cyclophosphamide bioactivation while reducing doxorubicin-induced cardiotoxicity in triple-negative breast cancer treatment. JCI Insight 2022; 7:e153868. [PMID: 35579950 PMCID: PMC9309041 DOI: 10.1172/jci.insight.153868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cyclophosphamide (CPA) and doxorubicin (DOX) are key components of chemotherapy for triple-negative breast cancer (TNBC), although suboptimal outcomes are commonly associated with drug resistance and/or intolerable side effects. Through an approach combining high-throughput screening and chemical modification, we developed CN06 as a dual activator of the constitutive androstane receptor (CAR) and nuclear factor erythroid 2-related factor 2 (Nrf2). CN06 enhances CAR-induced bioactivation of CPA (a prodrug) by provoking hepatic expression of CYP2B6, while repressing DOX-induced cytotoxicity in cardiomyocytes in vitro via stimulating Nrf2-antioxidant signaling. Utilizing a multicellular coculture model incorporating human primary hepatocytes, TNBC cells, and cardiomyocytes, we show that CN06 increased CPA/DOX-mediated TNBC cell death via CAR-dependent CYP2B6 induction and subsequent conversion of CPA to its active metabolite 4-hydroxy-CPA, while protecting against DOX-induced cardiotoxicity by selectively activating Nrf2-antioxidant signaling in cardiomyocytes but not in TNBC cells. Furthermore, CN06 preserves the viability and function of human iPSC-derived cardiomyocytes by modulating antioxidant defenses, decreasing apoptosis, and enhancing the kinetics of contraction and relaxation. Collectively, our findings identify CAR and Nrf2 as potentially novel combined therapeutic targets whereby CN06 holds the potential to improve the efficacy/toxicity ratio of CPA/DOX-containing chemotherapy.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Dongdong Liang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Ritika Kurian
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Caitlin Lynch
- National Center for Advancing Translational Science (NCATS), NIH, Rockville, Maryland, USA
| | - Srilatha Sakamuru
- National Center for Advancing Translational Science (NCATS), NIH, Rockville, Maryland, USA
| | - Scott Heyward
- Bioreclamation In Vitro Technologies, Halethorpe, Maryland, USA
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, Ohio, USA
| | - Kafayat Ajoke Kareem
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Young Wook Chun
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruili Huang
- National Center for Advancing Translational Science (NCATS), NIH, Rockville, Maryland, USA
| | - Menghang Xia
- National Center for Advancing Translational Science (NCATS), NIH, Rockville, Maryland, USA
| | - Charles C. Hong
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Li X, Wang X, Wang B, Chi W, Li Z, Zhang M, Shen Y, Liu X, Lu Y, Liu Y. Dihydromyricetin protects against Doxorubicin-induced cardiotoxicity through activation of AMPK/mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154027. [PMID: 35278898 DOI: 10.1016/j.phymed.2022.154027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is a highly effective broad-spectrum antitumor agent, but its clinical administration is limited by self-induced cardiotoxicity. Dihydromyricetin (DHM) is a flavonoid compound extracted from the Japanese raisin tree. Evidence that DHM has neovascular protective properties makes it a candidate for studying cardiotoxicity prevention strategy. However, it remains unknown if DHM can protect against cardiotoxicity caused by DOX. PURPOSE The present study was performed to evaluate the protective effect of DHM on DOX-induced cardiotoxicity in vivo and in vitro. METHODS C57BL/6 mice were intraperitoneally injected with DOX to construct cardiac injury model in vivo, and AC16 cells were exposed to DOX to induce cell injury in vitro. Left ventricular function of mice were detected by echocardiography, the apoptosis of mice cardiac tissue and AC16 cells were detected by TUNEL and Hoechst33342/PI double staining. The expression of apoptosis and autophagy related proteins were detected by western blotting, immunohistochemical staining and immunofluorescence staining. RESULTS Echocardiographic results showed that DOX-induced cardiotoxicity were significantly alleviated by DHM pretreatment. DOX induced cardiotoxicity of mice by inhibiting AMPK activation, increasing apoptosis and decreasing autophagy. However, under the same conditions, the heart tissue of DHM-pretreated mice showed increased autophagy and decreased apoptosis via activation AMPK/mTOR pathway. The same results were observed in vitro, and it was also found that DHM can inhibit the production of intracellular ROS in vitro. CONCLUSION DHM protects against cardiotoxicity by inhibiting apoptosis and oxidative stress and it can allevate theautophagy inhibition caused by DOX through AMPK/mTOR pathway. DHM preconditioning may be a breakthrough in protecting DOX-induced cardiotoxicity in the future clinical applications.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Binyu Wang
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiqun Chi
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhangyi Li
- Department of Biochemistry and Life Sciences, Faculty of Arts and Sciences, Queen's University, Kingston, Ontario, Canada
| | - Min Zhang
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifu Shen
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Liu
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Youmei Lu
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Liu
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
19
|
