1
|
Stuart DD, Van Zant W, Valiulis S, Malinick AS, Hanson V, Cheng Q. Trends in surface plasmon resonance biosensing: materials, methods, and machine learning. Anal Bioanal Chem 2024; 416:5221-5232. [PMID: 38839686 DOI: 10.1007/s00216-024-05367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Surface plasmon resonance (SPR) proves to be one of the most effective methods of label-free detection and has been integral for the study of biomolecular interactions and the development of biosensors. This trend delves into the latest SPR research and progress built upon the Kretschmann configuration, a pivotal platform, and highlights three key developments that have enhanced the capabilities of the technique. We will first cover a range of explorations of novel plasmonic materials that have shaped SPR performance. Innovative signal transduction and collection, which leverages traditional materials and emerging alternatives, will then be discussed. Finally, the evolving landscape of data analysis, including the integration of machine learning algorithms to navigate complex SPR datasets, will be reviewed. We will also discuss the implementation of these improvements that have enabled new biosensing functions. These advancements not only pave the way for enhanced biosensing in general but also open new avenues for the technique to play a more significant role in research concerning human health.
Collapse
Affiliation(s)
- Daniel D Stuart
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Westley Van Zant
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Santino Valiulis
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | | | - Victor Hanson
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
2
|
Yadav AK, Basavegowda N, Shirin S, Raju S, Sekar R, Somu P, Uthappa UT, Abdi G. Emerging Trends of Gold Nanostructures for Point-of-Care Biosensor-Based Detection of COVID-19. Mol Biotechnol 2024:10.1007/s12033-024-01157-y. [PMID: 38703305 DOI: 10.1007/s12033-024-01157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024]
Abstract
In 2019, a worldwide pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged. SARS-CoV-2 is the deadly microorganism responsible for coronavirus disease 2019 (COVID-19), which has caused millions of deaths and irreversible health problems worldwide. To restrict the spread of SARS-CoV-2, accurate detection of COVID-19 is essential for the identification and control of infected cases. Although recent detection technologies such as the real-time polymerase chain reaction delivers an accurate diagnosis of SARS-CoV-2, they require a long processing duration, expensive equipment, and highly skilled personnel. Therefore, a rapid diagnosis with accurate results is indispensable to offer effective disease suppression. Nanotechnology is the backbone of current science and technology developments including nanoparticles (NPs) that can biomimic the corona and develop deep interaction with its proteins because of their identical structures on the nanoscale. Various NPs have been extensively applied in numerous medical applications, including implants, biosensors, drug delivery, and bioimaging. Among them, point-of-care biosensors mediated with gold nanoparticles (GNPSs) have received great attention due to their accurate sensing characteristics, which are widely used in the detection of amino acids, enzymes, DNA, and RNA in samples. GNPS have reconstructed the biomedical application of biosensors because of its outstanding physicochemical characteristics. This review provides an overview of emerging trends in GNP-mediated point-of-care biosensor strategies for diagnosing various mutated forms of human coronaviruses that incorporate different transducers and biomarkers. The review also specifically highlights trends in gold nanobiosensors for coronavirus detection, ranging from the initial COVID-19 outbreak to its subsequent evolution into a pandemic.
Collapse
Affiliation(s)
- Akhilesh Kumar Yadav
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 413310, Taiwan
- Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38451, Republic of Korea
| | - Saba Shirin
- Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
- Department of Environmental Science, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, 201312, India
| | - Shiji Raju
- Bioengineering and Nano Medicine Group, Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland
| | - Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Chengalpattu, Tamil Nadu, 603308, India
| | - Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil, Biotechnology and Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Off. Jaipur-Ajmeer Expressway, Jaipur, Rajasthan, 303007, India.
| | - U T Uthappa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
3
|
Tomichan R, Sharma A, Akash K, Siddiqui AA, Dubey A, Upadhyay TK, Kumar D, Pandey S, Nagraik R. Insight of smart biosensors for COVID-19: A review. LUMINESCENCE 2023; 38:1102-1110. [PMID: 36577837 PMCID: PMC9880657 DOI: 10.1002/bio.4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
The review discusses the diagnostic application of biosensors as point-of-care devices in the COVID-19 pandemic. Biosensors are important analytical tools that can be used for the robust and effective detection of infectious diseases in real-time. In this current scenario, the utilization of smart, efficient biosensors for COVID-19 detection is increasing and we have included a few smart biosensors such as smart and intelligent based biosensors, plasmonic biosensors, field effect transistor (FET) biosensors, smart optical biosensors, surface enhanced Raman scattering (SERS) biosensor, screen printed electrode (SPE)-based biosensor, molecular imprinted polymer (MIP)-based biosensor, MXene-based biosensor and metal-organic frame smart sensor. Their significance as well as the benefits and drawbacks of each kind of smart sensor are mentioned in depth. Furthermore, we have compiled a list of various biosensors which have been developed across the globe for COVID-19 and have shown promise as commercial detection devices. Significant challenges in the development of effective diagnostic methods are discussed and recommendations have been made for better diagnostic outcomes to manage the ongoing pandemic effectively.
Collapse
Affiliation(s)
- Rosemary Tomichan
- Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| | - Avinash Sharma
- Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| | - K. Akash
- Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| | - Adeeb Ahmad Siddiqui
- Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| | - Amit Dubey
- Computational Chemistry and Drug Discovery DivisionQuanta Calculus Pvt. LtdKushinagarUttar PradeshIndia
- Department of Pharmacology, Saveetha Dental College and HospitalSaveetha Institute of Medical and Technical SciencesChennaiTamil NaduIndia
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences, Animal Cell Culture and Immunobiochemistry LabParul UniversityVadodaraGujaratIndia
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | - Sadanand Pandey
- Department of Chemistry, College of Natural SciencesYeungnam UniversityGyeongsanGyeongbukSouth Korea
| | - Rupak Nagraik
- Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| |
Collapse
|
4
|
Li X, Wang J, Geng J, Xiao L, Wang H. Emerging Landscape of SARS-CoV-2 Variants and Detection Technologies. Mol Diagn Ther 2023; 27:159-177. [PMID: 36577887 PMCID: PMC9797111 DOI: 10.1007/s40291-022-00631-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/29/2022]
Abstract
In 2019, a new coronavirus was identified that has caused significant morbidity and mortality worldwide. Like all RNA viruses, severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) evolves over time through random mutation resulting in genetic variations in the population. Although the currently approved coronavirus disease 2019 vaccines can be given to those over 5 years of age and older in most countries, strikingly, the number of people diagnosed positive for SARS-Cov-2 is still increasing. Therefore, to prevent and control this epidemic, early diagnosis of infected individuals is of great importance. The current detection of SARS-Cov-2 coronavirus variants are mainly based on reverse transcription-polymerase chain reaction. Although the sensitivity of reverse transcription-polymerase chain reaction is high, it has some disadvantages, for example, multiple temperature changes, long detection time, complicated operation, expensive instruments, and the need for professional personnel, which brings considerable inconvenience to the early diagnosis of this virus. This review comprehensively summarizes the development and application of various current detection technologies for novel coronaviruses, including isothermal amplification, CRISPR-Cas detection, serological detection, biosensor, ensemble, and microfluidic technology, along with next-generation sequencing. Those findings offer us a great potential to replace or combine with reverse transcription-polymerase chain reaction detection to achieve the purpose of allowing predictive diagnostics and targeted prevention of SARS-Cov-2 in the future.
Collapse
Affiliation(s)
- Xianghui Li
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, 443002, China
| | - Jing Wang
- Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jingping Geng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, 443002, China
| | - Liming Xiao
- Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Hu Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, 443002, China.
- Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Guo Y, Su X, Wu K, Yong KT. Numerical Analysis of Three-dimensional Nanodisk Array-based Surface Plasmon Resonance Biosensors for SARS-CoV-2 Detection. PLASMONICS (NORWELL, MASS.) 2023; 18:769-779. [PMID: 36852386 PMCID: PMC9947906 DOI: 10.1007/s11468-023-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED With continuous mutations of SARS-CoV-2 virus, new highly contagious and fast-spreading variants have emerged, including Delta and Omicron. The popular label-free immunosensor based on surface plasmon resonance (SPR) technique can be used for real-time monitoring of the ligand-analyte or antibody-antigen interactions occurring on the sensor surface. In this work, an SPR-based biosensor combined with a nanodisk array was presented to enhance the sensitivity toward virus detection. The nanodisk arrays were employed to enhance the adsorption of molecules for better detection by increasing the SPR field. Four optimal sensing configurations of silver or gold nanodisks on gold thin films with different aspect ratios were achieved through systematic optimization of all parameters to yield the best sensor performance. The resonance angle can be modulated simply by the aspect ratio of nanodisk array. The sensitivity of the optimized sensors has been improved, and the detection limit is smaller than that of bare gold-based sensor. The multi-jump resonance angle curves at tiny refractive index can clearly distinguish the difference of trace concentrations, which is very important for the accurate detection of trace substances. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11468-023-01802-3.
Collapse
Affiliation(s)
- Yan Guo
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Xianglong Su
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Kaihua Wu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
6
|
Biomedical applications of solid-binding peptides and proteins. Mater Today Bio 2023; 19:100580. [PMID: 36846310 PMCID: PMC9950531 DOI: 10.1016/j.mtbio.2023.100580] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past decades, solid-binding peptides (SBPs) have found multiple applications in materials science. In non-covalent surface modification strategies, solid-binding peptides are a simple and versatile tool for the immobilization of biomolecules on a vast variety of solid surfaces. Especially in physiological environments, SBPs can increase the biocompatibility of hybrid materials and offer tunable properties for the display of biomolecules with minimal impact on their functionality. All these features make SBPs attractive for the manufacturing of bioinspired materials in diagnostic and therapeutic applications. In particular, biomedical applications such as drug delivery, biosensing, and regenerative therapies have benefited from the introduction of SBPs. Here, we review recent literature on the use of solid-binding peptides and solid-binding proteins in biomedical applications. We focus on applications where modulating the interactions between solid materials and biomolecules is crucial. In this review, we describe solid-binding peptides and proteins, providing background on sequence design and binding mechanism. We then discuss their application on materials relevant for biomedicine (calcium phosphates, silicates, ice crystals, metals, plastics, and graphene). Although the limited characterization of SBPs still represents a challenge for their design and widespread application, our review shows that SBP-mediated bioconjugation can be easily introduced into complex designs and on nanomaterials with very different surface chemistries.
Collapse
|
7
|
Janik-Karpinska E, Ceremuga M, Niemcewicz M, Podogrocki M, Stela M, Cichon N, Bijak M. Immunosensors-The Future of Pathogen Real-Time Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22249757. [PMID: 36560126 PMCID: PMC9785510 DOI: 10.3390/s22249757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 05/26/2023]
Abstract
Pathogens and their toxins can cause various diseases of different severity. Some of them may be fatal, and therefore early diagnosis and suitable treatment is essential. There are numerous available methods used for their rapid screening. Conventional laboratory-based techniques such as culturing, enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) are dominant. However, culturing still remains the "gold standard" for their identification. These methods have many advantages, including high sensitivity and selectivity, but also numerous limitations, such as long experiment-time, costly instrumentation, and the need for well-qualified personnel to operate the equipment. All these existing limitations are the reasons for the continuous search for a new solutions in the field of bacteria identification. For years, research has been focusing on the use of immunosensors in various types of toxin- and pathogen-detection. Compared to the conventional methods, immunosensors do not require well-trained personnel. What is more, immunosensors are quick, highly selective and sensitive, and possess the potential to significantly improve the pathogen and toxin diagnostic-processes. There is a very important potential use for them in various transport systems, where the risk of contamination by bioagents is very high. In this paper, the advances in the field of immunosensor usage in pathogenic microorganism- and toxin-detection, are described.
