1
|
Saad LF, Fiorito PA, Molina PG. A disposable, portable electrochemical immunosensor for rapid in situ detection of bovine tuberculosis. Talanta 2025; 281:126878. [PMID: 39276570 DOI: 10.1016/j.talanta.2024.126878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
This contribution describes the development of a simple, fast, cost-effective, and sensitive impedimetric immunosensor for quantifying bovine tuberculosis (TB) in bovine serum samples. The construction of the immunosensor involved immobilizing the purified protein derivative (PPD) of M. bovis onto a screen-printed electrode that was modified with gold nanoparticles (AuNPs) and a polypyrrole (pPy) film synthesized electrochemically. The immunosensor exhibited a linear range from 0.5 μg mL-1 to 100 μg mL-1 and achieved a limit of detection (LD) of 100 ng mL-1 for the detection of anti-M. bovis antibody. The recovery percentages obtained in bovine serum samples were excellent, ranging between 98 % and 103 %. This device presents several advantages over alternative methods for determining TB in bovine serum samples. These include direct, in situ measurement without the need for pre-treatment, utilization of small volumes, thus avoiding harmful solvents and expensive reagents, and portability. In addition, the immunosensor exhibits both physical and chemical stability, retaining effectiveness even after 30 days of modification. This allows simultaneous incubations and facilitates large-scale detection. Hence, this immunosensor presents itself as a promising diagnostic tool for detecting anti-M. bovis antibodies in bovine serum. It serves as a viable alternative to tuberculin and ELISA tests.
Collapse
Affiliation(s)
- Lucia F Saad
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB) CONICET- VM-). Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, C.P. X5220XAO Villa María, Córdoba, Argentina
| | - Pablo A Fiorito
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB) CONICET- VM-). Universidad Nacional de Villa María, Campus Universitario, Av. Arturo Jauretche 1555, C.P. X5220XAO Villa María, Córdoba, Argentina
| | - Patricia G Molina
- Instituto para el desarrollo agroindustrial y de la salud (IDAS), (CONICET - UNRC), Departamento de Química. Universidad Nacional de Río Cuarto, Agencia Postal # 3. C.P., X5804BYA, Río Cuarto, Argentina.
| |
Collapse
|
2
|
Yoshida A, Pirabul K, Fujii S, Pan ZZ, Yoshii T, Ito M, Izawa K, Minegishi Y, Noguchi Y, Hiyoshi N, Takeda K, Hasegawa Y, Itoh T, Nishihara H. Contamination-Free Reference Electrode Using Prussian Blue for Small Oxygen Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50115-50124. [PMID: 39161048 DOI: 10.1021/acsami.4c05103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In recent years, significant attention has been directed toward advancing compact, point-of-care testing (POCT) devices to better deliver patient care and alleviate the burden on the medical care system. Common POCTs, such as blood oxygen sensors, leverage electrochemical sensing in their design. However, conventional electrochemical devices typically use Ag/AgCl reference electrodes, which are likely to release trace amounts of silver ions that contaminate the working electrode, causing rapid deterioration of the devices. This study proposes an effective reference electrode using graphene-coated porous silica spheres (G/PSS) with embedded Prussian blue (PB), denoted PB/G/PSS, designed specifically for small oxygen sensors. PB is a redox species that is an improvement over Ag/AgCl since it is significantly less water-soluble than AgCl. Since PB is an insulator, we dispersed PB in G/PSS, well-conductive mesoporous matrices, to ensure contact between PB clusters and the electrolytes. Moreover, the monodispersed, spherically shaped PB/G/PSS is an advantageous medium for fabricating POCT devices by screen printing. In this study, the open-circuit potential of the PB/G/PSS electrode remained stable within 30 mV for 31 days. The small oxygen sensor assembled through screen printing using PB/G/PSS demonstrated stable operation for several days or more. In contrast, a similar sensor with Ag/AgCl reference electrode rapidly deteriorated within a day. This PB/G/PSS reference electrode with improved stability is expected to be an excellent alternative to the Ag/AgCl system for small electrochemical-based POCT devices.
Collapse
Affiliation(s)
- Akiko Yoshida
- Techno Medica Co., Ltd., Yokohama, Kanagawa 224-0041, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kritin Pirabul
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Shunsuke Fujii
- Department of Pediatric Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Zheng-Ze Pan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Takeharu Yoshii
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Mutsuhiro Ito
- Fuji Silysia Chemical Ltd., Kasugai, Aichi 487-0013, Japan
| | - Kenichi Izawa
- Fuji Silysia Chemical Ltd., Kasugai, Aichi 487-0013, Japan
| | - Yuka Minegishi
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi 983-855, Japan
| | | | - Norihito Hiyoshi
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi 983-855, Japan
| | - Kota Takeda
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi 983-855, Japan
| | - Yasuhisa Hasegawa
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi 983-855, Japan
| | - Tetsuji Itoh
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi 983-855, Japan
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
3
|
Thaweeskulchai T, Prempinij W, Schulte A. A 3D printed dual screen-printed electrode separation device for twin electrochemical mini-cell establishment. RSC Adv 2024; 14:30830-30835. [PMID: 39328873 PMCID: PMC11426311 DOI: 10.1039/d4ra05929h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
We describe a tiny 3D-printed polymethyl-methacrylate-based plastic sleeve that houses two disposable screen-printed electrodes (SPE) and enables each of the working electrodes (WEs) to work independently, on a different side of a thin barrier, in its own electrochemical (EC) mini-cell, while the SPE counter and reference units are shared for electroanalysis. Optical and EC performance tests proved that the plastic divider between WE1 and WE2 efficiently inhibited solution mixing between the mini-cells. The two neighboring, independently operating mini-cells enabled matched differential measurements in the same sample solution, a tactic designed for elimination of electrochemical interference in complex samples. In a proof-of-principle glucose biosensor trial, a glucose oxidase-modified WE2 and an unmodified WE1 delivered the EC data for the removal of anodic ascorbic acid (AA) interference simply by subtracting the WE1 (background) current from the analyte-specific WE2 current (from buffered sample solution supplemented with glucose/AA), at an anodic H2O2 detection potential of +1 V. The microfabricated SPE accessory is cheap and easy to make and use. For the many dual electrode SPE strips on the market for multiple analytical targets the new device widens the options for their exploitation in assays of biological and environmental samples with complex matrix compositions and significant risks of interference.
Collapse
Affiliation(s)
- Thana Thaweeskulchai
- School of Biomolecular Science and Engineering (BSE) of the Vidyasirimedhi Institute of Science and Technology (VISTEC) 21210 Rayong Thailand
| | - Waswan Prempinij
- School of Biomolecular Science and Engineering (BSE) of the Vidyasirimedhi Institute of Science and Technology (VISTEC) 21210 Rayong Thailand
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE) of the Vidyasirimedhi Institute of Science and Technology (VISTEC) 21210 Rayong Thailand
| |
Collapse
|
4
|
Sa’adon SA, Jasni NH, Hamzah HH, Othman N. Electrochemical biosensors for the detection of protozoan parasite: a scoping review. Pathog Glob Health 2024; 118:459-470. [PMID: 39030702 PMCID: PMC11441015 DOI: 10.1080/20477724.2024.2381402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
The development of rapid, accurate, and efficient detection methods for protozoan parasites can substantially control the outbreak of protozoan parasites infection, which poses a threat to global public health. Idealistically, electrochemical biosensors would be able to overcome the limitations of current detection methods due to their simplified detection procedure, on-site quantitative analysis, rapid detection time, high sensitivity, and portability. The objective of this scoping review is to evaluate the current state of electrochemical biosensors for detecting protozoan parasites. This review followed the most recent Preferred Reporting Items for Systematic Review and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) recommendations. Using electrochemical biosensor and protozoan parasite keywords, a literature search was conducted in PubMed, Scopus, Web of Science, and ScienceDirect on journals published between January 2014 and January 2022. Of the 52 studies, 19 were evaluated for eligibility, and 11 met the review's inclusion criteria to evaluate the effectiveness and limitations of the developed electrochemical biosensor platforms for detecting protozoan parasite including information about the samples, biomarkers, bioreceptors, detection system platform, nanomaterials used in fabrication, and limit of detection (LoD). Most electrochemical biosensors were fabricated using conventional electrodes rather than screen-printed electrodes (SPE). The range of the linear calibration curves for the developed electrochemical biosensors was between 200 ng/ml and 0.77 pM. The encouraging detection performance of the electrochemical biosensors demonstrate their potential as a superior alternative to existing detection techniques. On the other hand, more study is needed to determine the sensitivity and specificity of the electrochemical sensing platform for protozoan parasite detection.