Melatonin and the Programming of Stem Cells. Int J Mol Sci 2022; 23:ijms23041971. [PMID: 35216086 PMCID: PMC8879213 DOI: 10.3390/ijms23041971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Melatonin interacts with various types of stem cells, in multiple ways that comprise stimulation of proliferation, maintenance of stemness and self-renewal, protection of survival, and programming toward functionally different cell lineages. These various properties are frequently intertwined but may not be always jointly present. Melatonin typically stimulates proliferation and transition to the mature cell type. For all sufficiently studied stem or progenitor cells, melatonin’s signaling pathways leading to expression of respective morphogenetic factors are discussed. The focus of this article will be laid on the aspect of programming, particularly in pluripotent cells. This is especially but not exclusively the case in neural stem cells (NSCs) and mesenchymal stem cells (MSCs). Concerning developmental bifurcations, decisions are not exclusively made by melatonin alone. In MSCs, melatonin promotes adipogenesis in a Wnt (Wingless-Integration-1)-independent mode, but chondrogenesis and osteogenesis Wnt-dependently. Melatonin upregulates Wnt, but not in the adipogenic lineage. This decision seems to depend on microenvironment and epigenetic memory. The decision for chondrogenesis instead of osteogenesis, both being Wnt-dependent, seems to involve fibroblast growth factor receptor 3. Stem cell-specific differences in melatonin and Wnt receptors, and contributions of transcription factors and noncoding RNAs are outlined, as well as possibilities and the medical importance of re-programming for transdifferentiation.
Collapse
|
20
|
Li D, Yang Y, Wang S, He X, Liu M, Bai B, Tian C, Sun R, Yu T, Chu X. Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biol 2021; 46:102089. [PMID: 34364220 PMCID: PMC8350499 DOI: 10.1016/j.redox.2021.102089] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
As a potent chemotherapeutic agent, doxorubicin (DOX) is widely used for the treatment of a variety of cancers However, its clinical utility is limited by dose-dependent cardiotoxicity, and pathogenesis has traditionally been attributed to the formation of reactive oxygen species (ROS). Accordingly, the prevention of DOX-induced cardiotoxicity is an indispensable goal to optimize therapeutic regimens and reduce morbidity. Acetylation is an emerging and important epigenetic modification regulated by histone deacetylases (HDACs) and histone acetyltransferases (HATs). Despite extensive studies of the molecular basis and biological functions of acetylation, the application of acetylation as a therapeutic target for cardiotoxicity is in the initial stage, and further studies are required to clarify the complex acetylation network and improve the clinical management of cardiotoxicity. In this review, we summarize the pivotal functions of HDACs and HATs in DOX-induced oxidative stress, the underlying mechanisms, the contributions of noncoding RNAs (ncRNAs) and exercise-mediated deacetylases to cardiotoxicity. Furthermore, we describe research progress related to several important SIRT activators and HDAC inhibitors with potential clinical value for chemotherapy and cardiotoxicity. Collectively, a comprehensive understanding of specific roles and recent developments of acetylation in doxorubicin-induced cardiotoxicity will provide a basis for improved treatment outcomes in cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, 266071, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Basic Medicine School, Qingdao University, 38 Deng Zhou Road, Qingdao, 266021, China.
| | - Xianming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071, China.
| |
Collapse
|
21
|
Zhao A, Zhao K, Xia Y, Lyu J, Chen Y, Li S. Melatonin inhibits embryonic rat H9c2 cells growth through induction of apoptosis and cell cycle arrest via PI3K-AKT signaling pathway. Birth Defects Res 2021; 113:1171-1181. [PMID: 34231342 DOI: 10.1002/bdr2.1938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/10/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Our recent epidemiological study revealed that maternal sleep during the periconceptional period should be involved in the risk of congenital heart disease (CHD) in offspring. Melatonin, a sleep related hormone, has been suggested to play a crucial role in embryonic development based on the emerging evidence. In this study, we set out to assess the effect of melatonin on the embryonic cardiac cell growth and to explore the underlying mechanisms. METHODS We observed the effect of different gradient doses of melatonin as 10, 100, or 1,000 μM on cell proliferation in H9c2 embryonic rat cardiac cells. Furthermore, flow cytometry was applied to evaluate the impact on apoptosis and cell cycle. RNA-seq was conducted to screen the changes in expression of mRNA and signaling pathways. Quantitative Real-Time-PCR (qRT-PCR) was then conducted to validate the results. RESULTS It was observed that melatonin could inhibit H9c2 cell growth, at the doses of 100 and 1,000 μM, but not at 10 μM. Moreover, melatonin ranged from 100 to 1,000 μM could instigate cell cycle arrest at G1 phase and simulate apoptosis, in a dose-dependent manner. In addition, melatonin was found to down-regulate the expression of a number of genes, which are related to heart development (SPARC, IFITM3, TNNT2, LOX), and PI3K-Akt signaling pathway activation (FN1, HSP90B1, THBS1, MFGE8, and CLU). CONCLUSIONS Our findings suggested that high level of melatonin could be capable of inhibiting growth through the induction of apoptosis and cell cycle arrest via PI3K-AKT signaling pathway, thereby interfering with embryonic heart development. Considering this study is based on H9c2 embryonic rat cardiac cells, future additional studies using human embryonic cardiac cell are warranted.