Collapse
Affiliation(s)
- Edyta Janik-Karpinska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Ceremuga
- Military Institute of Armored and Automotive Technology, Okuniewska 1, 05-070 Sulejowek, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marcin Podogrocki
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Maksymilian Stela
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
8
|
Khaksarinejad R, Arabpour Z, RezaKhani L, Parvizpour F, Rasmi Y. Biomarker based biosensors: An opportunity for diagnosis of COVID-19. Rev Med Virol 2022; 32:e2356. [PMID: 35478470 PMCID: PMC9111147 DOI: 10.1002/rmv.2356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/08/2023]
Abstract
Early diagnosis and treatment of diseases are crucial research areas of human health. For early diagnosis, one method that has proven efficient is the detection of biomarkers which can provide real-time and accurate biological information. Most biomarker detection is currently carried out at localised dedicated laboratories using large and automated analysers, increasing waiting time and costs. Smaller, faster, and cheaper devices could potentially replace these time-consuming laboratory analyses and make analytical results available as point-of-care diagnostics. Innovative biosensor-based strategies could allow biomarkers to be tested reliably in a decentralised setting. Early diagnosis of COVID-19 patients has a key role in order to use quarantine and treatment strategies in a timely manner. Raised levels of several biomarkers in COVID-19 patients are associated with respiratory infections or dysfunction of various organs. Through clinical studies of COVID-19 patient biomarkers such as ferritin, Interleukins, albumin and …are found to reveals significant differences in their excretion ranges from healthy patients and patients with SARS-CoV-2, in addition to the development of biomarkers based biosensor such as stated biomarkers can be used and to investigate more specific biomarkers further proteomic analysis can be performed. This review presents several biomarker alterations in COVID-19 patients such as salivary, circulatory, coagulation, cardiovascular, renal, liver, C-reactive protein (CRP), immunological and inflammatory biomarkers. Also, biomarker sensors based on electrochemical, optical, and lateral flow characteristics which have potential applications for SARS-COV-2 in the recent COVID-19 pandemic, will be discussed.
Collapse
Affiliation(s)
- Reza Khaksarinejad
- Department of ToxicologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Zohreh Arabpour
- Iranian Tissue Bank and Research CenterTehran University of Medical SciencesTehranIran
| | - Leila RezaKhani
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
- Department of Tissue EngineeringSchool of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research CenterTehran University of Medical SciencesTehranIran
| | - Yousef Rasmi
- Department of BiochemistryFaculty of MedicineUrmia University of Medical SciencesUrmiaIran
- Cellular and Molecular Research CenterUrmia University of Medical SciencesUrmiaIran
| |
Collapse
|
9
|
Pandey PS, Raghuwanshi SK, Shadab A, Ansari MTI, Tiwari UK, Kumar S. SPR Based Biosensing Chip for COVID-19 Diagnosis-A Review. IEEE SENSORS JOURNAL 2022; 22:13800-13810. [PMID: 36346093 DOI: 10.1109/jsen.2021.3133007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 05/24/2023]
Abstract
Surface Plasmon Resonance (SPR) techniques are highly accurate in detecting biomolecular like blood group measurement, food adulteration, milk adulteration and recently developing as a rapid detection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. In order to validate the clinical diagnosis, Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of nasopharyngeal swabs has been utilized, which is time consuming and expensive. For fast and accurate detection of the SARS-CoV-2 virus, SPR based biosensing chips are described in this review article. SPR sensors have the potential to be employed for fast, accurate, and portable SARS-CoV-2 virus diagnosis. To combat the SARS-CoV-2 pandemic, there is considerable interest in creating innovative biosensors that are quick, reliable, and sensitive for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Purnendu Shekhar Pandey
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Sanjeev Kumar Raghuwanshi
- Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Azhar Shadab
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Md Tauseef Iqbal Ansari
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Umesh Kumar Tiwari
- Advanced Materials and Sensors DivisionCentral Scientific Instruments Organisation (CSIO) Chandigarh 160030 India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information TechnologyLiaocheng University Liaocheng 252059 China
| |
Collapse
|
10
|
Pandey PS, Raghuwanshi SK, Shadab A, Ansari MTI, Tiwari UK, Kumar S. SPR Based Biosensing Chip for COVID-19 Diagnosis-A Review. IEEE SENSORS JOURNAL 2022; 22:13800-13810. [PMID: 36346093 PMCID: PMC9423036 DOI: 10.1109/jsen.2022.3181423] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 05/13/2023]
Abstract
Surface Plasmon Resonance (SPR) techniques are highly accurate in detecting biomolecular like blood group measurement, food adulteration, milk adulteration and recently developing as a rapid detection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. In order to validate the clinical diagnosis, Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of nasopharyngeal swabs has been utilized, which is time consuming and expensive. For fast and accurate detection of the SARS-CoV-2 virus, SPR based biosensing chips are described in this review article. SPR sensors have the potential to be employed for fast, accurate, and portable SARS-CoV-2 virus diagnosis. To combat the SARS-CoV-2 pandemic, there is considerable interest in creating innovative biosensors that are quick, reliable, and sensitive for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Purnendu Shekhar Pandey
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Sanjeev Kumar Raghuwanshi
- Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Azhar Shadab
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Md Tauseef Iqbal Ansari
- Optical Fiber Sensor LaboratoryDepartment of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad Jharkhand 826004 India
| | - Umesh Kumar Tiwari
- Advanced Materials and Sensors DivisionCentral Scientific Instruments Organisation (CSIO) Chandigarh 160030 India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information TechnologyLiaocheng University Liaocheng 252059 China
| |
Collapse
|
11
|
Kabay G, DeCastro J, Altay A, Smith K, Lu HW, Capossela AM, Moarefian M, Aran K, Dincer C. Emerging Biosensing Technologies for the Diagnostics of Viral Infectious Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201085. [PMID: 35288985 DOI: 10.1002/adma.202201085] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Several viral infectious diseases appear limitless since the beginning of the 21st century, expanding into pandemic lengths. Thus, there are extensive efforts to provide more efficient means of diagnosis, a better understanding of acquired immunity, and improved monitoring of inflammatory biomarkers, as these are all crucial for controlling the spread of infection while aiding in vaccine development and improving patient outcomes. In this regard, various biosensors have been developed recently to streamline pathogen and immune response detection by addressing the limitations of traditional methods, including isothermal amplification-based systems and lateral flow assays. This review explores state-of-the-art biosensors for detecting viral pathogens, serological assays, and inflammatory biomarkers from the material perspective, by discussing their advantages, limitations, and further potential regarding their analytical performance, clinical utility, and point-of-care adaptability. Additionally, next-generation biosensing technologies that offer better sensitivity and selectivity, and easy handling for end-users are highlighted. An emerging example of these next-generation biosensors are those powered by novel synthetic biology tools, such as clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated proteins (Cas), in combination with integrated point-of-care devices. Lastly, the current challenges are discussed and a roadmap for furthering these advanced biosensing technologies to manage future pandemics is provided.
Collapse
Affiliation(s)
- Gözde Kabay
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
- Institute of Functional Interfaces - IFG, Karlsruhe Institute of Technology, 76344, Karlsruhe, Germany
| | - Jonalyn DeCastro
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Alara Altay
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Kasey Smith
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Hsiang-Wei Lu
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | | | - Maryam Moarefian
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kiana Aran
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
- Cardea Bio Inc., San Diego, CA, 92121, USA
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
12
|
Asghar R, Rasheed M, ul Hassan J, Rafique M, Khan M, Deng Y. Advancements in Testing Strategies for COVID-19. BIOSENSORS 2022; 12:410. [PMID: 35735558 PMCID: PMC9220779 DOI: 10.3390/bios12060410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 coronavirus, also known as the disease-causing agent for COVID-19, is a virulent pathogen that may infect people and certain animals. The global spread of COVID-19 and its emerging variation necessitates the development of rapid, reliable, simple, and low-cost diagnostic tools. Many methodologies and devices have been developed for the highly sensitive, selective, cost-effective, and rapid diagnosis of COVID-19. This review organizes the diagnosis platforms into four groups: imaging, molecular-based detection, serological testing, and biosensors. Each platform's principle, advancement, utilization, and challenges for monitoring SARS-CoV-2 are discussed in detail. In addition, an overview of the impact of variants on detection, commercially available kits, and readout signal analysis has been presented. This review will expand our understanding of developing advanced diagnostic approaches to evolve into susceptible, precise, and reproducible technologies to combat any future outbreak.
Collapse
Affiliation(s)
- Rabia Asghar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| | - Madiha Rasheed
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| | - Jalees ul Hassan
- Department of Wildlife and Ecology, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences-UVAS, Lahore 54000, Pakistan;
| | - Mohsin Rafique
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
| | - Mashooq Khan
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China;
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China;
| |
Collapse
|
13
|
Steglich P, Lecci G, Mai A. Surface Plasmon Resonance (SPR) Spectroscopy and Photonic Integrated Circuit (PIC) Biosensors: A Comparative Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:2901. [PMID: 35458884 PMCID: PMC9028357 DOI: 10.3390/s22082901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022]
Abstract
Label-free direct-optical biosensors such as surface-plasmon resonance (SPR) spectroscopy has become a gold standard in biochemical analytics in centralized laboratories. Biosensors based on photonic integrated circuits (PIC) are based on the same physical sensing mechanism: evanescent field sensing. PIC-based biosensors can play an important role in healthcare, especially for point-of-care diagnostics, if challenges for a transfer from research laboratory to industrial applications can be overcome. Research is at this threshold, which presents a great opportunity for innovative on-site analyses in the health and environmental sectors. A deeper understanding of the innovative PIC technology is possible by comparing it with the well-established SPR spectroscopy. In this work, we shortly introduce both technologies and reveal similarities and differences. Further, we review some latest advances and compare both technologies in terms of surface functionalization and sensor performance.
Collapse
Affiliation(s)
- Patrick Steglich
- IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany; (G.L.); (A.M.)
- Department of Photonics, Technische Hochschule Wildau, 15745 Wildau, Germany
| | - Giulia Lecci
- IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany; (G.L.); (A.M.)
| | - Andreas Mai
- IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany; (G.L.); (A.M.)
- Department of Photonics, Technische Hochschule Wildau, 15745 Wildau, Germany
| |
Collapse
|
14
|
Biotechnological Perspectives to Combat the COVID-19 Pandemic: Precise Diagnostics and Inevitable Vaccine Paradigms. Cells 2022; 11:cells11071182. [PMID: 35406746 PMCID: PMC8997755 DOI: 10.3390/cells11071182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause for the ongoing global public health emergency. It is more commonly known as coronavirus disease 2019 (COVID-19); the pandemic threat continues to spread aroundthe world with the fluctuating emergence of its new variants. The severity of COVID-19 ranges from asymptomatic to serious acute respiratory distress syndrome (ARDS), which has led to a high human mortality rate and disruption of socioeconomic well-being. For the restoration of pre-pandemic normalcy, the international scientific community has been conducting research on a war footing to limit extremely pathogenic COVID-19 through diagnosis, treatment, and immunization. Since the first report of COVID-19 viral infection, an array of laboratory-based and point-of-care (POC) approaches have emerged for diagnosing and understanding its status of outbreak. The RT-PCR-based viral nucleic acid test (NAT) is one of the rapidly developed and most used COVID-19 detection approaches. Notably, the current forbidding status of COVID-19 requires the development of safe, targeted vaccines/vaccine injections (shots) that can reduce its associated morbidity and mortality. Massive and accelerated vaccination campaigns would be the most effective and ultimate hope to end the COVID-19 pandemic. Since the SARS-CoV-2 virus outbreak, emerging biotechnologies and their multidisciplinary approaches have accelerated the understanding of molecular details as well as the development of a wide range of diagnostics and potential vaccine candidates, which are indispensable to combating the highly contagious COVID-19. Several vaccine candidates have completed phase III clinical studies and are reported to be effective in immunizing against COVID-19 after their rollout via emergency use authorization (EUA). However, optimizing the type of vaccine candidates and its route of delivery that works best to control viral spread is crucial to face the threatening variants expected to emerge over time. In conclusion, the insights of this review would facilitate the development of more likely diagnostics and ideal vaccines for the global control of COVID-19.
