1
|
Lee D, Kim SJ, Choi YJ, Rho YH, Kang TS, Kim YG, Kang KS. The Glucose-Lowering Effect of Mesembryanthemum crystallinum and D-Pinitol: Studies on Insulin Secretion in INS-1 Cells and the Reduction of Blood Glucose in Diabetic Rats. Nutrients 2025; 17:193. [PMID: 39796627 PMCID: PMC11722887 DOI: 10.3390/nu17010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Background: Ice plant (Mesembryanthemum crystallinum) is a vegetable with various therapeutic uses, one of which is its ability to prevent diabetes. The present study examined the insulin secretion effect related to the mechanism of action of ice plant extract (IPE) and its active compound D-pinitol in a rat insulin-secreting β-cell line, INS-1, as well as in diabetic rats. Methods: The glucose-stimulated insulin secretion (GSIS) test and Western blotting were used to measure GSIS. The glucose-stimulated index (GSI) and expression levels of insulin-related pathway factors, including insulin receptor substrate-2 (IRS-2), phosphoinositide 3-kinase (PI3K), Akt, and pancreatic and duodenal homeobox-1 (PDX-1), were measured in INS-1 cells. Results: The results showed that the GSI values were found to be 8.17 ± 0.22 and 12.21 ± 0.22 for IPE (25 μg/mL) and D-pinitol (100 μM), respectively. GSI values increased statistically significantly. In addition, IPE and D-pinitol upregulated the expression of insulin-related pathway factors. These findings indicate that insulin secretion was significantly stimulated by IPE and D-pinitol in the INS-1 cells, partly by upregulating the expression of IRS-2, PI3K, Akt, and PDX-1. Additionally, IPE administration significantly reduced excessive weight gain and improved glucose tolerance by decreasing the OGTT-AUC. It demonstrated liver-function-improving and lipid-lowering effects by reducing serum alanine aminotransferase (ALT), serum aspartate aminotransferase (AST), triglyceride levels, and total cholesterol levels. Mechanistically, IPE enhances insulin signaling by increasing insulin receptor substrate 1 (IRS-1) phosphorylation and improving glucose metabolism and insulin sensitivity. Conclusions: These results offer important new information on the potential of D-pinitol and IPE as functional foods for improving insulin secretion and managing metabolic dysregulation associated with diabetes.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (D.L.); (S.J.K.); (Y.J.C.)
| | - Sung Jin Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (D.L.); (S.J.K.); (Y.J.C.)
| | - Yea Jung Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (D.L.); (S.J.K.); (Y.J.C.)
| | - Young Ho Rho
- Ilivbio Co., Ltd., Seoul 06531, Republic of Korea; (Y.H.R.); (T.S.K.); (Y.G.K.)
| | - Tae Seok Kang
- Ilivbio Co., Ltd., Seoul 06531, Republic of Korea; (Y.H.R.); (T.S.K.); (Y.G.K.)
| | - Yoon Geol Kim
- Ilivbio Co., Ltd., Seoul 06531, Republic of Korea; (Y.H.R.); (T.S.K.); (Y.G.K.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (D.L.); (S.J.K.); (Y.J.C.)
| |
Collapse
|
2
|
Wang Z, Xie S, Li L, Liu Z, Zhou W. Schisandrin C inhibits AKT1-regulated cell proliferation in A549 cells. Int Immunopharmacol 2024; 142:113110. [PMID: 39260306 DOI: 10.1016/j.intimp.2024.113110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality. Cancer poses a significant challenge to human health and remains a persistent and pressing issue. Schisandrin C is one of the active ingredients of Schisandra chinensis and has various biological and pharmacological activities. This study aimed to investigate the effects of Schisandrin C on lung cancer and the underlying mechanism involved. METHODS A network pharmacology strategy was used to screen the target genes and pathways involved in the relationship between Schisandrin and lung cancer. Next, a single-cell RNA sequencing (scRNA-seq) assay revealed the expression of genes specifically expressed in lung cancer epithelial cells. A549 cells were subsequently treated with Schisandrin C for 24 h or 48 h, cell viability was assessed via MTT and EdU staining experiments, and target gene expression was measured via RT-qPCR and immunofluorescence assays. Moreover, lung cancer patient tissues were observed via multiplex immunofluroscence staining. RESULTS AKT1, CA9, BRAF, EGFR, ERBB2 and PIK3CA were overlapping target genes for network pharmacology and the scRNA-seq strategy. In vitro, the RT-qPCR results indicated that Schisandrin C inhibited the mRNA expression of the AKT1, CA9, FASN, MMP1, EGFR and BRAF genes. In clinical samples from patients with lung cancer, the expression levels of CA9 and AKT1 were found to be significantly higher in lung tumor tissues than in the adjacent normal (TAN) tissues. Moreover, the administration of an AKT kinase inhibitor reversed the inhibitory effect of Schisandrin C on A549 cells proliferation, whereas the administration of a CA9 inhibitor failed to have a similar effect. CONCLUSIONS Schisandrin C effectively suppressed the proliferation and viability of A549 cells. Its mechanism was related to the inhibition of the AKT1 signaling pathway.