Collapse
Affiliation(s)
- Anda Zhao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kena Zhao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanqing Xia
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajun Lyu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenghui Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Rahbardar MG, Eisvand F, Rameshrad M, Razavi BM, Hosseinzadeh H. In Vivo and In Vitro Protective Effects of Rosmarinic Acid against Doxorubicin-Induced Cardiotoxicity. Nutr Cancer 2021; 74:747-760. [PMID: 34085575 DOI: 10.1080/01635581.2021.1931362] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/22/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is an anticancer medicine that may trigger cardiomyopathy. Rosmarinic acid (RA) has shown antioxidant, anti-inflammatory, and anticancer effects. This investigation assessed the cardioprotective effect of RA on DOX-induced-toxicity in both in vivo and in vitro experiments. Male rats were randomized on 7 groups: (1) control, (2) DOX (2 mg/kg, per 48 h, 12d, i.p), (3) RA (40 mg/kg, 12d, i.p.), (4-6) RA (10, 20, 40 mg/kg, 16d, i.p.)+ DOX, (7) Vitamin E (200 mg/kg, per 48 h, 16d, i.p.) + DOX and then indices of cardiac function were estimated. Also, DOX and rosmarinic acid effects were examined on MCF7 cells (breast cancer cells line) to clarify that both cardiotoxicity and anticancer effects were analyzed. DOX increased heart to body weight ratio, RRI, QA, STI, QRS duration and voltage, attenuated HR, blood pressure, Max dP/dt, Min dP/dt, LVDP, enhanced MDA, declined GSH amount, and caused fibrosis and necrosis in cardiac tissue. Administration of RA ameliorated the toxic effects of DOX. In vitro studies showed that RA did not affect the cytotoxic effect of DOX. RA as an antioxidant, anti-inflammatory, and cardioprotective compound could be a promising compound to help minimize DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Gunaydin Akyildiz A, Boran T, Jannuzzi AT, Alpertunga B. Mitochondrial dynamics imbalance and mitochondrial dysfunction contribute to the molecular cardiotoxic effects of lenvatinib. Toxicol Appl Pharmacol 2021; 423:115577. [PMID: 34019861 DOI: 10.1016/j.taap.2021.115577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022]
Abstract
Lenvatinib is a tyrosine kinase inhibitor (TKI) approved for the treatment of resistant differentiated thyroid cancer, advanced renal cell carcinoma, unresectable hepatocellular carcinoma, and endometrial carcinoma. Although it is successful in cancer treatment, it can cause life-threatening side effects such as cardiotoxicity. The molecular mechanism of cardiotoxicity caused by lenvatinib is not fully known. In this study, the molecular mechanism of lenvatinib's cardiotoxicity was investigated focusing on mitochondrial toxicity in the H9c2 cardiomyoblastic cell line. Lenvatinib inhibited cell viability at 48 and 72 h exposure with three selected concentrations (1.25 μM, 5 μM and 10 μM); and inhibited intracellular ATP after 72 h exposure compared to the control group. Mitochondrial membrane potential was decreased after 48 h and did not show significant changes after 72 h exposure. Evaluated with real-time PCR, mitochondrial dynamics (Mfn1, Mfn2, OPA1, DRP1, Fis1) expression levels after lenvatinib treatment significantly changed. Lenvatinib triggered the tendency from fusion to fission in mitochondria after 48 h exposure, and increased both fusion and fission after 72 h. The mtDNA ratio increased after 48 h and decreased after 72 h. ASK1, JNK and AMPKα2 increased. UCP2 showed downregulation, SOD2 level showed upregulation and Cat levels decreased after drug treatment. Nrf1 and Nrf2 also changed concentration-dependently. Protein carbonyl levels increased significantly after lenvatinib treatments indicating oxidative stress. The protein levels of the electron transport chain complexes, LONP1, UCP2, and P21 showed significant differences after lenvatinib treatment. The outcome of our study is expected to be a contribution to the understanding of the molecular mechanisms of TKI-induced cardiotoxicity.