Collapse
|
15
|
Aquino A, Paschoalin VMF, Tessaro LLG, Raymundo-Pereira PA, Conte-Junior CA. Updating the use of nano-biosensors as promising devices for the diagnosis of coronavirus family members: A systematic review. J Pharm Biomed Anal 2022; 211:114608. [PMID: 35123330 PMCID: PMC8788102 DOI: 10.1016/j.jpba.2022.114608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
Coronavidae viruses, such as SARS-CoV, SARS-CoV-2, and MERS-CoV, cause severe lower respiratory tract infection, acute respiratory distress syndrome and extrapulmonary manifestations, such as diarrhea and fever, eventually leading to death. Fast, accurate, reproductible, and cost-effective SARS-CoV-2 identification can be achieved employing nano-biosensors, reinforcing conventional methodologies to avoid the spread of COVID-19 within and across communities. Nano-biosensors built using gold, silver, graphene, In2O3 nanowire and iron oxide nanoparticles, Quantum Dots and carbon nanofibers have been successfully employed to detect specific virus antigens - nucleic acid sequences and/or proteins -or host antibodies produced in response to viral infection. Biorecognition counterpart molecules have been immobilized on the surface of these nanomaterials, leading to selective virus detection by optical or electrochemical transducer systems. This systematic review assessed studies on described and tested immunonsensors and genosensors designed from distinct nanomaterials available at the Pubmed, Scopus, and Science Direct databases. Twenty-three nano biosensors were found suitable for unequivocal coronavirus detection in clinical samples. Nano-biosensors coupled to RT-LAMP/RT-PCR assays can optimize RNA extraction, reduce analysis times and/or eliminate sophisticated instrumentation. Although promising for the diagnosis of Coronavidae family members, further trials in large populations must be adequately and rigorously conducted to address nano-biosensor applicability in the clinical practice for early coronavirus infection detection.
Collapse
Affiliation(s)
- Adriano Aquino
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil
| | - Leticia Louize Gonçalves Tessaro
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil
| | | | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24230-340, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ 20020-000, Brazil.
| |
Collapse
|
16
|
Dhar BC. Diagnostic assay and technology advancement for detecting SARS-CoV-2 infections causing the COVID-19 pandemic. Anal Bioanal Chem 2022; 414:2903-2934. [PMID: 35211785 PMCID: PMC8872642 DOI: 10.1007/s00216-022-03918-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/20/2022] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused COVID-19 pandemic has transmitted to humans in practically all parts of the world, producing socio-economic turmoil. There is an urgent need for precise, fast, and affordable diagnostic testing to be widely available for detecting SARS-CoV-2 and its mutations in various phases of the disease. Early diagnosis with great precision has been achieved using real-time polymerase chain reaction (RT-PCR) and similar other molecular methods, but theseapproaches are costly and involve rigorous processes that are not easily obtainable. Conversely, immunoassays that detect a small number of antibodies have been employed for quick, low-cost tests, but their efficiency in diagnosing infected people has been restricted. The use of biosensors in the detection of SARS-CoV-2 is vital for the COVID-19 pandemic’s control. This review gives an overview of COVID-19 diagnostic approaches that are currently being developed as well as nanomaterial-based biosensor technologies, to aid future technological advancement and innovation. These approaches can be integrated into point-of-care (POC) devices to quickly identify a large number of infected patients and asymptomatic carriers. The ongoing research endeavors and developments in complementary technologies will play a significant role in curbing the spread of the COVID-19 pandemic and fill the knowledge gaps in current diagnostic accuracy and capacity.
Collapse
Affiliation(s)
- Bidhan C Dhar
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC), 205 S Columbia St, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
17
|
Ahmad MA, Olule LJA, Meetani M, Sheikh FA, Blooshi RA, Panicker NG, Mustafa F, Rizvi TA. Detection of SARS-CoV-2 in COVID-19 Patient Nasal Swab Samples Using Signal Processing. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2022; 16:164-174. [PMID: 35582704 PMCID: PMC9088791 DOI: 10.1109/jstsp.2021.3134073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/18/2021] [Accepted: 12/02/2021] [Indexed: 05/31/2023]
Abstract
This work presents an opto-electrical method that measures the viral nucleocapsid protein and anti-N antibody interactions to differentiate between SARS-CoV-2 negative and positive nasal swab samples. Upon light exposure of the patient nasal swab sample mixed with the anti-N antibody, charge transfer (CT) transitions within the altered protein folds are initiated between the charged amino acids side chain moieties and the peptide backbone that play the role of donor and acceptor groups. A Figure of Merit (FOM) was introduced to correlate the relative variations of the samples with and without antibody at two different voltages. Empirically, SARS-CoV-2 in patient nasal swab samples was detected within two minutes, if an extracted FOM threshold of >1 was achieved; otherwise, the sample wasconsidered negative.
Collapse
Affiliation(s)
- Mahmoud Al Ahmad
- Department of Electrical EngineeringUAE UniversityAl Ain15551UAE
- Zayed Center for Health Sciences (ZCHS)UAE UniversityAl Ain15551UAE
| | | | | | | | | | - Neena G. Panicker
- Department of Biochemistry & Molecular BiologyCMHS UAE UniversityAl Ain17666UAE
| | - Farah Mustafa
- Department of Biochemistry and Molecular BiologyCMHS UAE UniversityAl Ain17666UAE
- Zayed Center for Health Sciences (ZCHS)UAE UniversityAl Ain15551UAE
| | - Tahir A. Rizvi
- Department of Microbiology and ImmunologyCMHS UAE UniversityAl Ain17666UAE
- Zayed Center for Health Sciences (ZCHS)UAE UniversityAl Ain15551UAE
| |
Collapse
|
18
|
Abstract
Coronaviruses are well known airborne viruses that infect humans, other mammals, and birds. COVID-19 is the disease caused by the last emerging type of corona viruses; SARS-CoV-2 which resulted in the ongoing pandemic. Since its first identification, SARS-CoV-2 has spread globally causing significant morbidity and mortality. Fast and reliable diagnostic methods are crucial to control the virus outbreak. In this chapter, we summarize the traditional methods used to detect corona viruses. Various biosensors used for the detection of the virus antibodies and antigens were briefly discussed. Different biosensing approaches for the detection of corona viruses were presented with special emphasis on the reported biosensors for the detection of SARS-CoV-2. Major advancements in the biosensors area for corona viruses such as the use of cotton, magnetic nanoparticles, graphene, gold nanoparticles, and portable devices are highlighted. The challenges and future perspectives in the biosensors for the detection of corona viruses are discussed.
Collapse
|
19
|
Calvo-Lozano O, Sierra M, Soler M, Estévez MC, Chiscano-Camón L, Ruiz-Sanmartin A, Ruiz-Rodriguez JC, Ferrer R, González-López JJ, Esperalba J, Fernández-Naval C, Bueno L, López-Aladid R, Torres A, Fernández-Barat L, Attoumani S, Charrel R, Coutard B, Lechuga LM. Label-Free Plasmonic Biosensor for Rapid, Quantitative, and Highly Sensitive COVID-19 Serology: Implementation and Clinical Validation. Anal Chem 2021; 94:975-984. [PMID: 34971311 PMCID: PMC8751014 DOI: 10.1021/acs.analchem.1c03850] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Serological tests
are essential for the control and management
of COVID-19 pandemic (diagnostics and surveillance, and epidemiological
and immunity studies). We introduce a direct serological biosensor
assay employing proprietary technology based on plasmonics, which
offers rapid (<15 min) identification and quantification of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in
clinical samples, without signal amplification. The portable plasmonic
device employs a custom-designed multiantigen (RBD peptide and N protein)
sensor biochip and reaches detection limits in the low ng mL–1 range employing polyclonal antibodies. It has also been implemented
employing the WHO-approved anti-SARS-CoV-2 immunoglobulin standard.
A clinical validation with COVID-19 positive and negative samples
(n = 120) demonstrates its excellent diagnostic sensitivity
(99%) and specificity (100%). This positions our biosensor as an accurate
and easy-to-use diagnostics tool for rapid and reliable COVID-19 serology
to be employed both at laboratory and decentralized settings for the
disease management and for the evaluation of immunological status
during vaccination or treatment.
Collapse
Affiliation(s)
- Olalla Calvo-Lozano
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Miquel Sierra
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Maria Soler
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Maria Carmen Estévez
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Luis Chiscano-Camón
- Intensive Care Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain
| | - Adolfo Ruiz-Sanmartin
- Intensive Care Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain
| | - Juan Carlos Ruiz-Rodriguez
- Intensive Care Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain.,Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain
| | - Juan José González-López
- Clinical Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain.,Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig, Vall d'Hebron 119-129, Barcelona 08035, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Plaça Cívica, Bellaterra, Barcelona 08193, Spain
| | - Juliana Esperalba
- Clinical Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain.,Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig, Vall d'Hebron 119-129, Barcelona 08035, Spain
| | - Candela Fernández-Naval
- Clinical Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain.,Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig, Vall d'Hebron 119-129, Barcelona 08035, Spain
| | - Leticia Bueno
- Cellex Laboratory, CiberRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Carrer de Roselló 149, Barcelona 08036, Spain.,School of Medicine, University of Barcelona, Carrer de Casanova, 143, Barcelona 08036, Spain.,Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, Carrer de Villarroel, 170, Barcelona 08036, Spain
| | - Ruben López-Aladid
- Cellex Laboratory, CiberRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Carrer de Roselló 149, Barcelona 08036, Spain.,School of Medicine, University of Barcelona, Carrer de Casanova, 143, Barcelona 08036, Spain.,Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, Carrer de Villarroel, 170, Barcelona 08036, Spain
| | - Antoni Torres
- Cellex Laboratory, CiberRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Carrer de Roselló 149, Barcelona 08036, Spain.,School of Medicine, University of Barcelona, Carrer de Casanova, 143, Barcelona 08036, Spain.,Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, Carrer de Villarroel, 170, Barcelona 08036, Spain
| | - Laia Fernández-Barat
- Cellex Laboratory, CiberRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Carrer de Roselló 149, Barcelona 08036, Spain.,School of Medicine, University of Barcelona, Carrer de Casanova, 143, Barcelona 08036, Spain.,Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, Carrer de Villarroel, 170, Barcelona 08036, Spain
| | - Sarah Attoumani
- Unité Des Virus Émergents (UVE: Aix-Univ-IRD 190-Inserm 1207), Marseille 13005, France
| | - Rémi Charrel
- Unité Des Virus Émergents (UVE: Aix-Univ-IRD 190-Inserm 1207), Marseille 13005, France
| | - Bruno Coutard
- Unité Des Virus Émergents (UVE: Aix-Univ-IRD 190-Inserm 1207), Marseille 13005, France
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
20
|
Afroj S, Britnell L, Hasan T, Andreeva DV, Novoselov KS, Karim N. Graphene-Based Technologies for Tackling COVID-19 and Future Pandemics. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2107407. [PMID: 34899114 PMCID: PMC8646295 DOI: 10.1002/adfm.202107407] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Indexed: 05/06/2023]
Abstract
The COVID-19 pandemic highlighted the need for rapid tools and technologies to combat highly infectious viruses. The excellent electrical, mechanical and other functional properties of graphene and graphene-like 2D materials (2DM) can be utilized to develop novel and innovative devices to tackle COVID-19 and future pandemics. Here, the authors outline how graphene and other 2DM-based technologies can be used for the detection, protection, and continuous monitoring of infectious diseases including COVID-19. The authors highlight the potential of 2DM-based biosensors in rapid testing and tracing of viruses to enable isolation of infected patients, and stop the spread of viruses. The possibilities of graphene-based wearable devices are discussed for continuous monitoring of COVID-19 symptoms. The authors also provide an overview of the personal protective equipment, and potential filtration mechanisms to separate, destroy or degrade highly infectious viruses, and the potential of graphene and other 2DM to increase their efficiency, and enhance functional and mechanical properties. Graphene and other 2DM could not only play a vital role for tackling the ongoing COVID-19 pandemic but also provide technology platforms and tools for the protection, detection and monitoring of future viral diseases.
