1
|
Rojas D, Torricelli D, Cuartero M, Crespo GA. 3D-Printed Transducers for Solid Contact Potentiometric Ion Sensors: Improving Reproducibility by Fabrication Automation. Anal Chem 2024; 96:15572-15580. [PMID: 39303277 PMCID: PMC11447669 DOI: 10.1021/acs.analchem.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
3D printing technology has become attractive in the development of electrochemical sensors as it offers automation in fabrication, customization on-demand, and reproducibility, among other features. Nonetheless, to date, solid contact potentiometric ion sensors have remained overlooked using this technology. Thus, the novelty of this work relies on demonstrating for the first time the usefulness of the multimaterial 3D printing approach to manufacture potentiometric ion-selective electrodes. The significance is indeed twofold. First, we discovered that by using the polyethylene terephthalate glycol (PETg) and polylactic acid-carbon black (PLA-CB) filaments together with a rational electrode design containing a well to accommodate the ion-selective membrane, a tight seal among all of the sensing materials is obtained. Importantly, this has mainly impacted the electrode-to-electrode reproducibility (ERSD0 ± 3 mV). Second, 75 ready-to-use electrodes can be printed in less than 3.5 h in a completely automated manner at a cost of ∼0.32 €/sensor. This feature may positively impact the suitability of further scaled-up production as well as the possibility of application in low-resource contexts. Overall, the presented outcomes are expected to encourage certain research directions to adopt using multimaterial 3D-printing approaches for producing highly reproducible solid contact potentiometric ion-selective electrodes, but are not restricted to them.
Collapse
Affiliation(s)
- Daniel Rojas
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107 Murcia, Spain
| | - Dario Torricelli
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107 Murcia, Spain
| | - María Cuartero
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107 Murcia, Spain
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
| | - Gastón A Crespo
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107 Murcia, Spain
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden
| |
Collapse
|
2
|
Soares RRA, Milião GL, Pola CC, Jing D, Opare-Addo J, Smith E, Claussen JC, Gomes CL. Insights into solid-contact ion-selective electrodes based on laser-induced graphene: Key performance parameters for long-term and continuous measurements. Mikrochim Acta 2024; 191:615. [PMID: 39311973 DOI: 10.1007/s00604-024-06672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
This work aims to serve as a comprehensive guide to properly characterize solid-contact ion-selective electrodes (SC-ISEs) for long-term use as they advance toward calibration-free sensors. The lack of well-defined SC-ISE performance criteria limits the ability to compare results and track progress in the field. Laser-induced graphene (LIG) is a rapid and scalable method that, by adjusting the CO2 laser parameters, can create LIG substrates with tunable surface properties, including wettability, surface chemistry, and morphology. Herein, we fabricate laser-induced graphene (LIG) solid-contact electrodes using different laser settings and subsequently convert them into ion-selective sensors using a potassium-selective membrane. We measure the aforementioned tunable surface properties and correlate them with resultant low-frequency capacitance and water layer formation in an effort to pinpoint their effects on the sensitivity (Nernstian response), reproducibility (E°' variation), and potential stability of the LIG-based SC-ISEs. More specifically, we demonstrate that the surface wettability of the LIG substrate, which can be tuned by controlling the lasing parameters, can be modified to exhibit hydrophobic (contact angle > 90°) and even highly hydrophobic surfaces (contact angle ≈ 130°) to help reduce sensor drift. Recommendations are also provided to ensure proper and robust characterization of SC-ISEs for long-term and continuous measurements. Ultimately, we believe that a comprehensive understanding of the correlation between LIG tunable surface properties and SC-ISE performance can be used to improve the electrochemical behavior and stability of SC-ISEs designed with a wide range of materials beyond LIG.
Collapse
Affiliation(s)
- Raquel R A Soares
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Gustavo L Milião
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Cícero C Pola
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, USA
| | - Dapeng Jing
- Materials Analysis and Research Laboratory, Iowa State University, Ames, IA, 50011, USA
| | - Jemima Opare-Addo
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Emily Smith
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
3
|
Chipangura Y, Komal M, Brandao VSM, Sedmak C, Choi JS, Swisher SL, Bühlmann P, Stein A. Nanoporous Carbon Materials as Solid Contacts for Microneedle Ion-Selective Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44428-44439. [PMID: 39146498 DOI: 10.1021/acsami.4c07683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Continuous sensing of biomarkers, such as potassium ions or pH, in wearable patches requires miniaturization of ion-selective sensor electrodes. Such miniaturization can be achieved by using nanostructured carbon materials as solid contacts in microneedle-based ion-selective and reference electrodes. Here we compare three carbon materials as solid contacts: colloid-imprinted mesoporous (CIM) carbon microparticles with ∼24-28 nm mesopores, mesoporous carbon nanospheres with 3-9 nm mesopores, and Super P carbon black nanoparticles without internal porosity but with textural mesoporosity in particle aggregates. We compare the effects of carbon architecture and composition on specific capacitance of the material, on the ability to incorporate ion-selective membrane components in the pores, and on sensor performance. Functioning K+ and H+ ion-selective electrodes and reference electrodes were obtained with gold-coated stainless-steel microneedles using all three types of carbon. The sensors gave near-Nernstian responses in clinically relevant concentration ranges, were free of potentially detrimental water layers, and showed no response to O2. They all exhibited sufficiently low long-term potential drift values to permit calibration-free, continuous operation for close to 1 day. In spite of the different specific capacitances and pore architecture of the three types of carbon, no significant difference in potential stability for K+ ion sensing was observed between electrodes that used each material. In the observed drift values, factors other than the carbon solid contact are likely to play a role, too. However, for pH sensing, electrodes with CIM as a carbon solid contact, which had the highest specific capacitance and best access to the pores, exhibited better long-term stability than electrodes with the other carbon materials.