Collapse
Affiliation(s)
- Aysenur Gunaydin Akyildiz
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Beyazit, Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Vatan Street, 34093 Fatih, Istanbul, Turkey
| | - Tugce Boran
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Beyazit, Istanbul, Turkey
| | - Ayse Tarbin Jannuzzi
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Beyazit, Istanbul, Turkey
| | - Buket Alpertunga
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Beyazit, Istanbul, Turkey.
| |
Collapse
|
24
|
Kim CW, Choi KC. Effects of anticancer drugs on the cardiac mitochondrial toxicity and their underlying mechanisms for novel cardiac protective strategies. Life Sci 2021; 277:119607. [PMID: 33992675 DOI: 10.1016/j.lfs.2021.119607] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are organelles that play a pivotal role in the production of energy in cells, and vital to the maintenance of cellular homeostasis due to the regulation of many biochemical processes. The heart contains a lot of mitochondria because those muscles require a lot of energy to keep supplying blood through the circulatory system, implying that the energy generated from mitochondria is highly dependent. Thus, cardiomyocytes are sensitive to mitochondrial dysfunction and are likely to be targeted by mitochondrial toxic drugs. It has been reported that some anticancer drugs caused unwanted toxicity to mitochondria. Mitochondrial dysfunction is related to aging and the onset of many diseases, such as obesity, diabetes, cancer, cardiovascular and neurodegenerative diseases. Mitochondrial toxic mechanisms can be mainly explained concerning reactive oxygen species (ROS)/redox status, calcium homeostasis, and endoplasmic reticulum stress (ER) stress signaling. The toxic mechanisms of many anticancer drugs have been revealed, but more studying and understanding of the mechanisms of drug-induced mitochondrial toxicity is required to develop mitochondrial toxicity screening system as well as novel cardioprotective strategies for the prevention of cardiac disorders of drugs. This review focuses on the cardiac mitochondrial toxicity of commonly used anticancer drugs, i.e., doxorubicin, mitoxantrone, cisplatin, arsenic trioxide, and cyclophosphamide, and their possible chemopreventive agents that can prevent or alleviate cardiac mitochondrial toxicity.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
25
|
Wang A J, Zhang J, Xiao M, Wang S, Wang B J, Guo Y, Tang Y, Gu J. Molecular mechanisms of doxorubicin-induced cardiotoxicity: novel roles of sirtuin 1-mediated signaling pathways. Cell Mol Life Sci 2021; 78:3105-3125. [PMID: 33438055 PMCID: PMC11072696 DOI: 10.1007/s00018-020-03729-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) is an anthracycline chemotherapy drug used in the treatment of various types of cancer. However, short-term and long-term cardiotoxicity limits the clinical application of DOX. Currently, dexrazoxane is the only approved treatment by the United States Food and Drug Administration to prevent DOX-induced cardiotoxicity. However, a recent study found that pre-treatment with dexrazoxane could not fully improve myocardial toxicity of DOX. Therefore, further targeted cardioprotective prophylaxis and treatment strategies are an urgent requirement for cancer patients receiving DOX treatment to reduce the occurrence of cardiotoxicity. Accumulating evidence manifested that Sirtuin 1 (SIRT1) could play a crucially protective role in heart diseases. Recently, numerous studies have concentrated on the role of SIRT1 in DOX-induced cardiotoxicity, which might be related to the activity and deacetylation of SIRT1 downstream targets. Therefore, the aim of this review was to summarize the recent advances related to the protective effects, mechanisms, and deficiencies in clinical application of SIRT1 in DOX-induced cardiotoxicity. Also, the pharmaceutical preparations that activate SIRT1 and affect DOX-induced cardiotoxicity have been listed in this review.
Collapse
Affiliation(s)
- Jie Wang A
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jingjing Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110016, Liaoning, China
- Department of Cardiology, The People's Hospital of Liaoning Province, Shenyang, 110016, Liaoning, China
| | - Mengjie Xiao
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jie Wang B
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yuanfang Guo
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China
| | - Junlian Gu
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
26
|