Collapse
Affiliation(s)
- Shaila Afroj
- Centre for Print Research The University of West of EnglandBristolBS16 1QYUK
| | - Liam Britnell
- Graphene Engineering and Innovation Centre (GEIC)The University of ManchesterManchesterM13 9PLUK
| | - Tahmid Hasan
- Department of Environmental Science and EngineeringBangladesh University of TextilesTejgaonDhaka 1208Bangladesh
| | - Daria V. Andreeva
- Department of Materials Science and EngineeringNational University of SingaporeSingaporeSingapore
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingaporeSingapore
| | - Kostya S. Novoselov
- Department of Materials Science and EngineeringNational University of SingaporeSingaporeSingapore
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingaporeSingapore
- Chongqing 2D Materials InstituteLiangjiang New AreaChongqing400714China
| | - Nazmul Karim
- Centre for Print Research The University of West of EnglandBristolBS16 1QYUK
| |
Collapse
|
21
|
Sharma A, Mishra RK, Goud KY, Mohamed MA, Kummari S, Tiwari S, Li Z, Narayan R, Stanciu LA, Marty JL. Optical Biosensors for Diagnostics of Infectious Viral Disease: A Recent Update. Diagnostics (Basel) 2021; 11:2083. [PMID: 34829430 PMCID: PMC8625106 DOI: 10.3390/diagnostics11112083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The design and development of biosensors, analytical devices used to detect various analytes in different matrices, has emerged. Biosensors indicate a biorecognition element with a physicochemical analyzer or detector, i.e., a transducer. In the present scenario, various types of biosensors have been deployed in healthcare and clinical research, for instance, biosensors for blood glucose monitoring. Pathogenic microbes are contributing mediators of numerous infectious diseases that are becoming extremely serious worldwide. The recent outbreak of COVID-19 is one of the most recent examples of such communal and deadly diseases. In efforts to work towards the efficacious treatment of pathogenic viral contagions, a fast and precise detection method is of the utmost importance in biomedical and healthcare sectors for early diagnostics and timely countermeasures. Among various available sensor systems, optical biosensors offer easy-to-use, fast, portable, handy, multiplexed, direct, real-time, and inexpensive diagnosis with the added advantages of specificity and sensitivity. Many progressive concepts and extremely multidisciplinary approaches, including microelectronics, microelectromechanical systems (MEMSs), nanotechnologies, molecular biology, and biotechnology with chemistry, are used to operate optical biosensors. A portable and handheld optical biosensing device would provide fast and reliable results for the identification and quantitation of pathogenic virus particles in each sample. In the modern day, the integration of intelligent nanomaterials in the developed devices provides much more sensitive and highly advanced sensors that may produce the results in no time and eventually help clinicians and doctors enormously. This review accentuates the existing challenges engaged in converting laboratory research to real-world device applications and optical diagnostics methods for virus infections. The review's background and progress are expected to be insightful to the researchers in the sensor field and facilitate the design and fabrication of optical sensors for life-threatening viruses with broader applicability to any desired pathogens.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Budhera, Gurugram 122505, Haryana, India;
| | - Rupesh Kumar Mishra
- Bindley Bio-Science Center, Lab 222, 1203 W. State St., Purdue University, West Lafayette, IN 47907, USA
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - K. Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Mona A. Mohamed
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority, Giza 99999, Egypt;
| | - Shekher Kummari
- Department of Chemistry, National Institute of Technology, Warangal 506004, Telangana, India;
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chattisgarh, India;
| | - Zhanhong Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Yangpu District, Shanghai 200093, China;
| | - Roger Narayan
- Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695, USA;
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lia A. Stanciu
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Jean Louis Marty
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
22
|
Meng Z, Guo S, Zhou Y, Li M, Wang M, Ying B. Applications of laboratory findings in the prevention, diagnosis, treatment, and monitoring of COVID-19. Signal Transduct Target Ther 2021; 6:316. [PMID: 34433805 PMCID: PMC8386162 DOI: 10.1038/s41392-021-00731-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
The worldwide pandemic of coronavirus disease 2019 (COVID-19) presents us with a serious public health crisis. To combat the virus and slow its spread, wider testing is essential. There is a need for more sensitive, specific, and convenient detection methods of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Advanced detection can greatly improve the ability and accuracy of the clinical diagnosis of COVID-19, which is conducive to the early suitable treatment and supports precise prophylaxis. In this article, we combine and present the latest laboratory diagnostic technologies and methods for SARS-CoV-2 to identify the technical characteristics, considerations, biosafety requirements, common problems with testing and interpretation of results, and coping strategies of commonly used testing methods. We highlight the gaps in current diagnostic capacity and propose potential solutions to provide cutting-edge technical support to achieve a more precise diagnosis, treatment, and prevention of COVID-19 and to overcome the difficulties with the normalization of epidemic prevention and control.
Collapse
Affiliation(s)
- Zirui Meng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shuo Guo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mengjiao Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
23
|
Biochemical composition, transmission and diagnosis of SARS-CoV-2. Biosci Rep 2021; 41:229295. [PMID: 34291285 PMCID: PMC8350435 DOI: 10.1042/bsr20211238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a life-threatening respiratory infection caused by severe acute respiratory syndrome virus (SARS-CoV-2), a novel human coronavirus. COVID-19 was declared a pandemic by World Health Organization in March 2020 for its continuous and rapid spread worldwide. Rapidly emerging COVID-19 epicenters and mutants of concerns have created mammoth chaos in healthcare sectors across the globe. With over 185 million infections and approximately 4 million deaths globally, COVID-19 continues its unchecked spread despite all mitigation measures. Until effective and affordable antiretroviral drugs are made available and the population at large is vaccinated, timely diagnosis of the infection and adoption of COVID-appropriate behavior remains major tool available to curtail the still escalating COVID-19 pandemic. This review provides an updated overview of various techniques of COVID-19 testing in human samples and also discusses, in brief, the biochemical composition and mode of transmission of the SARS-CoV-2. Technological advancement in various molecular, serological and immunological techniques including mainly the reverse-transcription polymerase chain reaction (RT-PCR), CRISPR, lateral flow assays (LFAs), and immunosensors are reviewed.
Collapse
|
24
|
Djaileb A, Hojjat Jodaylami M, Coutu J, Ricard P, Lamarre M, Rochet L, Cellier-Goetghebeur S, Macaulay D, Charron B, Lavallée É, Thibault V, Stevenson K, Forest S, Live LS, Abonnenc N, Guedon A, Quessy P, Lemay JF, Farnós O, Kamen A, Stuible M, Gervais C, Durocher Y, Cholette F, Mesa C, Kim J, Cayer MP, de Grandmont MJ, Brouard D, Trottier S, Boudreau D, Pelletier JN, Masson JF. Cross-validation of ELISA and a portable surface plasmon resonance instrument for IgG antibody serology with SARS-CoV-2 positive individuals. Analyst 2021; 146:4905-4917. [PMID: 34250530 DOI: 10.1039/d1an00893e] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report on the development of surface plasmon resonance (SPR) sensors and matching ELISAs for the detection of nucleocapsid and spike antibodies specific against the novel coronavirus 2019 (SARS-CoV-2) in human serum, plasma and dried blood spots (DBS). When exposed to SARS-CoV-2 or a vaccine against SARS-CoV-2, the immune system responds by expressing antibodies at levels that can be detected and monitored to identify the fraction of the population potentially immunized against SARS-CoV-2 and support efforts to deploy a vaccine strategically. A SPR sensor coated with a peptide monolayer and functionalized with various sources of SARS-CoV-2 recombinant proteins expressed in different cell lines detected human anti-SARS-CoV-2 IgG antibodies in clinical samples. Nucleocapsid expressed in different cell lines did not significantly change the sensitivity of the assays, whereas the use of a CHO cell line to express spike ectodomain led to excellent performance. This bioassay was performed on a portable SPR instrument capable of measuring 4 biological samples within 30 minutes of sample/sensor contact and the chip could be regenerated at least 9 times. Multi-site validation was then performed with in-house and commercial ELISA, which revealed excellent cross-correlations with Pearson's coefficients exceeding 0.85 in all cases, for measurements in DBS and plasma. This strategy paves the way to point-of-care and rapid testing for antibodies in the context of viral infection and vaccine efficacy monitoring.
Collapse
Affiliation(s)
- Abdelhadi Djaileb
- Department of Chemistry, Department of Biochemistry and PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, Québec H3C 3J7, Canada. and Affinité Instruments, 1250 rue Guy, Suite 600, Montréal, Québec H3H 2L3, Canada
| | - Maryam Hojjat Jodaylami
- Department of Chemistry, Quebec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, Québec H3C 3J7, Canada.
| | - Julien Coutu
- Department of Chemistry, Quebec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, Québec H3C 3J7, Canada.
| | - Pierre Ricard
- Department of Chemistry, Quebec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, Québec H3C 3J7, Canada.
| | - Mathieu Lamarre
- Department of Chemistry and Centre for Optics, Photonics and Lasers (COPL), Université Laval, 1045, av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Léa Rochet
- Department of Chemistry, Department of Biochemistry and PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, Québec H3C 3J7, Canada.
| | - Stella Cellier-Goetghebeur
- Department of Chemistry, Department of Biochemistry and PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, Québec H3C 3J7, Canada.
| | - Devin Macaulay
- Department of Chemistry and Centre for Optics, Photonics and Lasers (COPL), Université Laval, 1045, av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Benjamin Charron
- Department of Chemistry, Quebec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, Québec H3C 3J7, Canada.
| | - Étienne Lavallée
- Department of Chemistry, Department of Biochemistry and PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, Québec H3C 3J7, Canada.
| | - Vincent Thibault
- Department of Chemistry, Quebec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, Québec H3C 3J7, Canada.
| | - Keisean Stevenson
- Department of Chemistry, Quebec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, Québec H3C 3J7, Canada.
| | - Simon Forest
- Department of Chemistry, Quebec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, Québec H3C 3J7, Canada.