Collapse
Affiliation(s)
- Yevedzo Chipangura
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Maria Komal
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Vilma S M Brandao
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Christopher Sedmak
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jung Suk Choi
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Sarah L Swisher
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union St. SE, Minneapolis, Minnesota 55455, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Lenar N, Drużyńska M, Piech R, Paczosa-Bator B. Ion-Selective Electrode for Nitrates Based on a Black PCV Membrane. Molecules 2024; 29:3473. [PMID: 39124878 PMCID: PMC11314076 DOI: 10.3390/molecules29153473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Carbon nanomaterials were introduced into this research as modifiers for polymeric membranes for single-piece electrodes, and their properties were studied for the case of nitrate-selective sensors. The use of graphene, carbon black and carbon nanotubes is shown to significantly improve the potentiometric response, while no redox response was observed. The use of carbon nanomaterials results in a near-Nernstian response (54 mV/pNO3-) towards nitrate ions over a wide linear range (from 10-1 to 10-6 M NO3-). The results obtained by chronopotentiometry and electrochemical impedance spectroscopy reveal little resistance, and the capacitance parameter is as high as 0.9 mF (for graphene-based sensor). The high electrical capacity of electrodes results in the good stability of the potentiometric response and a low potential drift (0.065 mV/h). Introducing carbon nanomaterials into the polymetric membrane, instead of using them as separate layers, allows for the simplification of the sensors' preparation procedure. With single-piece electrodes, one step of the procedure could be omitted, in comparison to the procedure for the preparation of solid-contact electrodes.
Collapse
Affiliation(s)
| | | | | | - Beata Paczosa-Bator
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, PL-30059 Krakow, Poland; (N.L.); (M.D.); (R.P.)
| |
Collapse
|
5
|
Mirabootalebi SO, Liu Y. Recent advances in nanomaterial-based solid-contact ion-selective electrodes. Analyst 2024; 149:3694-3710. [PMID: 38885067 DOI: 10.1039/d4an00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) are advanced potentiometric sensors with great capability to detect a wide range of ions for the monitoring of industrial processes and environmental pollutants, as well as the determination of electrolytes for clinical analysis. Over the past decades, the innovative design of ion-selective electrodes (ISEs), specifically SC-ISEs, to improve potential stability and miniaturization for in situ/real-time analysis, has attracted considerable interest. Recently, the utilisation of nanomaterials was particularly prominent in SC-ISEs due to their excellent physical and chemical properties. In this article, we review the recent applications of various types of nanostructured materials that are composed of carbon, metals and polymers for the development of SC-ISEs. The challenges and opportunities in this field, along with the prospects for future applications of nanomaterials in SC-ISEs are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
6
|
Gao L, Tian Y, Gao W, Xu G. Recent Developments and Challenges in Solid-Contact Ion-Selective Electrodes. SENSORS (BASEL, SWITZERLAND) 2024; 24:4289. [PMID: 39001071 PMCID: PMC11244314 DOI: 10.3390/s24134289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) have the advantages of easy miniaturization, even chip integration, easy carrying, strong stability, and more favorable detection in complex environments. They have been widely used in conjunction with portable, wearable, and intelligent detection devices, as well as in on-site analysis and timely monitoring in the fields of environment, industry, and medicine. This article provides a comprehensive review of the composition of sensors based on redox capacitive and double-layer capacitive SC-ISEs, as well as the ion-electron transduction mechanisms in the solid-contact (SC) layer, particularly focusing on strategies proposed in the past three years (since 2021) for optimizing the performance of SC-ISEs. These strategies include the construction of ion-selective membranes, SC layer, and conductive substrates. Finally, the future research direction and possibilities in this field are discussed and prospected.
Collapse
Affiliation(s)
- Lili Gao
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
| | - Ye Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wenyue Gao
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Liu S, Zhong L, Tang Y, Lai M, Wang H, Bao Y, Ma Y, Wang W, Niu L, Gan S. Graphene Oxide-Poly(vinyl alcohol) Hydrogel-Coated Solid-Contact Ion-Selective Electrodes for Wearable Sweat Potassium Ion Sensing. Anal Chem 2024; 96:8594-8603. [PMID: 38718350 DOI: 10.1021/acs.analchem.4c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) with ionophore-based polymer-sensitive membranes have been the major devices in wearable sweat sensors toward electrolyte analysis. However, the toxicity of ionophores in ion-selective membranes (ISMs), for example, valinomycin (K+ ion carrier), is a significant challenge, since the ISM directly contacts the skin during the tests. Herein, we report coating a hydrogel of graphene oxide-poly(vinyl alcohol) (GO-PVA) on the ISM to fabricate hydrogel-based SC-ISEs. The hydrogen bond interaction between GO sheets and PVA chains could enhance the mechanical strength through the formation of a cross-linking network. Comprehensive electrochemical tests have demonstrated that hydrogel-coated K+-SC-ISE maintains Nernstian response sensitivity, high selectivity, and anti-interference ability compared with uncoated K+-SC-ISE. A flexible hydrogel-based K+ sensing device was further fabricated with the integration of a solid-contact reference electrode, which has realized the monitoring of sweat K+ in real time. This work highlights the possibility of hydrogel coating for fabricating biocompatible wearable potentiometric sweat electrolyte sensors.
Collapse
Affiliation(s)
- Siyi Liu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Lijie Zhong
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yitian Tang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Meixue Lai
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Haocheng Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yu Bao
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yingming Ma
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Wei Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, P. R. China
| | - Shiyu Gan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, Key Laboratory of Optoelectronic Materials and Sensors in Guangdong Provincial Universities, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
8
|
Shahzad U, Saeed M, Marwani HM, Al-Humaidi JY, Rehman SU, Althomali RH, Awual MR, Rahman MM. Recent Progress on Potentiometric Sensor Applications Based on Nanoscale Metal Oxides: A Comprehensive Review. Crit Rev Anal Chem 2024:1-18. [PMID: 38593048 DOI: 10.1080/10408347.2024.2337876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Electrochemical sensors have been the subject of much research and development as of late, with several publications detailing new designs boasting enhanced performance metrics. That is, without a doubt, because such sensors stand out from other analytical tools thanks to their excellent analytical characteristics, low cost, and ease of use. Their progress has shown a trend toward seeking out novel useful nano structure materials. A variety of nanostructure metal oxides have been utilized in the creation of potentiometric sensors, which are the subject of this article. For screen-printed pH sensors, metal oxides have been utilized as sensing layers due to their mixed ion-electron conductivity and as paste-ion-selective electrode components and in solid-contact electrodes. Further significant uses include solid-contact layers. All the metal oxide uses mentioned are within the purview of this article. Nanoscale metal oxides have several potential uses in the potentiometry method, and this paper summarizes such uses, including hybrid materials and single-component layers. Potentiometric sensors with outstanding analytical properties can be manufactured entirely from metal oxides. These novel sensors outperform the more traditional, conventional electrodes in terms of useful characteristics. In this review, we looked at the potentiometric analytical properties of different building solutions with various nanoscale metal oxides.
