1
|
Zhao S, Pan Q, Lin X, Li X, Qu L. Gastrodin ameliorates diabetic nephropathy by activating the AMPK/Nrf2 pathway. J Mol Histol 2024; 55:1327-1339. [PMID: 39520653 DOI: 10.1007/s10735-024-10273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage kidney failure, contributing to elevated morbidity and mortality rates in individuals with diabetes. Despite its potential renoprotective effects, the molecular mechanism by which gastrodin (GSTD) impacts DN remains unclear. To investigate this, mice were initially induced with DN via intraperitoneal streptozotocin (STZ) injection (50 mg/kg) and subsequently treated with varying doses of GSTD (5, 10, 20 mg/kg). Furthermore, the potential molecular mechanism of GSTD in mitigating DN was explored in vivo in conjunction with compound C, an inhibitor of 5'-AMP-activated protein kinase (AMPK). Subsequently, the blood weight, fasting blood glucose levels, and renal injury markers of DN-afflicted mice were assessed. Additionally, renal tissues were subjected to quantitative reverse-transcriptase-polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) to evaluate inflammatory factor levels, colorimetric assays to measure renal malondialdehyde (MDA) levels, and immunoblotting analysis to examine AMPK/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. The results demonstrated that a 6-week GSTD regimen effectively improved metabolic manifestations associated with DN, including reductions in fasting blood glucose levels, 24-hour urine output, renal indices, amelioration of glomerular histopathological abnormalities, diminished glycogen accumulation, and fibrosis. Furthermore, DN-afflicted renal tissues exhibited decreased MDA levels and elevated expression of AMPK/Nrf2 pathway-associated proteins. The beneficial effects of GSTD on DN and its protein modulation were reversed upon co-intervention with compound C. Together, our findings imply that GSTD improves DN by activating the AMPK/Nrf2 pathway, thereby mitigating STZ-induced renal damage, inflammatory responses, and oxidative stress.
Collapse
Affiliation(s)
- Shuqin Zhao
- Pediatric Internal Medicine, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai, Shandong, 264099, China
| | - Qingyun Pan
- Department of Endocrinology, the Fifth Hospital in Wuhan, No. 122, Xianzheng Street, Hanyang District, Wuhan, Hubei, 430050, China
| | - Xiaolin Lin
- Department of Endocrinology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai, Shandong, 264099, China
| | - Xian Li
- Department of Endocrinology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai, Shandong, 264099, China
| | - Li Qu
- Department of Emergency, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai, Shandong, 264099, China.
| |
Collapse
|
2
|
Wang W, Dai R, Cheng M, Chen Y, Gao Y, Hong X, Zhang W, Wang Y, Zhang L. Metabolic reprogramming and renal fibrosis: what role might Chinese medicine play? Chin Med 2024; 19:148. [PMID: 39465434 PMCID: PMC11514863 DOI: 10.1186/s13020-024-01004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/15/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolic reprogramming is a pivotal biological process in which cellular metabolic patterns change to meet the energy demands of increased cell growth and proliferation. In this review, we explore metabolic reprogramming and its impact on fibrotic diseases, providing a detailed overview of the key processes involved in the metabolic reprogramming of renal fibrosis, including fatty acid decomposition and synthesis, glycolysis, and amino acid catabolism. In addition, we report that Chinese medicine ameliorates renal inflammation, oxidative stress, and apoptosis in chronic kidney disease by regulating metabolic processes, thereby inhibiting renal fibrosis. Furthermore, we reveal that multiple targets and signaling pathways contribute to the metabolic regulatory effects of Chinese medicine. In summary, this review aims to elucidate the mechanisms by which Chinese medicine inhibits renal fibrosis through the remodeling of renal cell metabolic processes, with the goal of discovering new therapeutic drugs for treating renal fibrosis.
Collapse
Affiliation(s)
- Weili Wang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Rong Dai
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China
| | - Meng Cheng
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China
| | - Yizhen Chen
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yilin Gao
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Xin Hong
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Wei Zhang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China.
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Meishan Road 117, Shushang District, Hefei, 230031, China.
| |
Collapse
|
3
|
Liu Y, Ji T, Jiang H, Chen M, Liu W, Zhang Z, He X. Emodin alleviates intestinal ischemia-reperfusion injury through antioxidant stress, anti-inflammatory responses and anti-apoptosis effects via Akt-mediated HO-1 upregulation. J Inflamm (Lond) 2024; 21:25. [PMID: 38982499 PMCID: PMC11232135 DOI: 10.1186/s12950-024-00392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/08/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Intestinal ischemia-reperfusion (I/R) injury is a severe vascular emergency. Previous research indicated the protective effects of Emodin on I/R injury. Our study aims to explore the effect of Emodin on intestinal I/R (II/R) injury and elucidate the underlying mechanisms. METHODS C57BL/6 mice and Caco-2 cells were used for in vivo and in vitro studies. We established an animal model of II/R injury by temporarily occluding superior mesenteric artery. We constructed an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model using a hypoxia-reoxygenation incubator. Different doses of Emodin were explored to determine the optimal therapeutic dose. Additionally, inhibitors targeting the protein kinase B (Akt) or Heme oxygenase-1 (HO-1) were administered to investigate their potential protective mechanisms. RESULTS Our results demonstrated that in animal experiments, Emodin mitigated barrier disruption, minimized inflammation, reduced oxidative stress, and inhibited apoptosis. When Akt or HO-1 was inhibited, the protective effect of Emodin was eliminated. Inhibiting Akt also reduced the level of HO-1. In cell experiments, Emodin reduced inflammation and apoptosis in the OGD/R cell model. Additionally, when Akt or HO-1 was inhibited, the protective effect of Emodin was weakened. CONCLUSIONS Our findings suggest that Emodin may protect the intestine against II/R injury through the Akt/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yinyin Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
| | - Tuo Ji
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Haixing Jiang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
| | - Meng Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
- Department of Anesthesiology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, 430070, China
| | - Wanli Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China.
| | - Xianghu He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, East Lake Road, Wuhan, Hubei, 430071, China.