| | - Ludovic S Live
- Affinité Instruments, 1250 rue Guy, Suite 600, Montréal, Québec H3H 2L3, Canada
| | - Nanouk Abonnenc
- CNETE and PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Cégep de Shawinigan, 2263 Avenue du Collège, Shawinigan, Québec G9N 6 V8, Canada
| | - Anthony Guedon
- CNETE and PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Cégep de Shawinigan, 2263 Avenue du Collège, Shawinigan, Québec G9N 6 V8, Canada
| | - Patrik Quessy
- CNETE and PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Cégep de Shawinigan, 2263 Avenue du Collège, Shawinigan, Québec G9N 6 V8, Canada
| | - Jean-François Lemay
- CNETE and PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Cégep de Shawinigan, 2263 Avenue du Collège, Shawinigan, Québec G9N 6 V8, Canada
| | - Omar Farnós
- Department of Bioengineering, McGill University McConnell Engineering Building, 3480 University Street, Montreal, Québec H3A 0E9, Canada
| | - Amine Kamen
- Department of Bioengineering, McGill University McConnell Engineering Building, 3480 University Street, Montreal, Québec H3A 0E9, Canada
| | - Matthew Stuible
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Christian Gervais
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - François Cholette
- National Laboratory for HIV Reference Services, National Microbiology Laboratory at the JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada and Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Christine Mesa
- National Laboratory for HIV Reference Services, National Microbiology Laboratory at the JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - John Kim
- National Laboratory for HIV Reference Services, National Microbiology Laboratory at the JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Marie-Pierre Cayer
- Héma-Québec, Affaires médicales et innovation, 1070, avenue des Sciences-de-la-Vie, Québec City, G1V 5C3, Québec, Canada
| | - Marie-Joëlle de Grandmont
- Héma-Québec, Affaires médicales et innovation, 1070, avenue des Sciences-de-la-Vie, Québec City, G1V 5C3, Québec, Canada
| | - Danny Brouard
- Héma-Québec, Affaires médicales et innovation, 1070, avenue des Sciences-de-la-Vie, Québec City, G1V 5C3, Québec, Canada
| | - Sylvie Trottier
- Centre de recherche du Centre hospitalier universitaire de Québec and Département de microbiologie-infectiologie et d'immunologie, Université Laval 2705, boulevard Laurier, Québec City, Québec, Canada G1V 4G2
| | - Denis Boudreau
- Department of Chemistry and Centre for Optics, Photonics and Lasers (COPL), Université Laval, 1045, av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Joelle N Pelletier
- Department of Chemistry, Department of Biochemistry and PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, Québec H3C 3J7, Canada.
| | - Jean-Francois Masson
- Department of Chemistry, Quebec Centre for Advanced Materials (QCAM), Regroupement Québécois sur les Matériaux de Pointe (RQMP), and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, Québec H3C 3J7, Canada.
| |
Collapse
|
25
|
Genova-Kalou P, Dyankov G, Marinov R, Mankov V, Belina E, Kisov H, Strijkova-Kenderova V, Kantardjiev T. SPR-Based Kinetic Analysis of the Early Stages of Infection in Cells Infected with Human Coronavirus and Treated with Hydroxychloroquine. BIOSENSORS-BASEL 2021; 11:bios11080251. [PMID: 34436052 PMCID: PMC8392451 DOI: 10.3390/bios11080251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022]
Abstract
Cell-based assays are a valuable tool for examination of virus–host cell interactions and drug discovery processes, allowing for a more physiological setting compared to biochemical assays. Despite the fact that cell-based SPR assays are label-free and thus provide all the associated benefits, they have never been used to study viral growth kinetics and to predict drug antiviral response in cells. In this study, we prove the concept that the cell-based SPR assay can be applied in the kinetic analysis of the early stages of viral infection of cells and the antiviral drug activity in the infected cells. For this purpose, cells immobilized on the SPR slides were infected with human coronavirus HCov-229E and treated with hydroxychloroquine. The SPR response was measured at different time intervals within the early stages of infection. Methyl Thiazolyl Tetrazolium (MTT) assay was used to provide the reference data. We found that the results of the SPR and MTT assays were consistent, and SPR is a reliable tool in investigating virus–host cell interaction and the mechanism of action of viral inhibitors. SPR assay was more sensitive and accurate in the first hours of infection within the first replication cycle, whereas the MTT assay was not so effective. After the second replication cycle, noise was generated by the destruction of the cell layer and by the remnants of dead cells, and masks useful SPR signals.
Collapse
Affiliation(s)
- Petia Genova-Kalou
- National Center of Infectious and Parasitic Diseases, 44A “Gen. Stoletov” Blvd., 1233 Sofia, Bulgaria; (P.G.-K.); (R.M.); (T.K.)
| | - Georgi Dyankov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (V.M.); (E.B.); (H.K.); (V.S.-K.)
- Correspondence: ; Tel.: +359-897-771-945
| | - Radoslav Marinov
- National Center of Infectious and Parasitic Diseases, 44A “Gen. Stoletov” Blvd., 1233 Sofia, Bulgaria; (P.G.-K.); (R.M.); (T.K.)
| | - Vihar Mankov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (V.M.); (E.B.); (H.K.); (V.S.-K.)
| | - Evdokiya Belina
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (V.M.); (E.B.); (H.K.); (V.S.-K.)
| | - Hristo Kisov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (V.M.); (E.B.); (H.K.); (V.S.-K.)
| | - Velichka Strijkova-Kenderova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (V.M.); (E.B.); (H.K.); (V.S.-K.)
| | - Todor Kantardjiev
- National Center of Infectious and Parasitic Diseases, 44A “Gen. Stoletov” Blvd., 1233 Sofia, Bulgaria; (P.G.-K.); (R.M.); (T.K.)
| |
Collapse
|
26
|
Sohrabi F, Saeidifard S, Ghasemi M, Asadishad T, Hamidi SM, Hosseini SM. Role of plasmonics in detection of deadliest viruses: a review. EUROPEAN PHYSICAL JOURNAL PLUS 2021; 136:675. [PMID: 34178567 PMCID: PMC8214556 DOI: 10.1140/epjp/s13360-021-01657-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/08/2021] [Indexed: 05/09/2023]
Abstract
Viruses have threatened animal and human lives since a long time ago all over the world. Some of these tiny particles have caused disastrous pandemics that killed a large number of people with subsequent economic downturns. In addition, the quarantine situation itself encounters the challenges like the deficiency in the online educational system, psychiatric problems and poor international relations. Although viruses have a rather simple protein structure, they have structural heterogeneity with a high tendency to mutation that impedes their study. On top of the breadth of such worldwide worrying issues, there are profound scientific gaps, and several unanswered questions, like lack of vaccines or antivirals to combat these pathogens. Various detection techniques like the nucleic acid test, immunoassay, and microscopy have been developed; however, there is a tradeoff between their advantages and disadvantages like safety in sample collecting, invasiveness, sensitivity, response time, etc. One of the highly resolved techniques that can provide early-stage detection with fast experiment duration is plasmonics. This optical technique has the capability to detect viral proteins and genomes at the early stage via highly sensitive interaction between the biological target and the plasmonic chip. The efficiency of this technique could be proved using commercialized techniques like reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) techniques. In this study, we aim to review the role of plasmonic technique in the detection of 11 deadliest viruses besides 2 common genital viruses for the human being. This is a rapidly moving topic of research, and a review article that encompasses the current findings may be useful for guiding strategies to deal with the pandemics. By investigating the potential aspects of this technique, we hope that this study could open new avenues toward the application of point-of-care techniques for virus detection at early stage that may inhibit the progressively hygienic threats.
Collapse
Affiliation(s)
- Foozieh Sohrabi
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Boulevard, 1983969411 Tehran, Iran
| | - Sajede Saeidifard
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Boulevard, 1983969411 Tehran, Iran
| | - Masih Ghasemi
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Boulevard, 1983969411 Tehran, Iran
| | - Tannaz Asadishad
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Boulevard, 1983969411 Tehran, Iran
| | - Seyedeh Mehri Hamidi
- Magneto-Plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Daneshju Boulevard, 1983969411 Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Evin, Tehran, Iran
| |
Collapse
|
27
|
Damiati S, Sopstad S, Peacock M, Akhtar AS, Pinto I, Soares RRG, Russom A. Flex Printed Circuit Board Implemented Graphene-Based DNA Sensor for Detection of SARS-CoV-2. IEEE SENSORS JOURNAL 2021; 21:13060-13067. [PMID: 35582203 PMCID: PMC8864937 DOI: 10.1109/jsen.2021.3068922] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 05/06/2023]
Abstract
Since the COVID-19 outbreak was declared a pandemic by the World Health Organization (WHO) in March 2020, ongoing efforts have been made to develop sensitive diagnostic platforms. Detection of viral RNA provides the highest sensitivity and specificity for detection of early and asymptomatic infections. Thus, this work aimed at developing a label-free genosensor composed of graphene as a working electrode that could be embedded into a flex printed circuit board (FPCB) for the rapid, sensitive, amplification-free and label-free detection of SARS-CoV-2. To facilitate liquid handling and ease of use, the developed biosensor was embedded with a user-friendly reservoir chamber. As a proof-of-concept, detection of a synthetic DNA strand matching the sequence of ORF1ab was performed as a two-step strategy involving the immobilization of a biotinylated complementary sequence on a streptavidin-modified surface, followed by hybridization with the target sequence recorded by the differential pulse voltammetric (DPV) technique in the presence of a ferro/ferricyanide redox couple. The effective design of the sensing platform improved its selectivity and sensitivity and allowed DNA quantification ranging from 100 fg/mL to [Formula: see text]/mL. Combining the electrochemical technique with FPCB enabled rapid detection of the target sequence using a small volume of the sample (5-[Formula: see text]). We achieved a limit-of-detection of 100 fg/mL, whereas the predicted value was ~33 fg/mL, equivalent to approximately [Formula: see text] copies/mL and comparable to sensitivities provided by isothermal nucleic acid amplification tests. We believe that the developed approach proves the ability of an FPCB-implemented DNA sensor to act as a potentially simpler and more affordable diagnostic assay for viral infections in Point-Of-Care (POC) applications.
Collapse
Affiliation(s)
- Samar Damiati
- Department of BiochemistryFaculty of ScienceKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Division of NanobiotechnologyDepartment of Protein Science, Science for Life LaboratoryKTH Royal Institute of Technology 171 21 Stockholm Sweden
| | - Sindre Sopstad
- Department of MicrosystemsFaculty of Technology, Natural Sciences and MaritimeUniversity of South-Eastern Norway 3184 Borre Norway
| | | | - Ahmad S Akhtar
- Science for Life Laboratory, Division of NanobiotechnologyDepartment of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of Technology 114 28 Stockholm Sweden
| | - Ines Pinto
- Science for Life Laboratory, Division of NanobiotechnologyDepartment of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of Technology 114 28 Stockholm Sweden
| | - Ruben R G Soares
- Science for Life Laboratory, Division of NanobiotechnologyDepartment of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of Technology 114 28 Stockholm Sweden
| | - Aman Russom
- Science for Life Laboratory, Division of NanobiotechnologyDepartment of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of Technology 114 28 Stockholm Sweden
| |
Collapse
|
28
|
Zhao Z, Huang C, Huang Z, Lin F, He Q, Tao D, Jaffrezic-Renault N, Guo Z. Advancements in electrochemical biosensing for respiratory virus detection: A review. Trends Analyt Chem 2021; 139:116253. [PMID: 33727755 PMCID: PMC7952277 DOI: 10.1016/j.trac.2021.116253] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Respiratory viruses are real menace for human health which result in devastating epidemic disease. Consequently, it is in urgent need of identifying and quantifying virus with a rapid, sensitive and precise approach. The study of electrochemical biosensors for respiratory virus detection has become one of the most rapidly developing scientific fields. Recent developments in electrochemical biosensors concerning respiratory virus detection are comprehensively reviewed in this paper. This review is structured along common detecting objects of respiratory viruses, electrochemical biosensors, electrochemical biosensors for respiratory virus detection and future challenges. The electrochemical biosensors for respiratory virus detection are introduced, including nucleic acids-based, immunosensors and other affinity biosensors. Lastly, for Coronavirus disease 2019 (COVID-19) diagnosis, the future challenges regarding developing electrochemical biosensor-based Point-of-Care Tests (POCTs) are summarized. This review is expected to provide a helpful guide for the researchers entering this interdisciplinary field and developing more novel electrochemical biosensors for respiratory virus detection.