Collapse
Affiliation(s)
- Umer Shahzad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohsin Saeed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hadi M Marwani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shujah Ur Rehman
- Institute of Energy & Environmental Engineering, University of the Punjab, Lahore, Pakistan
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, Saudi Arabia
| | - Md Rabiul Awual
- Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, Australia
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Chipangura YE, Spindler BD, Bühlmann P, Stein A. Design Criteria for Nanostructured Carbon Materials as Solid Contacts for Ion-Selective Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309778. [PMID: 38105339 DOI: 10.1002/adma.202309778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/05/2023] [Indexed: 12/19/2023]
Abstract
The ability to miniaturize ion-selective sensors that enable microsensor arrays and wearable sensor patches for ion detection in environmental or biological samples requires all-solid-state sensors with solid contacts for transduction of an ion activity into an electrical signal. Nanostructured carbon materials function as effective solid contacts for this purpose. They can also contribute to improved potential signal stability, reducing the need for frequent sensor calibration. In this Perspective, the structural features of various carbon-based solid contacts described in the literature and their respective abilities to reduce potential drift during long-term, continuous measurements are compared. These carbon materials include nanoporous carbons with various architectures, carbon nanotubes, carbon black, graphene, and graphite-based solid contacts. The effects of accessibility of ionophores, ionic sites, and other components of an ion-selective membrane to the internal or external carbon surfaces are discussed, because this impacts double-layer capacitance and potential drift. The effects of carbon composition on water-layer formation are also considered, which is another contributor to potential drift during long-term measurements. Recommendations regarding the selection of solid contacts and considerations for their characterization and testing in solid-contact ion-selective electrodes are provided.
Collapse
Affiliation(s)
- Yevedzo E Chipangura
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| | - Brian D Spindler
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| |
Collapse
|
10
|
Rousseau CR, Chipangura YE, Stein A, Bühlmann P. Effect of Ion Identity on Capacitance and Ion-to-Electron Transduction in Ion-Selective Electrodes with Nanographite and Carbon Nanotube Solid Contacts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1785-1792. [PMID: 38198594 DOI: 10.1021/acs.langmuir.3c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The use of large surface area carbon materials as transducers in solid-contact ion-selective electrodes (ISEs) has become widespread. Desirable qualities of ISEs, such as a small long-term drift, have been associated with a high capacitance that arises from the formation of an electrical double layer at the interface of the large surface area carbon material and the ion-selective membrane. The capacitive properties of these ISEs have been observed using a variety of techniques, but the effects of the ions present in the ion-selective membrane on the measured value of the capacitance have not been studied in detail. Here, it is shown that changes in the size and concentration of the ions in the ion-selective membrane as well as the polarity of the polymeric matrix result in capacitances that can vary by up to several hundred percent. These data illustrate that the interpretation of comparatively small differences in capacitance for different types of solid contacts is not meaningful unless the composition of the ion-selective membrane is taken into account.
Collapse
Affiliation(s)
- Celeste R Rousseau
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Yevedzo E Chipangura
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Lenar N, Piech R, Wardak C, Paczosa-Bator B. Application of Metal Oxide Nanoparticles in the Field of Potentiometric Sensors: A Review. MEMBRANES 2023; 13:876. [PMID: 37999362 PMCID: PMC10672869 DOI: 10.3390/membranes13110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Recently, there has been rapid development of electrochemical sensors, and there have been numerous reports in the literature that describe new constructions with improved performance parameters. Undoubtedly, this is due to the fact that those sensors are characterized by very good analytical parameters, and at the same time, they are cheap and easy to use, which distinguishes them from other analytical tools. One of the trends observed in their development is the search for new functional materials. This review focuses on potentiometric sensors designed with the use of various metal oxides. Metal oxides, because of their remarkable properties including high electrical capacity and mixed ion-electron conductivity, have found applications as both sensing layers (e.g., of screen-printing pH sensors) or solid-contact layers and paste components in solid-contact and paste-ion-selective electrodes. All the mentioned applications of metal oxides are described in the scope of the paper. This paper presents a survey on the use of metal oxides in the field of the potentiometry method as both single-component layers and as a component of hybrid materials. Metal oxides are allowed to obtain potentiometric sensors of all-solid-state construction characterized by remarkable analytical parameters. These new types of sensors exhibit properties that are competitive with those of the commonly used conventional electrodes. Different construction solutions and various metal oxides were compared in the scope of this review based on their analytical parameters.
Collapse
Affiliation(s)
- Nikola Lenar
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, PL-30059 Krakow, Poland; (N.L.)
| | - Robert Piech
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, PL-30059 Krakow, Poland; (N.L.)
| | - Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 3, PL-20031 Lublin, Poland;
| | - Beata Paczosa-Bator
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza 30, PL-30059 Krakow, Poland; (N.L.)
| |
Collapse
|
12
|
Wang P, Liu H, Zhou S, Chen L, Yu S, Wei J. A Review of the Carbon-Based Solid Transducing Layer for Ion-Selective Electrodes. Molecules 2023; 28:5503. [PMID: 37513374 PMCID: PMC10384130 DOI: 10.3390/molecules28145503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
As one of the key components of solid-contact ion-selective electrodes (SC-ISEs), the SC layer plays a crucial role in electrode performance. Carbon materials, known for their efficient ion-electron signal conversion, chemical stability, and low cost, are considered ideal materials for solid-state transducing layers. In this review, the application of different types of carbon materials in SC-ISEs (from 2007 to 2023) has been comprehensively summarized and discussed. Representative carbon-based materials for the fabrication of SC-ISEs have been systematically outlined, and the influence of the structural characteristics of carbon materials on achieving excellent performance has been emphasized. Finally, the persistent challenges and potential opportunities are also highlighted and discussed, aiming to inspire the design and fabrication of next-generation SC-ISEs with multifunctional composite carbon materials in the future.