Collapse
Affiliation(s)
- Syahrul Amin Sa’adon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Nur Hana Jasni
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Hairul Hisham Hamzah
- School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley, UK
| | - Nurulhasanah Othman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| |
Collapse
|
5
|
Zanoni C, Dallù LV, Costa C, Cutaia A, Alberti G. A Screen-Printed Voltammetric Sensor Modified with Electropolymerized Molecularly Imprinted Polymer (eMIP) to Determine Gallic Acid in Non-Alcoholic and Alcoholic Beverages. Polymers (Basel) 2024; 16:1076. [PMID: 38674995 PMCID: PMC11054643 DOI: 10.3390/polym16081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
This paper presents a low-cost disposable sensor for gallic acid (GA) detection in non-alcoholic and alcoholic beverages using a screen-printed cell (SPC) whose working electrode (in graphite) is modified with electrosynthesized molecularly imprinted polypyrrole (eMIP). Our preliminary characterization of the electrochemical process shows that gallic acid (GA) undergoes irreversible oxidation at potentials of about +0.3 V. The peak potential is not affected by the presence of the eMIP film and alcohol percentages (ethanol) up to 20%. The GA determination is based on a differential pulse voltammetry (DPV) analysis leveraging its oxidation peak. The calibration data and the figures of merit of the analytical method (LOD, LOQ, and linear range) are calculated. To validate the feasibility of the sensor's application for the dosing of GA in real matrices, some non-alcoholic and alcoholic beverages are analyzed. The results are then compared with those reported in the literature and with the total polyphenol content determined by the Folin-Ciocalteu method. In all cases, the concentrations of GA align with those previously found in the literature for the beverages examined. Notably, the values are consistently lower than the total polyphenol content, demonstrating the sensor's selectivity in discriminating the target molecule from other polyphenols present.
Collapse
Affiliation(s)
| | | | | | | | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
6
|
Portugal-Gómez P, Alonso-Lomillo MA, Domínguez-Renedo O. Simultaneous determination of 4-ethylphenol and 4-ethylguaicol on C 60 modified dual screen-printed electrochemical sensors. Talanta 2024; 270:125543. [PMID: 38103285 DOI: 10.1016/j.talanta.2023.125543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
4-ethylphenol and 4-ethylguaicol levels in wine are associated to organoleptic defects that cause consumer rejection accompanied by significant economic losses for producers. Thus, electrochemical sensors based on screen-printed carbon electrodes (SPCEs) modified with activated fullerene C60 (AC60) have been developed for the analysis of both phenols by direct headspace amperometric measurements. Upon optimization of the experimental variables affecting the sensors performance, the AC60/SPCE sensors presented linearity ranges from 9.9 to 65.4 μg/L and from 19.6 to 107.1 μg/L for 4-ethylphenol and 4-ethylguaicol, respectively. The achieved detection capacities were 10.3 μg/L (4-ethylphenol) and 19.6 μg/L (4-ethylguaicol), with a reproducibility of 6.3 % and 9.1 % (n = 3), respectively. In addition, dual-working AC60/SPCE devices were developed for the simultaneous analysis of both phenols using different working potentials for each electrode. The dual systems were successfully applied in the analysis of different spiked wine samples, obtaining good recoveries ranging from 94 to 108 %.
Collapse
Affiliation(s)
- Paula Portugal-Gómez
- Analytical Chemistry Department, Faculty of Sciences, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain
| | - M Asunción Alonso-Lomillo
- Analytical Chemistry Department, Faculty of Sciences, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Olga Domínguez-Renedo
- Analytical Chemistry Department, Faculty of Sciences, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.
| |
Collapse
|
7
|
Hashem HM, Abdallah AB. A rational study of transduction mechanisms of different materials for all solid contact-ISEs. Sci Rep 2024; 14:5405. [PMID: 38443429 PMCID: PMC10914792 DOI: 10.1038/s41598-024-55729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
The new era of solid contact ion selective electrodes (SC-ISEs) miniaturized design has received an extensive amount of concern. Because it eliminated the requirement for ongoing internal solution composition optimization and created a two-phase system with stronger detection limitations. Herein, the determination of venlafaxine HCl is based on a comparison study between different ion- to electron transduction materials (such as; multiwalled carbon nanotubes (MWCNTs), polyaniline (PANi), and ferrocene) and illustrating their mechanisms in their applied sensors. Their different electrochemical features (such as bulk resistance (Rb**), double-layer capacitance (Cdl), geometric capacitance (Cg), and specific capacitance (Cp)) were evaluated and discussed by using the Electrochemical Impedance Spectroscopy (EIS), Chronopotentiometry (CP), and Cyclic Voltammetry (CV) experiments. The results indicated that each transducer's influence on the proposed sensor's electrochemical characteristics is determined by their unique chemical and physical properties. The electrochemical features vary for different solid contact materials used in transduction mechanisms. The results confirm that the MWCNT sensor revealed the best electrochemical behavior with the potentiometric response of a near-Nernestian slope of 56.1 ± 0.8 mV/decade with detection limits of 3.8 × 10-6 mol/L (r2 = 0.999) and a low potential drift (∆E/∆t) of 34.6 µV/s. Also, the selectivity study was performed in the presence of different interfering species either in single or complex matrices. This demonstrates excellent selectivity, stability, conductivity, and reliability as a VEN-TPB ion pair sensor for accurately measuring VEN in its various formulations. The proposed method was compared to HPLC reported technique and confirmed no significant difference between them. So, the proposed sensors fulfill their solutions' demand features for VEN appraisal.
Collapse
Affiliation(s)
- Heba M Hashem
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - A B Abdallah
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
- Chemistry Department, Faculty of Science, New Mansoura University, New Mansoura, Egypt
| |
Collapse
|
8
|
Silva FWL, Name LL, Tiba DY, Braz BF, Santelli RE, Canevari TC, Cincotto FH. High sensitivity, low-cost, and disposability: A novel screen-printed electrode developed for direct electrochemical detection of the antibiotic ceftriaxone. Talanta 2024; 266:125075. [PMID: 37591152 DOI: 10.1016/j.talanta.2023.125075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
This study describes the development of a novel disposable and low-cost electrochemical platform for detecting the antibiotic ceftriaxone. The screen-printed electrode has been modified with a novel hybrid nanostructure containing silicon oxide (SiO2), zirconium oxide (ZrO2), and nitrogen-doped carbon quantum dots (Cdot-N). Different techniques like Fourier-transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy characterized the hybrid nanostructure used in the sensor surface modifier material. The hybrid nanostructure showed an excellent synergistic effect that contributed to the oxidation reaction of ceftriaxone. The screen-printed electrode modified with SiO2/ZrO2/Cdot-N nanostructure presented high sensitivity with a detection limit of 0.2 nmol L-1 in the linear range of 0.0078-40.02 μmol L-1. The measurements have been performed by square wave voltammetry technique. Studies on real samples of synthetic urine, urine, and tap water showed 95%-105% recovery without applying any sample pretreatment. The sensor demonstrated excellent selectivity in the antibiotic ceftriaxone determination in the presence of possible interferences cationic, Na+, K+, Ca2+, Mg2+, Cu2+, Pb2+, Mn2+, Zn2+, Co2+, and biological, glucose, caffeine, uric acid, and ascorbic acid. The developed sensor becomes a selective, sensitive, and applicable tool in determining the antibiotic ceftriaxone.
Collapse
Affiliation(s)
- Francisco Walison Lima Silva
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luccas L Name
- LabNaHm: Multifunctional Hybrid Nanomaterials Laboratory. Engineering School, Mackenzie Presbyterian University, 01302-907, São Paulo, SP, Brazil
| | - Daniel Y Tiba
- LabNaHm: Multifunctional Hybrid Nanomaterials Laboratory. Engineering School, Mackenzie Presbyterian University, 01302-907, São Paulo, SP, Brazil
| | - Bernardo Ferreira Braz
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Erthal Santelli
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science & Technology of Bioanalytics (INCTBio), Campinas, Brazil
| | - Thiago C Canevari
- LabNaHm: Multifunctional Hybrid Nanomaterials Laboratory. Engineering School, Mackenzie Presbyterian University, 01302-907, São Paulo, SP, Brazil
| | - Fernando Henrique Cincotto
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science & Technology of Bioanalytics (INCTBio), Campinas, Brazil.
| |
Collapse
|
9
|
Patel KB, Luhar S, Srivastava DN. Plastic Chip Electrode: An Emerging Multipurpose Electrode Platform. Chem Asian J 2023; 18:e202300690. [PMID: 37706272 DOI: 10.1002/asia.202300690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
The properties of electrodes play a crucial role in the processes occurring on them. Therefore, a variety of materials have been tried as electrodes. Carbon composite materials are among the most admired ones. Use of composites as electrode material dates back to the mid of the last century when polymer-carbon composites were tried as general-purpose electrode platforms and epoxy impregnated graphite paste/ solid electrodes were tried in polarography. Later the composite electrodes have seen several phases of development. Plastic Chip Electrode (PCE) is a class of polymer composite electrode developed by our group. This monographic review gives a bird's eye account of polymer composite electrodes and appurtenant work, followed by elaborating on various aspects and state-of-the-art plastic chip electrodes.
