1
|
Hojo M, Maeno A, Sakamoto Y, Yamamoto Y, Taquahashi Y, Hirose A, Suzuki J, Inomata A, Nakae D. Time-Course of Transcriptomic Change in the Lungs of F344 Rats Repeatedly Exposed to a Multiwalled Carbon Nanotube in a 2-Year Test. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2105. [PMID: 37513116 PMCID: PMC10383707 DOI: 10.3390/nano13142105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Despite intensive toxicological studies of carbon nanotubes (CNTs) over the last two decades, only a few studies have demonstrated their pulmonary carcinogenicities in chronic animal experiments, and the underlying molecular mechanisms are still unclear. To obtain molecular insights into CNT-induced lung carcinogenicity, we performed a transcriptomic analysis using a set of lung tissues collected from rats in a 2-year study, in which lung tumors were induced by repeated intratracheal instillations of a multiwalled carbon nanotube, MWNT-7. The RNA-seq-based transcriptome identified a large number of significantly differentially expressed genes at Year 0.5, Year 1, and Year 2. Ingenuity Pathway Analysis revealed that macrophage-elicited signaling pathways such as phagocytosis, acute phase response, and Toll-like receptor signaling were activated throughout the experimental period. At Year 2, cancer-related pathways including ERBB signaling and some axonal guidance signaling pathways such as EphB4 signaling were perturbed. qRT-PCR and immunohistochemistry indicated that several key molecules such as Osteopontin/Spp1, Hmox1, Mmp12, and ERBB2 were markedly altered and/or localized in the preneoplastic lesions, suggesting their participation in the induction of lung cancer. Our findings support a scenario of inflammation-induced carcinogenesis and contribute to a better understanding of the molecular mechanism of MWCNT carcinogenicity.
Collapse
Affiliation(s)
- Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Ai Maeno
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yukio Yamamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yuhji Taquahashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Akihiko Hirose
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Dai Nakae
- Department of Medical Sports, Faculty of Health Care and Medical Sports, Teikyo Heisei University, 4-1 Uruido-Minami, Ichihara 290-0193, Chiba, Japan
| |
Collapse
|
2
|
El Saie A, Fu C, Grimm SL, Robertson MJ, Hoffman K, Putluri V, Ambati CSR, Putluri N, Shivanna B, Coarfa C, Pammi M. Metabolome and microbiome multi-omics integration from a murine lung inflammation model of bronchopulmonary dysplasia. Pediatr Res 2022; 92:1580-1589. [PMID: 35338351 PMCID: PMC9509498 DOI: 10.1038/s41390-022-02002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Respiratory tract microbial dysbiosis can exacerbate inflammation and conversely inflammation may cause dysbiosis. Dysbiotic microbiome metabolites may lead to bronchopulmonary dysplasia (BPD). Hyperoxia and lipopolysaccharide (LPS) interaction alters lung microbiome and metabolome, mediating BPD lung injury sequence. METHODS C57BL6/J mice were exposed to 21% (normoxia) or 70% (hyperoxia) oxygen during postnatal days (PND) 1-14. Pups were injected with LPS (6 mg/kg) or equal PBS volume, intraperitoneally on PND 3, 5, and 7. At PND14, the lungs were collected for microbiome and metabolomic analyses (n = 5/group). RESULTS Microbiome alpha and beta diversity were similar between groups. Metabolic changes included hyperoxia 31 up/18 down, LPS 7 up/4 down, exposure interaction 8. Hyperoxia increased Intestinimonas abundance, whereas LPS decreased Clostridiales, Dorea, and Intestinimonas; exposure interaction affected Blautia. Differential co-expression analysis on multi-omics data identified exposure-altered modules. Hyperoxia metabolomics response was integrated with a published matching transcriptome, identifying four induced genes (ALDOA, GAA, NEU1, RENBP), which positively correlated with BPD severity in a published human newborn cohort. CONCLUSIONS We report hyperoxia and LPS lung microbiome and metabolome signatures in a clinically relevant BPD model. We identified four genes correlating with BPD status in preterm infants that are promising targets for therapy and prevention. IMPACT Using multi-omics, we identified and correlated key biomarkers of hyperoxia and LPS on murine lung micro-landscape and examined their potential clinical implication, which shows strong clinical relevance for future research. Using a double-hit model of clinical relevance to bronchopulmonary dysplasia, we are the first to report integrated metabolomic/microbiome landscape changes and identify novel disease biomarker candidates.