Collapse
Affiliation(s)
- Peike Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiqiang Zhou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lina Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
13
|
Wardak C, Pietrzak K, Morawska K, Grabarczyk M. Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5839. [PMID: 37447689 DOI: 10.3390/s23135839] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Potentiometric sensors are the largest and most commonly used group of electrochemical sensors. Among them, ion-selective electrodes hold a prominent place. Since the end of the last century, their re-development has been observed, which is a consequence of the introduction of solid contact constructions, i.e., electrodes without an internal electrolyte solution. Research carried out in the field of potentiometric sensors primarily focuses on developing new variants of solid contact in order to obtain devices with better analytical parameters, and at the same time cheaper and easier to use, which has been made possible thanks to the achievements of material engineering. This paper presents an overview of new materials used as a solid contact in ion-selective electrodes over the past several years. These are primarily composite and hybrid materials that are a combination of carbon nanomaterials and polymers, as well as those obtained from carbon and polymer nanomaterials in combination with others, such as metal nanoparticles, metal oxides, ionic liquids and many others. Composite materials often have better mechanical, thermal, electrical, optical and chemical properties than the original components. With regard to their use in the construction of ion-selective electrodes, it is particularly important to increase the capacitance and surface area of the material, which makes them more effective in the process of charge transfer between the polymer membrane and the substrate material. This allows to obtain sensors with better analytical and operational parameters. Brief characteristics of electrodes with solid contact, their advantages and disadvantages, as well as research methods used to assess their parameters and analytical usefulness were presented. The work was divided into chapters according to the type of composite material, while the data in the table were arranged according to the type of ion. Selected basic analytical parameters of the obtained electrodes have been collected and summarized in order to better illustrate and compare the achievements that have been described till now in this field of analytical chemistry, which is potentiometry. This comprehensive review is a compendium of knowledge in the research area of functional composite materials and state-of-the-art SC-ISE construction technologies.
Collapse
Affiliation(s)
- Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Klaudia Morawska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Malgorzata Grabarczyk
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| |
Collapse
|
14
|
Wang D, Zhang W, Wang J, Li X, Liu Y. A high-performance, all-solid-state Na + selective sensor printed with eco-friendly conductive ink. RSC Adv 2023; 13:16610-16618. [PMID: 37287809 PMCID: PMC10242244 DOI: 10.1039/d3ra01410j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023] Open
Abstract
In recent years, the integration of flexible printed electronics and electrochemical sensors has emerged as a new approach for developing wearable biochemical detecting devices. Among the materials utilized in flexible printed electronics, carbon-based conductive inks are considered to be crucial. In this study, we propose a cost-effective, highly conductive, and environmentally friendly ink formulation utilizing graphite and carbon black (CB) as conductive fillers, resulting in a very low sheet resistance of 15.99 Ω sq-1 (conductivity of 2.5 × 103 S m-1) and a printed film thickness of 25 μm. The unique "sandwich" structure of the working electrode (WE) printed with this ink enhances its electrical conductivity, leading to high sensitivity, selectivity, and stability, with almost no water film generated between the WE and the ion-selective membrane (ISM), strong ion selectivity, long-term stability, and anti-interference. The lower detection limit of the sensor for Na+ is 0.16 mM with a slope of 75.72 mV per decade. To validate the sensor's usability, we analyzed three sweat samples collected during physical activity, with Na+ concentrations within the typical range for human sweat (51 ± 4 mM, 39 ± 5 mM, and 46 ± 2 mM).
Collapse
Affiliation(s)
- Dengke Wang
- College of Chemical Engineering and Technology, Taiyuan University of Technology Taiyuan Shanxi 030024 China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology Taiyuan Shanxi 030024 China
| | - Wanggang Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan Shanxi 030024 China
| | - Jian Wang
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan Shanxi 030024 China
| | - Xiaohong Li
- College of Chemical Engineering and Technology, Taiyuan University of Technology Taiyuan Shanxi 030024 China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology Taiyuan Shanxi 030024 China
| | - Yiming Liu
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan Shanxi 030024 China
- Shanxi Academy of Analytical Sciences Taiyuan 030006 Shanxi China
| |
Collapse
|
15
|
Teekayupak K, Lomae A, Agir I, Chuaypen N, Dissayabutra T, Henry CS, Chailapakul O, Ozer T, Ruecha N. Large-scale fabrication of ion-selective electrodes for simultaneous detection of Na +, K +, and Ca 2+ in biofluids using a smartphone-based potentiometric sensing platform. Mikrochim Acta 2023; 190:237. [PMID: 37222781 DOI: 10.1007/s00604-023-05818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
A significant bottleneck exists for mass-production of ion-selective electrodes despite recent developments in manufacturing technologies. Here, we present a fully-automated system for large-scale production of ISEs. Three materials, including polyvinyl chloride, polyethylene terephthalate and polyimide, were used as substrates for fabricating ion-selective electrodes (ISEs) using stencil printing, screen-printing and laser engraving, respectively. We compared sensitivities of the ISEs to determine the best material for the fabrication process of the ISEs. The electrode surfaces were modified with various carbon nanomaterials including multi-walled carbon nanotubes, graphene, carbon black, and their mixed suspensions as the intermediate layer to enhance sensitivities of the electrodes. An automated 3D-printed robot was used for the drop-cast procedure during ISE fabrication to eliminate manual steps. The sensor array was optimized, and the detection limits were 10-5 M, 10-5 M and 10-4 M for detection of K+, Na+ and Ca2+ ions, respectively. The sensor array integrated with a portable wireless potentiometer was used to detect K+, Na+ and Ca2+ in real urine and simulated sweat samples and results obtained were in agreement with ICP-OES with good recoveries. The developed sensing platform offers low-cost detection of electrolytes for point-of-care applications.
Collapse
Affiliation(s)
- Kanyapat Teekayupak
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Atchara Lomae
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ismail Agir
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, 34700, Türkiye
| | - Natthaya Chuaypen
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thasinas Dissayabutra
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Charles S Henry
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
- School of Biomedical Engineering, Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Tugba Ozer
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, Istanbul, 34220, Türkiye.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul , 34220, Türkiye.
| | - Nipapan Ruecha
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
16
|
Niemiec B, Piech R, Paczosa-Bator B. All-Solid-State Carbon Black Paste Electrodes Modified by Poly(3-octylthiophene-2,5-diyl) and Transition Metal Oxides for Determination of Nitrate Ions. Molecules 2023; 28:molecules28114313. [PMID: 37298788 DOI: 10.3390/molecules28114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
This paper presents new paste ion-selective electrodes for the determination of nitrate ions in soil. The pastes used in the construction of the electrodes are based on carbon black doped with transition metal oxides: ruthenium, iridium, and polymer-poly(3-octylthiophene-2,5-diyl). The proposed pastes were electrically characterized by chronopotentiometry and broadly characterized potentiometrically. The tests showed that the metal admixtures used increased the electric capacitance of the pastes to 470 μF for the ruthenium-doped paste. The polymer additive used positively affects the stability of the electrode response. All tested electrodes were characterized by a sensitivity close to that of the Nernst equation. In addition, the proposed electrodes have a measurement range of 10-5 to 10-1 M NO3- ions. They are impervious to light conditions and pH changes in the range of 2-10. The utility of the electrodes presented in this work was demonstrated during measurements directly in soil samples. The electrodes presented in this paper show satisfactory metrological parameters and can be successfully used for determinations in real samples.