Collapse
Affiliation(s)
- Zhi Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Changfu Huang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Ziyu Huang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Fengjuan Lin
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Qinlin He
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Dan Tao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne 69100, France
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, PR China
| |
Collapse
|
29
|
Mobed A, Sepehri Shafigh E. Biosensors promising bio-device for pandemic screening "COVID-19". Microchem J 2021; 164:106094. [PMID: 33623173 PMCID: PMC7892310 DOI: 10.1016/j.microc.2021.106094] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 01/12/2023]
Abstract
Undoubtedly, the coronavirus pandemic is one of the most influential events not only in medicine but also in the economic field in the world. Rapid transmission and high mortality rates, as well as prolonged and asymptomatic communal periods, are the most important reasons for the global panic due to coronavirus. Since coronavirus treatment and specific vaccines are not yet available, early detection of the virus is critical. A rapid and accurate diagnosis can play a crucial role in the treatment and control of the COVID 19 disease. Serological, ELISA, and molecular-based tests, including PCR and RT-PCR, are among the most important routine methods for detecting coronaviruses. False-positive/negative results, low sensitivity and specificity, and the need for advanced equipment are among the disadvantages and problems of routine methods. To eliminate the drawbacks of routine methods, new technologies are being developed. Biosensors are one of the most important ones. This paper is a summary of the up-to-date states of innovative bio-sensing tools for the ultrasensitive detection of coronaviruses (COVID 19) with encouraging uses for future challenges in disease diagnosis.
Collapse
Affiliation(s)
- Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Iran,Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding author at: Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
| | | |
Collapse
|
30
|
Sadighbayan D, Ghafar-Zadeh E. Portable Sensing Devices for Detection of COVID-19: A Review. IEEE SENSORS JOURNAL 2021; 21:10219-10230. [PMID: 36790948 PMCID: PMC8769007 DOI: 10.1109/jsen.2021.3059970] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 05/05/2023]
Abstract
The coronavirus pandemic is the most challenging incident that people have faced in recent years. Despite the time-consuming and expensive conventional methods, point-of-care diagnostics have a crucial role in deterrence, timely detection, and intensive care of the disease's progress. Hence, this detrimental health emergency persuaded researchers to accelerate the development of highly-scalable diagnostic devices to control the propagation of the virus even in the least developed countries. The strategies exploited for detecting COVID-19 stem from the already designed systems for studying other maladies, particularly viral infections. The present report reviews not only the novel advances in portable diagnostic devices for recognizing COVID-19, but also the previously existing biosensors for detecting other viruses. It discusses their adaptability for identifying surface proteins, whole viruses, viral genomes, host antibodies, and other biomarkers in biological samples. The prominence of different types of biosensors such as electrochemical, optical, and electrical for detecting low viral loads have been underlined. Thus, it is anticipated that this review will assist scientists who have embarked on a competition to come up with more efficient and marketable in-situ test kits for identifying the infection even in its incubation time without sample pretreatment. Finally, a conclusion is provided to highlight the importance of such an approach for monitoring people to combat the spread of such contagious diseases.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), Faculty of ScienceDepartment of BiologyYork UniversityTorontoONM3J 1P3Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), Lassonde School of Engineering, Department of Electrical Engineering and Computer Science, Faculty of ScienceDepartment of BiologyYork UniversityTorontoONM3J 1P3Canada
| |
Collapse
|
31
|
Lukose J, Chidangil S, George SD. Optical technologies for the detection of viruses like COVID-19: Progress and prospects. Biosens Bioelectron 2021; 178:113004. [PMID: 33497877 PMCID: PMC7832448 DOI: 10.1016/j.bios.2021.113004] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
The outbreak of life-threatening pandemic like COVID-19 necessitated the development of novel, rapid and cost-effective techniques that facilitate detection of viruses like SARS-CoV-2. The presently popular approach of a collection of samples using the nasopharyngeal swab method and subsequent detection of RNA using the real-time polymerase chain reaction suffers from false-positive results and a longer diagnostic time scale. Alternatively, various optical techniques namely optical sensing, spectroscopy, and imaging shows a great promise in virus detection. Herein, a comprehensive review of the various photonics technologies employed for virus detection, particularly the SARS-CoV family, is discussed. The state-of-art research activities in utilizing the photonics tools such as near-infrared spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, fluorescence-based techniques, super-resolution microscopy, surface plasmon resonance-based detection, for virus detection accounted extensively with an emphasis on coronavirus detection. Further, an account of emerging photonics technologies of SARS-CoV-2 detection and future possibilities is also explained. The progress in the field of optical techniques for virus detection unambiguously show a great promise in the development of rapid photonics-based devices for COVID-19 detection.
Collapse
Affiliation(s)
- Jijo Lukose
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, India; Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, India; Centre of Excellence for Biophotonics, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, India; Centre for Applied Nanosciences, Manipal Academy of Higher Education, Manipal, 576 104, India.
| |
Collapse
|
32
|
Derakhshan MA, Amani A, Faridi-Majidi R. State-of-the-Art of Nanodiagnostics and Nanotherapeutics against SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14816-14843. [PMID: 33779135 PMCID: PMC8028022 DOI: 10.1021/acsami.0c22381] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/17/2021] [Indexed: 05/02/2023]
Abstract
The pandemic outbreak of SARS-CoV-2, with millions of infected patients worldwide, has severely challenged all aspects of public health. In this regard, early and rapid detection of infected cases and providing effective therapeutics against the virus are in urgent demand. Along with conventional clinical protocols, nanomaterial-based diagnostics and therapeutics hold a great potential against coronavirus disease 2019 (COVID-19). Indeed, nanoparticles with their outstanding characteristics would render additional advantages to the current approaches for rapid and accurate diagnosis and also developing prophylactic vaccines or antiviral therapeutics. In this review, besides presenting an overview of the coronaviruses and SARS-CoV-2, we discuss the introduced nanomaterial-based detection assays and devices and also antiviral formulations and vaccines for coronaviruses.
Collapse
Affiliation(s)
- Mohammad Ali Derakhshan
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz, Iran
- Nanomedicine
and Nanobiology Research Center, Shiraz
University of Medical Sciences, Shiraz Iran
| | - Amir Amani
- Natural
Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Faridi-Majidi
- Department
of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Ma J, Du M, Wang C, Xie X, Wang H, Zhang Q. Advances in airborne microorganisms detection using biosensors: A critical review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 15:47. [PMID: 33842019 PMCID: PMC8023783 DOI: 10.1007/s11783-021-1420-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 05/05/2023]
Abstract
Humanity has been facing the threat of a variety of infectious diseases. Airborne microorganisms can cause airborne infectious diseases, which spread rapidly and extensively, causing huge losses to human society on a global scale. In recent years, the detection technology for airborne microorganisms has developed rapidly; it can be roughly divided into biochemical, immune, and molecular technologies. However, these technologies still have some shortcomings; they are time-consuming and have low sensitivity and poor stability. Most of them need to be used in the ideal environment of a laboratory, which limits their applications. A biosensor is a device that converts biological signals into detectable signals. As an interdisciplinary field, biosensors have successfully introduced a variety of technologies for bio-detection. Given their fast analysis speed, high sensitivity, good portability, strong specificity, and low cost, biosensors have been widely used in environmental monitoring, medical research, food and agricultural safety, military medicine and other fields. In recent years, the performance of biosensors has greatly improved, becoming a promising technology for airborne microorganism detection. This review introduces the detection principle of biosensors from the three aspects of component identification, energy conversion principle, and signal amplification. It also summarizes its research and application in airborne microorganism detection. The new progress and future development trend of the biosensor detection of airborne microorganisms are analyzed.
Collapse
Affiliation(s)
- Jinbiao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300072 China
| | - Xinwu Xie
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161 China
- National Bio-Protection Engineering Center, Tianjin, 300161 China
| | - Hao Wang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161 China
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222 China
| | - Qian Zhang
- School of Mechanical Engineering and Safety Engineering, Institute of Particle Technology, University of Wuppertal, Wuppertal, D-42119 Germany
| |
Collapse
|
34
|
Dowlatshahi S, Shabani E, Abdekhodaie MJ. Serological assays and host antibody detection in coronavirus-related disease diagnosis. Arch Virol 2021; 166:715-731. [PMID: 33492524 PMCID: PMC7830048 DOI: 10.1007/s00705-020-04874-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023]
Abstract
Coronaviruses (CoV) are a family of viral pathogens that infect both birds and mammals, including humans. Seven human coronaviruses (HCoV) have been recognized so far. HCoV-229E, -OC43, -NL63, and -HKU1 account for one-third of common colds with mild symptoms. The other three members are severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2. These viruses are responsible for SARS, MERS, and CoV disease 2019 (COVID-19), respectively. A variety of diagnostic techniques, including chest X-rays, computer tomography (CT) scans, analysis of viral nucleic acids, proteins, or whole virions, and host antibody detection using serological assays have been developed for the detection of these viruses. In this review, we discuss conventional serological tests, such as enzyme-linked immunosorbent assay (ELISA), western blot (WB), immunofluorescence assay (IFA), lateral flow immunoassay (LFIA), and chemiluminescence immunoassay (CLIA), as well as biosensor-based assays that have been developed for diagnosing HCoV-associated diseases since 2003, with an in-depth focus on COVID-19.
Collapse
Affiliation(s)
- Sayeh Dowlatshahi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Ehsan Shabani
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
- Yeates School of Graduate Studies, Ryerson University, Toronto, ON, Canada.
| |
Collapse
|
35
|
Antiochia R. Developments in biosensors for CoV detection and future trends. Biosens Bioelectron 2021; 173:112777. [PMID: 33189015 PMCID: PMC7591947 DOI: 10.1016/j.bios.2020.112777] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
This review summarizes the state of art of biosensor technology for Coronavirus (CoV) detection, the current challenges and the future perspectives. Three categories of affinity-based biosensors (ABBs) have been developed, depending on their transduction mechanism, namely electrochemical, optical and piezoelectric biosensors. The biorecognition elements include antibodies and DNA, which undergo important non-covalent binding interactions, with the formation of antigen-antibody and ssDNA/oligonucleotide-complementary strand complexes in immuno- and DNA-sensors, respectively. The analytical performances, the advantages and drawbacks of each type of biosensor are highlighted, discussed, and compared to traditional methods. It is hoped that this review will encourage scientists and academics to design and develop new biosensing platforms for point-of-care (POC) diagnostics to manage the coronavirus disease 2019 (COVID-19) pandemic, providing interesting reference for future studies.
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
36
|
Shrivastav AM, Cvelbar U, Abdulhalim I. A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun Biol 2021; 4:70. [PMID: 33452375 PMCID: PMC7810758 DOI: 10.1038/s42003-020-01615-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
The proliferation and transmission of viruses has become a threat to worldwide biosecurity, as exemplified by the current COVID-19 pandemic. Early diagnosis of viral infection and disease control have always been critical. Virus detection can be achieved based on various plasmonic phenomena, including propagating surface plasmon resonance (SPR), localized SPR, surface-enhanced Raman scattering, surface-enhanced fluorescence and surface-enhanced infrared absorption spectroscopy. The present review covers all available information on plasmonic-based virus detection, and collected data on these sensors based on several parameters. These data will assist the audience in advancing research and development of a new generation of versatile virus biosensors.