- Department of Anesthesiology, Jiayu Hospital, Zhongnan Hospital of Wuhan University, Xianning, Hubei, 437200, China.
| |
Collapse
|
4
|
Yang T, Li L, Heng C, Sha P, Wang Y, Shen J, Jiang Z, Qian S, Wei C, Yang H, Zhu X, Wang T, Wu M, Wang J, Lu Q, Yin X. Sodium butyrate ameliorated diabetic nephropathy-associated tubulointerstitial inflammation by modulating the tight junctions of renal tubular epithelial cells. Food Funct 2024; 15:2628-2644. [PMID: 38358014 DOI: 10.1039/d2fo00940d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
As one of the most significant pathological changes of diabetic nephropathy (DN), tubulointerstitial fibrosis (TIF) had a close relationship with tubulointerstitial inflammation (TI), and the occurrence of TI could have resulted from the disrupted tight junctions (TJs) of renal tubular epithelial cells (RTECs). Studies have demonstrated that sodium butyrate (NaB), a typical short chain fatty acid (SCFA), played an important regulatory role in intestinal TJs and inflammation. In this study, our in vivo and in vitro results showed that accompanied by TI, renal tubular TJs were gradually disrupted in the process of DN-related TIF. In HG and LPS co-cultured HK-2 cells and db/db mice, NaB treatment regained the TJs of RTECs via the sphingosine 1-phosphate receptor-1 (S1PR1)/AMPK signaling pathway, relieving inflammation. Small interfering RNA of S1PR1, S1PR1 antagonist W146 and agonist SEW2871, and AMPK agonist AICAR were all used to further confirm the essential role of the S1PR1/AMPK signaling pathway in NaB's TJ protection in RTECs in vitro. Finally, NaB administration not only improved the renal function and TIF, but also relieved the TI of db/db mice. These findings suggested that the use of NaB might be a potential adjuvant treatment strategy for DN-associated TIF, and this protective effect was linked to the TJ modulation of RTECs via the S1PR1/AMPK signaling pathway, leading to the improvement of TI.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Cai Heng
- Department of Pharmacy, JingJiang People's Hospital, Jingjiang 214500, China
| | - Pian Sha
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yiying Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Jiaming Shen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Zhenzhou Jiang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Chujing Wei
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Yang
- Department of Pharmacy, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213000, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Tao Wang
- Department of Pharmacy, The affiliated hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Mengying Wu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Jianyun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
5
|
Ye S, Zhang M, Tang SCW, Li B, Chen W. PGC1-α in diabetic kidney disease: unraveling renoprotection and molecular mechanisms. Mol Biol Rep 2024; 51:304. [PMID: 38361088 DOI: 10.1007/s11033-024-09232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024]
Abstract
Mitochondrial dysfunction represents a pivotal aspect of the pathogenesis and progression of diabetic kidney disease (DKD). Central to the orchestration of mitochondrial biogenesis is the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α), a master regulator with a profound impact on mitochondrial function. In the context of DKD, PGC1-α exhibits significant downregulation within intrinsic renal cells, precipitating a cascade of deleterious events. This includes a reduction in mitochondrial biogenesis, heightened levels of mitochondrial oxidative stress, perturbed mitochondrial dynamics, and dysregulated mitophagy. Concurrently, structural and functional abnormalities within the mitochondrial network ensue. In stark contrast, the sustained expression of PGC1-α emerges as a beacon of hope in maintaining mitochondrial homeostasis within intrinsic renal cells, ultimately demonstrating an impressive renoprotective potential in animal models afflicted with DKD. This comprehensive review aims to delve into the recent advancements in our understanding of the renoprotective properties wielded by PGC1-α. Specifically, it elucidates the potential molecular mechanisms underlying PGC1-α's protective effects within renal tubular epithelial cells, podocytes, glomerular endothelial cells, and mesangial cells in the context of DKD. By shedding light on these intricate mechanisms, we aspire to provide valuable insights that may pave the way for innovative therapeutic interventions in the management of DKD.
Collapse
Affiliation(s)
- Siyang Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, People's Republic of China
| | - Meng Zhang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, People's Republic of China
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Bin Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, People's Republic of China.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, People's Republic of China.
| |
Collapse
|
6
|
Chen X, Li X, Cao B, Chen X, Zhang K, Han F, Kan C, Zhang J, Sun X, Guo Z. Mechanisms and efficacy of traditional Chinese herb monomers in diabetic kidney disease. Int Urol Nephrol 2024; 56:571-582. [PMID: 37552392 DOI: 10.1007/s11255-023-03703-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/04/2023] [Indexed: 08/09/2023]
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes and is the primary cause of end-stage renal disease. Current treatment strategies primarily focus on the inhibition of the renin-angiotensin-aldosterone system and the attainment of blood glucose control. Although current medical therapies for DKD have been shown to delay disease progression and improve long-term outcomes, their efficacy is limited and they may be restricted in certain cases, particularly when hyperkalemia is present. Traditional Chinese medicine (TCM) treatment has emerged as a significant complementary approach for DKD. TCM monomers, derived from various Chinese herbs, have been found to modulate multiple therapeutic targets and exhibit a broad range of therapeutic effects in patients with DKD. This review aims to summarize the mechanisms of action of TCM monomers in the treatment of DKD, based on findings from clinical trials, as well as cell and animal studies. The results of these investigations demonstrate the potential effective use of TCM monomers in treating or preventing DKD, offering a promising new direction for future research in the field. By providing a comprehensive overview of the mechanisms and efficacy of TCM monomers in DKD, this review highlights the potential of these natural compounds as alternative therapeutic options for improving outcomes in patients with DKD.