Collapse
Affiliation(s)
- Barbara Niemiec
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, PL-30059 Krakow, Poland
| | - Robert Piech
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, PL-30059 Krakow, Poland
| | - Beata Paczosa-Bator
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, PL-30059 Krakow, Poland
| |
Collapse
|
17
|
Bao H, Ye J, Zhao X, Zhang Y. Conductive Polymer Nanoparticles as Solid Contact in Ion-Selective Electrodes Sensitive to Potassium Ions. Molecules 2023; 28:molecules28073242. [PMID: 37050005 PMCID: PMC10096689 DOI: 10.3390/molecules28073242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
A preparation method of nanocomposites based on poly (3-octylthiophene-2,5-diyl) (POT) and carbon black (CB) as the transducer of an all-solid potassium ion selective electrode is proposed. POT is used as the dispersant of CB, and the obtained nanocomposites have unique characteristics, including high conductivity, high capacitance and high stability. The potassium ion selective electrode based on POT and CB was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronopotentiometry. The results showed that the detection limit of potassium ions was 10−6.2 M, and the slope was 57.6 ± 0.8 mV/façade. The water layer test and anti-interference test show that the electrode has high hydrophobicity, the static contact angle reaches 139.7° and is not easily affected by light, O2 and CO2.
Collapse
Affiliation(s)
- Hui Bao
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jin Ye
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xuyan Zhao
- College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuan Zhang
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
18
|
Duy Nguyen L, Mau Dang C, Chanh Duc Doan T. Highly stable ammonium ion-selective electrodes based on one-pot synthesized gold nanoparticle-reduced graphene oxide as ion-to-electron transducers. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
19
|
Thi Dieu Thuy N, Zhao G, Wang X, Awuah E, Zhang L. Potassium ion‐selective electrode with a sensitive ion‐to‐electron transducer composed of porous laser‐induced graphene and MoS<sub>2</sub> fabricated by one‐step direct laser writing. ELECTROANAL 2022. [DOI: 10.1002/elan.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Niemiec B, Zambrzycki M, Piech R, Wardak C, Paczosa-Bator B. Hierarchical Nanocomposites Electrospun Carbon NanoFibers/Carbon Nanotubes as a Structural Element of Potentiometric Sensors. MATERIALS 2022; 15:ma15144803. [PMID: 35888272 PMCID: PMC9319259 DOI: 10.3390/ma15144803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/10/2022]
Abstract
This work proposes new carbon materials for intermediate layers in solid-contact electrodes sensitive for potassium ions. The group of tested materials includes electrospun carbon nanofibers, electrospun carbon nanofibers with incorporated cobalt nanoparticles and hierarchical nanocomposites composed of carbon nanotubes deposited on nanofibers with different metal nanoparticles (cobalt or nickel) and nanotube density (high or low). Materials were characterized using scanning electron microscopy and contact angle microscopy. Electrical parameters of ready-to-use electrodes were characterized using chronopotentiometry and electrochemical impedance spectroscopy. The best results were obtained for potassium electrodes with carbon nanofibers with nickel-cobalt nanoparticles and high density of nanotubes layer: the highest capacity value (330 µF), the lowest detection limit (10−6.3 M), the widest linear range (10−6–10−1) and the best reproducibility of normal potential (0.9 mV). On the other hand the best potential reversibility, the lowest potential drift (20 μV·h−1) in the long-term test and the best hydrophobicity (contact angle 168°) were obtained for electrode with carbon nanofibers with cobalt nanoparticles and high density of carbon nanotubes. The proposed electrodes can be used successfully in potassium analysis of real samples as shown in the example of tomato juices.
Collapse
Affiliation(s)
- Barbara Niemiec
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland; (B.N.); (M.Z.); (R.P.)
| | - Marcel Zambrzycki
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland; (B.N.); (M.Z.); (R.P.)
| | - Robert Piech
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland; (B.N.); (M.Z.); (R.P.)
| | - Cecylia Wardak
- Department of Analytical Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | - Beata Paczosa-Bator
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland; (B.N.); (M.Z.); (R.P.)
- Correspondence: ; Tel.: +48-0126175021; Fax: +48-0126341201
| |
Collapse
|
21
|
Kozma J, Papp S, Gyurcsányi RE. TEMPO-Functionalized Carbon Nanotubes for Solid-Contact Ion-Selective Electrodes with Largely Improved Potential Reproducibility and Stability. Anal Chem 2022; 94:8249-8257. [PMID: 35622612 PMCID: PMC9201804 DOI: 10.1021/acs.analchem.2c00395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid-contact ion-selective electrodes (SCISEs) can overcome essential limitations of their counterparts based on liquid contacts. However, attaining a highly reproducible and predictable E0, especially between different fabrication batches, turned out to be difficult even with the most established solid-contact materials, i.e., conducting polymers and large-surface-area conducting materials (e.g., carbon nanotubes), that otherwise possess excellent potential stability. An appropriate batch-to-batch E0 reproducibility of SCISEs besides aiding the rapid quality control of the electrode manufacturing process is at the core of their "calibration-free" application, which is perhaps the last major challenge for their routine use as single-use "disposable" or wearable potentiometric sensors. Therefore, here, we propose a new class of solid-contact material based on the covalent functionalization of multiwalled carbon nanotubes (MWCNTs) with a chemically stable redox molecule, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). This material combines the advantages of (i) the large double-layer capacitance of MWCNT layers, (ii) the adjustable redox couple ratio provided by the TEMPO moiety, (iii) the covalent confinement of the redox couple, and (iv) the hydrophobicity of the components to achieve the potential reproducibility and stability for demanding applications. The TEMPO-MWCNT-based SC potassium ion-selective electrodes (K+-SCISEs) showed excellent analytical performance and potential stability with no sign of an aqueous layer formation beneath the ion-selective membrane nor sensitivity toward O2, CO2, and light. A major convenience of the fabrication procedure is the E0 adjustment of the K+-SCISEs by the polarization of the TEMPO-MWCNT suspension prior to its use as solid contact. While most E0 reproducibility studies are limited to a single fabrication batch of SCISEs, the use of prepolarized TEMPO-MWCNT resulted also in an outstanding batch-to-batch potential reproducibility. We were also able to overcome the hydration-related potential drifts for the use of SCISEs without prior conditioning and to feature application for accurate K+ measurements in undiluted blood serum.