Collapse
Affiliation(s)
| | - Shengyang Xie
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Li Li
- Zhejiang Hospital, Hangzhou 310013, China
| | - Zhengcheng Liu
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Wencheng Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China.
| |
Collapse
|
3
|
Zeng L, Deng Y, Zhou X, Ji S, Peng B, Lu H, He Q, Bi J, Kwan HY, Zhou L, You Y, Wang M, Zhao X. Simiao pills alleviates renal injury associated with hyperuricemia: A multi-omics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118492. [PMID: 38936642 DOI: 10.1016/j.jep.2024.118492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Simiao Pills, a classical traditional Chinese medicine prescription recorded in Cheng Fang Bian Du, has been traditionally used to treat hyperuricemia due to its heat-clearing and diuretic properties. Studies have shown that Simiao Pills effectively reduce uric acid levels. However, further research is needed to elucidate the precise composition of Simiao Pills for treating hyperuricemia and their potential pharmacological mechanism. AIM OF THE STUDY This study aimed to investigate the therapeutic effects of Simiao Pills on hyperuricemia, with a particular focus on evaluating their protective role against hyperuricemia-induced renal injury and elucidating the underlying mechanism of action. MATERIALS AND METHODS UPLC-MS/MS was used to identify the components of Simiao Pills. The hyperuricemia model mice were established by intraperitoneal injecting potassium oxonate (PO) and oral administrating hypoxanthine (HX). Network pharmacology, transcriptome, and metabolomics analyses were integrated to explore the mechanism of Simiao Pills in reducing uric acid and protecting the kidney. Mechanistic and functional studies were conducted to validate the potential mechanisms. RESULTS Simiao Pills were found to contain 12 characteristic components. Treatment with Simiao Pills significantly reduced serum uric acid levels and ameliorated hyperuricemia-induced renal injury. Simiao Pills inhibited the enzymatic activities of XOD and XDH, and regulated the uric acid transporters in the kidney and ileum. Transcriptome and network pharmacology analyses highlighted quercetin, berberine, kaempferol, and baicalein as the principal active components of Simiao Pills acting on the kidney during hyperuricemia treatment, primarily impacting fibrosis, apoptosis, and inflammation-related signaling pathways. Metabolomic analysis unveiled 21 differential metabolites and 5 metabolic pathways associated with Simiao Pills against renal injury associated with hyperuricemia. Further experimental results validated that Simiao Pills reduced renal fibrosis, apoptotic renal cells, serum inflammation levels, and inhibited the NF-κB/NLRP3/IL-1β signaling pathway. CONCLUSION This study demonstrated that Simiao Pills significantly reduced serum uric acid levels and improved renal injury by regulating inflammation, apoptosis, and renal fibrosis. These findings have provided a robust scientific pharmacological basis for the use of Simiao Pills in treating hyperuricemia patients.
Collapse
Affiliation(s)
- Liying Zeng
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yijian Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xinghong Zhou
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, 523000, China
| | - Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Baizhao Peng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hanqi Lu
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, 523000, China
| | - Qiuxing He
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, 523000, China
| | - Jianlu Bi
- Department of Endocrinology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong, 510095, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, China
| | - Lin Zhou
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China.
| | - Xiaoshan Zhao
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
4
|
Yu X, Zhang D, Hu C, Yu Z, Li Y, Fang C, Qiu Y, Mei Z, Xu L. Combination of Diosmetin With Chrysin Against Hepatocellular Carcinoma Through Inhibiting PI3K/AKT/mTOR/NF-кB Signaling Pathway: TCGA Analysis, Molecular Docking, Molecular Dynamics, In Vitro Experiment. Chem Biol Drug Des 2024; 104:e70003. [PMID: 39448547 DOI: 10.1111/cbdd.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most prevalent malignant tumor. Hepatocellular carcinogenesis is closely linked to apoptosis, autophagy, and inflammation. Diosmetin and chrysin, are two flavonoid compounds, exhibit anti-inflammatory and anticancer properties. In this study, the TCGA database was utilized to identify differentially expressed genes between normal subjects and HCC patients. Molecular docking and molecular dynamics analyses were employed to assess the binding affinity of chrysin and diosmetin to key proteins in the PI3K/AKT/mTOR/NF-κB signaling pathway. Western blotting and RT-qPCR were used to measure the protein and gene expression within this pathway. The results indicated that HCC patients had elevated levels of PI3K, AKT, mTOR, and P65 proteins compared to normal subjects, which adversely affected patient survival. Molecular docking and dynamics studies demonstrated that diosmetin and chrysin are effectively bound to these four proteins. In vitro experiments revealed that the combination of diosmetin and chrysin could induce apoptosis, enhance autophagy, reduce inflammatory mediator production, and improve the tumor cell microenvironment by inhibiting the PI3K/AKT/mTOR/NF-κB signaling pathway. Notably, the synergy score for the combination of diosmetin (25 μM) and chrysin (10 μM) was 16. Thus, the diosmetin-chrysin combination shows promise as an effective therapeutic approach for hepatocellular carcinoma due to its strong synergistic effect.
