1
|
Sarmiento-Ortega VE, Alcántara-Jara DI, Moroni-González D, Diaz A, Vázquez-Roque RA, Brambila E, Treviño S. Chronic cadmium exposure to minimal-risk doses causes dysfunction of epididymal adipose tissue and metabolic disorders. Toxicol Appl Pharmacol 2024; 495:117203. [PMID: 39701214 DOI: 10.1016/j.taap.2024.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Cadmium (Cd) is among the top seven most hazardous environmental contaminants. Minimal risk levels for daily exposure have been established, such as no observable adverse effect level (NOAEL) and lowest observable adverse effect level (LOAEL). Chronic exposure to Cd, at both NOAEL and LOAEL doses, causes toxicity in diverse tissues. However, Cd toxicity in adipose tissue, an endocrine and metabolic organ, remains relatively understudied. We aimed to investigate the potentially toxic effects of chronic Cd exposure (at NOAEL and LOAEL doses) on epidydimal adipose tissue of adult male Wistar rats. Ninety male Wistar rats were divided into three groups (n = 30): Control Cd-free, NOAEL, and LOAEL that received CdCl2 in drinking water for 15 days to 5 months. We evaluated over time zoometry, serum and adipose Cd concentration, redox balance, GLUT4 and Nrf2 expression, histology, leptin, adiponectin, adipose insulin resistance index, free fatty acids, and glucose tolerance. The higher dose group showed a more pronounced and sustained increase in serum and adipose tissue of Cd concentration. Zoometry was similarly affected in both Cd-exposed groups with adipocyte hypertrophy. The redox balance was maintained due to the augmenting of Nrf2 expression. Leptin concentration augmented, while adiponectin diminished. Adipose insulin resistance increased simultaneously to lipolysis and glucose intolerance despite high GLUT4 expression. In conclusion, this study provides strong evidence that chronic Cd exposure, even at minimal risk levels (LOAEL and NOAEL doses), has toxic effects, disrupting the function of epididymal adipose tissue and contributing to metabolic disorders.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Metabolomic and Chronic Degenerative Diseases, Physiology Institute, Meritorious Autonomous University of Puebla. Prol. de la 14 Sur 6301, Ciudad Universitaria, Puebla C.P. 72560, Mexico
| | - Daniel Issac Alcántara-Jara
- Laboratory of Metabolomic and Chronic Degenerative Diseases, Physiology Institute, Meritorious Autonomous University of Puebla. Prol. de la 14 Sur 6301, Ciudad Universitaria, Puebla C.P. 72560, Mexico
| | - Diana Moroni-González
- Laboratory of Metabolomic and Chronic Degenerative Diseases, Physiology Institute, Meritorious Autonomous University of Puebla. Prol. de la 14 Sur 6301, Ciudad Universitaria, Puebla C.P. 72560, Mexico
| | - Alfonso Diaz
- Laboratory of Neurochemistry and Behavior, Physiology Institute, Meritorious Autonomous University of Puebla. Prol. de la 14 Sur 6301, Ciudad Universitaria, Puebla C.P. 72560, Mexico
| | - Rubén Antonio Vázquez-Roque
- Laboratory of Neuroplasticity and Metabolism, Physiology Institute, Meritorious Autonomous University of Puebla. Prol. de la 14 Sur 6301, Ciudad Universitaria, Puebla C.P. 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, Puebla C.P. 72560, Mexico
| | - Samuel Treviño
- Laboratory of Metabolomic and Chronic Degenerative Diseases, Physiology Institute, Meritorious Autonomous University of Puebla. Prol. de la 14 Sur 6301, Ciudad Universitaria, Puebla C.P. 72560, Mexico.