Elblehi SS, El-Sayed YS, Soliman MM, Shukry M. Date Palm Pollen Extract Avert Doxorubicin-Induced Cardiomyopathy Fibrosis and Associated Oxidative/Nitrosative Stress, Inflammatory Cascade, and Apoptosis-Targeting Bax/Bcl-2 and Caspase-3 Signaling Pathways. Animals (Basel) 2021; 11:ani11030886. [PMID: 33804672 PMCID: PMC8003775 DOI: 10.3390/ani11030886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The use of date palm pollen ethanolic extract (DPPE) is a conventional approach in improving the side-effects induced by Doxorubicin (DOX).DPPE mitigated DOX-induced body and heart weight changes and ameliorated DOX-induced elevated cardiac injury markers. In addition, serum cardiac troponin I concentrations (cTnI), troponin T (cTnT), and N-terminal NBP and cytosolic (Ca+2) were amplified by alleviating the inflammatory and oxidative injury markers and decreasing histopathological lesions severity. DPPE decreased DOX-induced heart injuries by mitigating inflammation, fibrosis, and apoptosis through its antioxidant effect. To reduce DOX-induced oxidative stress injuries and other detrimental effects, a combined treatment of DPPE is advocated. Abstract Doxorubicin (DOX) has a potent antineoplastic efficacy and is considered a cornerstone of chemotherapy. However, it causes several dose-dependent cardiotoxic results, which has substantially restricted its clinical application. This study was intended to explore the potential ameliorative effect of date palm pollen ethanolic extract (DPPE) against DOX-induced cardiotoxicity and the mechanisms underlying it. Forty male Wistar albino rats were equally allocated into Control (CTR), DPPE (500 mg/kg bw for 4 weeks), DOX (2.5 mg/kg bw, intraperitoneally six times over 2 weeks), and DPPE + DOX-treated groups. Pre-coadministration of DPPE with DOX partially ameliorated DOX-induced cardiotoxicity as DPPE improved DOX-induced body and heart weight changes and mitigated the elevated cardiac injury markers activities of serum aminotransferases, lactate dehydrogenase, creatine kinase, and creatine kinase-cardiac type isoenzyme. Additionally, the concentration of serum cardiac troponin I (cTnI), troponin T (cTnT), N-terminal pro-brain natriuretic peptide (NT-pro BNP), and cytosolic calcium (Ca+2) were amplified. DPPE also alleviated nitrosative status (nitric oxide) in DOX-treated animals, lipid peroxidation and antioxidant molecules as glutathione content, and glutathione peroxidase, catalase, and superoxide dismutase activities and inflammatory markers levels; NF-κB p65, TNF-α, IL-1β, and IL-6. As well, it ameliorated the severity of histopathological lesions, histomorphometric alteration and improved the immune-staining of the pro-fibrotic (TGF-β1), pro-apoptotic (caspase-3 and Bax), and anti-apoptotic (Bcl-2) proteins in cardiac tissues. Collectively, pre-coadministration of DPPE partially mitigated DOX-induced cardiac injuries via its antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic potential.
Collapse
Affiliation(s)
- Samar S. Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Edfina 22758, Egypt
- Correspondence: (S.S.E.); (M.S.)
| | - Yasser S. El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: (S.S.E.); (M.S.)
| |
Collapse
|
27
|
Anthracycline-induced cardiomyopathy: cellular and molecular mechanisms. Clin Sci (Lond) 2021; 134:1859-1885. [PMID: 32677679 DOI: 10.1042/cs20190653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Despite the known risk of cardiotoxicity, anthracyclines are widely prescribed chemotherapeutic agents. They are broadly characterized as being a robust effector of cellular apoptosis in rapidly proliferating cells through its actions in the nucleus and formation of reactive oxygen species (ROS). And, despite the early use of dexrazoxane, no effective treatment strategy has emerged to prevent the development of cardiomyopathy, despite decades of study, suggesting that much more insight into the underlying mechanism of the development of cardiomyopathy is needed. In this review, we detail the specific intracellular activities of anthracyclines, from the cell membrane to the sarcoplasmic reticulum, and highlight potential therapeutic windows that represent the forefront of research into the underlying causes of anthracycline-induced cardiomyopathy.
Collapse
|
28
|
Lu Q, Lin X, Wu J, Wang B. Matrine attenuates cardiomyocyte ischemia-reperfusion injury through activating AMPK/Sirt3 signaling pathway. J Recept Signal Transduct Res 2020; 41:488-493. [PMID: 33019890 DOI: 10.1080/10799893.2020.1828914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Matrine has been found to affect cell viability and function. In the present study, we explored the cardioprotective role of matrine in cardiomyocyte damage under hypoxia/reoxygenation. In vitro, cardiomyocyte hypoxia/reoxygenation was used to mimic ischemia/reperfusion injury in the presence of matrine. After exposure to hypoxia/reoxygenation, cardiomyocyte viability was reduced and cell apoptosis was increased; this alteration was inhibited by matrine. At the molecular levels, Sirt3 and AMPK were significantly downregulated by hypoxia/reoxygenation injury whereas matrine administration was able to upregulate Sirt3 and AMPK expression and activity in the presence of hypoxia/reoxygenation. Interestingly, inhibition of Sirt3/AMPK pathway abolished the cardioprotective action of matrine on cardiomyocyte in the presence of hypoxia/reoxygenation injury, resulting into cardiomyocyte viability reduction and cell death augmentation. Altogether, our results demonstrated a novel role played by matrine in regulating cardiomyocyte viability and death in the presence of hypoxia/reoxygenation, with a potential application in the clinical practice for the treatment of patients with myocardial infarction.