Collapse
Affiliation(s)
- Xiang Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Di Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Chengming Hu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Zejun Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yang Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Cheng Fang
- College of Medicine and Health, Wuhan Polytechnic University, Wuhan, China
| | - Yinsheng Qiu
- School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhinan Mei
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Lingyun Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
5
|
Dong Y, Shao E, Li S, Wang R, Wang D, Wang L, Yang H, He Y, Luan T, Chen Y, Wang Y, Lin L, Wang Y, Zhong Z, Zhao W. Baicalein suppresses Coxsackievirus B3 replication by inhibiting caspase-1 and viral protease 2A. Virol Sin 2024; 39:685-693. [PMID: 39025463 PMCID: PMC11401470 DOI: 10.1016/j.virs.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
Myocarditis is an inflammatory disease of the cardiac muscle and one of the primary causes of dilated cardiomyopathy. Group B coxsackievirus (CVB) is one of the leading causative pathogens of viral myocarditis, which primarily affects children and young adults. Due to the lack of vaccines, the development of antiviral medicines is crucial to controlling CVB infection and the progression of myocarditis. In this study, we investigated the antiviral effect of baicalein, a flavonoid extracted from Scutellaria baicaleinsis. Our results demonstrated that baicalein treatment significantly reduced cytopathic effect and increased cell viability in CVB3-infected cells. In addition, significant reductions in viral protein 3D, viral RNA, and viral particles were observed in CVB3-infected cells treated with baicalein. We found that baicalein exerted its inhibitory effect in the early stages of CVB3 infection. Baicalein also suppressed viral replication in the myocardium and effectively alleviated myocarditis induced by CVB3 infection. Our study revealed that baicalein exerts its antiviral effect by inhibiting the activity of caspase-1 and viral protease 2A. Taken together, our findings demonstrate that baicalein has antiviral activity against CVB3 infection and may serve as a potential therapeutic option for the myocarditis caused by enterovirus infection.
Collapse
Affiliation(s)
- Yanyan Dong
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Enze Shao
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Siwei Li
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Ruiqi Wang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Dan Wang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Lixin Wang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Hong Yang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Yingxia He
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Tian Luan
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Yao Wang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Lexun Lin
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China.
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
6
|
Du H, Li Z, Su L, He Z, Tan X, Hou F, He T, Pan Y, Xu S, Cao L, Dong S, Ma Y. Synthesis, characterization, and mechanistic insights into the enhanced anti-inflammatory activity of baicalin butyl ester via the PI3K-AKT pathway. Front Pharmacol 2024; 15:1417372. [PMID: 39104394 PMCID: PMC11298432 DOI: 10.3389/fphar.2024.1417372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Objective To investigate the anti-inflammatory activity and mechanism of Baicalin derivative (Baicalin butyl ester, BE). Methods BE was synthesized and identified using UV-Vis spectroscopy, FT-IR spectroscopy, mass spectrometry (MS) and high-performance liquid chromatography (HPLC) methods. Its anti-inflammatory potential was explored by an in vitro inflammation model. Network pharmacology was employed to predict the anti-inflammatory targets of BE, construct protein-protein interaction (PPI) networks, and analysis topological features and KEGG pathway enrichment. Additionally, molecular docking was conducted to evaluate the binding affinity between BE and its core targets. qRT-PCR analysis was conducted to validate the network pharmacology results. The organizational efficiency was further evaluated through octanol-water partition coefficient and transmembrane activity analysis. Results UV-Vis, FT-IR, MS, and HPLC analyses confirmed the successfully synthesis of BE with a high purity of 93.75%. In vitro anti-inflammatory research showed that BE could more effectively suppress the expression of NO, COX-2, IL-6, IL-1β, and iNOS. Network pharmacology and in vitro experiments validated that BE's anti-inflammatory effects was mediated through the suppression of SRC, HSP90AA1, PIK3CA, JAK2, AKT1, and NF-κB via PI3K-AKT pathway. Molecular docking results revealed that the binding affinities of BA to the core targets were lower than those of BE. The Log p-value of BE (1.7) was markedly higher than that of BA (-0.5). Furthermore, BE accumulated in cells at a level approximately 200 times greater than BA. Conclusion BE exhibits stronger anti-inflammatory activity relative to BA, possibly attributed to its better lipid solubility and cellular penetration capabilities. The anti-inflammatory mechanism of BE may be mediated through the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Hongxu Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Zhangxun Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lijuan Su
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zhengke He
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoyan Tan
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Fengzhi Hou
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Tanjie He
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Pan
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Shuang Xu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Shiqi Dong
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yue Ma
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Yang Z, Lyu B, Ma B, Gao Y, Qin D. Screening of the effective sites of Cichorium glandulosum against hyperuricemia combined with hyperlipidemia and its network pharmacology analysis. Comput Biol Chem 2024; 110:108088. [PMID: 38685167 DOI: 10.1016/j.compbiolchem.2024.108088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Cichorium glandulosum, a common traditional Chinese medicine used by Uyghur and Mongolian ethnic groups, is recognized for its potential to ameliorate metabolic disorders. However, the specific efficacy and mechanisms of Cichorium glandulosum in treating the comorbidity of hyperuricaemia and hyperlipidaemia remain unexplored. This study aims to explore the pharmacological effects and mechanisms of Cichorium glandulosum on this comorbidity through a combination of animal experiments, network pharmacology, and molecular docking techniques. A rat model of hyperuricaemia combined with hyperlipidaemia was established through a high-fat and high-purine diet, and the effective parts of the aqueous extract of Cichorium glandulosum to reduce uric acid and lipid levels were screened and the components of the parts were analysed by LC-MS/MS. The active components, core targets, and key pathways were analysed using network pharmacology and validated by molecular docking. Animal experimental results indicated that the n-butanol extract of Cichorium glandulosum showed a significant therapeutic effect on this comorbidity. Analysis of the n-butanol extract yielded 35 active ingredients and 138 intersecting targets related to diseases. Key targets identified through compound-target-pathway (C-T-P) and Protein-Protein Interaction (PPI) analyses included RELA, CASP3, PTGS2, TNF, and ESR1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed 2515 functional items and 164 pathways, respectively. Molecular docking demonstrated that isochlorogenic acid A, baicalin, chicoric acid, and lactucopicrin showed the highest binding affinity to RELA and PTGS2. The n-butanol fraction from the aqueous extract of Cichorium glandulosum was found to reduce uric acid and lipid levels effectively. In summary, Cichorium glandulosum has a therapeutic effect on hyperuricaemia combined with hyperlipidaemia through its multi-component, multi-target, and multi-pathway characteristics.