| |
Collapse
|
2
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreatic Antioxidative Defense and Heat Shock Proteins Prevent Islet of Langerhans Cell Death After Chronic Oral Exposure to Cadmium LOAEL Dose. Biol Trace Elem Res 2024; 202:3714-3730. [PMID: 37955768 DOI: 10.1007/s12011-023-03955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Cadmium, a hazardous environmental contaminant, is associated with metabolic disease development. The dose with the lowest observable adverse effect level (LOAEL) has not been studied, focusing on its effect on the pancreas. We aimed to evaluate the pancreatic redox balance and heat shock protein (HSP) expression in islets of Langerhans of male Wistar rats chronically exposed to Cd LOAEL doses, linked to their survival. Male Wistar rats were separated into control and cadmium groups (drinking water with 32.5 ppm CdCl2). At 2, 3, and 4 months, glucose, insulin, and cadmium were measured in serum; cadmium and insulin were quantified in isolated islets of Langerhans; and redox balance was analyzed in the pancreas. Immunoreactivity analysis of p-HSF1, HSP70, HSP90, caspase 3 and 9, and cell survival was performed. The results showed that cadmium exposure causes a serum increase and accumulation of the metal in the pancreas and islets of Langerhans, hyperglycemia, and hyperinsulinemia, associated with high insulin production. Cd-exposed groups presented high levels of reactive oxygen species and lipid peroxidation. An augment in MT and GSH concentrations with the increased enzymatic activity of the glutathione system, catalase, and superoxide dismutase maintained a favorable redox environment. Additionally, islets of Langerhans showed a high immunoreactivity of HSPs and minimal immunoreactivity to caspase associated with a high survival rate of Langerhans islet cells. In conclusion, antioxidative and HSP pancreatic defense avoids cell death associated with Cd accumulation in chronic conditions; however, this could provoke oversynthesis and insulin release, which is a sign of insulin resistance.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South, FCQ9, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico.
| |
Collapse
|
3
|
El Muayed M, Wang JC, Wong WP, Metzger BE, Zumpf KB, Gurra MG, Sponenburg RA, Hayes MG, Scholtens DM, Lowe LP, Lowe WL. Urinary metal profiles in mother-offspring pairs and their association with early dysglycemia in the International Hyperglycemia and Adverse Pregnancy Outcome Follow Up Study (HAPO-FUS). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:855-864. [PMID: 36509832 PMCID: PMC10261541 DOI: 10.1038/s41370-022-00511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Variations in dietary intake and environmental exposure patterns of essential and non-essential trace metals influence many aspects of human health throughout the life span. OBJECTIVE To examine the relationship between urine profiles of essential and non-essential metals in mother-offspring pairs and their association with early dysglycemia. METHODS Herein, we report findings from an ancillary study to the international Hyperglycemia and Adverse Pregnancy Outcome Follow-Up Study (HAPO-FUS) that examined urinary essential and non-essential metal profiles from mothers and offspring ages 10-14 years (1012 mothers, 1013 offspring, 968 matched pairs) from 10 international sites. RESULTS Our analysis demonstrated a diverse exposure pattern across participating sites. In multiple regression modelling, a positive association between markers of early dysglycemia and urinary zinc was found in both mothers and offspring after adjustment for common risk factors for diabetes. The analysis showed weaker, positive, and negative associations of the 2-h glucose value with urinary selenium and arsenic respectively. A positive association between 2-h glucose values and cadmium was found only in mothers in the fully adjusted model when participants with established diabetes were excluded. There was a high degree of concordance between mother and offspring urinary metal profiles. Mother-to-offspring urinary metal ratios were unique for each metal, providing insights into changes in their homeostasis across the lifespan. SIGNIFICANCE Urinary levels of essential and non-essential metals are closely correlated between mothers and their offspring in an international cohort. Urinary levels of zinc, selenium, arsenic, and cadmium showed varying degrees of association with early dysglycemia in a comparatively healthy cohort with a low rate of preexisting diabetes. IMPACT STATEMENT Our data provides novel evidence for a strong correlation between mother and offspring urinary metal patterns with a unique mother-to-offspring ratio for each metal. The study also provides new evidence for a strong positive association between early dysglycemia and urinary zinc, both in mothers and offspring. Weaker positive associations with urinary selenium and cadmium and negative associations with arsenic were also found. The low rate of preexisting diabetes in this population provides the unique advantage of minimizing the confounding effect of preexisting, diabetes related renal changes that would alter the relationship between dysglycemia and renal metal excretion.
Collapse
Affiliation(s)
- Malek El Muayed
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Janice C Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Winifred P Wong
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Boyd E Metzger
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Katelyn B Zumpf
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Miranda G Gurra
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rebecca A Sponenburg
- Quantitative Bio-element Imaging Centre, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Denise M Scholtens
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Lynn P Lowe
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - William L Lowe
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|