Collapse
Affiliation(s)
- Kinjal B Patel
- Analytical and Environmental Science Division and CIF, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 (Uttar, Pradesh, India
| | - Sunil Luhar
- Analytical and Environmental Science Division and CIF, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 (Uttar, Pradesh, India
| | - Divesh N Srivastava
- Analytical and Environmental Science Division and CIF, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 (Uttar, Pradesh, India
| |
Collapse
|
10
|
Gautam N, Chattopadhyay S, Kar S, Sarkar A. Real-time detection of plasma ferritin by electrochemical biosensor developed for biomedical analysis. J Pharm Biomed Anal 2023; 235:115579. [PMID: 37517244 DOI: 10.1016/j.jpba.2023.115579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/18/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Rapid quantification of plasma ferritin levels holds utmost importance for the effective management of different chronic illnesses. We report the development of a novel biosensor for quantitative and selective detection of ferritin from a drop of blood plasma. Developed electrochemical biosensing platform contains a semiconductor nano-structured decorated screen-printed electrode (SND-SPE). The hydrothermally synthesized ZnO-Mn3O4 nanocomposite which has been coated on the electrode surfaces, imparts the specificity in ferritin diagnostics. Cyclic voltametric (CV) measurements with blood plasma shows a prominent reduction peak of ∼ - 0.76 V for specific ferritin reduction. The amperometric sensor shows a known concentration of 0.3 µg/dl ferritin-containing plasma generates 15 µA of current for single-time use. The efficacy of the device is evaluated by detecting ferritin in human plasma samples. The limit of detection and response time of the developed sensor are 0.04 µg/dl and 0.1 s respectively. The layer of ZnO-Mn3O4 nanocomposite has played as an excellent catalyst during the specific reduction of Fe3+ ion and the merits of the device in terms of high robustness, ultrafast detection, highly stable, low-cost, and a biodegradable sensor, make it attractive for the deployment in point-of-care settings.
Collapse
Affiliation(s)
- Neha Gautam
- Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sudip Chattopadhyay
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Shantimoy Kar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Arnab Sarkar
- Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
11
|
Karg A, Gödrich S, Dennstedt P, Helfricht N, Retsch M, Papastavrou G. An Integrated, Exchangeable Three-Electrode Electrochemical Setup for AFM-Based Scanning Electrochemical Microscopy. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115228. [PMID: 37299955 DOI: 10.3390/s23115228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Scanning electrochemical microscopy (SECM) is a versatile scanning probe technique that allows monitoring of a plethora of electrochemical reactions on a highly resolved local scale. SECM in combination with atomic force microscopy (AFM) is particularly well suited to acquire electrochemical data correlated to sample topography, elasticity, and adhesion, respectively. The resolution achievable in SECM depends critically on the properties of the probe acting as an electrochemical sensor, i.e., the working electrode, which is scanned over the sample. Hence, the development of SECM probes received much attention in recent years. However, for the operation and performance of SECM, the fluid cell and the three-electrode setup are also of paramount importance. These two aspects received much less attention so far. Here, we present a novel approach to the universal implementation of a three-electrode setup for SECM in practically any fluid cell. The integration of all three electrodes (working, counter, and reference) near the cantilever provides many advantages, such as the usage of conventional AFM fluid cells also for SECM or enables the measurement in liquid drops. Moreover, the other electrodes become easily exchangeable as they are combined with the cantilever substrate. Thereby, the handling is improved significantly. We demonstrated that high-resolution SECM, i.e., resolving features smaller than 250 nm in the electrochemical signal, could be achieved with the new setup and that the electrochemical performance was equivalent to the one obtained with macroscopic electrodes.
Collapse
Affiliation(s)
- Andreas Karg
- Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany
- Bavarian Institute for Battery Technology, University of Bayreuth, 95448 Bayreuth, Germany
| | - Sebastian Gödrich
- Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany
| | - Philipp Dennstedt
- Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany
- Bavarian Institute for Battery Technology, University of Bayreuth, 95448 Bayreuth, Germany
| | - Nicolas Helfricht
- Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany
| | - Markus Retsch
- Bavarian Institute for Battery Technology, University of Bayreuth, 95448 Bayreuth, Germany
- Physical Chemistry I, University of Bayreuth, 95447 Bayreuth, Germany
| | - Georg Papastavrou
- Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany
- Bavarian Institute for Battery Technology, University of Bayreuth, 95448 Bayreuth, Germany
| |
Collapse
|
12
|
Büyüktaş D, Ghaani M, Rovera C, Carullo D, Olsson RT, Korel F, Farris S. A screen-printed electrode modified with gold nanoparticles/cellulose nanocrystals for electrochemical detection of 4,4′-methylene diphenyl diamine. Heliyon 2023; 9:e15327. [PMID: 37096008 PMCID: PMC10121457 DOI: 10.1016/j.heliyon.2023.e15327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Developing simple, cost-effective, easy-to-use, and reliable analytical devices if of utmost importance for the food industry for rapid in-line checks of their products that must comply with the provisions set by the current legislation. The purpose of this study was to develop a new electrochemical sensor for the food packaging sector. More specifically, we propose a screen-printed electrode (SPE) modified with cellulose nanocrystals (CNCs) and gold nanoparticles (AuNPs) for the quantification of 4,4'-methylene diphenyl diamine (MDA), which is one of the most important PAAs that can transfer from food packaging materials into food stuffs. The electrochemical performance of the proposed sensor (AuNPs/CNCs/SPE) in the presence of 4,4'-MDA was evaluated using cyclic voltammetry (CV). The modified AuNPs/CNCs/SPE showed the highest sensitivity for 4,4'-MDA detection, with a peak current of 9.81 μA compared with 7.08 μA for the bare SPE. The highest sensitivity for 4,4'-MDA oxidation was observed at pH = 7, whereas the detection limit was found at 57 nM and the current response of 4,4'-MDA rose linearly as its concentration increased from 0.12 μM to 100 μM. Experiments using real packaging materials revealed that employing nanoparticles dramatically improved both the sensitivity and the selectivity of the sensor, which can be thus considered as a new analytical tool for quick, simple, and accurate measurement of 4,4'-MDA during converting operations.
Collapse
Affiliation(s)
- Duygu Büyüktaş
- Department of Food Engineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Gülbahçe Köyü, Urla, Izmir, Turkey
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2 – I, 20133, Milan, Italy
| | - Masoud Ghaani
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2 – I, 20133, Milan, Italy
| | - Cesare Rovera
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2 – I, 20133, Milan, Italy
| | - Daniele Carullo
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2 – I, 20133, Milan, Italy
| | - Richard T. Olsson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44, Stockholm, Sweden
| | - Figen Korel
- Department of Food Engineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Gülbahçe Köyü, Urla, Izmir, Turkey
| | - Stefano Farris
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2 – I, 20133, Milan, Italy
- INSTM, National Consortium of Materials Science and Technology, Local Unit University of Milan, via Celoria 2 – I, 20133, Milan, Italy
- Corresponding author. DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2 – I, 20133, Milan, Italy.
| |
Collapse
|
13
|
Portugal-Gómez P, Navarro-Cuñado AM, Alonso-Lomillo MA, Domínguez-Renedo O. Electrochemical sensors for the determination of 4-ethylguaiacol in wine. Mikrochim Acta 2023; 190:141. [PMID: 36933096 PMCID: PMC10024668 DOI: 10.1007/s00604-023-05729-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023]
Abstract
The development of an electrochemical procedure for the determination of 4-ethylguaiacol and its application to wine analysis is described. Modified screen-printed carbon electrodes (SPCEs) with fullerene C60 (C60) have been shown to be efficient in this kind of analysis. The developed activated C60/SPCEs (AC60/SPCEs) were adequate for the determination of 4-ethylguaicol, showing a linear range from 200 to 1000 µg/L, a reproducibility of 7.6% and a capability of detection (CCβ) value of 200 µg/L, under optimized conditions. The selectivity of the AC60/SPCE sensors was evaluated in the presence of possibly interfering compounds, and their practical applicability was demonstrated in the analysis of different wine samples obtaining recoveries ranging from 96 to 106%.