Collapse
Affiliation(s)
- Qiubei Lu
- Department of General Medicine, Tungwah Hospital of Sun yat-sen University, Dongguan, China
| | - Xiangyu Lin
- Department of General Medicine, Tungwah Hospital of Sun yat-sen University, Dongguan, China
| | - Jing Wu
- Department of General Medicine, Tungwah Hospital of Sun yat-sen University, Dongguan, China
| | - Binhao Wang
- Arrhythmia Center, Ningbo First Hospital, Zhejiang, China
| |
Collapse
|
29
|
Zare S, Heydari FS, Hayes AW, Reiter RJ, Zirak MR, Karimi G. Melatonin attenuates chemical-induced cardiotoxicity. Hum Exp Toxicol 2020; 40:383-394. [PMID: 32935581 DOI: 10.1177/0960327120959417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Environmental chemicals and drugs can induce cardiotoxicity, mainly by generating free radicals. Reactive oxygen species play a critical role in the pathogenesis of cardiac tissue injury. This highlights a need for prevention of cardiotoxicity by scavenging free radicals. Melatonin has been shown to act as a protector against various conditions in which free radicals cause molecular and tissue injury. Some of the mechanisms by which melatonin operates as a free radical scavenger and antioxidant have been identified. The importance of endogenous melatonin in cardiovascular health and the benefits of melatonin supplementation in different cardiac pathophysiological disorders have been shown in a variety of model systems. Melatonin continues to attract attention for its potential therapeutic value for cardiovascular toxicity. The therapeutic potential of melatonin in treatment of cardiotoxicities caused by various chemicals along with suggested molecular mechanisms of action for melatonin is reviewed.
Collapse
Affiliation(s)
- S Zare
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - F S Heydari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - A W Hayes
- College of Public Health, University of South Florida, Tampa, FL, USA
| | - R J Reiter
- Department of Cellular and Structural Biology, 14742University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - M R Zirak
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - G Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Hafez HM, Hassanein H. Montelukast ameliorates doxorubicin-induced cardiotoxicity via modulation of p-glycoprotein and inhibition of ROS-mediated TNF-α/NF-κB pathways. Drug Chem Toxicol 2020; 45:548-559. [DOI: 10.1080/01480545.2020.1730885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Heba M. Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Hanaa Hassanein
- Department of Histology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
31
|
Li HR, Wang C, Sun P, Liu DD, Du GQ, Tian JW. Melatonin attenuates doxorubicin-induced cardiotoxicity through preservation of YAP expression. J Cell Mol Med 2020; 24:3634-3646. [PMID: 32068341 PMCID: PMC7131936 DOI: 10.1111/jcmm.15057] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/10/2020] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
There are increasing concerns related to the cardiotoxicity of doxorubicin in the clinical setting. Recently, melatonin has been shown to exert a cardioprotective effect in various cardiovascular diseases, including cardiotoxic conditions. In this study, we examined the possible protective effects of melatonin on doxorubicin‐induced cardiotoxicity and explored the underlying mechanisms related to this process. We found that in vitro doxorubicin treatment significantly decreased H9c2 cell viability and induced apoptosis as manifested by increased TUNEL‐positive cells, down‐regulation of anti‐apoptotic protein Bcl‐2, as well as up‐regulation of pro‐apoptotic protein Bax. This was associated with increased reactive oxygen species (ROS) levels and decreased mitochondrial membrane potentials (MMP). In vivo, five weeks of doxorubicin treatment significantly decreased cardiac function, as evaluated by echocardiography. TUNEL staining results confirmed the increased apoptosis caused by doxorubicin. On the other hand, combinational treatment of doxorubicin with melatonin decreased cardiomyocyte ROS and apoptosis levels, along with increasing MMP. Such doxorubicin‐melatonin co‐treatment alleviated in vivo doxorubicin‐induced cardiac injury. Western Blots, along with in vitro immunofluorescence and in vivo immunohistochemical staining confirmed that doxorubicin treatment significantly down‐regulated Yes‐associated protein (YAP) expression, while YAP levels were maintained under co‐treatment of doxorubicin and melatonin. YAP inhibition by siRNA abolished the protective effects of melatonin on doxorubicin‐treated cardiomyocytes, with reversed ROS level and apoptosis. Our findings suggested that melatonin treatment attenuated doxorubicin‐induced cardiotoxicity through preserving YAP levels, which in turn decreases oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Hai-Ru Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Chao Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Ping Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Dan-Dan Liu
- Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China.,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guo-Qing Du
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jia-Wei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
32
|
Audebrand A, Désaubry L, Nebigil CG. Targeting GPCRs Against Cardiotoxicity Induced by Anticancer Treatments. Front Cardiovasc Med 2020; 6:194. [PMID: 32039239 PMCID: PMC6993588 DOI: 10.3389/fcvm.2019.00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Novel anticancer medicines, including targeted therapies and immune checkpoint inhibitors, have greatly improved the management of cancers. However, both conventional and new anticancer treatments induce cardiac adverse effects, which remain a critical issue in clinic. Cardiotoxicity induced by anti-cancer treatments compromise vasospastic and thromboembolic ischemia, dysrhythmia, hypertension, myocarditis, and cardiac dysfunction that can result in heart failure. Importantly, none of the strategies to prevent cardiotoxicity from anticancer therapies is completely safe and satisfactory. Certain clinically used cardioprotective drugs can even contribute to cancer induction. Since G protein coupled receptors (GPCRs) are target of forty percent of clinically used drugs, here we discuss the newly identified cardioprotective agents that bind GPCRs of adrenalin, adenosine, melatonin, ghrelin, galanin, apelin, prokineticin and cannabidiol. We hope to provoke further drug development studies considering these GPCRs as potential targets to be translated to treatment of human heart failure induced by anticancer drugs.