Collapse
Affiliation(s)
- Ahmed El Saie
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Cairo University, Cairo, Egypt
| | - Chenlian Fu
- Department of Biology, Harvey Mudd College, Claremont, CA, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sandra L Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Matthew J Robertson
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kristi Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Vasanta Putluri
- Advanced Technology Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Advanced Technology Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| | - Mohan Pammi
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
3
|
Gupta SS, Singh KP, Gupta S, Dusinska M, Rahman Q. Do Carbon Nanotubes and Asbestos Fibers Exhibit Common Toxicity Mechanisms? NANOMATERIALS 2022; 12:nano12101708. [PMID: 35630938 PMCID: PMC9145953 DOI: 10.3390/nano12101708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023]
Abstract
During the last two decades several nanoscale materials were engineered for industrial and medical applications. Among them carbon nanotubes (CNTs) are the most exploited nanomaterials with global production of around 1000 tons/year. Besides several commercial benefits of CNTs, the fiber-like structures and their bio-persistency in lung tissues raise serious concerns about the possible adverse human health effects resembling those of asbestos fibers. In this review, we present a comparative analysis between CNTs and asbestos fibers using the following four parameters: (1) fibrous needle-like shape, (2) bio-persistent nature, (3) high surface to volume ratio and (4) capacity to adsorb toxicants/pollutants on the surface. We also compare mechanisms underlying the toxicity caused by certain diameters and lengths of CNTs and asbestos fibers using downstream pathways associated with altered gene expression data from both asbestos and CNT exposure. Our results suggest that indeed certain types of CNTs are emulating asbestos fiber as far as associated toxicity is concerned.
Collapse
Affiliation(s)
- Suchi Smita Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Krishna P. Singh
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway;
| | - Qamar Rahman
- Amity Institute of Biotechnology, Amity University, Lucknow 226028, India
- Correspondence:
| |
Collapse
|
4
|
Yang Z, Deng C, Wu Y, Dai Z, Tang Q, Cheng C, Xu Y, Hu R, Liu C, Chen X, Zhang X, Li A, Xiong X, Su J, Yan A. Insights into the mechanism of multi-walled carbon nanotubes phytotoxicity in Arabidopsis through transcriptome and m6A methylome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147510. [PMID: 33991908 DOI: 10.1016/j.scitotenv.2021.147510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
With the increasing production and wide application of carbon nanotubes (CNTs), they are inevitably released into the natural environment and ecosystems, where plants are the main primary producers. Hence, it is imperative to understand the toxic effects of CNTs on plants. The molecular mechanisms underlying the toxic effects of CNTs on plants are still unclear. Therefore, in the present study, we investigated the effects of high concentrations of multi-walled CNTs (MWCNTs) on Arabidopsis. Root elongation and leaf development were severely inhibited after MWCNT exposure. Excess production of H2O2, O2-, and malondialdehyde was observed, indicating that MWCNTs induced oxidative stress. The antioxidant system was activated to counter MWCNTs-induced oxidative stress. Combinatorial transcriptome and m6A methylome analysis revealed that MWCNTs suppressed auxin signaling and photosynthesis. Reactive oxygen species metabolism, toxin metabolism, and plant responses to pathogens were enhanced to cope with the phytotoxicity of MWCNTs. Our results provide new insights into the molecular mechanisms of CNT phytotoxicity and plant defense responses to CNTs.
Collapse
Affiliation(s)
- Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Canhui Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yupeng Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Rong Hu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; Crop Gene Engineering Key Laboratory of Hunan Province, Changsha, Hunan, 410128, China
| | - Chan Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xiaojun Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xiaoyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Alei Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xinghua Xiong
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; Crop Gene Engineering Key Laboratory of Hunan Province, Changsha, Hunan, 410128, China.
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - An Yan
- National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| |
Collapse
|
5
|
Scala G, Delaval MN, Mukherjee SP, Federico A, Khaliullin TO, Yanamala N, Fatkhutdinova LM, Kisin ER, Greco D, Fadeel B, Shvedova AA. Multi-walled carbon nanotubes elicit concordant changes in DNA methylation and gene expression following long-term pulmonary exposure in mice. CARBON 2021; 178:563-572. [PMID: 37206955 PMCID: PMC10193301 DOI: 10.1016/j.carbon.2021.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) causes inflammation and fibrosis. Our previous work has shown that industrially produced MWCNTs trigger specific changes in gene expression in the lungs of exposed animals. To elucidate whether epigenetic effects play a role for these gene expression changes, we performed whole genome bisulphite sequencing to assess DNA methylation patterns in the lungs 56 days after exposure to MWCNTs. Lung tissues were also evaluated with respect to histopathological changes and cytokine profiling of bronchoalveolar lavage (BAL) fluid was conducted using a multi-plex array. Integrated analysis of transcriptomics data and DNA methylation data revealed concordant changes in gene expression. Functional analysis showed that the muscle contraction, immune system/inflammation, and extracellular matrix pathways were the most affected pathways. Taken together, the present study revealed that MWCNTs exert epigenetic effects in the lungs of exposed animals, potentially driving the subsequent gene expression changes.