Collapse
Affiliation(s)
- Paula Portugal-Gómez
- Faculty of Sciences, Analytical Chemistry Department, University of Burgos, Pza. Misael Bañuelos S/N, 09001, Burgos, Spain
| | - A Marta Navarro-Cuñado
- Faculty of Sciences, Analytical Chemistry Department, University of Burgos, Pza. Misael Bañuelos S/N, 09001, Burgos, Spain
| | - M Asunción Alonso-Lomillo
- Faculty of Sciences, Analytical Chemistry Department, University of Burgos, Pza. Misael Bañuelos S/N, 09001, Burgos, Spain
| | - Olga Domínguez-Renedo
- Faculty of Sciences, Analytical Chemistry Department, University of Burgos, Pza. Misael Bañuelos S/N, 09001, Burgos, Spain.
| |
Collapse
|
14
|
Bas SZ, Cetiner R, Teke D, Ozmen M. A lab-made screen-printed sensing strip for sensitive and selective electrochemical detection of butylated hydroxyanisole. LAB ON A CHIP 2023; 23:1664-1673. [PMID: 36752530 DOI: 10.1039/d3lc00060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study describes the fabrication of a lab-made screen-printed electrode (LabSPE) and its sensing ability for the detection of butylated hydroxyanisole (BHA) which is a synthetic antioxidant utilized widely in food industries. The lab-made screen-printed electrodes were printed on a polycarbonate substrate stepwise via a screen-printing technique using various inks suitable for electrode templates and then modified for the detection of BHA. As for the design of the sensor, firstly, graphitic carbon nitride (g-C3N4) was synthesized electrochemically through the one-pot synthesis method. After the synthesis of Fe3O4 nanoparticles (Fe3O4 NPs), the surface of SPE was modified with the dual composite consisting of g-C3N4 and Fe3O4 NPs. Lastly, platinum nanoparticles (Pt NPs) were deposited electrochemically on the modified electrode in 0.5 M HCl solution containing 2 mM H2PtCl6 at a constant potential of 0.25 V for 45 s. After optimization of varied parameters such as pH of the electrolyte solution, deposition time, and deposition potential, the current responses of the sensor (Pt/g-C3N4-Fe3O4/LabSPE) toward BHA displayed linearity in the wide concentration range of 0.25 μM to 90 μM with a low detection limit of 0.053 μM. The selectivity of Pt/g-C3N4-Fe3O4/SPE was tested successfully in the presence of other antioxidants (BHT, TBHQ, GA, and PG). Moreover, the applicability of the proposed sensor for practical tests was verified by the detection of BHA in commercial samples.
Collapse
Affiliation(s)
- Salih Zeki Bas
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Rumeysa Cetiner
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Deniz Teke
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Mustafa Ozmen
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| |
Collapse
|
15
|
Zidarič T, Majer D, Maver T, Finšgar M, Maver U. The development of an electropolymerized, molecularly imprinted polymer (MIP) sensor for insulin determination using single-drop analysis. Analyst 2023; 148:1102-1115. [PMID: 36723087 DOI: 10.1039/d2an02025d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An electrochemical sensor for the detection of insulin in a single drop (50 μL) was developed based on the concept of molecularly imprinted polymers (MIP). The synthetic MIP receptors were assembled on a screen-printed carbon electrode (SPCE) by the electropolymerization of pyrrole (Py) in the presence of insulin (the protein template) using cyclic voltammetry. After electropolymerization, insulin was removed from the formed polypyrrole (Ppy) matrix to create imprinting cavities for the subsequent analysis of the insulin analyte in test samples. The surface characterization, before and after each electrosynthesis step of the MIP sensors, was performed using atomic force microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The performance of the developed MIP-SPCE sensor was evaluated using a single drop of solution containing K3Fe(CN)6 and the square-wave voltammetry technique. The MIP-SPCE showed a linear concentration range of 20.0-70.0 pM (R2 = 0.9991), a limit of detection of 1.9 pM, and a limit of quantification of 6.2 pM. The rapid response time to the protein target and the portability of the developed sensor, which is considered a disposable MIP-based system, make this MIP-SPCE sensor a promising candidate for point-of-care applications. In addition, the MIP-SPCE sensor was successfully used to detect insulin in a pharmaceutical sample. The sensor was deemed to be accurate (the average recovery was 108.46%) and precise (the relative standard deviation was 7.23%).
Collapse
Affiliation(s)
- Tanja Zidarič
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia
| | - David Majer
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Tina Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.,University of Maribor, Faculty of Medicine, Department of Pharmacology, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Matjaž Finšgar
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Uroš Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.,University of Maribor, Faculty of Medicine, Department of Pharmacology, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
16
|
Selvolini G, Marrazza G. On spot detection of nickel and cobalt from exhausted batteries by a smart electrochemical sensor. Talanta 2023; 253:123918. [PMID: 36088847 DOI: 10.1016/j.talanta.2022.123918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
This work presents the realization and the application of an user-friendly electrochemical platform based on screen-printed electrodes for the simultaneous determination of nickel and cobalt ions in real samples by means of square wave adsorptive stripping voltammetry (SWAdSV). The sensor was realized by electrodepositing in situ a bismuth film onto graphite screen-printed electrodes (GSPEs). The sensor surface was fully characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experimental conditions for the determination of nickel and cobalt in the form of dimethylglyoximate complexes were studied and optimized. Linear calibration curves for Ni(II) and Co(II), determined individually and together, in the range 10-40 μg/L for nickel and 10-60 μg/L for cobalt, respectively, were obtained. The limits of detection for nickel and cobalt determination were 2.5 μg/L and 2.4 μg/L, respectively. The performance of the sensor in terms of reproducibility and selectivity was also studied. The applicability of the developed platform was assessed by determining nickel and cobalt in samples deriving from an industrial process of recycling exhausted batteries and in soil samples.
Collapse
Affiliation(s)
- Giulia Selvolini
- "Ugo Schiff" Chemistry Department, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Giovanna Marrazza
- "Ugo Schiff" Chemistry Department, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| |
Collapse
|
17
|
Sharafi E, Sadeghi S. A highly sensitive and ecofriendly assay platform for the simultaneous electrochemical determination of rifampicin and isoniazid in human serum and pharmaceutical formulations. NEW J CHEM 2023. [DOI: 10.1039/d2nj04263k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Simple fabrication of an electrochemical sensor for simultaneous determination of rifampicin and isoniazid based on electrochemical modification of SPCE surface with reduced graphene oxide and nickel hydroxide film (Ni(OH)2/rGO/SPCE) without using toxic chemical agents.
Collapse
Affiliation(s)
- Effat Sharafi
- Department of Chemistry, University of Birjand, P.O. Box 97175-615, Birjand, Iran
| | - Susan Sadeghi
- Department of Chemistry, University of Birjand, P.O. Box 97175-615, Birjand, Iran
| |
Collapse
|
18
|
Hay CE, Linden SK, Silvester DS. Electrochemical Behaviour of Organic Explosive Compounds in Ionic Liquids: Towards Discriminate Electrochemical Sensing. ChemElectroChem 2022. [DOI: 10.1002/celc.202200913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Catherine E. Hay
- School of Molecular and Life Sciences Curtin University GPO Box U1987 Perth 6845 WA Australia
| | - Sarah K. Linden
- School of Molecular and Life Sciences Curtin University GPO Box U1987 Perth 6845 WA Australia
| | - Debbie S. Silvester
- School of Molecular and Life Sciences Curtin University GPO Box U1987 Perth 6845 WA Australia
| |
Collapse
|
19
|
Hasanpour M, Pardakhty A, Tajik S. The development of disposable electrochemical sensor based on MoSe 2-rGO nanocomposite modified screen printed carbon electrode for amitriptyline determination in the presence of carbamazepine, application in biological and water samples. CHEMOSPHERE 2022; 308:136336. [PMID: 36088965 DOI: 10.1016/j.chemosphere.2022.136336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The present attempt developed a simple sensing system based on the modification of screen-printed carbon electrode (SPCE) with MoSe2/reduced graphene oxide (rGO) nanocomposite (MoSe2-rGO/SPCE) to voltammetrically co-detect amitriptyline and carbamazepine. Different techniques such as field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were employed to characterize MoSe2-rGO nanocomposite morphology and structure. Moreover, chronoamperometry, differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV) were utilized to explore the electrochemical oxidation of amitriptyline. Data revealed a great current sensitivity for the MoSe2-rGO/SPCE towards amitriptyline. The peak currents of amitriptyline oxidation on the MoSe2-rGO/SPCE had linear dynamic range (0.02-380.0 μM) and a narrow limit of detection (0.007 μM). The MoSe2-rGO/SPCE was successful in sensing carbamazepine and amitriptyline in real specimens, with appreciable recovery rates.