Collapse
Affiliation(s)
- Zhiguo Yang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Bo Lyu
- The First Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Bin Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Yuefeng Gao
- College of Applied Engineering, Henan University of Science and Technology, Sanmenxia, Henan 472000, China
| | - Dongmei Qin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, China.
| |
Collapse
|
8
|
Wang Y, Liu M, Li J, Jiang P, Han D, Zhang H, Xu L, Qiu Y. Preparing a novel baicalin-loaded microemulsion-based gel for transdermal delivery and testing its anti-gout effect. Saudi Pharm J 2024; 32:102100. [PMID: 38812945 PMCID: PMC11135029 DOI: 10.1016/j.jsps.2024.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024] Open
Abstract
We previously demonstrated that baicalin had efficacy against gouty arthritis (GA) by oral administration. In this paper, a novel baicalin-loaded microemulsion-based gel (B-MEG) was prepared and assessed for the transdermal delivery of baicalin against GA. The preparation method and transdermal capability of B-MEG was screened and optimized using the central composite design, Franz diffusion cell experiments, and the split-split plot design. Skin irritation tests were performed in guinea pigs. The anti-gout effects were evaluated using mice. The optimized B-MEG comprised of 50 % pH 7.4 phosphate buffered saline, 4.48 % ethyl oleate, 31.64 % tween 80, 13.88 % glycerin, 2 % borneol, 0.5 % clove oil and 0.5 % xanthan gum, with a baicalin content of (10.42 ± 0.08) mg/g and particle size of (15.71 ± 0.41) nm. After 12 h, the cumulative amount of baicalin permeated from B-MEG was (672.14 ± 44.11) μg·cm-2. No significant skin irritation was observed following B-MEG application. Compared to the model group, B-MEG groups significantly decreased the rate of auricular swelling (P < 0.01) and number of twists observed in mice (P < 0.01); and also reduced the rate of paw swelling (P < 0.01) and inflammatory cell infiltration in a mouse model of GA. In conclusion, B-MEG represents a promising transdermal carrier for baicalin delivery and can be used as a potential therapy for GA.
Collapse
Affiliation(s)
- Yingzhou Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingxue Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peipei Jiang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Di Han
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongling Zhang
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lingyun Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yinsheng Qiu
- School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
9
|
Li X, Li B, Meng X, Yu F, Yu X, Zhao W, Wang Y, Gao H, Cheng M, Zhong L. Integrating Network Pharmacology and Experimental Validation to Reveal the Mechanism of Vine Grape Tea Polyphenols on Hyperuricemia-Induced Renal Injury in Mice. J Med Food 2024; 27:312-329. [PMID: 38377550 DOI: 10.1089/jmf.2023.k.0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Hyperuricemia (HUA) is a metabolic disease and contributes to renal injury (RI). Vine grape tea polyphenols (VGTP) have been widely used to treat HUA and RI. However, the potential mechanism of VGTP activity remains unclear. To explore the underlying mechanism of VGTP treatment for HUA-induced RI based on network pharmacology that is confirmed by an in vivo study. All ingredients of VGTP were retrieved using a Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and Comparative Toxicogenomics Database systems. The related targets of HUA and RI were obtained from GeneCards and National Center for Biotechnology Information (NCBI) databases. Some ingredients and targets were selected for molecular docking verification. One hour after administering potassium oxonate (300 mg/kg), VGTP (50, 100, and 200 mg/kg/d) was orally administered to HUA mice for 4 weeks. Histopathology and western blotting were performed in renal tissue. Our results showed that VGTP significantly reduced blood urea nitrogen, creatinine, uric acid, and significantly improved the RI and fibrosis of HUA mice. There were 54 active ingredients and 62 targets of HUA-induced RI. Further studies showed that VGTP decreased the expression of Bax, cleaved caspase 3, transforming growth factor-β (TGF-β1), CHOP, p-STAT3, and P53, and increased Bcl-2 expression in renal tissue. The related signaling pathways have apoptosis, TGF-β1, P53 and STAT, and endoplasmic reticulum stress (ERS). In this study, VGTP exerted antihyperuricemic and anti fibrosis effects by regulating the apoptosis and ERS signaling pathways. VGTP is expected to become a drug for combating HUA and RI.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Health Management Center (East Area), Qilu Hospital of Shandong University, Jinan, China
| | - Xinyue Meng
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Yu
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Yu
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Wenqian Zhao
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yajuan Wang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Haiqing Gao
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Cheng
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lihong Zhong
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
10
|