Collapse
Affiliation(s)
- József Kozma
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Soma Papp
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Róbert E Gyurcsányi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Lendület Chemical Nanosensors Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,MTA-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
22
|
Liu J, Xu Z, Yang M, Zhang S, Tang A. An Ion Selective Electrode Based on Ti3C2 Solid‐state Transduction for Rapid Detection of Lead Ion Concentration in Aqueous Solution. ELECTROANAL 2022. [DOI: 10.1002/elan.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Ozer T, Henry CS. Microfluidic-based ion-selective thermoplastic electrode array for point-of-care detection of potassium and sodium ions. Mikrochim Acta 2022; 189:152. [PMID: 35322308 DOI: 10.1007/s00604-022-05264-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
Abstract
A microfluidic paper-based thermoplastic electrode (TPE) array has been developed for point-of-care detection of Na+ and K+ ions using a custom-made portable potentiometer. TPEs were fabricated using polystyrene as the binder and two different types of graphite to compare the electrode performance. The newly designed TPE array embedded in a polymethyl methacrylate chip consists of two working electrodes modified with carbon black nanomaterial and an ion-selective membrane, and an all-solid-state reference electrode modified with Ag/AgCl ink and poly(butyl methacrylate-co-methyl methacrylate) membrane via drop-casting. Ion-selective membrane compositions and conditioning steps were optimized. Under optimized conditions, ion-selective TPEs demonstrated fast response time (4 s) and good stability. The TPE array demonstrated a Nernstian behavior for K+ with a sensitivity of 59.2 ± 0.2 mV decade-1 and near-Nernstian response for Na+ with a sensitivity of 54.0 ± 1.1 mV decade-1 in the range 10-1 - 10-4 M and 1 - 10-3 M, respectively. The detection limits were 1 × 10-5 M and 1 × 10-4 M for K+ and Na+, respectively. In addition, a K+ and Na+ selective microfluidic paper-based analytical device (µPAD) was applied to artificial serum analysis and found in good agreement with average recoveries of 101.3% and 99.7%, respectively, suggesting that the developed ISE array is suitable for detection of sodium and potassium in complex matrix.
Collapse
Affiliation(s)
- Tugba Ozer
- Faculty of Chemical-Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA.
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
24
|
Kalisz J, Wȩgrzyn K, Maksymiuk K, Michalska A. 3D-Drawn Supports for Ion-Selective Electrodes. Anal Chem 2022; 94:3436-3440. [PMID: 35175046 PMCID: PMC8892439 DOI: 10.1021/acs.analchem.1c05431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022]
Abstract
A new concept of easy to make, potentially disposable potentiometric sensors is presented. A thermoprocessable carbon black-loaded, electronically conducting, polylactide polymer composite was used to prepare substrate electrodes of user's defined shape/arrangement applying a 3D pen in a hot melt process. Covering of the carbon black-loaded polylactide 3D-drawn substrate electrode with a PVC-based ion-selective membrane cocktail results in spontaneous formation of a zip-lock structure with a large contact area. Thus, obtained ion-selective electrodes offer sensors of excellent performance, including potential stability expressed by SD of the mean value of potential recorded equal to ±1.0 mV (n = 6) within one day and ±1.5 mV (n = 6) between five days. The approach offers also high device-to-device potential reproducibility: SD of mean value of E0 equal to ±1.5 mV (n = 5).
Collapse
Affiliation(s)
| | | | - Krzysztof Maksymiuk
- Faculty of Chemistry, University
of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Agata Michalska
- Faculty of Chemistry, University
of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
25
|
Ozer T, Henry CS. All-solid-state potassium-selective sensor based on carbon black modified thermoplastic electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
Phoonsawat K, Ozer T, Dungchai W, Henry CS. Dual-mode ion-selective electrodes and distance-based microfluidic device for detection of multiple urinary electrolytes. Analyst 2022; 147:4517-4524. [DOI: 10.1039/d2an01220k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we developed a microfluidic paper device by combining ion-selective electrodes (ISE) and a distance-based paper device (dPAD) for simultaneous potentiometric and colorimetric detection of urine electrolytes including K+, Na+ and Cl−.
Collapse
Affiliation(s)
- Kamonchanok Phoonsawat
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
- Engineering Science Classroom, Darunsikkhalai School, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220 Istanbul, Turkey
| | - Wijitar Dungchai
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
27
|
Mazzaracchio V, Serani A, Fiore L, Moscone D, Arduini F. All-solid state ion-selective carbon black-modified printed electrode for sodium detection in sweat. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Bartoszewicz B, Lewenstam A, Migdalski J. Solid-Contact Electrode with Composite PVC-Based 3D-Printed Membrane. Optimization of Fabrication and Performance. SENSORS 2021; 21:s21144909. [PMID: 34300652 PMCID: PMC8309799 DOI: 10.3390/s21144909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
Intense interest in reference electrode design and fabrication has recently been enriched with the application of 3D printing of electrodes with salt-loaded PVC membranes. This type of material is attractive in sensor technology and is challenging to implement in 3D. In this report, several improvements and simplifications in the technology were focused on and supported by a fundamental electrochemical characterization.
Collapse
|
29
|
Rousseau CR, Bühlmann P. Calibration-free potentiometric sensing with solid-contact ion-selective electrodes. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116277] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Mahmoud Mostafa S, Ali Farghali A, Magdy Khalil M. Novel Zn‐Fe LDH/MWCNT
s
and Graphene/MWCNTs Nanocomposites Based Potentiometric Sensors for Benzydamine Determination in Biological Fluids and Real Water Samples. ELECTROANAL 2021. [DOI: 10.1002/elan.202060455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ahmed Ali Farghali
- Materials Science and Nanotechnology Department Faculty of Postgraduate Studies for Advanced Sciences Beni-Suef University Beni-Suef Egypt
| | | |
Collapse
|
31
|
High Capacity Nanocomposite Layers Based on Nanoparticles of Carbon Materials and Ruthenium Dioxide for Potassium Sensitive Electrode. MATERIALS 2021; 14:ma14051308. [PMID: 33803173 PMCID: PMC7963164 DOI: 10.3390/ma14051308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/16/2022]
Abstract
This work presents the new concept of designing ion-selective electrodes based on the use of new composite materials consisting of carbon nanomaterials and ruthenium dioxide. Using two different materials varying in microstructure and properties, we could obtain one material for the mediation layer that adopted features coming of both components. Ruthenium dioxide characterized by high electrical capacity and mixed electronic-ionic transduction and nano-metric carbon materials were reportedly proved to improve the properties of ion-selective electrodes. Initially, only the materials and then the final electrodes were tested in the scope of the presented work, using scanning and transmission electron microscope, contact angle microscope, and various electrochemical techniques, including electrochemical impedance spectroscopy and chronopotentiometry. The obtained results confirmed beneficial influence of the designed nanocomposites on the ion-selective electrodes' properties. Nanosized structure, high capacity (characterized by the electrical capacitance value from approximately 5.5 mF for GR + RuO2 and CB + RuO2, up to 14 mF for NT + RuO2) and low hydrophilicity (represented by the contact angle from 60° for GR+RuO2, 80° for CB+RuO2, and up to 100° for NT + RuO2) of the mediation layer materials, allowed us to obtain water layer-free potassium-selective electrodes, characterized by rapid and stable potentiometric response in a wide range of concentrations-from 10-1 to 10-6 M K+.