Collapse
Affiliation(s)
| | | | - Canan G. Nebigil
- Laboratory of CardioOncology and Therapeutic Innovation, CNRS, Illkirch, France
| |
Collapse
|
33
|
Yang Q, Ai W, Nie L, Yan C, Wu S. Vildagliptin reduces myocardial ischemia-induced arrhythmogenesis via modulating inflammatory responses and promoting expression of genes regulating mitochondrial biogenesis in rats with type-II diabetes. J Interv Card Electrophysiol 2019; 59:517-526. [PMID: 31853804 DOI: 10.1007/s10840-019-00679-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Fatal arrhythmias are one of the main manifestations of ischemic heart disease in diabetic patients. Here, we investigated the effect of pretreatment with vildagliptin on myocardial arrhythmias, inflammatory responses, and expression of genes regulating mitochondrial biogenesis following cardiac ischemic injury in type II diabetic male Wistar rats. METHODS Chronic diabetes was modeled by a high-fat diet and low-dose streptozotocin method and lasted for 12 weeks. Vildagliptin (6 mg/dl) was orally administered during the last 4 weeks of the diabetic period. Then, rats' hearts (n = 8/each group) were immediately isolated and transferred to the Langendorff apparatus, in which left anterior descending coronary artery was tightened for 35 min to induce regional ischemia. Electrocardiography was continuously recorded and myocardial arrhythmias were interpreted according to the Lambeth Convention. Inflammatory cytokines in left ventricular samples were measured using ELISA kits, and gene expression was assayed using real-time PCR. RESULTS Diabetic groups showed increased incidence and duration of ventricular fibrillation (VF) than controls (P < 0.05). Pretreatment of diabetic rats with vildagliptin resulted in a significant decrease in number, duration, and severity of premature ventricular complexes (PVC), tachycardia (VT), and VF during ischemia, compared to non-treated diabetic group (P < 0.05). Additionally, vildagliptin significantly increased the expression of genes PGC-1α, SIRT-1, and NRF-2 and reduced the levels of myeloperoxidase, creatine kinase release, and myocardial content of TNF-α and IL-1β in nondiabetic and diabetic rats as compared to corresponding controls (P < 0.01-0.05). CONCLUSION Vildagliptin preconditioning reduced the occurrence and severity of fatal ventricular arrhythmias induced by myocardial ischemia in type II diabetic rats through increased activity of mitochondrial biogenesis-regulating genes and reduction of inflammatory reactions.
Collapse
Affiliation(s)
- Qin Yang
- Department of Cardiology, Jiangxi Provincial People's Hospital affiliated to Nanchang University, 330006, Jiangxi, China
| | - Wenwei Ai
- Department of General Medicine, Jiangxi Provincial People's Hospital affiliated to Nanchang University, 330006, Jiangxi, China
| | - Lei Nie
- Department of Geriatric, Jiangxi Provincial People's Hospital affiliated to Nanchang University, 330006, Jiangxi, China
| | - Chen Yan
- Department of Cardiology, Harbin Fifth Hospital, Harbin, Heilongjiang, 330006, China
| | - Su Wu
- Department of General Medicine, Jiangxi Provincial People's Hospital affiliated to Nanchang University, 330006, Jiangxi, China.