Javali PS, Thirumurugan K. Embelin targets PI3K/AKT and MAPK in age-related ulcerative colitis: an integrated approach of microarray analysis, network pharmacology, molecular docking, and molecular dynamics. J Biomol Struct Dyn 2023; 42:10114-10128. [PMID: 37691456 DOI: 10.1080/07391102.2023.2255674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Vaibhdang, an Ayurvedic treatment for Crohn's and UC, has been used for centuries. The main component of Vaibhdang is embelin derived from Embelia ribes. However, the pharmacological and molecular mechanisms of embelin in UC remain unclear. This study investigated the molecular targets and mechanisms of action of embelin in UC using microarray analysis, network pharmacology, molecular docking, and molecular dynamics simulations. Embelin targets were obtained by Swiss Target, TargetNet, STITCH, ChEMBL, and TCMSP. Ulcerative colitis targets were mapped using DisGenNET, Genecards, TCMSP, Therapeutic targets, and GEO databases (GSE87466). Co-targets between ulcerative colitis and embelin were identified, and a PPI network was constructed using the STRING database. To identify the core targets, we used Cytoscape to analyze the topology of the PPI network. There were 545 effective Embelin targets and 5171 effective ulcerative colitis targets, including 1470 DEG targets. ShinyGo and AutoDock were used to analyze GO and KEGG enrichment pathways and docking studies, respectively. Venn diagram analysis revealed 327 core targets of embelin in UC. An enrichment study showed that embelin is involved in PI3K-AKT, MAPK, RAS, and chemokine signalling. The top ten core targets docked with embelin and AKT1, MAPK1, and SRC complexes were utilized as representations and simulated using GROMACS for 100 ns. A comparison of native proteins and their complex interactions with embelin revealed that embelin might act on various PI3K/AKT and MAPK targets to treat ulcerative colitis. This study provides insights into the molecular targets and mechanisms of action of embelin against ulcerative colitis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prashanth S Javali
- Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
11
|
Zhao L, Zhang H, Li N, Chen J, Xu H, Wang Y, Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116306. [PMID: 36858276 DOI: 10.1016/j.jep.2023.116306] [Citation(s) in RCA: 235] [Impact Index Per Article: 117.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Network pharmacology is a new discipline based on systems biology theory, biological system network analysis, and multi-target drug molecule design specific signal node selection. The mechanism of action of TCM formula has the characteristics of multiple targets and levels. The mechanism is similar to the integrity, systematization and comprehensiveness of network pharmacology, so network pharmacology is suitable for the study of the pharmacological mechanism of Chinese medicine compounds. AIM OF THE STUDY The paper summarizes the present application status and existing problems of network pharmacology in the field of Chinese medicine formula, and formulates the research ideas, up-to-date key technology and application method and strategy of network pharmacology. Its purpose is to provide guidance and reference for using network pharmacology to reveal the modern scientific connotation of Chinese medicine. MATERIALS AND METHODS Literatures in this review were searched in PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, ScienceDirect and Google Scholar using the keywords "traditional Chinese medicine", "Chinese herb medicine" and "network pharmacology". The literature cited in this review dates from 2002 to 2022. RESULTS Using network pharmacology methods to predict the basis and mechanism of pharmacodynamic substances of traditional Chinese medicines has become a trend. CONCLUSION Network pharmacology is a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.
Collapse
Affiliation(s)
- Li Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hong Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jinman Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
12
|
Song J, Chen M, Meng F, Chen J, Wang Z, Zhang Y, Cui J, Wang J, Shi D. Studies on the interaction mechanism between xanthine oxidase and osmundacetone: Molecular docking, multi-spectroscopy and dynamical simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122861. [PMID: 37209475 DOI: 10.1016/j.saa.2023.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/01/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Xanthine oxidase (XO) is a key enzyme in uric acid production, and its molybdopterin (Mo-Pt) domain is an important catalytic center when xanthine and hypoxanthine are oxidated. It is found that the extract of Inonotus obliquus has an inhibitory effect on XO. In this study, five key chemical compounds were initially identified using liquid chromatography-mass spectrometry (LC-MS), and two compounds, osmundacetone ((3E)-4-(3,4-dihydroxyphenyl)-3-buten-2-one) and protocatechuic aldehyde (3,4-dihydroxybenzaldehyde), were screened as the XO inhibitors by ultrafiltration technology. Osmundacetone bound XO strongly and competitively inhibited XO with a half-maximal inhibitory concentration of 129.08 ± 1.71 μM, and its inhibition mechanism, was investigated. Osmundacetone and XO via static quenching and spontaneously bound with XO with high affinity, primarily via hydrophobic interactions and hydrogen bonds. Molecular docking studies showed that osmundacetone was inserted into the Mo-Pt center and interacted with hydrophobic residues of Phe911, Gly913, Phe914, Ser1008, Phe1009, Thr1010, Val1011, and Ala1079 of XO. In summary, these findings suggest that provide theoretical basis for the research and development of XO inhibitors from Inonotus obliquus.
Collapse
Affiliation(s)
- Jiling Song
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Minghui Chen
- The College of Life Science, Changchun Normal University, Changchun 130032, China
| | - Fanlei Meng
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jiahui Chen
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Zhanwei Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yong Zhang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China; Nanguan Middle School, Honghua Gang District, Zunyi 563000, China
| | - Jing Cui
- The College of Life Science, Changchun Normal University, Changchun 130032, China; Institute of Science and Technology Innovation, Changchun Normal University, Changchun 130032, China
| | - Jing Wang
- The College of Chemistry, Changchun Normal University, Changchun 130032, China; The College of Life Science, Changchun Normal University, Changchun 130032, China; Institute of Science and Technology Innovation, Changchun Normal University, Changchun 130032, China.