Collapse
Affiliation(s)
- Matineh Hasanpour
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box: 76175-493, 76169-11319, Kerman, Iran.
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
20
|
Cheunkar S, Oaew S, Parnsubsakul A, Asanithi P. Reactive argon-plasma activation of screen-printed carbon electrodes for highly selective dopamine determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4193-4201. [PMID: 36239194 DOI: 10.1039/d2ay01154a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dopamine (DA) deficiency has been linked to several psychiatric disorders. Electrochemical determination of the level of DA suffers from abundant ascorbic acid (AA) and uric acid (UA) in body fluids. In this work, a facile argon (Ar) plasma treatment was utilized to enhance the electrocatalytic reactivity of screen-printed carbon electrodes (SPCEs) for selective DA detection. Surface characterization of the Ar-treated SCPEs verified that the carbon paste binders were successfully removed and single-bonded oxygenated moieties (-OH and C-O-C) were generated. Interestingly, the sharper D* and D'' Raman interbands were new key evidence of a higher exposure of carbon defect sites. Electrochemical studies further revealed that the Ar-treated SPCEs possessed faster heterogeneous electron-transfer rates, larger electroactive surface areas, and much higher conductivity when compared with untreated electrodes. As a result, the oxidation potentials of AA, DA, and UA in the mixture could be well-resolved and the current responses were significantly increased. The selective determination of DA in the presence of AA and UA by differential pulse voltammetry gave two linear responses with the limit of detection of 0.27 μM (0.15-10 μM range). Moreover, this Ar-treated SPCE had high reproducibility and good storage stability. These results suggest that Ar-plasma treatment could be a promising method to enhance the electrocatalytic properties of SPCEs for the detection of biomolecules.
Collapse
Affiliation(s)
- Sarawut Cheunkar
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| | - Sukunya Oaew
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Attasith Parnsubsakul
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Road, Pathum Wan, Bangkok 10330, Thailand
| | - Piyapong Asanithi
- Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| |
Collapse
|
21
|
Acevedo-Restrepo I, Blandón-Naranjo L, Vázquez MV, Restrepo-Sánchez N. Evaluation of the electrochemical response of Saccharomyces cerevisiae using screen-printed carbon electrodes (SPCE) modified with oxidized multi-walled carbon nanotubes dispersed in water – Nafion®. Curr Res Food Sci 2022; 6:100401. [DOI: 10.1016/j.crfs.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
|
22
|
Subcutaneous amperometric biosensors for continuous glucose monitoring in diabetes. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Prabhu K, Malode SJ, Shetti NP. Carbon-Based Electrochemical Sensor for the Detection and Degradation of Persistent Toxic Carbendazim in Soil and Water Sample. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Silicone glue-based graphite ink incorporated on paper platform as an affordable approach to construct stable electrochemical sensors. Talanta 2022; 251:123812. [DOI: 10.1016/j.talanta.2022.123812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022]
|
25
|
Magnetically aligned graphite flakes electrodes for excellent sensitive detection of hydroquinone and catechol. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
A brief review on the recent achievements in electrochemical detection of folic acid. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Oliveira A, Pereira A, Resende M. Fabrication of low‐cost screen‐printed electrode in paper using conductive inks of graphite and silver/silver chloride. ELECTROANAL 2022. [DOI: 10.1002/elan.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Di Tinno A, Cancelliere R, Mantegazza P, Cataldo A, Paddubskaya A, Ferrigno L, Kuzhir P, Maksimenko S, Shuba M, Maffucci A, Bellucci S, Micheli L. Sensitive Detection of Industrial Pollutants Using Modified Electrochemical Platforms. NANOMATERIALS 2022; 12:nano12101779. [PMID: 35631001 PMCID: PMC9142962 DOI: 10.3390/nano12101779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Water pollution is nowadays a global problem and the effective detection of pollutants is of fundamental importance. Herein, a facile, efficient, robust, and rapid (response time < 2 min) method for the determination of important quinone-based industrial pollutants such as hydroquinone and benzoquinone is reported. The recognition method is based on the use of screen-printed electrodes as sensing platforms, enhanced with carbon-based nanomaterials. The enhancement is achieved by modifying the working electrode of such platforms through highly sensitive membranes made of Single- or Multi-Walled Carbon Nanotubes (SWNTs and MWNTs) or by graphene nanoplatelets. The modified sensing platforms are first carefully morphologically and electrochemically characterized, whereupon they are tested in the detection of different pollutants (i.e., hydroquinone and benzoquinone) in water solution, by using both cyclic and square-wave voltammetry. In particular, the sensors based on film-deposited nanomaterials show good sensitivity with a limit of detection in the nanomolar range (0.04 and 0.07 μM for SWNT- and MWNT-modified SPEs, respectively) and a linear working range of 10 to 1000 ppb under optimal conditions. The results highlight the improved performance of these novel sensing platforms and the large-scale applicability of this method for other analytes (i.e., toxins, pollutants).
Collapse
Affiliation(s)
- Alessio Di Tinno
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.D.T.); (R.C.); (P.M.)
| | - Rocco Cancelliere
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.D.T.); (R.C.); (P.M.)
| | - Pietro Mantegazza
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.D.T.); (R.C.); (P.M.)
| | - Antonino Cataldo
- DISPREV Laboratory, Casaccia Research Center, ENEA, 00185 Rome, Italy;
- National Institute of Nuclear Physics, Frascati National Laboratories, 00044 Frascati, Italy;
| | - Alesia Paddubskaya
- Institute for Nuclear Problems, Belarusian State University, 220007 Minsk, Belarus; (A.P.); (S.M.); (M.S.)
| | - Luigi Ferrigno
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (L.F.); (A.M.)
| | - Polina Kuzhir
- Department of Physics and Mathematics, Institute of Photonics, University of Eastern Finland, 80200 Joensuu, Finland;
| | - Sergey Maksimenko
- Institute for Nuclear Problems, Belarusian State University, 220007 Minsk, Belarus; (A.P.); (S.M.); (M.S.)
| | - Mikhail Shuba
- Institute for Nuclear Problems, Belarusian State University, 220007 Minsk, Belarus; (A.P.); (S.M.); (M.S.)
| | - Antonio Maffucci
- National Institute of Nuclear Physics, Frascati National Laboratories, 00044 Frascati, Italy;
- Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy; (L.F.); (A.M.)
| | - Stefano Bellucci
- National Institute of Nuclear Physics, Frascati National Laboratories, 00044 Frascati, Italy;
| | - Laura Micheli
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.D.T.); (R.C.); (P.M.)
- Correspondence:
| |
Collapse
|
29
|
Electrochemical Biosensors for Soluble Epidermal Growth Factor Receptor Detection. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Vrabelj T, Finšgar M. Recent Progress in Non-Enzymatic Electroanalytical Detection of Pesticides Based on the Use of Functional Nanomaterials as Electrode Modifiers. BIOSENSORS 2022; 12:263. [PMID: 35624564 PMCID: PMC9139166 DOI: 10.3390/bios12050263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022]
Abstract
This review presents recent advances in the non-enzymatic electrochemical detection and quantification of pesticides, focusing on the use of nanomaterial-based electrode modifiers and their corresponding analytical response. The use of bare glassy carbon electrodes, carbon paste electrodes, screen-printed electrodes, and other electrodes in this research area is presented. The sensors were modified with single nanomaterials, a binary composite, or triple and multiple nanocomposites applied to the electrodes' surfaces using various application techniques. Regardless of the type of electrode used and the class of pesticides analysed, carbon-based nanomaterials, metal, and metal oxide nanoparticles are investigated mainly for electrochemical analysis because they have a high surface-to-volume ratio and, thus, a large effective area, high conductivity, and (electro)-chemical stability. This work demonstrates the progress made in recent years in the non-enzymatic electrochemical analysis of pesticides. The need for simultaneous detection of multiple pesticides with high sensitivity, low limit of detection, high precision, and high accuracy remains a challenge in analytical chemistry.