Collapse
Affiliation(s)
- Xuexun Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Xuan Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Bo Cao
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Xinping Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Jingwen Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Xiaodong Sun
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China.
| | - Zhentao Guo
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
7
|
Chen J, Xiao H, Xue R, Kumar V, Aslam R, Mehdi SF, Luo H, Malhotra A, Lan X, Singhal P. Nicotine exacerbates diabetic nephropathy through upregulation of Grem1 expression. Mol Med 2023; 29:92. [PMID: 37415117 DOI: 10.1186/s10020-023-00692-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a major complication of diabetes mellitus. Clinical reports indicate that smoking is a significant risk factor for chronic kidney disease, and the tobacco epidemic exacerbates kidney damage in patients with DN. However, the underlying molecular mechanisms remain unclear. METHOD In the present study, we used a diabetic mouse model to investigate the molecular mechanisms for nicotine-exacerbated DN. Twelve-week-old female mice were injected with streptozotocin (STZ) to establish a hyperglycemic diabetic model. After four months, the control and hyperglycemic diabetic mice were further divided into four groups (control, nicotine, diabetic mellitus, nicotine + diabetic mellitus) by intraperitoneal injection of nicotine or PBS. After two months, urine and blood were collected for kidney injury assay, and renal tissues were harvested for further molecular assays using RNA-seq analysis, real-time PCR, Western blot, and immunohistochemistry. In vitro studies, we used siRNA to suppress Grem1 expression in human podocytes. Then we treated them with nicotine and high glucose to compare podocyte injury. RESULT Nicotine administration alone did not cause apparent kidney injury, but it significantly increased hyperglycemia-induced albuminuria, BUN, plasma creatinine, and the kidney tissue mRNA expression of KIM-1 and NGAL. Results from RNA-seq analysis, real-time PCR, Western blot, and immunohistochemistry analysis revealed that, compared to hyperglycemia or nicotine alone, the combination of nicotine treatment and hyperglycemia significantly increased the expression of Grem1 and worsened DN. In vitro experiments, suppression of Grem1 expression attenuated nicotine-exacerbated podocyte injury. CONCLUSION Grem1 plays a vital role in nicotine-exacerbated DN. Grem1 may be a potential therapeutic target for chronic smokers with DN.
Collapse
Affiliation(s)
- Jianning Chen
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Haiting Xiao
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Rui Xue
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Vinod Kumar
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Rukhsana Aslam
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Syed Faizan Mehdi
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Huairong Luo
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Xiqian Lan
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Pravin Singhal
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
8
|
Hashemi M, Zandieh MA, Ziaolhagh S, Mojtabavi S, Sadi FH, Koohpar ZK, Ghanbarirad M, Haghighatfard A, Behroozaghdam M, Khorrami R, Nabavi N, Ren J, Reiter RJ, Salimimoghadam S, Rashidi M, Hushmandi K, Taheriazam A, Entezari M. Nrf2 signaling in diabetic nephropathy, cardiomyopathy and neuropathy: Therapeutic targeting, challenges and future prospective. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166714. [PMID: 37028606 DOI: 10.1016/j.bbadis.2023.166714] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Western lifestyle contributes to an overt increase in the prevalence of metabolic anomalies including diabetes mellitus (DM) and obesity. Prevalence of DM is rapidly growing worldwide, affecting many individuals in both developing and developed countries. DM is correlated with the onset and development of complications with diabetic nephropathy (DN), diabetic cardiomyopathy (DC) and diabetic neuropathy being the most devastating pathological events. On the other hand, Nrf2 is a regulator for redox balance in cells and accounts for activation of antioxidant enzymes. Dysregulation of Nrf2 signaling has been shown in various human diseases such as DM. This review focuses on the role Nrf2 signaling in major diabetic complications and targeting Nrf2 for treatment of this disease. These three complications share similarities including the presence of oxidative stress, inflammation and fibrosis. Onset and development of fibrosis impairs organ function, while oxidative stress and inflammation can evoke damage to cells. Activation of Nrf2 signaling significantly dampens inflammation and oxidative damage, and is beneficial in retarding interstitial fibrosis in diabetic complications. SIRT1 and AMPK are among the predominant pathways to upregulate Nrf2 expression in the amelioration of DN, DC and diabetic neuropathy. Moreover, certain therapeutic agents such as resveratrol and curcumin, among others, have been employed in promoting Nrf2 expression to upregulate HO-1 and other antioxidant enzymes in the combat of oxidative stress in the face of DM.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Zeinab Khazaei Koohpar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maryam Ghanbarirad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arvin Haghighatfard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 77030, United States
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Tian H, Zheng X, Wang H. Isorhapontigenin ameliorates high glucose-induced podocyte and vascular endothelial cell injuries via mitigating oxidative stress and autophagy through the AMPK/Nrf2 pathway. Int Urol Nephrol 2023; 55:423-436. [PMID: 35960477 DOI: 10.1007/s11255-022-03325-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 07/25/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe microvascular complication of diabetes mellitus and a primary reason for end-stage renal disease (ESRD). Isorhapontigenin (ISO), a natural derivative of stilbene, has significant anti-inflammatory and antioxidant effects. Nevertheless, its impact on DN remains elusive. METHODS Human vascular endothelial cells (HUVECs) and podocytes were damaged by high glucose (HG). Cell viability and apoptosis were testified by the cell counting kit-8 (CCK-8) assay and flow cytometry, respectively. The mRNA profiles of antioxidant factors HO-1, NQO1, and Prx1 were monitored by real-time quantitative polymerase chain reaction (RT-qPCR). Western blotting (WB) was implemented to verify the expression of apoptosis-related proteins (Bax, Bad, and Bcl-XL), antioxidant factors (HO-1, NQO1, and Prx1), autophagy-related proteins (Beclin-1, ATG5, p62), podocalyxin (podocin, nephrin, and synaptopodin) and the AMPK/Nrf2 pathway. The levels of oxidative stress-related markers MDA, SOD and CAT were assessed with the corresponding kits. Compound C (CC), an inhibitor of AMPK, was deployed to probe the effects of modulating the AMPK/Nrf2 pathway on ISO in oxidative stress and autophagy in HUVECs and podocytes. Streptozotocin (STZ) was injected intraperitoneally into mice to establish an animal model of diabetes mellitus and to clarify the impact of ISO on the renal parameters such as serum creatinine, urea nitrogen and urinary protein in diabetic mice. RESULTS ISO notably facilitated cell proliferation, impeded apoptosis, elevated the expression of antioxidant-related factors, alleviated HG-induced oxidative stress and activated autophagy in HUVECs and podocytes. ISO activated the AMPK/Nrf2 pathway. Attenuating AMPK diminished the protective effect of ISO on HUVECs and podocytes, curbed cell proliferation, intensified apoptosis and oxidative stress, and dampened autophagy. In-vivo experiments also displayed that ISO reduced histopathological damage, lowered serum creatinine, urea nitrogen and urinary ACR levels, and eased kidney damage in DN mice. CONCLUSION ISO attenuates HG-induced oxidative stress and activates autophagy by motivating the AMPK/Nrf2 pathway, exerting a protective effect on HUVECs and podocytes and reducing renal injury in DN mice.