| | - Dongfang Shi
- The College of Life Science, Changchun Normal University, Changchun 130032, China; Institute of Science and Technology Innovation, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
13
|
Lin X, Zhou Q, Zhou L, Sun Y, Han X, Cheng X, Wu M, Lv W, Wang J, Zhao W. Quinoa ( Chenopodium quinoa Willd) Bran Saponins Alleviate Hyperuricemia and Inhibit Renal Injury by Regulating the PI3K/AKT/NFκB Signaling Pathway and Uric Acid Transport. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6635-6649. [PMID: 37083411 DOI: 10.1021/acs.jafc.3c00088] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Triterpenoids derived from natural products can exert antihyperuricemic effects. Here, we investigated the antihyperuricemic activity and mechanism of quinoa bran saponins (QBSs) in hyperuricemic mouse and cell models. The QBS4 fraction, with the highest saponin content, was used. Fourier-transform infrared, high-performance liquid chromatography, and ultrahigh-performance liquid chromatography-mass spectrometry identified 11 individual saponins in QBS4, of which the main components were hederagenin and oleanolic acid. The QBS4 effects on hyperuricemic mice (induced by adenine and potassium oxonate) were then studied. QBS4 reduced the levels of uric acid (UA), serum urea nitrogen, creatinine, and lipids in mice with hyperuricemia (HUA) and decreased renal inflammation and renal damage. Molecular analysis revealed that QBS4 may alleviate HUA by regulating the expression of key genes involved in the transport of UA and by inhibiting the activation of the PI3K/AKT/NFκB inflammatory signaling pathway. In conclusion, QBS4 has promise for using as a natural dietary supplement to treat and prevent HUA.
Collapse
Affiliation(s)
- Xuan Lin
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Qian Zhou
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Liangfu Zhou
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yasai Sun
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Xue Han
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Xinlong Cheng
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Mengying Wu
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Wei Lv
- National Engineering Research Center for Semi-arid Agriculture, Shijiazhuang 050000, Hebei Province, China
| | - Jie Wang
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Wen Zhao
- Department of Nutrition and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
14
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
15
|
Tang GY, Li S, Xu Y, Zhang C, Xu XY, Xu L, Wang N, Feng Y. Renal herb formula protects against hyperuricemic nephropathy by inhibiting apoptosis and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154812. [PMID: 37167821 DOI: 10.1016/j.phymed.2023.154812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/27/2023] [Accepted: 04/08/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Hyperuricemic nephropathy may be induced by the elevation and accumulation of uric acid in kidney after hyperuricemia, which leads to kidney residential cells apoptosis and inflammation. Renal herb formula (RHF) is a self-designed formula based on traditional Chinese medicine theory and clinical practice in kidney disease treatment. In the literature available currently, there is not yet research article reporting the reno-protective effect of RHF against hyperuricemic nephropathy. PURPOSE This study was performed to analyze the bioactive compound profiles of RHF, evaluate its protective effects against hyperuricemic nephropathy, and investigate the mechanisms of actions regarding apoptosis and inflammation. METHODS Ultra-performance liquid chromatography with a diode-array detector was applied to establish fingerprint and chemical composition of RHF. Potassium oxonate was used to induce hyperuricemic nephropathy in mice, and uric acid was used to stimulate apoptosis and inflammatory response in HK-2 cells, while the mice and cells were treated with RHF to explore its reno-protective effects and mechanisms. RESULTS It was found that chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A-C may be the characteristic components of RHF. RHF treatment could improve kidney functions in mice with hyperuricemic nephropathies, such as decreasing urine protein, uric acid, and creatinine and serum uric acid, creatinine, and urea nitrogen. Histopathological observations showed that RHF treatment ameliorated kidney glomerular hypotrophy, tubular damage, and inflammatory infiltration. Mechanism studies revealed that RHF inhibited kidney residential cell apoptosis and inflammatory response by targeting the p53-associated intrinsic apoptosis pathway and NF-κB-mediated inflammatory pathway. CONCLUSION Taken together, it could be concluded that RHF exerted reno-protective effects against hyperuricemic nephropathy through reducing apoptosis and inflammation. RHF and the bioactive compounds chlorogenic acid analogs as promising candidates may be developed into novel and effective drugs for hyperuricemic nephropathy treatment and management.
Collapse
Affiliation(s)
- Guo-Yi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China
| | - Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China
| | - Xiao-Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China
| | - Lin Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong S.A.R., P.R. China.
| |
Collapse
|
16
|
Liu P, Ma G, Wang Y, Wang L, Li P. Therapeutic effects of traditional Chinese medicine on gouty nephropathy: Based on NF-κB signalingpathways. Biomed Pharmacother 2023; 158:114199. [PMID: 36916428 DOI: 10.1016/j.biopha.2022.114199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
As the final product of purine metabolism, excess serum uric acid (SUA) aggravates the process of some metabolic diseases. SUA causes renal tubule damage, interstitial fibrosis, and glomerular hardening, leading to gouty nephropathy (GN). A growing number of investigations have shown that NF-κB mediated inflammation and oxidative stress have been directly involved in the pathogenesis of GN. Traditional Chinese medicine's treatment methods of GN have amassed a wealth of treatment experience. In this review, we first describe the mechanism of NF-κB signaling pathways in GN. Subsequently, we highlight traditional Chinese medicine that can treat GN through NF-κB pathways. Finally, commenting on promising candidate targets of herbal medicine for GN treatment via suppressing NF-κB signaling pathways was summarized.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Station East 5, Shunyi District, Beijing 101300, China
| | - Guijie Ma
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yang Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
17
|
Lactic acid bacteria with anti-hyperuricemia ability: Screening in vitro and evaluating in mice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Baicalein Induces Apoptosis of Rheumatoid Arthritis Synovial Fibroblasts through Inactivation of the PI3K/Akt/mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3643265. [PMID: 36118088 PMCID: PMC9473868 DOI: 10.1155/2022/3643265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
Abstract
Purpose Rheumatoid arthritis (RA) shows abnormal proliferation, apoptosis, and invasion in fibroblast-like synoviocytes (FLSs). Baicalein (BAI), extracted from Scutellaria baicalensis, is used as an anticancer drug through inducing cancer cells apoptosis. However, the mechanism of BAI in RA progression still remains unknown. Here, we demonstrated that BAI inhibited FLS proliferation and migration, whereas it enhanced apoptosis via the PI3K/Akt/mTOR pathway in vitro. Methods Cell viability and colony formation were analyzed by MTT and plate colony formation assays in SW982 cells, respectively. Apoptosis was detected by flow cytometry and western blotting. Epithelial-mesenchymal transition (EMT), MMP family proteins (MMP2/9), and the PI3K/Akt/mTOR pathway were detected by western blot. Cell migration was detected by scratch healing assay under BAI treatment in SW982 cells. Results BAI dose-dependently inhibited cell viability and colony forming in SW982 cells. BAI upregulated apoptotic proteins and downregulated EMT-related proteins, resulting in enhanced cell apoptosis and inhibited cell migration in SW982 cells. BAI also dose-dependently inhibited the phosphorylation of PI3K, Akt, and mTOR. Conclusions These results indicated that BAI inhibited FLSs proliferation and EMT, whereas induced cell apoptosis through blocking the PI3K/Akt/mTOR pathway, supporting clinical application for RA progression.