Collapse
Affiliation(s)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| |
Collapse
|
31
|
Abstract
Screen-printed electrodes-based sensors can be successfully used to determine all kinds of analytes with great precision and specificity. However, obtaining a high-quality sensor can be difficult due to factors such as lack of reproducibility, surface contamination or other manufacturing challenges. An important step in ensuring reproducible results is the cleaning step. The aim of the current work is to help researchers around the world who struggle with finding the most suitable method for cleaning screen-printed electrodes. We evaluated the cleaning efficiency of different chemical compounds and cleaning methods using cyclic voltammetry and electrochemical impedance spectroscopy. The percentage differences in polarization resistance (Rp) before and after cleaning were as follows: acetone—35.33% for gold and 49.94 for platinum; ethanol—44.50% for gold and 81.68% for platinum; H2O2—47.34% for gold and 92.78% for platinum; electrochemical method—3.70% for gold and 67.96% for platinum. Thus, we concluded that all the evaluated cleaning methods seem to improve the surface of both gold and platinum electrodes; however, the most important reduction in the polarization resistance (Rp) was obtained after treating them with a solution of H2O2 and multiple CV cycles with a low scanning speed (10 mV/s).
Collapse
|
32
|
Bimetallic Mn/Fe MOF modified screen-printed electrodes for non-enzymatic electrochemical sensing of organophosphate. Anal Chim Acta 2022; 1202:339676. [DOI: 10.1016/j.aca.2022.339676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022]
|
33
|
A simple and reliable electroanalytical method employing a disposable commercial electrode for simultaneous determination of lead(II) and mercury(II) in beer. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Ghalkhani M, Sohouli E, Khaloo SS, Vaziri MH. Architecting of an aptasensor for the staphylococcus aureus analysis by modification of the screen-printed carbon electrode with aptamer/Ag-Cs-Gr QDs/NTiO 2. CHEMOSPHERE 2022; 293:133597. [PMID: 35031253 DOI: 10.1016/j.chemosphere.2022.133597] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/02/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Given the many issues bacterial infections cause to humans and the necessity for their detection, in this work we developed a robust aptasensor for prompt, ultrasensitive, and selective analysis of staphylococcus aureus bacterium (S. aureus). A nanocomposite of Ag nanoparticles, chitosan, graphene quantum dots, and nitrogen-doped TiO2 nanoparticles (Ag-Cs-Gr QDs/NTiO2) was synthesized, and thoroughly characterized by XRD, FT-IR, and FE-SEM spectroscopic methods. The surface of screen-printed carbon electrodes modified with Ag-Cs-Gr QDs/NTiO2 nanocomposite was utilized as a compatible platform for aptamer attachment. The aptasensor accurately determined S. aureus in the dynamic range of 10-5 × 108 CFU/mL with detection limit of 3.3 CFU/mL. The monitoring of the practical performance of aptasensor in human serum samples revealed its superiority over the conventional methods (relative recovery of 96.25-103.33%). The Ag-Cs-Gr QDs/NTiO2-based aptasensor offers facile, biocompatibility, good repeatability, reproducibility (RSD = 3.66%), label free and stabile strategy for sensitive S. aureus analysis free from biomolecules interferences in actual specimens.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran.
| | - Esmail Sohouli
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran
| | - Shokooh Sadat Khaloo
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Vaziri
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Pérez-Fernández B, Muñiz ADLE. Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015–2021). Anal Chim Acta 2022; 1212:339658. [DOI: 10.1016/j.aca.2022.339658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
|
36
|
Heald R, Salyer S, Ham K, Wilgus TA, Subramaniam VV, Prakash S. Electroceutical treatment of infected chronic wounds in a dog and a cat. Vet Surg 2022; 51:520-527. [PMID: 34994470 DOI: 10.1111/vsu.13758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/27/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVES To describe the use of an innovative printed electroceutical dressing (PED) to treat non-healing, infected chronic wounds in one dog and one cat and report outcomes. ANIMALS A 4-year-old female spayed Mastiff and a 1-year-old female spayed domestic shorthair cat. STUDY DESIGN Short case series. METHODS Both cases had chronic wounds (duration: approximately 1 year for the dog and 6 3/4 months for the cat) that remained open and infected despite various wound management strategies. Both animals were treated with the PED. Observations from the records regarding wound size, antimicrobial susceptibility, and the time to healing were recorded. RESULTS After 10 days of PED treatment in the dog and 17 days of PED treatment in the cat, the wounds had decreased in size by approximately 4.2 times in the dog and 2.5 times in the cat. Culture of punch biopsies yielded negative results. Wounds were clinically healed at 67 days in the dog and 47 days in the cat. No further treatment of the wounds was required beyond that point. CONCLUSION Application of a PED led to closure of two chronic wounds and resolution of their persistent infection. CLINICAL SIGNIFICANCE PEDs may provide a new treatment modality to mitigate infection and promote healing of chronic wounds.
Collapse
Affiliation(s)
- Rachel Heald
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Sarah Salyer
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Kathleen Ham
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA.,Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, USA
| | - Traci A Wilgus
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Vish V Subramaniam
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Shaurya Prakash
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
37
|
Cheng J, Yang G, Guo J, Liu S, Guo J. Integrated electrochemical lateral flow immunoassays (eLFIAs): recent advances. Analyst 2022; 147:554-570. [DOI: 10.1039/d1an01478a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Schematic of integrated electrochemical lateral flow immunoassays.
Collapse
Affiliation(s)
- Jie Cheng
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Guopan Yang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiuchuan Guo
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Shan Liu
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
38
|
Alizadeh M, Nodehi M, Salmanpour S, Karimi F, Sanati AL, Malekmohammadi S, Zakariae N, Esmaeili R, Jafari H. Properties and Recent Advantages of N,N’-dialkylimidazolium-ion Liquids
Application in Electrochemistry. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201022141930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
N,Nʹ-dialkylimidazolium-ion liquids is one of the important ionic liquids with a wide range of application as
conductive electrolyte and in electrochemistry. The modified electrodes create a new view in fabrication of
electroanalytical sensors. Many modifiers have beeen suggested for modification of electroanalytical sensor since many
years ago. Over these years, ionic liquids and especially room temperature ionic liquids have attracted more attention due
to their wide range of electrochemical windows and high electrical conductivity. N,Nʹ-dialkylimidazolium-ion liquids are
one of the main important ionic liquids suggested for modification of bare electrodes and especially carbon paste
electrodes. Although many review articles have reported onthe use of ionic liquids in electrochemical sensors, no review
article has been specifically introduced so far on the review of the advantages of N,Nʹ-dialkylimidazolium ionic liquid.
Therefore, in this review paper we focused on the introduction of recent advantages of N,Nʹ-dialkyl imidazolium ionic
liquid in electrochemistry.
Collapse
Affiliation(s)
- Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz,
PO Box: 71348-14336, Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar,Iran
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari,Iran
| | - Fatemeh Karimi
- Nanostructure Based Biosensors Research Group, Ton Duc Thang University, Ho Chi Minh City,Vietnam
| | - Afsaneh L. Sanati
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Samira Malekmohammadi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan,Iran
| | - Nilofar Zakariae
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Roghayeh Esmaeili
- Nursing Medical-Surgical Group, Shahid Beheshti University of Medical Science, Tehran,Iran
| | - Hedayat Jafari
- Traditional and Complementary Medicine Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari,Iran
| |
Collapse
|
39
|
Kaya SI, Cetinkaya A, Ozkan SA. Carbon Nanomaterial-Based Drug Sensing Platforms Using State-of-the-
Art Electroanalytical Techniques. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200802024629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Currently, nanotechnology and nanomaterials are considered as the most popular and outstanding
research subjects in scientific fields ranging from environmental studies to drug analysis. Carbon nanomaterials such as
carbon nanotubes, graphene, carbon nanofibers etc. and non-carbon nanomaterials such as quantum dots, metal
nanoparticles, nanorods etc. are widely used in electrochemical drug analysis for sensor development. Main aim of drug
analysis with sensors is developing fast, easy to use and sensitive methods. Electroanalytical techniques such as
voltammetry, potentiometry, amperometry etc. which measure electrical parameters such as current or potential in an
electrochemical cell are considered economical, highly sensitive and versatile techniques.
Methods:
Most recent researches and studies about electrochemical analysis of drugs with carbon-based nanomaterials were
analyzed. Books and review articles about this topic were reviewed.