Collapse
Affiliation(s)
- Hao Tian
- Department of Thoracic Vascular Surgery, Beijing Daxing District People's Hospital, No. 26 Huangcun West Street, Daxing District, Beijing, 102600, China.
| | - Xiang Zheng
- Department of Thoracic Vascular Surgery, Beijing Daxing District People's Hospital, No. 26 Huangcun West Street, Daxing District, Beijing, 102600, China
| | - Hui Wang
- Department of Thoracic Vascular Surgery, Beijing Daxing District People's Hospital, No. 26 Huangcun West Street, Daxing District, Beijing, 102600, China
| |
Collapse
|
10
|
Hung TW, Yu MH, Yang TY, Yang MY, Chen JY, Chan KC, Wang CJ. Acarbose Protects Glucolipotoxicity-Induced Diabetic Nephropathy by Inhibiting Ras Expression in High-Fat Diet-Fed db/db Mice. Int J Mol Sci 2022; 23:ijms232315312. [PMID: 36499639 PMCID: PMC9736061 DOI: 10.3390/ijms232315312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Diabetic nephropathy (DN) exacerbates renal tissue damage and is a major cause of end-stage renal disease. Reactive oxygen species play a vital role in hyperglycemia-induced renal injury. This study examined whether the oral hypoglycemic drug acarbose (Ab) could attenuate the progression of DN in type 2 diabetes mellitus mice. In this study, 50 mg/kg body weight of Ab was administered to high-fat diet (HFD)-fed db/db mice. Their body weight was recorded every week, and the serum glucose concentration was monitored every 2 weeks. Following their euthanasia, the kidneys of mice were analyzed through hematoxylin and eosin, periodic acid Schiff, Masson's trichrome, and immunohistochemistry (IHC) staining. The results revealed that Ab stabilized the plasma glucose and indirectly improved the insulin sensitivity and renal functional biomarkers in diabetic mice. In addition, diabetes-induced glomerular hypertrophy, the saccharide accumulation, and formation of collagen fiber were reduced in diabetic mice receiving Ab. Although the dosages of Ab cannot decrease the blood sugar in db/db mice, our results indicate that Ab alleviates glucolipotoxicity-induced DN by inhibiting kidney fibrosis-related proteins through the Ras/ERK pathway.
Collapse
Affiliation(s)
- Tung-Wei Hung
- School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medicine, Division of Nephrology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Meng-Hsun Yu
- Department of Nutrition, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Road, Taichung 402, Taiwan
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
| | - Tsung-Yuan Yang
- School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Mon-Yuan Yang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
| | - Jia-Yu Chen
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
| | - Kuei-Chuan Chan
- School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (K.-C.C.); (C.-J.W.); Tel.: +886-4-247-30022 (ext. 34704) (K.-C.C.); +886-4-247-30022 (ext. 11670) (C.-J.W.)
| | - Chau-Jong Wang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (K.-C.C.); (C.-J.W.); Tel.: +886-4-247-30022 (ext. 34704) (K.-C.C.); +886-4-247-30022 (ext. 11670) (C.-J.W.)
| |
Collapse
|
11
|
Chen DQ, Wu J, Li P. Therapeutic mechanism and clinical application of Chinese herbal medicine against diabetic kidney disease. Front Pharmacol 2022; 13:1055296. [PMID: 36408255 PMCID: PMC9669587 DOI: 10.3389/fphar.2022.1055296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2023] Open
Abstract
Diabetic kidney disease (DKD) is the major complications of type 1 and 2 diabetes, and is the predominant cause of chronic kidney disease and end-stage renal disease. The treatment of DKD normally consists of controlling blood glucose and improving kidney function. The blockade of renin-angiotensin-aldosterone system and the inhibition of sodium glucose cotransporter 2 (SGLT2) have become the first-line therapy of DKD, but such treatments have been difficult to effectively block continuous kidney function decline, eventually resulting in kidney failure and cardiovascular comorbidities. The complex mechanism of DKD highlights the importance of multiple therapeutic targets in treatment. Chinese herbal medicine (active compound, extract and formula) synergistically improves metabolism regulation, suppresses oxidative stress and inflammation, inhibits mitochondrial dysfunction, and regulates gut microbiota and related metabolism via modulating GLP-receptor, SGLT2, Sirt1/AMPK, AGE/RAGE, NF-κB, Nrf2, NLRP3, PGC-1α, and PINK1/Parkin pathways. Clinical trials prove the reliable evidences for Chinese herbal medicine against DKD, but more efforts are still needed to ensure the efficacy and safety of Chinese herbal medicine. Additionally, the ideal combined therapy of Chinese herbal medicine and conventional medicine normally yields more favorable benefits on DKD treatment, laying the foundation for novel strategies to treat DKD.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Jun Wu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
12
|
Petsouki E, Cabrera SNS, Heiss EH. AMPK and NRF2: Interactive players in the same team for cellular homeostasis? Free Radic Biol Med 2022; 190:75-93. [PMID: 35918013 DOI: 10.1016/j.freeradbiomed.2022.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
Abstract
NRF2 (Nuclear factor E2 p45-related factor 2) is a stress responsive transcription factor lending cells resilience against oxidative, xenobiotic, and also nutrient or proteotoxic insults. AMPK (AMP-activated kinase), considered as prime regulator of cellular energy homeostasis, not only tunes metabolism to provide the cell at any time with sufficient ATP or building blocks, but also controls redox balance and inflammation. Due to observed overlapping cellular responses upon AMPK or NRF2 activation and common stressors impinging on both AMPK and NRF2 signaling, it is plausible to assume that AMPK and NRF2 signaling may interdepend and cooperate to readjust cellular homeostasis. After a short introduction of the two players this narrative review paints the current picture on how AMPK and NRF2 signaling might interact on the molecular level, and highlights their possible crosstalk in selected examples of pathophysiology or bioactivity of drugs and phytochemicals.