Collapse
|
19
|
Wang T, Fan L, Feng S, Ding X, An X, Chen J, Wang M, Zhai X, Li Y. Network pharmacology of iridoid glycosides from Eucommia ulmoides Oliver against osteoporosis. Sci Rep 2022; 12:7430. [PMID: 35523810 PMCID: PMC9076851 DOI: 10.1038/s41598-022-10769-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Eucommia ulmoides Oliver is one of the commonly used traditional Chinese medicines for the treatment of osteoporosis, and iridoid glycosides are considered to be its active ingredients against osteoporosis. This study aims to clarify the chemical components and molecular mechanism of iridoid glycosides of Eucommia ulmoides Oliver in the treatment of osteoporosis by integrating network pharmacology and molecular simulations. The active iridoid glycosides and their potential targets were retrieved from text mining as well as Swiss Target Prediction, TargetNet database, and STITCH databases. At the same time, DisGeNET, GeneCards, and Therapeutic Target Database were used to search for the targets associated with osteoporosis. A protein–protein interaction network was built to analyze the interactions between targets. Then, DAVID bioinformatics resources and R 3.6.3 project were used to carry out Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Moreover, interactions between active compounds and potential targets were investigated through molecular docking, molecular dynamic simulation, and binding free energy analysis. The results showed that a total of 12 iridoid glycosides were identified as the active iridoid glycosides of Eucommia ulmoides Oliver in the treatment of osteoporosis. Among them, aucubin, reptoside, geniposide and ajugoside were the core compounds. The enrichment analysis suggested iridoid glycosides of Eucommia ulmoides Oliver prevented osteoporosis mainly through PI3K-Akt signaling pathway, MAPK signaling pathway and Estrogen signaling pathway. Molecular docking results indicated that the 12 iridoid glycosides had good binding ability with 25 hub target proteins, which played a critical role in the treatment of osteoporosis. Molecular dynamic and molecular mechanics Poisson–Boltzmann surface area results revealed these compounds showed stable binding to the active sites of the target proteins during the simulations. In conclusion, our research demonstrated that iridoid glycosides of Eucommia ulmoides Oliver in the treatment of osteoporosis involved a multi-component, multi-target and multi-pathway mechanism, which provided new suggestions and theoretical support for treating osteoporosis.
Collapse
Affiliation(s)
- Ting Wang
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Liming Fan
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shuai Feng
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinli Ding
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinxin An
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jiahuan Chen
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Minjuan Wang
- Physical and Chemical Laboratory, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, 710054, China
| | - Xifeng Zhai
- School of Pharmaceutical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Yang Li
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
20
|
Feng S, Wu S, Xie F, Yang CS, Shao P. Natural compounds lower uric acid levels and hyperuricemia: Molecular mechanisms and prospective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Xu T, Wang X, Ma C, Ji J, Xu W, Shao Q, Liao X, Li Y, Cheng F, Wang Q. Identification of potential regulating effect of baicalin on NFκB/CCL2/CCR2 signaling pathway in rats with cerebral ischemia by antibody-based array and bioinformatics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114773. [PMID: 34699947 DOI: 10.1016/j.jep.2021.114773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baicalin is one of the major bioactive compounds extracted from the root of Scutellaria baicalensis Georgi, which was used to treat cerebral ischemia for thounds of years. However, its biological mechanisms remains to be further explored. AIM OF THE REVIEW This study aims to identify potential biological mechanisms of baicalin against cerebral ischemia combining antibody-based array and bioinformatics analysis. METHODS A rat model of middle cerebral artery occlusion (MCAO) was constructed. Sprague-Dawley rats were randomly divided into three groups: control group, ischemic model group, and baicalin 100 mg/kg treatment group respectively. Bederson score and 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining were examined to evaluate the pharmacodynamics of baicalin treatment. Antibody-based array technology, enzyme linked immunosorbent assay (ELISA), western-blot, molecular docking, transcription factor perdiction, hematoxylin and eosin (H&E), and immunofluorescence staining were used to study the regulation of baicalin on inflammatory response after cerebral ischemia in vivo. LPS-induced RAW 264.7 macrophage inflammation model was prepared to observe the anti-inflammatory effect of baicalin in vitro. RESULTS Baicalin (100 mg/kg) reduced neurological injury score, cerebral infarction volume, and necrotic cells in MCAO rats. Baicalin inhibited the expression of CCL2, and reduced the phosphorylation levels of p65, IκBα protein and down-regulated level of CCR2. Besides, baicalin could bond to CCR2 directly, which prevented CCL2 from binding to CCR2. Furthermore, baicalin down-regulated the number of monocytes in the peripheral blood and improved the spleen index post-cerebral ischemia. In vitro, baicalin significantly inhibited the secretion of NO, IL6, TNFα, and CCL2 in macrophages and promoted the secretion of IL13, IFNG, and IL1a. CONCLUSIONS Baicalin inhibited cerebral ischemia-induced activation of the NFκB/CCL2/CCR2 pathway with multiple target effect. These data promote the therapeutic utilization of baicalin in preventing cerebral ischemia clinically.