Results:
The most significant carbon-based nanomaterials and electroanalytical techniques were explained in detail. In
addition to this; recent applications of electrochemical techniques with carbon nanomaterials in drug analysis was expressed
comprehensively. Recent researches about electrochemical applications of carbon-based nanomaterials in drug sensing were
given in a table.
Conclusion:
Nanotechnology provides opportunities to create functional materials, devices and systems using
nanomaterials with advantageous features such as high surface area, improved electrode kinetics and higher catalytic
activity. Electrochemistry is widely used in drug analysis for pharmaceutical and medical purposes. Carbon nanomaterials
based electrochemical sensors are one of the most preferred methods for drug analysis with high sensitivity, low cost and
rapid detection.
Collapse
Affiliation(s)
- S. Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| |
Collapse
|
40
|
Cancelliere R, Tinno AD, Cataldo A, Bellucci S, Micheli L. Powerful Electron-Transfer Screen-Printed Platforms as Biosensing Tools: The Case of Uric Acid Biosensor. BIOSENSORS 2021; 12:bios12010002. [PMID: 35049630 PMCID: PMC8773917 DOI: 10.3390/bios12010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 06/01/2023]
Abstract
The use of carbon nanomaterials (CNMs) in sensors and biosensor realization is one of the hottest topics today in analytical chemistry. In this work, a comparative in-depth study, exploiting different nanomaterial (MWNT-CO2H, -NH2, -OH and GNP) modified screen-printed electrodes (SPEs), is reported. In particular, the sensitivity, the heterogeneous electron transfer constant (k0), and the peak-to-peak separation (ΔE) have been calculated and analyzed. After which, an electrochemical amperometric sensor capable of determining uric acid (UA), based on the nano-modified platforms previously characterized, is presented. The disposable UA biosensor, fabricated modifying working electrode (WE) with Prussian Blue (PB), carbon nanotubes, and uricase enzyme, showed remarkable analytical performances toward UA with high sensitivity (CO2H 418 μA μM-1 cm-2 and bare SPE-based biosensor, 33 μA μM-1 cm-2), low detection limits (CO2H 0.5 nM and bare SPE-based biosensors, 280 nM), and good repeatability (CO2H and bare SPE-based biosensors, 5% and 10%, respectively). Moreover, the reproducibility (RSD%) of these platforms in tests conducted for UA determination in buffer and urine samples results are equal to 6% and 15%, respectively. These results demonstrate that the nanoengineered electrode exhibited good selectivity and sensitivity toward UA even in the presence of interfering species, thus paving the way for its application in other bio-fluids such as simple point-of-care (POC) devices.
Collapse
Affiliation(s)
- Rocco Cancelliere
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy; (R.C.); (A.D.T.)
| | - Alessio Di Tinno
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy; (R.C.); (A.D.T.)
| | - Antonino Cataldo
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy;
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy;
| | - Laura Micheli
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy; (R.C.); (A.D.T.)
| |
Collapse
|
41
|
Whittingham MJ, Hurst NJ, Crapnell RD, Garcia-Miranda Ferrari A, Blanco E, Davies TJ, Banks CE. Electrochemical Improvements Can Be Realized via Shortening the Length of Screen-Printed Electrochemical Platforms. Anal Chem 2021; 93:16481-16488. [PMID: 34854668 DOI: 10.1021/acs.analchem.1c03601] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Screen-printed electrodes (SPEs) are ubiquitous within the field of electrochemistry and are commonplace within the arsenal of electrochemists. Their popularity stems from their reproducibility, versatility, and extremely low-cost production, allowing their utilization as single-shot electrodes and thus removing the need for tedious electrode pretreatments. Many SPE studies have explored changing the working electrode composition and/or size to benefit the researcher's specific applications. In this paper, we explore a critical parameter of SPEs that is often overlooked; namely, we explore changing the length of the SPE connections. We provide evidence of resistance changes through altering the connection length to the working electrode through theoretical calculations, multimeter measurements, and electrochemical impedance spectroscopy (EIS). We demonstrate that changing the physical length of SPE connections gives rise to more accurate heterogeneous electrode kinetics, which cannot be overcome simply through IR compensation. Significant improvements are observed when utilized as the basis of electrochemical sensing platforms for sodium nitrite, β-nicotinamide adenine dinucleotide (NADH), and lead (II). This work has a significant impact upon the field of SPEs and highlights the need for researchers to characterize and define their specific electrode performance. Without such fundamental characterization as the length and resistance of the SPE used, direct comparisons between two different systems for similar applications are obsolete. We therefore suggest that, when using SPEs in the future, experimentalists report the length of the working electrode connection alongside the measured resistance (multimeter or EIS) to facilitate this standardization across the field.
Collapse
Affiliation(s)
- Matthew J Whittingham
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K
| | - Nicholas J Hurst
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K
| | - Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K
| | | | - Elias Blanco
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.,Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Trevor J Davies
- Electrochemical Technology Technical Centre, INOVYN, South Parade, Runcorn, Cheshire WA7 4JE, U.K
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K
| |
Collapse
|
42
|
Disposable electrochemical sensor combined with molecularly imprinted solid-phase extraction for catabolites detection of flavan-3-ol in urine samples. Talanta 2021; 235:122734. [PMID: 34517603 DOI: 10.1016/j.talanta.2021.122734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022]
Abstract
Polyphenols are bioactive substances of vegetal origin with a significant impact on human health. The assessment of polyphenol intake and excretion is therefore important. In this work, a new electrochemical approach based on molecularly imprinted polymer extraction and preconcentration, combined with a disposable carbon screen-printed sensor and adsorptive transfer differential pulse voltammetry detection has been proposed for quantifying of 4-hydroxyphenylacetic acid (4-HPA), which is a biomarker of flavan-3-ols intake, and other phenolic acids. The simple experimental performance has allowed the rapid data collection with relevant information about the profile of catabolites extracted. The method was validated over a concentration range of 10-200 mg L-1, R2 > 0.999. In the optimized conditions, the recovery value was 94% with RSD 8%. The limits of detection and quantification were 2.38 mg L-1 and 7.21 mg L-1, respectively. The method was validated by means of a chromatographic method, being the differences between the values of the 4-HPA concentrations obtained by both methods under 1%. The proposed method showed high recoveries, low detection limit, and good accuracy, providing a fast, reliable, and cheap procedure to quantify phenolic metabolites in urine, and representing therefore a good and interesting alternative method. Also, the procedure offers other advantages, including the miniaturization, the low use of organic solvents, the ability to analyse small volumes of samples, in situ analysis and simple instrumentation requirement.
Collapse
|
43
|
Yıldız C, Eskiköy Bayraktepe D, Yazan Z. Highly sensitive direct simultaneous determination of zinc(II), cadmium(II), lead(II), and copper(II) based on in-situ-bismuth and mercury thin-film plated screen-printed carbon electrode. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02865-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Karadurmus L, Dogan-Topal B, Kurbanoglu S, Shah A, Ozkan SA. The Interaction between DNA and Three Intercalating Anthracyclines Using Electrochemical DNA Nanobiosensor Based on Metal Nanoparticles Modified Screen-Printed Electrode. MICROMACHINES 2021; 12:mi12111337. [PMID: 34832748 PMCID: PMC8619472 DOI: 10.3390/mi12111337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
The screen-printed electrodes have gained increasing importance due to their advantages, such as robustness, portability, and easy handling. The manuscript presents the investigation of the interaction between double-strand deoxyribonucleic acid (dsDNA) and three anthracyclines: epirubicin (EPI), idarubicin (IDA), and doxorubicin (DOX) by differential pulse voltammetry on metal nanoparticles modified by screen-printed electrodes. In order to investigate the interaction, the voltammetric signals of dsDNA electroactive bases were used as an indicator. The effect of various metal nanomaterials on the signals of guanine and adenine was evaluated. Moreover, dsDNA/PtNPs/AgNPs/SPE (platinum nanoparticles/silver nanoparticles/screen-printed electrodes) was designed for anthracyclines–dsDNA interaction studies since the layer-by-layer modification strategy of metal nanoparticles increases the surface area. Using the signal of multi-layer calf thymus (ct)-dsDNA, the within-day reproducibility results (RSD%) for guanine and adenine peak currents were found as 0.58% and 0.73%, respectively, and the between-day reproducibility results (RSD%) for guanine and adenine peak currents were found as 1.04% and 1.26%, respectively. The effect of binding time and concentration of three anthracyclines on voltammetric signals of dsDNA bases were also evaluated. The response was examined in the range of 0.3–1.3 ppm EPI, 0.1–1.0 ppm IDA and DOX concentration on dsDNA/PtNPs/AgNPs/SPE. Electrochemical studies proposed that the interaction mechanism between three anthracyclines and dsDNA was an intercalation mode.