Collapse
Affiliation(s)
- Giovanni Scala
- Department of Biology, University of Naples, Naples, Italy
| | - Mathilde N. Delaval
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sourav P. Mukherjee
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Naveena Yanamala
- Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA
| | - Liliya M. Fatkhutdinova
- Department of Hygiene and Occupational Medicine, Kazan State Medical University, Kazan, Russia
| | - Elena R. Kisin
- Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Corresponding author. (D. Greco)
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Corresponding author. (B. Fadeel)
| | - Anna A. Shvedova
- Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
- Corresponding author. Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA. (A.A. Shvedova)
| |
Collapse
|
6
|
Barbarino M, Giordano A. Assessment of the Carcinogenicity of Carbon Nanotubes in the Respiratory System. Cancers (Basel) 2021; 13:cancers13061318. [PMID: 33804168 PMCID: PMC7998467 DOI: 10.3390/cancers13061318] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
In 2014, the International Agency for Research on Cancer (IARC) classified the first type of carbon nanotubes (CNTs) as possibly carcinogenic to humans, while in the case of other CNTs, it was not possible to ascertain their toxicity due to lack of evidence. Moreover, the physicochemical heterogeneity of this group of substances hamper any generalization on their toxicity. Here, we review the recent relevant toxicity studies produced after the IARC meeting in 2014 on an homogeneous group of CNTs, highlighting the molecular alterations that are relevant for the onset of mesothelioma. Methods: The literature was searched on PubMed and Web of Science for the period 2015-2020, using different combinations keywords. Only data on normal cells of the respiratory system after exposure to fully characterized CNTs for their physico-chemical characteristics were included. Recent studies indicate that CNTs induce a sustained inflammatory response, oxidative stress, fibrosis and histological alterations. The development of mesothelial hyperplasia, mesothelioma, and lungs tumors have been also described in vivo. The data support a strong inflammatory potential of CNTs, similar to that of asbestos, and provide evidence that CNTs exposure led to molecular alterations known to have a key role in mesothelioma onset. These evidences call for an urgent improvement of studies on exposed human populations and adequate systems for monitoring the health of workers exposed to this putative carcinogen.
Collapse
Affiliation(s)
- Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence:
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
7
|
Xie D, Luo X. Identification of four methylation-driven genes as candidate biomarkers for monitoring single-walled carbon nanotube-induced malignant transformation of the lung. Toxicol Appl Pharmacol 2020; 412:115391. [PMID: 33387576 DOI: 10.1016/j.taap.2020.115391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 01/15/2023]
Abstract
Long-term exposure to carbon nanotubes (CNTs) has been reported to induce malignant transformation. This study aimed to screen candidate biomarkers for monitoring occupational workers to prevent the development of lung cancer. mRNA (GSE56104) and methylation (GSE153246) profiles of lung epithelial BEAS-2B cells exposed to malignant transformation dose of single-walled CNTs or control medium were downloaded from Gene Expression Omnibus database. A total of 1513 differentially expressed genes (DEGs) and 912 differentially methylated genes (DMGs) were identified using LIMMA method. The weighted correlation network analysis identified blue and turquoise modules were associated with malignant transformation of BEAS-2B cells, 124 DMGs of which were overlapped with DEGs. The mRNA and methylation levels of four methylation-driven DEGs were validated in both lung adenocarcinoma (LUAD) and squamous cell carcinomas (LUSC) of The Cancer Genome Atlas dataset and they were associated with overall survival of LUAD patients. Downregulation of PXMP4 and MCOLN2, while upregulation of MET was confirmed in both LUSC and LUAD via Human Protein Atlas analysis. PXMP4 and MET protein levels were also supported in the proteomic analysis of LUAD. Receiver operating characteristic (ROC) curve analysis showed the combination of four genes may be the optimal biomarker for predicting lung cancer, with the area under ROC curve >0.9. Function analysis revealed BARX2 may interact with CCND1 to regulate cell cycle; MET and PXMP4/MCOLN2 may positively correlate with CCR5/IL-6 or GATA3/HLA-DPB1/HLA-DPA1 to involve immune regulation. In conclusion, these four methylation-driven genes may be candidate prognostic and diagnostic biomarkers for single-walled CNT-related lung cancer.
Collapse
Affiliation(s)
- Dongli Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaogang Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
8
|
Liu J, Wu Q, Shi J, Guo W, Jiang X, Zhou B, Ren C. LILRB4, from the immune system to the disease target. Am J Transl Res 2020; 12:3149-3166. [PMID: 32774691 PMCID: PMC7407714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Leukocyte immunoglobulin (Ig)-like receptor B4 (LILRB4) is a member of leukocyte Ig-like receptors (LILRs), which associate with membrane adaptors to signal through multiple cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Under physiological conditions, LILRB4 plays a very important role in the function of the immune system through its expression on various immune cells, such as T cells and plasma cells. Under pathological conditions, LILRB4 affects the processes of various diseases, such as the transformation and infiltration of tumors and leukemias, through various signaling pathways. Differential expression of LILRB4 is present in a variety of immune system diseases, such as Kawasaki disease, systemic lupus erythematosus (SLE), and sepsis. Recent studies have shown that LILRB4 also plays a role in mental illness. The important role of LILRB4 in the immune system and its differential expression in a variety of diseases make LILRB4 a potential prophylactic and therapeutic target for a variety of diseases.
Collapse
Affiliation(s)
- Jiachen Liu
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Qiwen Wu
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Jing Shi
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Weihua Guo
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Xingjun Jiang
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Bolun Zhou
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Caiping Ren
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| |
Collapse
|