Collapse
|
32
|
Kozma J, Papp S, Gyurcsányi RE. Solid-contact ion-selective electrodes based on ferrocene-functionalized multi-walled carbon nanotubes. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
33
|
Gadhari NS, Gholave JV, Patil SS, Patil VR, Upadhyay SS. Enantioselective high performance new solid contact ion-selective electrode potentiometric sensor based on sulphated γ-cyclodextrin‑carbon nanofiber composite for determination of multichiral drug moxifloxacin. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.114981] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Jaramillo EA, Noell AC. Development of Miniature Solid Contact Ion Selective Electrodes for
in situ
Instrumentation. ELECTROANAL 2020. [DOI: 10.1002/elan.201900761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- E. A. Jaramillo
- Jet Propulsion Laboratory California Institute of Technology Pasadena California
| | - A. C. Noell
- Jet Propulsion Laboratory California Institute of Technology Pasadena California
| |
Collapse
|
35
|
Arduini F, Cinti S, Mazzaracchio V, Scognamiglio V, Amine A, Moscone D. Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosens Bioelectron 2020; 156:112033. [PMID: 32174547 DOI: 10.1016/j.bios.2020.112033] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022]
Abstract
Advances in cutting-edge technologies including nanotechnology, microfluidics, electronic engineering, and material science have boosted a new era in the design of robust and sensitive biosensors. In recent years, carbon black has been re-discovered in the design of electrochemical (bio)sensors thanks to its interesting electroanalytical properties, absence of treatment requirement, cost-effectiveness (c.a. 1 €/Kg), and easiness in the preparation of stable dispersions. Herein, we present an overview of the literature on carbon black-based electrochemical (bio)sensors, highlighting current trends and possible challenges to this rapidly developing area, with a special focus on the fabrication of carbon black-based electrodes in the realisation of sensors and biosensors (e.g. enzymatic, immunosensors, and DNA-based).
Collapse
Affiliation(s)
- Fabiana Arduini
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED via Renato Rascel 30, 00128, Rome, Italy.
| | - Stefano Cinti
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Vincenzo Mazzaracchio
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, Department of Chemical Sciences and Materials Technologies, Via Salaria Km 29.3, 00015, Monterotondo Scalo, Rome, Italy
| | - Aziz Amine
- Faculty of Sciences and Techniques, Hassan II University of Casablanca, Morocco
| | - Danila Moscone
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
36
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
37
|
Liu Y, Liu Y, Yan R, Gao Y, Wang P. Bimetallic AuCu nanoparticles coupled with multi-walled carbon nanotubes as ion-to-electron transducers in solid-contact potentiometric sensors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Pięk M, Paczosa-Bator B, Smajdor J, Piech R. Molecular organic materials intermediate layers modified with carbon black in potentiometric sensors for chloride determination. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Mousavi MPS, Ainla A, Tan EKW, K Abd El-Rahman M, Yoshida Y, Yuan L, Sigurslid HH, Arkan N, Yip MC, Abrahamsson CK, Homer-Vanniasinkam S, Whitesides GM. Ion sensing with thread-based potentiometric electrodes. LAB ON A CHIP 2018; 18:2279-2290. [PMID: 29987296 DOI: 10.1039/c8lc00352a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Potentiometric sensing of ions with ion-selective electrodes (ISEs) is a powerful technique for selective and sensitive measurement of ions in complex matrices. The application of ISEs is generally limited to laboratory settings, because most commercially available ISEs and reference electrodes are large, delicate, and expensive, and are not suitable for point-of-use or point-of-care measurements. This work utilizes cotton thread as a substrate for fabrication of robust and miniaturized ISEs that are suitable for point-of-care or point-of-use applications. Thread-based ISEs selective for Cl-, K+, Na+, and Ca2+ were developed. The cation-selective ISEs were fabricated by coating the thread with a surfactant-free conductive ink (made of carbon black) and then coating the tip of the conductive thread with the ion-selective membrane. The Cl- ISE was fabricated by coating the thread with an Ag/AgCl ink. These sensors exhibited slopes (of electrical potential vs. log concentration of target ion), close to the theoretically-expected values, over four orders of magnitude in concentrations of ions. Because thread is mechanically strong, the thread-based electrodes can be used in multiple-use applications as well as single-use applications. Multiple thread-based sensors can be easily bundled together to fabricate a customized sensor for multiplexed ion-sensing. These electrodes require volumes of sample as low as 200 μL. The application of thread-based ISEs is demonstrated in the analysis of ions in soil, food, and dietary supplements (Cl- in soil/water slurry, K+ and Na+ in coconut water, and Ca2+ in a calcium supplement), and in detection of physiological electrolytes (K+ and Na+ in blood serum and urine, with sufficient accuracy for clinical diagnostics).
Collapse
Affiliation(s)
- Maral P S Mousavi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Glassy carbon electrode modified with carbon black for sensitive estradiol determination by means of voltammetry and flow injection analysis with amperometric detection. Anal Biochem 2017; 544:7-12. [PMID: 29258828 DOI: 10.1016/j.ab.2017.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022]
Abstract
A voltammetric method for fast and sensitive estradiol determination using carbon black modified glassy carbon electrode (CBGC) is proposed. The use of carbon black as a modifying layer led to obtain low detection limit (9.2·10-8 mol L-1 for a preconcentration time of 60 s) and stability of registered signals (measured as RSD is 1.3%, n = 7, estradiol concentration 0.5·10-6 mol L-1). Cyclic voltammetry study revealed that in phosphate media estradiol suffers irreversible one-proton and one-electron oxidation process. Under the optimum conditions, estradiol calibration curve was linear in the concentration range from 0.15·10-6 to 3.5·10-6 mol L-1. The proposed method enable to determine estradiol content in different pharmaceutical formulation with good recovery. Amperometric measurements of estradiol were performed as well to indicate the possibility of its fast and accurate determination under the flow conditions.