Collapse
Affiliation(s)
- Anand M Shrivastav
- Department of Electrooptics and Photonics Engineering, School of Electrical and Computer Engineering, The Ilse-Katz Nanoscale and Technology Center, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Uroš Cvelbar
- Jožef Stefan Institute, Jamova cesta 30, SI-1000, Ljubljana, Slovenia.
| | - Ibrahim Abdulhalim
- Department of Electrooptics and Photonics Engineering, School of Electrical and Computer Engineering, The Ilse-Katz Nanoscale and Technology Center, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
37
|
Mohanty A, Fatrekar AP, Krishnan S, Vernekar AA. A concise discussion on the potential spectral tools for the rapid COVID-19 detection. RESULTS IN CHEMISTRY 2021; 3:100138. [PMID: 33972921 PMCID: PMC8099787 DOI: 10.1016/j.rechem.2021.100138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/04/2021] [Indexed: 12/28/2022] Open
Abstract
Developing robust methods to detect the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a causative agent for the current global health pandemic, is an exciting area of research. Nevertheless, the currently used conventional reverse transcription-polymerase chain reaction (RT-PCR) technique in COVID-19 detection endures with some inevitable limitations. Consequently, the establishment of rapid diagnostic tools and quick isolation of infected patients is highly essential. Furthermore, the requirement of point-of-care testing is the need of the hour. Considering this, we have provided a brief review of the use of very recently reported robust spectral tools for rapid COVID-19 detection. The spectral tools include, colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), with the admittance of principal component analysis (PCA) and machine learning (ML) for meeting the high-throughput and fool-proof platforms for the detection of SARS-CoV-2, are reviewed. Recently, these techniques have been readily applied to screen a large number of suspected patients within a short period and they demonstrated higher sensitivity for the detection of COVID-19 patients from unaffected human subjects.
Collapse
Affiliation(s)
- Abhijeet Mohanty
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | | | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
38
|
Ribeiro BV, Cordeiro TAR, Oliveira E Freitas GR, Ferreira LF, Franco DL. Biosensors for the detection of respiratory viruses: A review. TALANTA OPEN 2020; 2:100007. [PMID: 34913046 PMCID: PMC7428963 DOI: 10.1016/j.talo.2020.100007] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
The recent events of outbreaks related to different respiratory viruses in the past few years, exponentiated by the pandemic caused by the coronavirus disease 2019 (COVID-19), reported worldwide caused by SARS-CoV-2, raised a concern and increased the search for more information on viruses-based diseases. The detection of the virus with high specificity and sensitivity plays an important role for an accurate diagnosis. Despite the many efforts to identify the SARS-CoV-2, the diagnosis still relays on expensive and time-consuming analysis. A fast and reliable alternative is the use of low-cost biosensor for in loco detection. This review gathers important contributions in the biosensor area regarding the most current respiratory viruses, presents the advances in the assembly of the devices and figures of merit. All information is useful for further biosensor development for the detection of respiratory viruses, such as for the new coronavirus.
Collapse
Affiliation(s)
- Brayan Viana Ribeiro
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology (RMPCT), Laboratory of Electroanlytical Applied to Biotechnology and Food Engineering (LEABE) - Chemistry Institute, Federal University of Uberlândia - campus Patos de Minas, Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais 38700-128, Brazil
| | - Taís Aparecida Reis Cordeiro
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Guilherme Ramos Oliveira E Freitas
- Laboratory of Microbiology (MICRO), Biotechnology Institute, Federal University of Uberlândia - campus Patos de Minas - Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais, Brazil
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Diego Leoni Franco
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology (RMPCT), Laboratory of Electroanlytical Applied to Biotechnology and Food Engineering (LEABE) - Chemistry Institute, Federal University of Uberlândia - campus Patos de Minas, Av. Getúlio Vargas, 230, 38.700-128, Patos de Minas, Minas Gerais 38700-128, Brazil
| |
Collapse
|
39
|
Alhalaili B, Popescu IN, Kamoun O, Alzubi F, Alawadhia S, Vidu R. Nanobiosensors for the Detection of Novel Coronavirus 2019-nCoV and Other Pandemic/Epidemic Respiratory Viruses: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6591. [PMID: 33218097 PMCID: PMC7698809 DOI: 10.3390/s20226591] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is considered a public health emergency of international concern. The 2019 novel coronavirus (2019-nCoV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused this pandemic has spread rapidly to over 200 countries, and has drastically affected public health and the economies of states at unprecedented levels. In this context, efforts around the world are focusing on solving this problem in several directions of research, by: (i) exploring the origin and evolution of the phylogeny of the SARS-CoV-2 viral genome; (ii) developing nanobiosensors that could be highly effective in detecting the new coronavirus; (iii) finding effective treatments for COVID-19; and (iv) working on vaccine development. In this paper, an overview of the progress made in the development of nanobiosensors for the detection of human coronaviruses (SARS-CoV, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV) is presented, along with specific techniques for modifying the surface of nanobiosensors. The newest detection methods of the influenza virus responsible for acute respiratory syndrome were compared with conventional methods, highlighting the newest trends in diagnostics, applications, and challenges of SARS-CoV-2 (COVID-19 causative virus) nanobiosensors.
Collapse
Affiliation(s)
- Badriyah Alhalaili
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Ileana Nicoleta Popescu
- Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 13 Aleea Sinaia Street, 130004 Targoviste, Romania
| | - Olfa Kamoun
- Physics of Semiconductor Devices Unit, Faculty of Sciences of Tunis, Tunis El Manar University, Tunis 1068, Tunisia;
| | - Feras Alzubi
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Sami Alawadhia
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (B.A.); (F.A.); (S.A.)
| | - Ruxandra Vidu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Electrical and Computer Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
40
|
Antiochia R. Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: from past to perspectives. Mikrochim Acta 2020; 187:639. [PMID: 33151419 PMCID: PMC7642243 DOI: 10.1007/s00604-020-04615-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and novel coronavirus 19 (COVID-19) epidemics represent the biggest global health threats in the last two decades. These infections manifest as bronchitis, pneumonia or severe, sometimes fatal, respiratory illness. The novel coronavirus seems to be associated with milder infections but it has spread globally more rapidly becoming a pandemic. This review summarises the state of the art of nanotechnology-based affinity biosensors for SARS, MERS and COVID-19 detection. The nanobiosensors are antibody- or DNA-based biosensors with electrochemical, optical or FET-based transduction. Various kinds of nanomaterials, such as metal nanoparticles, nanowires and graphene, have been merged to the affinity biosensors to enhance their analytical performances. The advantages of the use of the nanomaterials are highlighted, and the results compared with those obtained using non-nanostructured biosensors. A critical comparison with conventional methods, such as RT-PCR and ELISA, is also reported. It is hoped that this review will provide interesting information for the future development of new reliable nano-based platforms for point-of-care diagnostic devices for COVID-19 prevention and control.
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
41
|
Orooji Y, Sohrabi H, Hemmat N, Oroojalian F, Baradaran B, Mokhtarzadeh A, Mohaghegh M, Karimi-Maleh H. An Overview on SARS-CoV-2 (COVID-19) and Other Human Coronaviruses and Their Detection Capability via Amplification Assay, Chemical Sensing, Biosensing, Immunosensing, and Clinical Assays. NANO-MICRO LETTERS 2020; 13:18. [PMID: 33163530 PMCID: PMC7604542 DOI: 10.1007/s40820-020-00533-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/06/2020] [Indexed: 05/03/2023]
Abstract
A novel coronavirus of zoonotic origin (SARS-CoV-2) has recently been recognized in patients with acute respiratory disease. COVID-19 causative agent is structurally and genetically similar to SARS and bat SARS-like coronaviruses. The drastic increase in the number of coronavirus and its genome sequence have given us an unprecedented opportunity to perform bioinformatics and genomics analysis on this class of viruses. Clinical tests like PCR and ELISA for rapid detection of this virus are urgently needed for early identification of infected patients. However, these techniques are expensive and not readily available for point-of-care (POC) applications. Currently, lack of any rapid, available, and reliable POC detection method gives rise to the progression of COVID-19 as a horrible global problem. To solve the negative features of clinical investigation, we provide a brief introduction of the general features of coronaviruses and describe various amplification assays, sensing, biosensing, immunosensing, and aptasensing for the determination of various groups of coronaviruses applied as a template for the detection of SARS-CoV-2. All sensing and biosensing techniques developed for the determination of various classes of coronaviruses are useful to recognize the newly immerged coronavirus, i.e., SARS-CoV-2. Also, the introduction of sensing and biosensing methods sheds light on the way of designing a proper screening system to detect the virus at the early stage of infection to tranquilize the speed and vastity of spreading. Among other approaches investigated among molecular approaches and PCR or recognition of viral diseases, LAMP-based methods and LFAs are of great importance for their numerous benefits, which can be helpful to design a universal platform for detection of future emerging pathogenic viruses.
Collapse
Affiliation(s)
- Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471 Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Mohaghegh
- Department of Nanobiotechnology, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Islamic Republic of Iran
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu, 611731 People’s Republic of China
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, PO Box 17011, Johannesburg, 2028 South Africa
| |
Collapse
|
42
|
Asif M, Ajmal M, Ashraf G, Muhammad N, Aziz A, Iftikhar T, Wang J, Liu H. The role of biosensors in coronavirus disease-2019 outbreak. CURRENT OPINION IN ELECTROCHEMISTRY 2020; 23:174-184. [PMID: 32984642 PMCID: PMC7500281 DOI: 10.1016/j.coelec.2020.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Herein, we have summarized and argued about biomarkers and indicators used for the detection of severe acute respiratory syndrome coronavirus 2. Antibody detection methods are not considered suitable to screen individuals at early stages and asymptomatic cases. The diagnosis of coronavirus disease 2019 using biomarkers and indicators at point-of-care level is much crucial. Therefore, it is urgently needed to develop rapid and sensitive detection methods which can target antigens. We have critically elaborated key role of biosensors to cope the outbreak situation. In this review, the importance of biosensors including electrochemical, surface enhanced Raman scattering, field-effect transistor, and surface plasmon resonance biosensors in the detection of severe acute respiratory syndrome coronavirus 2 has been underscored. Finally, we have outlined pros and cons of diagnostic approaches and future directions.
Collapse
Affiliation(s)
- Muhammad Asif
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Muhammad Ajmal
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Ghazala Ashraf
- Advanced Biomaterials and Tissue Engineering Centre, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Nadeem Muhammad
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, 430223, PR China
| | - Ayesha Aziz
- Advanced Biomaterials and Tissue Engineering Centre, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Junlei Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| |
Collapse
|
43
|
Ruiz‐Hitzky E, Darder M, Wicklein B, Ruiz‐Garcia C, Martín‐Sampedro R, del Real G, Aranda P. Nanotechnology Responses to COVID-19. Adv Healthc Mater 2020; 9:e2000979. [PMID: 32885616 DOI: 10.1002/adhm.202000979] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Researchers, engineers, and medical doctors are made aware of the severity of the COVID-19 infection and act quickly against the coronavirus SARS-CoV-2 using a large variety of tools. In this review, a panoply of nanoscience and nanotechnology approaches show how these disciplines can help the medical, technical, and scientific communities to fight the pandemic, highlighting the development of nanomaterials for detection, sanitation, therapies, and vaccines. SARS-CoV-2, which can be regarded as a functional core-shell nanoparticle (NP), can interact with diverse materials in its vicinity and remains attached for variable times while preserving its bioactivity. These studies are critical for the appropriate use of controlled disinfection systems. Other nanotechnological approaches are also decisive for the development of improved novel testing and diagnosis kits of coronavirus that are urgently required. Therapeutics are based on nanotechnology strategies as well and focus on antiviral drug design and on new nanoarchitectured vaccines. A brief overview on patented work is presented that emphasizes nanotechnology applied to coronaviruses. Finally, some comments are made on patents of the initial technological responses to COVID-19 that have already been put in practice.