| |
Collapse
|
34
|
Najafi M, Hooshangi Shayesteh MR, Mortezaee K, Farhood B, Haghi-Aminjan H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci 2019; 241:117173. [PMID: 31843530 DOI: 10.1016/j.lfs.2019.117173] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Doxorubicin, as an effective chemotherapeutic drug, is commonly used for combating various solid and hematological tumors. However, doxorubicin-induced cardiotoxicity is considered as a serious adverse effect, and it limits the clinical use of this chemotherapeutic drug. The use of melatonin can lead to a decrease in the cardiotoxic effect induced by doxorubicin. The aim of this review was to evaluate the potential role of melatonin in the prevention of doxorubicin-induced cardiotoxicity. METHODS This review was conducted by a full systematic search strategy based on PRISMA guidelines for the identification of relevant literature in the electronic databases of PubMed, Web of Science, Embase, and Scopus up to January 2019 using search terms in the titles and abstracts. 286 articles were screened in accordance with our inclusion and exclusion criteria. Finally, 28 articles were selected in this systematic review. RESULTS The findings demonstrated that doxorubicin-treated groups had increased mortality, decreased body weight and heart weight, and increased ascites compared to the control groups; the co-administration of melatonin revealed an opposite pattern compared to the doxorubicin-treated groups. Also, this chemotherapeutic agent can lead to biochemical and histopathological changes; as for most of the cases, these alterations were reversed near to normal levels (control groups) by melatonin co-administration. Melatonin exerts these protection effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and mitochondrial function. CONCLUSION The results of this systematic review indicated that co-administration of melatonin ameliorates the doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
35
|
Nazari Soltan Ahmad S, Sanajou D, Kalantary-Charvadeh A, Hosseini V, Roshangar L, Khojastehfard M, Haiaty S, Mesgari-Abbasi M. β-LAPachone ameliorates doxorubicin-induced cardiotoxicity via regulating autophagy and Nrf2 signalling pathways in mice. Basic Clin Pharmacol Toxicol 2019; 126:364-373. [PMID: 31630478 DOI: 10.1111/bcpt.13340] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
β-LAPachone (B-LAP) is a naphthoquinone that possesses antioxidant properties. In the present investigation, the protective effect of B-LAP against doxorubicin (DOX)-induced cardiotoxicity was examined in mice. Thirty-five mice were divided into 5 groups: control group, B-LAP (5 mg/kg) group, DOX (15 mg/kg) group, DOX+B-LAP (2.5 mg/kg) group and DOX+B-LAP (5 mg/kg) group. B-LAP was administered orally for 14 days of experimental period. A single dose of DOX (15 mg/kg) was injected intraperitoneally on day 3. Cardiac function, histoarchitecture, indices of oxidative stress and circulating markers of cardiac injury were examined. B-LAP (5 mg/kg) decreased serum levels of lactate dehydrogenase (LDH), creatine kinase MB (CK-MB) and cardiac troponin I (cTnI), and ameliorated cardiac histopathological alterations. In addition to increasing cellular NAD+ /NADH ratio, B-LAP up-regulated the cardiac levels of SIRT1, beclin-1, p-LKB1 and p-AMPK, and reduced the cardiac levels of p-mTOR, interleukin (IL)-1β, TNF (tumour necrosis factor)-α and caspase-3. B-LAP also elevated the nuclear accumulation of Nrf2 and simultaneously up-regulated the protein levels of haem oxygenase (HO-1) and glutathione S-transferase (GST) in the hearts of DOX mice. While B-LAP reduced malondialdehyde concentrations in heart of DOX-treated mice, it further promoted the activities of cardiac superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT).In accordance with increased cell survival, B-LAP significantly improved the cardiac function of DOX mice. Collectively, these findings underline the protective potential of B-LAP against DOX-induced cardiotoxicity by regulating autophagy and AMPK/Nrf2 signalling pathway in mice.
Collapse
Affiliation(s)
- Saeed Nazari Soltan Ahmad
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Sanajou
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Khojastehfard
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Department of Clinical Biochemistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
36
|
Effect of high-intensity interval training on expression of microRNA-149 and genes regulating mitochondrial biogenesis in doxorubicin-cardiotoxicity in rats. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s00580-019-03077-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Chang D, Li H, Qian C, Wang Y. DiOHF Protects Against Doxorubicin-Induced Cardiotoxicity Through ERK1 Signaling Pathway. Front Pharmacol 2019; 10:1081. [PMID: 31611788 PMCID: PMC6777440 DOI: 10.3389/fphar.2019.01081] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX) is an effective anticancer agent. Its clinical use is, however, limited due to its detrimental side effects, especially the cardiotoxicity caused by ROS, mitochondrial dysfunction and apoptosis. 3’,4’-dihydroxyflavonol (DiOHF) is a recently developed potent synthetic flavonoid which has been reported to exert anti-oxidative activity in myocardial ischemia–reperfusion injury and maintain the normal mitochondrial function. The aim of this study was to explore the protective effects of DiOHF on the DOX-induced cardiotoxicity. We established DOX-induced cardiotoxicity in H9C2 cells by incubation with 1 μM DOX and in BALB/c mice by DOX injection. DiOHF effectively prevented and reversed the DOX-induced cardiotoxicity, including ROS production, mitochondrial dysfunction, and apoptosis. The DOX-induced cardiotoxicity was accompanied by ERK1/2 activation and abolished by the silence of ERK1, rather than ERK2. Furthermore, DOX treatment in mice induced an increase in serum CK-MB level and myocardial fibrosis with a reduction in left ventricular (LV) function. These detrimental effects were blunted by DiOHF administration. Conclusion: DiOHF suppresses and reverses the DOX-induced cardiotoxicity by inhibiting ROS release, stabilizing mitochondrial function and reducing apoptosis through activation of the ERK1 signaling.
Collapse
Affiliation(s)
- Danqi Chang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hang Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Cheng Qian
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Medical Research Institute of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Micheliolide Protects Against Doxorubicin-Induced Cardiotoxicity in Mice by Regulating PI3K/Akt/NF-kB Signaling Pathway. Cardiovasc Toxicol 2019; 19:297-305. [DOI: 10.1007/s12012-019-09511-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|