Collapse
Affiliation(s)
- Eleni Petsouki
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria
| | - Shara Natalia Sosa Cabrera
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
13
|
Mohd Nor NA, Budin SB, Zainalabidin S, Jalil J, Sapian S, Jubaidi FF, Mohamad Anuar NN. The Role of Polyphenol in Modulating Associated Genes in Diabetes-Induced Vascular Disorders. Int J Mol Sci 2022; 23:6396. [PMID: 35742837 PMCID: PMC9223817 DOI: 10.3390/ijms23126396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 01/05/2023] Open
Abstract
Diabetes-induced vascular disorder is considered one of the deadly risk factors among diabetic patients that are caused by persistent hyperglycemia that eventually leads to cardiovascular diseases. Elevated reactive oxygen species (ROS) due to high blood glucose levels activate signaling pathways such as AGE/RAGE, PKC, polyol, and hexosamine pathways. The activated signaling pathway triggers oxidative stress, inflammation, and apoptosis which later lead to vascular dysfunction induced by diabetes. Polyphenol is a bioactive compound that can be found abundantly in plants such as vegetables, fruits, whole grains, and nuts. This compound exerts therapeutic effects in alleviating diabetes-induced vascular disorder, mainly due to its potential as an anti-oxidative, anti-inflammatory, and anti-apoptotic agent. In this review, we sought to summarize the recent discovery of polyphenol treatments in modulating associated genes involved in the progression of diabetes-induced vascular disorder.
Collapse
Affiliation(s)
- Nor Anizah Mohd Nor
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
- PICOMS International University College, Taman Batu Muda, Batu Caves, Kuala Lumpur 68100, Malaysia
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Juriyati Jalil
- Center for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Syaifuzah Sapian
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
| | - Fatin Farhana Jubaidi
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
| | - Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
14
|
Montefusco D, Jamil M, Maczis MA, Schroeder W, Levi M, Ranjit S, Allegood J, Bandyopadhyay D, Retnam R, Spiegel S, Cowart LA. Sphingosine Kinase 1 Mediates Sexual Dimorphism in Fibrosis in a Mouse Model of NASH. Mol Metab 2022; 62:101523. [PMID: 35671973 PMCID: PMC9194589 DOI: 10.1016/j.molmet.2022.101523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Men with non-alcoholic fatty liver disease (NAFLD) are more likely to progress to nonalcoholic steatohepatitis (NASH) and liver fibrosis than women. However, the underlying molecular mechanisms of this dimorphism is unclear. We have previously shown that mice with global deletion of SphK1, the enzyme that produces the bioactive sphingolipid metabolite sphingosine 1-phosphate (S1P), were protected from development of NASH. The aim of this study was to elucidate the role of hepatocyte-specific SphK1 in development of NASH and to compare its contribution to hepatosteatosis in male and female mice. RESULTS We generated hepatocyte-specific SphK1 knockout mice (SphK1-hKO). Unlike the global knockout, SphK1-hKO male mice were not protected from diet-induced steatosis, inflammation, or fibrogenesis. In contrast, female SphK1-hKO mice were protected from inflammation. Surprisingly, however, in these female mice, there was a ∼10-fold increase in the fibrosis markers Col1α1 and 2-3 fold induction of alpha smooth muscle actin and the pro-fibrotic chemokine CCL5. Because increased fibrosis in female SphK1-hKO mice occurred despite an attenuated inflammatory response, we investigated the crosstalk between hepatocytes and hepatic stellate cells, central players in fibrosis. We found that estrogen stimulated release of S1P from female hepatocytes preventing TGFβ-induced expression of Col1α1 in HSCs via S1PR3. CONCLUSIONS The results revealed a novel pathway of estrogen-mediated cross-talk between hepatocytes and HSCs that may contribute to sex differences in NAFLD through an anti-fibrogenic function of the S1P/S1PR3 axis. This pathway is susceptible to pharmacologic manipulation, which may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- David Montefusco
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA.