Collapse
|
41
|
Ghosh T, Chung HJ, Rieger J. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2536. [PMID: 29099804 PMCID: PMC5713653 DOI: 10.3390/s17112536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022]
Abstract
Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN) was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10-4-1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h) for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode.
Collapse
Affiliation(s)
- Tanushree Ghosh
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
- The Institute for Reconstructive Sciences in Medicine (iRSM), Misericordia Community Hospital, Edmonton, AB T5R 4H5, Canada.
- Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada.
| | - Hyun-Joong Chung
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jana Rieger
- The Institute for Reconstructive Sciences in Medicine (iRSM), Misericordia Community Hospital, Edmonton, AB T5R 4H5, Canada.
- Department of Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada.
| |
Collapse
|
42
|
Yin T, Jiang X, Qin W. A magnetic field-directed self-assembly solid contact for construction of an all-solid-state polymeric membrane Ca 2+ -selective electrode. Anal Chim Acta 2017; 989:15-20. [DOI: 10.1016/j.aca.2017.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/21/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
|
43
|
Smajdor J, Piech R, Pięk M, Paczosa-Bator B. Carbon black as a glassy carbon electrode modifier for high sensitive melatonin determination. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Ławrywianiec M, Smajdor J, Paczosa-Bator B, Piech R. High Sensitive Method for Determination of the Toxic Bisphenol A in Food/Beverage Packaging and Thermal Paper Using Glassy Carbon Electrode Modified with Carbon Black Nanoparticles. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0945-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
He Q, Das SR, Garland NT, Jing D, Hondred JA, Cargill AA, Ding S, Karunakaran C, Claussen JC. Enabling Inkjet Printed Graphene for Ion Selective Electrodes with Postprint Thermal Annealing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12719-12727. [PMID: 28218507 DOI: 10.1021/acsami.7b00092] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Inkjet printed graphene (IPG) has recently shown tremendous promise in reducing the cost and complexity of graphene circuit fabrication. Herein we demonstrate, for the first time, the fabrication of an ion selective electrode (ISE) with IPG. A thermal annealing process in a nitrogen ambient environment converts the IPG into a highly conductive electrode (sheet resistance changes from 52.8 ± 7.4 MΩ/□ for unannealed graphene to 172.7 ± 33.3 Ω/□ for graphene annealed at 950 °C). Raman spectroscopy and field emission scanning electron microscopy (FESEM) analysis reveals that the printed graphene flakes begin to smooth at an annealing temperature of 500 °C and then become more porous and more electrically conductive when annealed at temperatures of 650 °C and above. The resultant thermally annealed, IPG electrodes are converted into potassium ISEs via functionalization with a poly(vinyl chloride) (PVC) membrane and valinomycin ionophore. The developed potassium ISE displays a wide linear sensing range (0.01-100 mM), a low detection limit (7 μM), minimal drift (8.6 × 10-6 V/s), and a negligible interference during electrochemical potassium sensing against the backdrop of interfering ions [i.e., sodium (Na), magnesium (Mg), and calcium (Ca)] and artificial eccrine perspiration. Thus, the IPG ISE shows potential for potassium detection in a wide variety of human fluids including plasma, serum, and sweat.
Collapse
Affiliation(s)
- Qing He
- Mechanical Engineering Department, Iowa State University , Ames, Iowa 50011, United States
| | - Suprem R Das
- Mechanical Engineering Department, Iowa State University , Ames, Iowa 50011, United States
- Ames Laboratory, Ames, Iowa 50011, United States
| | - Nathaniel T Garland
- Mechanical Engineering Department, Iowa State University , Ames, Iowa 50011, United States
| | - Dapeng Jing
- Materials Analysis and Research Laboratory, Iowa State University , Ames, Iowa 50010, United States
| | - John A Hondred
- Mechanical Engineering Department, Iowa State University , Ames, Iowa 50011, United States
| | - Allison A Cargill
- Mechanical Engineering Department, Iowa State University , Ames, Iowa 50011, United States
| | - Shaowei Ding
- Mechanical Engineering Department, Iowa State University , Ames, Iowa 50011, United States
| | - Chandran Karunakaran
- Biomedical Research Laboratory, Department of Chemistry, VHNSN College (Autonomous) , Virudhunagar 626 001, Tamil Nadu, India
| | - Jonathan C Claussen
- Mechanical Engineering Department, Iowa State University , Ames, Iowa 50011, United States
- Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
46
|
Towards stabilization of the potential response of Mn(III) tetraphenylporphyrin-based solid-state electrodes with selectivity for salicylate ions. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3575-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Yin T, Li J, Qin W. An All-solid-state Polymeric Membrane Ca2+-selective Electrode Based on Hydrophobic Alkyl-chain-functionalized Graphene Oxide. ELECTROANAL 2016. [DOI: 10.1002/elan.201600383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tanji Yin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS; Yantai Shandong 264003 P. R. China
| | - Jinghui Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS; Yantai Shandong 264003 P. R. China
- University of the Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research (YIC); Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS; Yantai Shandong 264003 P. R. China
| |
Collapse
|
48
|
Pięk M, Piech R, Paczosa-Bator B. All-solid-state nitrate selective electrode with graphene/tetrathiafulvalene nanocomposite as high redox and double layer capacitance solid contact. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
He N, Gyurcsányi RE, Lindfors T. Electropolymerized hydrophobic polyazulene as solid-contacts in potassium-selective electrodes. Analyst 2016; 141:2990-7. [DOI: 10.1039/c5an02664d] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electropolymerized hydrophobic polyazulene based solid-contact potassium-selective electrodes have been characterized in terms of their suitability for potassium measurements in serum.
Collapse
Affiliation(s)
- Ning He
- Åbo Akademi University
- Faculty of Science and Engineering
- Johan Gadolin Process Chemistry Centre
- Laboratory of Analytical Chemistry
- FIN-20500 Turku/Åbo
| | - Róbert E. Gyurcsányi
- MTA-BME “Lendület” Chemical Nanosensors Research Group
- Department of Inorganic and Analytical Chemistry
- Budapest University of Technology and Economics
- Budapest
- Hungary
| | - Tom Lindfors
- Åbo Akademi University
- Faculty of Science and Engineering
- Johan Gadolin Process Chemistry Centre
- Laboratory of Analytical Chemistry
- FIN-20500 Turku/Åbo
| |
Collapse
|
50
|
Mikhelson KN, Peshkova MA. Advances and trends in ionophore-based chemical sensors. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4506] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|