Collapse
Affiliation(s)
- Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
- Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman 02040, Turkey
| | - Burcu Dogan-Topal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
- Correspondence: (B.D.-T.); (S.A.O.)
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey; (L.K.); (S.K.)
- Correspondence: (B.D.-T.); (S.A.O.)
| |
Collapse
|
45
|
Abstract
The multiple therapeutic potentials of tetracycline and its worldwide usage have encouraged researchers to develop various methods for its assay in various matrices and for different purposes. In this regard, different analytical techniques have been exploited. Among those techniques is flow injection (FI), which is an extended family of three generations and five versions. The current manuscript reviews the utilization of FI techniques for developing assay methods for tetracycline. The review covers more than forty methods, since the inception of FI techniques and up to date. The review highlights the advantages of the application of FI techniques for quantification of tetracycline in terms of reagent consumption, sample frequency, accuracy, and practitioner safety, besides instrumentation simplicity and cost-effectiveness. The review also addresses applications to several matrices ranging from simple matrices such as standard solutions and pharmaceutical formulations to complex matrices such as biological fluids and food. Prior to the review, a brief background on the principles and developments of FI techniques is illustrated.
Collapse
Affiliation(s)
- Mohammed D Y Oteef
- Department of Chemistry, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia.,Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
46
|
Nashruddin SNA, Abdullah J, Mohammad Haniff MAS, Mat Zaid MH, Choon OP, Mohd Razip Wee MF. Label Free Glucose Electrochemical Biosensor Based on Poly(3,4-ethylenedioxy thiophene):Polystyrene Sulfonate/Titanium Carbide/Graphene Quantum Dots. BIOSENSORS 2021; 11:bios11080267. [PMID: 34436069 PMCID: PMC8393679 DOI: 10.3390/bios11080267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 06/23/2021] [Indexed: 05/24/2023]
Abstract
The electrochemical biosensor devices based on enzymes for monitoring biochemical substances are still considered attractive. We investigated the immobilization of glucose oxidase (GOx) on a new composite nanomaterial poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS)/titanium carbide,(Ti3C2)/graphene quantum dots(GQD) modified screen-printed carbon electrode (SPCE) for glucose sensing. The characterization and electrochemical behavior of PEDOT:PSS/Ti3C2/GQD towards the electrocatalytic oxidation of GOx was analyzed by FTIR, XPS, SEM, cyclic voltammetry (CV), and differential pulse voltammetry (DPV). This composite nanomaterial was found to tend to increase the electrochemical behavior and led to a higher peak current of 100.17 µA compared to 82.01 µA and 95.04 µA for PEDOT:PSS and PEDOT:PSS/Ti3C2 alone. Moreover, the detection results demonstrated that the fabricated biosensor had a linear voltammetry response in the glucose concentration range 0-500 µM with a relatively sensitivity of 21.64 µAmM-1cm-2 and a detection limit of 65 µM (S/N = 3), with good stability and selectivity. This finding could be useful as applicable guidance for the modification screen printed carbon (SPCE) electrodes focused on composite PEDOT:PSS/Ti3C2/GQD for efficient detection using an enzyme-based biosensor.
Collapse
Affiliation(s)
- Siti Nur AshakirinMohd Nashruddin
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhammad Aniq Shazni Mohammad Haniff
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Mohd Hazani Mat Zaid
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Ooi Poh Choon
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Mohd Farhanulhakim Mohd Razip Wee
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| |
Collapse
|
47
|
Detection of white spot syndrome virus in seafood samples using a magnetosome-based impedimetric biosensor. Arch Virol 2021; 166:2763-2778. [PMID: 34342747 DOI: 10.1007/s00705-021-05187-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
White spot syndrome virus (WSSV) is a significant threat to the aquaculture sector, causing mortality among crabs and shrimps. Currently available diagnostic tests for WSSV are not rapid or cost-effective, and a new detection method is therefore needed. This study demonstrates the development of a biosensor by functionalization of magnetosomes with VP28-specific antibodies to detect WSSV in seafood. The magnetosomes (1 and 2 mg/ml) were conjugated with VP28 antibody (0.025-10 ng/µl), as confirmed by spectroscopy. The magnetosome-antibody conjugate was used to detect the VP28 antigen. The binding of antigen to the magnetosome-antibody complex resulted in a change in absorbance. The magnetosome-antibody-antigen complex was then concentrated and brought near a screen-printed carbon electrode by applying an external magnetic field, and the antigen concentration was determined using impedance measurements. The VP28 antigen (0.025 ng/µl) bound more efficiently to the magnetosome-VP28 antibody complex (0.025 ng/µl) than to the VP28 antibody (0.1 ng/µl) alone. The same assay was repeated to detect the VP28 antigen (0.01 ng/µl) in WSSV-infected seafood samples using the magnetosome-VP28 antibody complex (0.025 ng/µl). The WSSV in the seafood sample was also drawn toward the electrode due to the action of magnetosomes controlled by the external magnetic field and detected using impedance measurement. The presence of WSSV in seafood samples was verified by Western blot and RT-PCR. Cross-reactivity assays with other viruses confirmed the specificity of the magnetosome-based biosensor. The results indicate that the use of the magnetosome-based biosensor is a sensitive, specific, and rapid way to detect WSSV in seafood samples.
Collapse
|
48
|
Królicka A, Zarębski J, Bobrowski A. Catalytic Adsorptive Stripping Voltammetric Determination of Germanium Employing the Oxidizing Properties of V(IV)-HEDTA Complex and Bismuth-Modified Carbon-Based Electrodes. MEMBRANES 2021; 11:524. [PMID: 34357176 PMCID: PMC8308015 DOI: 10.3390/membranes11070524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022]
Abstract
An efficient procedure that may be used to determine germanium traces and combines the advantages of catalytic adsorptive stripping voltammetry (CAdSV) with the convenience of screen-printed electrodes was developed. To induce the CAdSV response of the germanium(IV)-catechol complex, the vanadium(IV)-HEDTA compound was employed in combination with various bismuth-modified homogeneous (glassy carbon, gold coated with a bismuth layer via physical vapor deposition) and heterogeneous (screen-printed carbon, mesoporous carbon, graphene and reduced graphene oxide, polymer-encapsuled carbon fiber) electrodes. This solution had never before been implemented for this purpose. To achieve the most favorable performance of the working electrode, the parameters of bismuth deposition were optimized using a central composite design methodology. SEM imaging and contact angle measurements confirmed the long-term stability and high chemical resistance of the electrodes against the oxidizing action of V(IV)-HEDTA. Under optimized conditions, the method made it possible to detect nanomolar concentrations of germanium with favorable detection limits, high sensitivity, and a wide linear range of 5-90 nM of Ge(IV).
Collapse
Affiliation(s)
- Agnieszka Królicka
- Department of Building Materials Technology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland; (J.Z.); (A.B.)
| | | | | |
Collapse
|
49
|
Jin X, Saha A, Jiang H, Oduncu MR, Yang Q, Sedaghat S, Maize K, Allebach JP, Shakouri A, Glassmaker N, Wei A, Rahimi R, Alam MA. Steady-State and Transient Performance of Ion-Sensitive Electrodes Suitable for Wearable and Implantable Electro-chemical Sensing. IEEE Trans Biomed Eng 2021; 69:96-107. [PMID: 34101580 DOI: 10.1109/tbme.2021.3087444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Traditional Potentiometric Ion-selective Electrodes (ISE) are widely used in industrial and clinical settings. The simplicity and small footprint of ISE have encouraged their recent adoption as wearable/implantable sensors for personalized healthcare and precision agriculture, creating a new set of unique challenges absent in traditional ISE. In this paper, we develop a fundamental physics-based model to describe both steady-state and transient responses of ISE relevant for wearable/implantable sensors. The model is encapsulated in a generalized Nernst formula that explicitly accounts for the analyte density, time-dynamics of signal transduction, ion-selective membrane thickness, and other sensor parameters. The formula is validated numerically by self-consistent modeling of multispecies ion-transport and experimentally by interpreting the time dynamics and thickness dependence of thin-film solid-contact and graphene-based ISE sensors for measuring soil nitrate concentration. These fundamental results will support the accelerated development of ISE for wearable/implantable applications.
Collapse
|
50
|
Screen-printed conductive carbon layers for dye-sensitized solar cells and electrochemical detection of dopamine. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01601-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|