| | - Maryam Jamil
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - Melissa A Maczis
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - William Schroeder
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, USA
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, USA
| | - Jeremy Allegood
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | | | - Reuben Retnam
- Virginia Commonwealth University Department of Biostatistics, VA, USA
| | - Sarah Spiegel
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA
| | - L Ashley Cowart
- Virginia Commonwealth University, Department of Biochemistry and Molecular Biology, VA, USA; Hunter Holmes McGuire VAMC, Richmond, VA, USA
| |
Collapse
|
15
|
Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, Hashemi M, Hushmandi K, Ashrafizadeh M, Zarrabi A, Ertas YN, Mirzaei S, Samarghandian S. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother 2022; 146:112563. [PMID: 35062059 DOI: 10.1016/j.biopha.2021.112563] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is considered as a main challenge in both developing and developed countries, as lifestyle has changed and its management seems to be vital. Type I and type II diabetes are the main kinds and they result in hyperglycemia in patients and related complications. The gene expression alteration can lead to development of DM and related complications. The AMP-activated protein kinase (AMPK) is an energy sensor with aberrant expression in various diseases including cancer, cardiovascular diseases and DM. The present review focuses on understanding AMPK role in DM. Inducing AMPK signaling promotes glucose in DM that is of importance for ameliorating hyperglycemia. Further investigation reveals the role of AMPK signaling in enhancing insulin sensitivity for treatment of diabetic patients. Furthermore, AMPK upregulation inhibits stress and cell death in β cells that is of importance for preventing type I diabetes development. The clinical studies on diabetic patients have shown the role of AMPK signaling in improving diabetic complications such as brain disorders. Furthermore, AMPK can improve neuropathy, nephropathy, liver diseases and reproductive alterations occurring during DM. For exerting such protective impacts, AMPK signaling interacts with other molecular pathways such as PGC-1α, PI3K/Akt, NOX4 and NF-κB among others. Therefore, providing therapeutics based on AMPK targeting can be beneficial for amelioration of DM.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Hashemi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Shima Mohammadi
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farima Fakhri
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
16
|
Huang L, Shao M, Zhu Y. Gastrodin inhibits high glucose‑induced inflammation, oxidative stress and apoptosis in podocytes by activating the AMPK/Nrf2 signaling pathway. Exp Ther Med 2021; 23:168. [PMID: 35069849 PMCID: PMC8753962 DOI: 10.3892/etm.2021.11091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious and common complication of type 1 and 2 diabetes. Gastrodin has been reported to suppress high glucose (HG)-induced inflammation and oxidative stress in vivo and in vitro. However, the effect of gastrodin on DN has not been fully elucidated. The present study aimed to investigate the underlying mechanism involved in the effect of gastrodin on podocyte injury caused by DN. Cell viability was evaluated using Cell Counting Kit-8 assay and secretion levels of TNF-α, IL-1β and IL-6 were measured using ELISA. The levels of malondialdehyde, activities of lactate dehydrogenase and superoxide dismutase were quantified using corresponding assay kits. Additionally, cell apoptosis was analyzed by TUNEL assay, whilst protein expressions related to inflammation, apoptosis and the 5'-AMP-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway were measured by western blot analysis. The results showed that gastrodin increased the viability of MPC5 cells following HG stimulation. Gastrodin also alleviated HG-induced inflammation, oxidative stress and apoptosis in MPC5 cells. Furthermore, gastrodin promoted activation of the AMPK/Nrf2 pathway in MPC5 cells. Treatment with the AMPK inhibitor, compound C, reversed the inhibitory effects of gastrodin on inflammation, oxidative stress and cell apoptosis. To conclude, treatment of MPC5 cells with gastrodin can attenuate HG-induced inflammation, oxidative stress and cell apoptosis by activating the AMPK/Nrf2 signaling pathway. Results from the current study suggest that gastrodin can be used as an effective therapeutic agent against HG-induced podocyte injury in DN.
Collapse
Affiliation(s)
- Luyan Huang
- Department of Traditional Chinese Medicine, Zhongshan Hospital (Minhang Branch), Fudan University, Shanghai 201199, P.R. China
| | - Minghai Shao
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| | - Yan Zhu
- Department of Traditional Chinese Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, P.R. China
| |
Collapse
|
17
|
Huang CW, Lee SY, Wei TT, Kuo YH, Wu ST, Ku HC. A novel caffeic acid derivative prevents renal remodeling after ischemia/reperfusion injury. Biomed Pharmacother 2021; 142:112028. [PMID: 34399201 DOI: 10.1016/j.biopha.2021.112028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/19/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022] Open
Abstract
Acute kidney disease due to renal ischemia/reperfusion (I/R) is a major clinical problem without effective therapies. The injured tubular epithelial cells may undergo epithelial-mesenchymal transition (EMT). It will loss epithelial phenotypes and express the mesenchymal characteristics. The formation of scar tissue in the interstitial space during renal remodeling is caused by the excessive accumulation of extracellular matrix components and induced fibrosis. This study investigated the effect of caffeic acid ethanolamide (CAEA), a novel caffeic acid derivative, on renal remodeling after injury. The inhibitory role of CAEA on EMT was determined by western blotting, real-time PCR, and immunohistochemistry staining. Treating renal epithelial cells with CAEA in TGF-β exposed cell culture successfully maintained the content of E-cadherin and inhibited the expression of mesenchymal marker, indicating that CAEA prevented renal epithelial cells undergo EMT after TGF-β exposure. Unilateral renal I/R were performed in mice to induce renal remodeling models. CAEA can protect against I/R-induced renal remodeling by inhibiting inflammatory reactions and consecutively inhibiting TGF-β-induced EMT, characterized by the preserved E-cadherin expression and alleviated α-SMA and collagen expression, as well as the alleviated of renal fibrosis. We also revealed that CAEA may exhibits biological activity by targeting TGFBRI. CAEA may antagonize TGF-β signaling by interacting with TGFBR1, thereby blocking binding between TGF-β and TGFBR1 and reducing downstream signaling, such as Smad3 phosphorylation. Our data support the administration of CAEA after I/R as a viable method for preventing the progression of acute renal injury to renal fibrosis.
Collapse
Affiliation(s)
- Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taiwan
| | - Tzu-Tang Wei
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Shao-Tung Wu
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
18
|
Carminic acid supplementation protects against fructose-induced kidney injury mainly through suppressing inflammation and oxidative stress via improving Nrf-2 signaling. Aging (Albany NY) 2021; 13:10326-10353. [PMID: 33819919 PMCID: PMC8064181 DOI: 10.18632/aging.202794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Excessive fructose (Fru) intake has become an increased risk for chronic kidney disease progression. Despite extensive researches that have been performed to develop effective treatments against Fru-induced renal injury, the outcome has achieved limited success. In this study, we attempted to explore whether carminic acid (CA) could influence the progression of Fru-induced kidney injury, and the underlying molecular mechanism. At first, our in vitro results showed that CA significantly reduced inflammation in mouse tubular epithelial cells and human tubule epithelial cells stimulated by Fru. The anti-inflammatory effects of CA were associated with the blockage of nuclear factor-κB (NF-κB) signaling. In addition, Fru-exposed cells showed higher oxidative stress, which was effectively restrained by CA treatment through improving nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) nuclear translocation. Importantly, we found that Fru-induced inflammation and oxidative stress were accelerated in cells with Nrf-2 knockdown. What's more, in Fru-stimulated cells, CA-alleviated inflammatory response and reactive oxygen species (ROS) production were evidently abolished by Nrf-2 knockdown. The in vivo analysis demonstrated that Fru led to metabolic disorder, excessive albuminuria and histologic changes in renal tissues, which were effectively reversed by CA supplementation. We confirmed that CA significantly reduced inflammation and oxidative stress in the kidneys of mice through regulating NF-κB and Nrf-2 signaling pathways, eventually alleviating the progression of chronic kidney injury. Taken together, these results identified CA as a potential therapeutic strategy for metabolic stress-induced renal injury through restraining inflammation and oxidative stress via the improvement of Nrf-2 signaling.