Collapse
Affiliation(s)
- Tian Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Chongyang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Wenxiu Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Qi Shao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Xuejing Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Ying Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
22
|
Yi N, Mi Y, Xu X, Li N, Zeng F, Yan K, Tan K, Kuang G, Lu M. Baicalein Alleviates Osteoarthritis Progression in Mice by Protecting Subchondral Bone and Suppressing Chondrocyte Apoptosis Based on Network Pharmacology. Front Pharmacol 2022; 12:788392. [PMID: 35082670 PMCID: PMC8784526 DOI: 10.3389/fphar.2021.788392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022] Open
Abstract
As life expectancy increases, Osteoarthritis (OA) is becoming a more frequently seen chronic joint disease. The main characteristics of OA are loss of articular cartilage, subchondral bone sclerosis, and synovial inflammation. Baicalein (Bai), a traditional Chinese medicine extracted from Scutellaria baicalensis Georgi, has been demonstrated to exert notable anti-inflammatory effects in previous studies, suggesting its potential effect in the treatment of OA. In this study, we first predicted the action targets of Bai, mapped target genes related to OA, identified potential anti-OA targets for Bai, performed gene ontology (GO) enrichment, and KEGG signaling pathway analyses of the action targets, and analyzed the molecular docking of key Bai targets. Additionally, the effect and potential mechanism of Bai against OA were verified in mouse knee OA models induced by destabilized medial meniscus (DMM) surgery. GO and KEGG analyses showed that 19 anti-OA targets were mainly involved in the response to oxidative stress, the response to hypoxia and apoptosis, and the PI3K-Akt and p53 signaling pathways. Molecular docking results indicated that BAX, BCL 2, and Caspase 3 enriched in the apoptotic signaling pathway have high binding affinity with Bai. Validation experiments showed that Bai can significantly attenuate the loss of articular cartilage (OARSI score), suppress synovial inflammation (synovitis score), and ameliorate subchondral bone resorption measured by micro-CT. In addition, Bai notably inhibited the expression of apoptosis-related proteins in articular cartilage (BAX, BCL 2, and Caspase 3). By combining network pharmacology with experimental validation, our study identifies and verifies the importance of the apoptotic signaling pathway in the treatment of OA by Bai. Bai may have promising application and potential therapeutic value in OA treatment.
Collapse
Affiliation(s)
- Nanxing Yi
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.,Hunan University of Chinese Medicine, Changsha, China
| | - Yilin Mi
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.,Hunan University of Chinese Medicine, Changsha, China
| | - Xiaotong Xu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.,Hunan University of Chinese Medicine, Changsha, China
| | - Naping Li
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.,Hunan University of Chinese Medicine, Changsha, China
| | - Fan Zeng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China.,Hunan University of Chinese Medicine, Changsha, China
| | - Ke Yan
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Kaiyun Tan
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Gaoyan Kuang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Min Lu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
23
|
Qi G, Jiang K, Qu J, Zhang A, Xu Z, Li Z, Zheng X, Li Z. The Material Basis and Mechanism of Xuefu Zhuyu Decoction in Treating Stable Angina Pectoris and Unstable Angina Pectoris. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3741027. [PMID: 35140797 PMCID: PMC8820872 DOI: 10.1155/2022/3741027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
METHODS Firstly, we used a network proximity approach to calculate and compare the effectiveness of the formula with that of Western drugs for each type of angina, including all targets and intersecting targets, from a topological perspective. Secondly, we compared the mechanisms of action of the two angina pectoris at three levels and five aspects, including conventional and modular analysis approaches. Thirdly, based on the unique functions of each angina in the complex heterogeneous network, we designed a reverse process for finding the material basis using dynamic, static, and enriched items as well as a total item. Finally, the designed inverse process, material basis, and mechanism of action were validated. RESULTS The target network of Xuefu Zhuyu decoction is closer to the target network of each type of angina than that of Western drugs, and the intersection targets have a closer proximity. Comparison of the mechanisms of action showed that stable angina and unstable angina had 158 common targets, while the unique targets were 34 and 1, respectively. Modularity analysis showed that the GO similarity of target modules was highly correlated with KEGG similarity. We ended up with 67 compounds upregulated for stable angina and 47 compounds upregulated for unstable angina. Our results were validated by literature mining, high-volume molecular docking, and miRNA enrichment analysis. CONCLUSIONS For both types of angina pectoris, Xuefu Zhuyu decoction is superior to Western drugs. A comparison of various aspects led to the unique mechanisms of action, from which the material basis of each type of angina was deduced.
Collapse
Affiliation(s)
- Guanpeng Qi
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Kaiwen Jiang
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiaming Qu
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Aijun Zhang
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ze Xu
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhaohang Li
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaosong Zheng
- 2School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Zuojing Li
- 2School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|