Collapse
Affiliation(s)
- Eduardo Ruiz‐Hitzky
- Materials Science Institute of Madrid ICMM‐CSIC c/ Sor Juana Inés de la Cruz 3 Madrid 28049 Spain
| | - Margarita Darder
- Materials Science Institute of Madrid ICMM‐CSIC c/ Sor Juana Inés de la Cruz 3 Madrid 28049 Spain
| | - Bernd Wicklein
- Materials Science Institute of Madrid ICMM‐CSIC c/ Sor Juana Inés de la Cruz 3 Madrid 28049 Spain
| | | | - Raquel Martín‐Sampedro
- Materials Science Institute of Madrid ICMM‐CSIC c/ Sor Juana Inés de la Cruz 3 Madrid 28049 Spain
- National Institute of Agricultural and Food Research INIA Ctra. de la Coruña Km 7.5 Madrid 28040 Spain
| | - Gustavo del Real
- National Institute of Agricultural and Food Research INIA Ctra. de la Coruña Km 7.5 Madrid 28040 Spain
| | - Pilar Aranda
- Materials Science Institute of Madrid ICMM‐CSIC c/ Sor Juana Inés de la Cruz 3 Madrid 28049 Spain
| |
Collapse
|
44
|
Samson R, Navale GR, Dharne MS. Biosensors: frontiers in rapid detection of COVID-19. 3 Biotech 2020; 10:385. [PMID: 32818132 PMCID: PMC7417775 DOI: 10.1007/s13205-020-02369-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
The rapid community-spread of novel human coronavirus 2019 (nCOVID19 or SARS-Cov2) and morbidity statistics has put forth an unprecedented urge for rapid diagnostics for quick and sensitive detection followed by contact tracing and containment strategies, especially when no vaccine or therapeutics are known. Currently, quantitative real-time polymerase chain reaction (qRT-PCR) is being used widely to detect COVID-19 from various types of biological specimens, which is time-consuming, labor-intensive and may not be rapidly deployable in remote or resource-limited settings. This might lead to hindrance in acquiring realistic data of infectivity and community spread of SARS-CoV-2 in the population. This review summarizes the existing status of current diagnostic methods, their possible limitations, and the advantages of biosensor-based diagnostics over the conventional ones for the detection of SARS-Cov-2. Novel biosensors used to detect RNA-viruses include CRISPR-Cas9 based paper strip, nucleic-acid based, aptamer-based, antigen-Au/Ag nanoparticles-based electrochemical biosensor, optical biosensor, and Surface Plasmon Resonance. These could be effective tools for rapid, authentic, portable, and more promising diagnosis in the current pandemic that has affected the world economies and humanity. Present challenges and future perspectives of developing robust biosensors devices for rapid, scalable, and sensitive detection and management of COVID-19 are presented in light of the test-test-test theme of the World Health Organization (WHO).
Collapse
Affiliation(s)
- Rachel Samson
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-National Chemical, Laboratory, National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, Pune, India
| | - Govinda R. Navale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-National Chemical, Laboratory, National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, Pune, India
| | - Mahesh S. Dharne
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-National Chemical, Laboratory, National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, Pune, India
| |
Collapse
|
45
|
Nabil A, Uto K, Elshemy MM, Soliman R, Hassan AA, Ebara M, Shiha G. Current coronavirus (SARS-CoV-2) epidemiological, diagnostic and therapeutic approaches: An updated review until June 2020. EXCLI JOURNAL 2020; 19:992-1016. [PMID: 32788913 PMCID: PMC7415934 DOI: 10.17179/excli2020-2554] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
Coronaviruses are a group of enveloped viruses with non-segmented, single-stranded, and positive-sense RNA genomes. In December 2019, an outbreak of coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in Wuhan City, China. The World Health Organization (WHO) declared the coronavirus outbreak as a global pandemic in March 2020. Fever, dry cough and fatigue are found in the vast majority of all COVID-19 cases. Early diagnosis, treatment and future prevention are keys to COVID-19 management. Currently, the unmet need to develop cost-effective point-of-contact test kits and efficient laboratory techniques for confirmation of COVID-19 infection has powered a new frontier of diagnostic innovation. No proven effective therapies or vaccines for SARS-CoV-2 currently exist. The rapidly increasing research regarding COVID-19 virology provides a significant number of potential drug targets. Remdesivir may be the most promising therapy up till now. On May 1, 2020, Gilead Sciences, announced that the U.S. Food and Drug Administration (FDA) has granted emergency use authorization (EUA) for the investigational Remdesivir as a potential antiviral for COVID-19 treatment. On May 7, 2020, Gilead Sciences, announced that the Japanese Ministry of Health, Labour and Welfare (MHLW) has granted regulatory approval of Veklury® (Remdesivir) as a treatment for SARS-CoV-2 infection, the virus that causes COVID-19 acute respiratory syndrome, under an exceptional approval pathway. Also, Corticosteroids are recommended for severe cases only to suppress the immune response and reduce symptoms, but not for mild and moderate patients where they are associated with a high-risk side effect. Based on the currently published evidence, we tried to highlight different diagnostic approaches, side effects and therapeutic agents that could help physicians in the frontlines.
Collapse
Affiliation(s)
- Ahmed Nabil
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt.,Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt
| | - Koichiro Uto
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | - Reham Soliman
- Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt.,Tropical Medicine Department, Faculty of Medicine, Port Said University, Egypt
| | - Ayman A Hassan
- Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt
| | - Mitsuhiro Ebara
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.,Graduate School of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Gamal Shiha
- Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt.,Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
46
|
Srivastava S, Jain V, Nag VL, Misra S, Singh K. Current Avenues for COVID-19 Serology. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2020. [DOI: 10.1055/s-0040-1713709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractDevelopment of rapid, reliable, and easy diagnostic tests with high-throughput is the need of the hour for laboratories combating the COVID-19 pandemic. While real-time polymerase chain reaction (RT-PCR) is the gold standard for diagnosing active infections, it is expensive and time-consuming. Serological diagnostic assays with a premise to aid rapid contact tracing, immune status determination, and identification of potential convalescent plasma donors hold great promise. Timely diagnosis, effective treatment, and future prevention are key to management of COVID-19.
Collapse
Affiliation(s)
- Saumya Srivastava
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Vidhi Jain
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Vijaya Lakshmi Nag
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sanjeev Misra
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Kuldeep Singh
- Department of Paediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
47
|
Carter LJ, Garner LV, Smoot JW, Li Y, Zhou Q, Saveson CJ, Sasso JM, Gregg AC, Soares DJ, Beskid TR, Jervey SR, Liu C. Assay Techniques and Test Development for COVID-19 Diagnosis. ACS CENTRAL SCIENCE 2020; 6:591-605. [PMID: 32382657 PMCID: PMC7197457 DOI: 10.1021/acscentsci.0c00501] [Citation(s) in RCA: 633] [Impact Index Per Article: 158.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 05/07/2023]
Affiliation(s)
| | | | - Jeffrey W. Smoot
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | - Yingzhu Li
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | - Qiongqiong Zhou
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | - Catherine J. Saveson
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | - Anne C. Gregg
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | - Divya J. Soares
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | - Tiffany R. Beskid
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | - Susan R. Jervey
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | - Cynthia Liu
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| |
Collapse
|
48
|
Ataman Sadık D, Eksi-Kocak H, Ertaş G, Boyacı İH, Mutlu M. Mixed-monolayer of N-hydroxysuccinimide-terminated cross-linker and short alkanethiol to improve the efficiency of biomolecule binding for biosensing. SURF INTERFACE ANAL 2018. [DOI: 10.1002/sia.6489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Demet Ataman Sadık
- Hacettepe University; Institute of Natural and Applied Sciences, Division of Nanotechnology and Nanomedicine, Plasma Aided Bioengineering and Biotechnology (PABB) Research Group Ankara Turkey
| | - Haslet Eksi-Kocak
- Istanbul Aydin University; Faculty of Engineering, Department of Biomedical Engineering Istanbul Turkey
| | - Gülay Ertaş
- Middle East Technical University; Department of Chemistry Ankara Turkey
| | - İsmail Hakkı Boyacı
- Hacettepe University; Faculty of Engineering, Department of Food Engineering Ankara Turkey
| | - Mehmet Mutlu
- TOBB Economy and Technology University; Faculty of Engineering, Department of Biomedical Engineering, Plasma Aided Biomedical (pabmed) Research Group Ankara Turkey
| |
Collapse
|
49
|
Woo MA, Park JH, Cho D, Sim SJ, Kim MI, Park HG. A Whole-Cell Surface Plasmon Resonance Sensor Based on a Leucine Auxotroph of Escherichia coli Displaying a Gold-Binding Protein: Usefulness for Diagnosis of Maple Syrup Urine Disease. Anal Chem 2016; 88:2871-6. [DOI: 10.1021/acs.analchem.5b04648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Min-Ah Woo
- Department
of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Food
Safety Research Group, Korea Food Research Institute, Baekhyun-dong, Bundang-gu,
Seongnam-si, Gyeonggi-do 463-746, Republic of Korea
| | - Jung Hun Park
- Department
of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daeyeon Cho
- LabGenomics Co., Ltd., 1571-17 Seocho3-dong, Seocho-gu, Seoul 137-874, Republic of Korea
| | - Sang Jun Sim
- Department
of Chemical and Biological Engineering, Korea University, Anam-Dong
5-1, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Moon Il Kim
- Department
of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701, Republic of Korea
| | - Hyun Gyu Park
- Department
of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
50
|
Demurtas OC, Massa S, Illiano E, De Martinis D, Chan PKS, Di Bonito P, Franconi R. Antigen Production in Plant to Tackle Infectious Diseases Flare Up: The Case of SARS. FRONTIERS IN PLANT SCIENCE 2016; 7:54. [PMID: 26904039 PMCID: PMC4742786 DOI: 10.3389/fpls.2016.00054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/13/2016] [Indexed: 05/09/2023]
Abstract
Severe acute respiratory syndrome (SARS) is a dangerous infection with pandemic potential. It emerged in 2002 and its aetiological agent, the SARS Coronavirus (SARS-CoV), crossed the species barrier to infect humans, showing high morbidity and mortality rates. No vaccines are currently licensed for SARS-CoV and important efforts have been performed during the first outbreak to develop diagnostic tools. Here we demonstrate the transient expression in Nicotiana benthamiana of two important antigenic determinants of the SARS-CoV, the nucleocapsid protein (N) and the membrane protein (M) using a virus-derived vector or agro-infiltration, respectively. For the M protein, this is the first description of production in plants, while for plant-derived N protein we demonstrate that it is recognized by sera of patients from the SARS outbreak in Hong Kong in 2003. The availability of recombinant N and M proteins from plants opens the way to further evaluation of their potential utility for the development of diagnostic and protection/therapy tools to be quickly manufactured, at low cost and with minimal risk, to face potential new highly infectious SARS-CoV outbreaks.
Collapse
Affiliation(s)
- Olivia C. Demurtas
- Department of Sustainability, Biotechnology Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
| | - Silvia Massa
- Department of Sustainability, Biotechnology Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
| | - Elena Illiano
- Department of Sustainability, Biomedical Technology Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di MilanoMilan, Italy
| | - Domenico De Martinis
- International Relations Office, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
| | - Paul K. S. Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
- Centre for Emerging Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Paola Di Bonito
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immune-Mediated DiseasesRome, Italy
- *Correspondence: Rosella Franconi, ; Paola Di Bonito,
| | - Rosella Franconi
- Department of Sustainability, Biomedical Technology Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
- *Correspondence: Rosella Franconi, ; Paola Di Bonito,
| |
Collapse
|