Collapse
|
19
|
Lago-Fernandez A, Zarzo-Arias S, Jagerovic N, Morales P. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System. Int J Mol Sci 2021; 22:1001. [PMID: 33498245 PMCID: PMC7863932 DOI: 10.3390/ijms22031001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids have shown to exert their therapeutic actions through a variety of targets. These include not only the canonical cannabinoid receptors CB1R and CB2R but also related orphan G protein-coupled receptors (GPCRs), ligand-gated ion channels, transient receptor potential (TRP) channels, metabolic enzymes, and nuclear receptors. In this review, we aim to summarize reported compounds exhibiting their therapeutic effects upon the modulation of CB1R and/or CB2R and the nuclear peroxisome proliferator-activated receptors (PPARs). Concomitant actions at CBRs and PPARα or PPARγ subtypes have shown to mediate antiobesity, analgesic, antitumoral, or neuroprotective properties of a variety of phytogenic, endogenous, and synthetic cannabinoids. The relevance of this multitargeting mechanism of action has been analyzed in the context of diverse pathologies. Synergistic effects triggered by combinatorial treatment with ligands that modulate the aforementioned targets have also been considered. This literature overview provides structural and pharmacological insights for the further development of dual cannabinoids for specific disorders.
Collapse
Affiliation(s)
| | | | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| | - Paula Morales
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| |
Collapse
|
20
|
Zhu H, Fang Z, Chen J, Yang Y, Gan J, Luo L, Zhan X. PARP-1 and SIRT-1 are Interacted in Diabetic Nephropathy by Activating AMPK/PGC-1α Signaling Pathway. Diabetes Metab Syndr Obes 2021; 14:355-366. [PMID: 33531822 PMCID: PMC7846827 DOI: 10.2147/dmso.s291314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/12/2021] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) is a metabolic disorder characterized by the accumulation of extracellular matrix (ECM). This study aims to investigate whether exists an interplay between poly (ADP-ribose) polymerase 1 (PARP-1) and sirtuin 1 (SIRT-1) in DN via AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) signaling pathway. METHODS Eight-week-old male obese leptin-resistant (db/db) mice and nondiabetic control male C57BLKs/J (db/m) mice were used in this study. Body weight and blood glucose were evaluated after 6 h of fasting, which continues for 4 weeks. The kidney tissues were dissected for Western blot, immunofluorescence (IF) assay. Besides, PARP activity assay, MTT assay, NAD+ qualification, Western blot and IF were also performed to detect the level and relation of PARP-1 and SIRT-1 in mouse mesangial cells (MCs) with or without high glucose followed by inhibiting or elevating PARP-1 and SIRT-1, respectively. RESULTS Western blotting shows PARP-1 and ECM marker fibronectin (FN) are upregulated while SIRT-1 is downregulated in db/db mice (p<0.05) or in mouse MCs with high glucose (p<0.05), which are significantly restored by PARP-1 inhibitor (PJ34) (p<0.05) and SIRT-1 lentiviral transfected treatment (p<0.05), or worsened by SIRT-1 inhibitor EX527 (p<0.05). PJ34 treatment (p < 0.05) or SIRT-1 overexpression (p < 0.05) could increase PGC-1α and p-AMPK levels, concomitant with down expression of FN, however, were reversed in the presence of EX527 (p<0.05). DISCUSSION Our results suggest an important relationship between PARP-1 and SIRT-1 through AMPK-PGC-1α pathway, indicating a potential therapeutic method for DN.
Collapse
Affiliation(s)
- Hengmei Zhu
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
- Department of Nephrology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Zhi Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
| | - Jiehui Chen
- Department of Nephrology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Yun Yang
- Department of Nephrology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Jiacheng Gan
- Department of Nuclear Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Liang Luo
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou341000, People’s Republic of China
- Correspondence: Liang Luo Department of Cardiology, Ganzhou People’s Hospital, Ganzhou341000, People’s Republic of China Tel/Fax +8613807979503 Email
| | - Xiaojiang Zhan
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China
- Xiaojiang Zhan Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang330006, People’s Republic of China Tel/Fax +8613507919885 Email
| |
Collapse
|
21
|
Yang J, Chen H, Nie Q, Huang X, Nie S. Dendrobium officinale polysaccharide ameliorates the liver metabolism disorders of type II diabetic rats. Int J Biol Macromol 2020; 164:1939-1948. [DOI: 10.1016/j.ijbiomac.2020.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022]
|
22
|
Ma Y, Tian J, Wang X, Huang C, Tian M, Wei A. Fatty Acid Profiling and Chemometric Analyses for Zanthoxylum Pericarps from Different Geographic Origin and Genotype. Foods 2020; 9:E1676. [PMID: 33207730 PMCID: PMC7698129 DOI: 10.3390/foods9111676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/09/2023] Open
Abstract
Zanthoxylum plants, important aromatic plants, have attracted considerable attention in the food, pharmacological, and industrial fields because of their potential health benefits, and they are easily accessible because of the wild distribution in most parts of China. The chemical components vary with inter and intraspecific variations, ontogenic variations, and climate and soil conditions in compositions and contents. To classify the relationships between different Zanthoxylum species and to determine the key factors that influence geographical variations in the main components of the plant, the fatty acid composition and content of 72 pericarp samples from 12 cultivation regions were measured and evaluated. Four fatty acids, palmitic acid (21.33-125.03 mg/g), oleic acid (10.66-181.37 mg/g), linoleic acid (21.98-305.32 mg/g), and linolenic acid (0.06-218.84 mg/g), were the most common fatty acid components in the Zanthoxylum pericarps. Fatty acid profiling of Zanthoxylum pericarps was significantly affected by Zanthoxylum species and geographical variations. Stearic acid and oleic acid in pericarps were typical fatty acids that distinguished Zanthoxylum species based on the result of DA. Palmitic acid, palmitoleic acid, trans-13-oleic acid, and linoleic acid were important differential indicators in distinguishing given Zanthoxylum pericarps based on the result of OPLS-DA. In different Zanthoxylum species, the geographical influence on fatty acid variations was diverse. This study provides information on how to classify the Zanthoxylum species based on pericarp fatty acid compositions and determines the key fatty acids used to classify the Zanthoxylum species.
Collapse
Affiliation(s)
- Yao Ma
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.M.); (J.T.); (X.W.); (C.H.); (M.T.)
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Yangling 712100, China
| | - Jieyun Tian
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.M.); (J.T.); (X.W.); (C.H.); (M.T.)
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Yangling 712100, China
| | - Xiaona Wang
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.M.); (J.T.); (X.W.); (C.H.); (M.T.)
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Yangling 712100, China
| | - Chen Huang
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.M.); (J.T.); (X.W.); (C.H.); (M.T.)
| | - Mingjing Tian
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.M.); (J.T.); (X.W.); (C.H.); (M.T.)
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling 712100, China; (Y.M.); (J.T.); (X.W.); (C.H.); (M.T.)
- Research Centre for Engineering and Technology of Zanthoxylum, State Forestry Administration, Yangling 712100, China
| |
Collapse
|
23
|
Jin S, Li J, Barati M, Rane S, Lin Q, Tan Y, Zheng Z, Cai L, Rane MJ. Loss of NF-E2 expression contributes to the induction of profibrotic signaling in diabetic kidneys. Life Sci 2020; 254:117783. [PMID: 32413404 DOI: 10.1016/j.lfs.2020.117783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 01/14/2023]
|
24
|
Mota RI, Morgan SE, Bahnson EM. Diabetic vasculopathy: macro and microvascular injury. CURRENT PATHOBIOLOGY REPORTS 2020; 8:1-14. [PMID: 32655983 PMCID: PMC7351096 DOI: 10.1007/s40139-020-00205-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Diabetes is a common and prevalent medical condition as it affects many lives around the globe. Specifically, type-2 Diabetes (T2D) is characterized by chronic systemic inflammation alongside hyperglycemia and insulin resistance in the body, which can result in atherosclerotic legion formation in the arteries and thus progression of related conditions called diabetic vasculopathies. T2D patients are especially at risk for vascular injury; adjunct in many of these patients heir cholesterol and triglyceride levels reach dangerously high levels and accumulate in the lumen of their vascular system. RECENT FINDINGS Microvascular and macrovascular vasculopathies as complications of diabetes can accentuate the onset of organ illnesses, thus it is imperative that research efforts help identify more effective methods for prevention and diagnosis of early vascular injuries. Current research into vasculopathy identification/treatment will aid in the amelioration of diabetes-related symptoms and thus reduce the large number of deaths that this disease accounts annually. SUMMARY This review aims to showcase the evolution and effects of diabetic vasculopathy from development to clinical disease as macrovascular and microvascular complications with a concerted reference to sex-specific disease progression as well.
Collapse
Affiliation(s)
- Roberto I. Mota
- Department of Surgery, Division of Vascular Surgery; University of North Carolina at Chapel Hill, NC 27599
- Center for Nanotechnology in Drug Delivery; University of North Carolina at Chapel Hill, NC 27599
- McAllister Heart Institute, University of North Carolina at Chapel Hill, NC 27599
| | - Samuel E. Morgan
- Department of Surgery, Division of Vascular Surgery; University of North Carolina at Chapel Hill, NC 27599
- Center for Nanotechnology in Drug Delivery; University of North Carolina at Chapel Hill, NC 27599
| | - Edward M. Bahnson
- Department of Surgery, Division of Vascular Surgery; University of North Carolina at Chapel Hill, NC 27599
- Center for Nanotechnology in Drug Delivery; University of North Carolina at Chapel Hill, NC 27599
- McAllister Heart Institute, University of North Carolina at Chapel Hill, NC 27599
- Department of Cell Biology and Physiology. University of North Carolina at Chapel Hill, NC 27599
| |
Collapse
|
25
|
Adelusi TI, Du L, Hao M, Zhou X, Xuan Q, Apu C, Sun Y, Lu Q, Yin X. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomed Pharmacother 2020; 123:109732. [PMID: 31945695 DOI: 10.1016/j.biopha.2019.109732] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Hyperglycemia/oxidative stress has been implicated in the initiation and progression of diabetic complications while the components of Keap1/Nrf2/ARE signaling are being exploited as therapeutic targets for the treatment/management of these pathologies. Antioxidant agents like drugs, nutraceuticals and pure compounds that target the proteins of this pathway and their downstream genes hold the therapeutic strength to put the progression of this disease at bay. Here, we elucidate how the modulation of Keap1/Nrf2/ARE had been exploited for the treatment/management of end-stage diabetic kidney complication (diabetic nephropathy) by looking into (1) Nrf2 nuclear translocation and phosphorylation by some protein kinases at specific amino acid sequences and (2) Keap1 downregulation/Keap1-Nrf2 protein-protein inhibition (PPI) as potential therapeutic mechanisms exploited by Nrf2 activators for the modulation of diabetic nephropathy biomarkers (Collagen IV, Laminin, TGF-β1 and Fibronectin) that ultimately lead to the amelioration of this disease progression. Furthermore, we brought to limelight the relationship between diabetic nephropathy and Keap1/Nrf2/ARE and finally elucidate how the modulation of this signaling pathway could be further explored to create novel therapeutic milestones.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Meng Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Xuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Chowdhury Apu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|